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1 Introduction

The rectilinear block packing problem is a problem of packing a series of ar-
bitrary shaped rectilinear blocks into a larger rectangular container without
overlap so as to minimize a given objective function. This problem involves
many industrial applications, such as VLSI design, timber/glass cutting, textile
industry and newspaper layout. It belongs to a subset of classical packing prob-
lems and is known to be NP-hard. A special case of the rectilinear block packing
problem is the rectangle packing problem, for which many efficient algorithms
have been proposed.

This paper proposes heuristic algorithms for the rectilinear block pack-
ing problem by generalizing representative construction heuristics for rectangle
packing. The basic idea of our algorithms is that we regard a rectilinear block
as a set of rectangles with certain constraints on their relative positions. Hence,
we can also deal with packing problems in which each item consists of a set of
rectangles having some constraints on the relative positions between them. The
main strategy of our algorithms is the bottom-left strategy, which derives from
the bottom-left algorithm for rectangle packing [2]. In this strategy, whenever a
new item is being packed into the container, it will be placed at the $BL$ posi-
tion relative to the current layout. The BL position of a new item relative to
the current layout is defined as the leftmost point among the lowest bottom-left
stable feasible positions, where a bottom-left stable feasible position is a point
such that the new item can be placed without overlap and cannot be moved
neither leftward nor downward. We consider two standard rules for choosing
the new item from the remaining items. The resulting algorithms are called the

bottom-left algorithm and the best-fit algorithm.
We propose efficient implementations by incorporating a sweep line method

ior finding BL positions. Our algorithms can deal with both cases where the
rotation of items is allowed and not. A series of experiments on some benchmark
instances are performed and two example layouts computed by our algorithm
are reported.
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2 Problem Description

We are given a set of $n$ items $R=\{R_{1}, R_{2}, \ldots, R_{n}\}$ of rectilinear blocks, where
each rectilinear block takes a deterministic shape and size from a set of $t$ types
$T=\{T_{1},T_{2}, \ldots , T_{t}\}$ . We are also given a rectangular container with fixed width
and unrestricted height. The objective is to pack all the items orthogonally
without overlap into the container so as to minimize the height of the container.
In this paper, two oeses of this problem are considered: (1) all the items are not
allowed to be rotated, and (2) all the items can be rotated $90^{o},$ $180^{0}$ or $270^{o}$ .

3 Efficient Implementation of Construction Heuris-
tics

For a new rectilmear block to be placed next and a set of placed items, the
overlap number of a point $(x, y)$ is defined as the number of items that overlap

with the new block when it is placed at $(x,y)$ . In this paper, we use no-fit
polygons (abbreviated as NFPs) [1] as a crucial technique to caJculate overlap
numbers. The NFPs describe the positions where a new item to be packed can
be placed without intersection relative to the current layout. We define the
cross point as the crossing point where an NFP $s$ right edge crosses another’s
top edge. Observe that, bottom-left stable feasible positions will only appear
at non-overlapping cross points. By checking the overlap number of the cross
points, we can easily compute the BL position.

In this paper, we use the Find2D-BL algorithm [4] that enumerates bottom-
left stable feasible positions. It uses a sweep line, which is parallel to the x-axis.
With the sweep line moving upward from the bottom, the first bottom-left stable
feasible position appeBrs as the BL position.

3.1 Bottom-Left Algorithm

The bottom-left algorithm can be generally explained as follows: We are given
a set of $n$ rectihinear items $R$ and an order of items (e.g., decreasing order of
width). The algorithm paClss the items one by one according to the given order,
where each item is placed at its BL position of the current layout.

3.2 Best-Fit Algorithm

The basic idea of the best-fit algorithm comes from the best-fit algorithm for
the rectangle packing problem, which proposed by Burke et al. [3]. The best-
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fit algorithm can be generally explained as follows: We are given a set of $n$

rectilinear items $R$ and priority among them. The algorithm packs items one
by one, and in each iteration, it dynamically chooses a rectilinear block among
the remaining items to pack by the following rules:

$\bullet$ Calculate the BL positions of all the remaining items.

$\circ$ The rectilinear block, whose BL position takes the smallest x-coordinate
among those with the lowest y-coordinate, is packed in this iteration (if
there exist ties, the one with the highest priority is chosen).

4 Time Complexity

The number of rectangles which are divided from a rectilinear block $R_{\dot{\eta}}$ is de-
noted by $m_{i}$ . $M$ denotes the sum of $m_{i}$ over all the $n$ rectilinear blocks. The
sum of $m_{i}$ of the rectilinear blocks from $t$ distinct types is denoted by $m$ .

To find the BL position of $R_{\eta}\cdot$ , the Find2D-BL algorithm takes $O(Mm_{i}\log M)$

time. Hence, the time complexity of the bottom-left algorithm is $O(M^{2}\log M)$ .
For the best-fit algorithm, we propose some ideas to reduce the time complexity
from $O(nMm\log M)$ to $O(Mm\log M)$ .

Note that there are not more than four rotation angles for each rectilinear
block. This implies that the time complexities of the two algorithms for the
case where rotation is allowed are the same as the case without rotation.

5 Computational Result

Figure 1 and 2 show two example layouts computed by our best-fit algorithm
and bottom-left algorithm. In these two experiments, we take the same instance
and the same container to compare the results. The number of items is 1280,
the width of the container is 220, and rotation is considered.

The occupation rate obtained by our best-fit algorithm is 98.59% with the
running time of 8.30 seconds. The occupation rate by the bottom-left algorithm
is 95.92% and its running time is 11.26 seconds.

Figure 1: A layout obtained by the best-fit algorithm
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Figure 2: A layout obtained by the bottom-left algorithm

6 Conclusions

In this paper, we proposed. efficient ways of implementing the bottom-left algo-
rithm and the best-fit algorithm for the rectilinear block packing problem. We
analyzed the time complexity of our algorithm, and showed that the bottom-
left algorithm runs in $O(M^{2}\log M)$ time and the best-fit algorithm runs in
$O(Mm\log M)$ time. We also performed a series of experiments based on some
benchmark instances. The occupational rate of the packing layouts computed
by our algorithm was 95% on average for instances with more than 1000 items.
Even for instances with more than 10,000 rectihnear bloCks to be packed, the
proposed algorithm work in a reasonable computation time.
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