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神戸大学大学院理学研究科 前川泰則 (Yasunori Maekawa)
Department of Mathematics, Graduate School of Science, Kobe University

1. INTRODUCTION

In this report we consider the two-dimensional Navier-Stokes equations
for viscous incompressible flows under the no-slip boundary conditions:

(NS) $\{$

$\partial_{t}u-\nu\triangle u+u\cdot\nabla u+\nabla p=0$

$t>0,x\in \mathbb{R}_{+}^{2}t\geq 0,x\in \mathbb{R}_{+}^{2}$

,$divu=0$
$u=0$ $t\geq 0$ , $x\in\partial \mathbb{R}_{+}^{2}$ ,

$u|_{t=0}=a$ $x\in \mathbb{R}_{+}^{2}$ .

Here $\mathbb{R}_{+}^{2}=\{x\in \mathbb{R}^{2}|x_{2}>0\}$ , and $u=u(t, x)=(u_{1}(t, x), u_{2}(t, x))$ and
$p=p(t, x)$ denote the velocity field and the pressure field, and $\nu>0$ is
the viscosity coefficient. We will use the standard notations for derivatives;
$\partial_{t}=\partial/\partial t,$ $\partial_{j}=\partial/\partial x_{j},$ $\Delta=\sum_{j=1}^{2}\partial_{j}^{2},$ $divu=\sum_{j=1}^{2}\partial_{j}u_{j}$ , and $u\cdot\nabla u=$

$\sum_{j=1}^{2}u_{j}\partial_{j}u$ .
The system (NS) has been studied quite extensively in various settings.

In particular, it is well known that (NS) admits a unique smooth solution,
for example, in the energy class; see the books [35, 38]. When $\mathbb{R}_{+}^{2}$ is replace
by the whole plane $\mathbb{R}^{2}$ the alternative approach using vorticity fields is also
useful and has been well developed by now. Here the vorticity $\omega$ of the
velocity $u$ is defined by $\omega=$ Rot $u:=\partial_{1}u_{2}-\partial_{2}u_{1}$ , and the equation for $\omega$

is then formally obtained by acting the Rot operator on the first equation
of (NS):

(1.1) $\partial_{t}\omega-\nu\Delta\omega+u\cdot\nabla\omega=0$.
The vorticity equation (1.1) in $(0, \infty)\cross \mathbb{R}^{2}$ ensures the uniform bound of
vorticity fields by the maximum principle, which is essentially used to show
the global existence of smooth solutions to (NS) in the infinite energy class;
for example, see [4, 15, 13, 24]. However, in the presence of boundaries, a
serious difficulty arises in the study of vorticity fields. Indeed, under the no-
slip boundary condition on velocity fields the vorticity fields do not satisfy
the boundary conditions such that the classical results in the parabolic PDE
theory are directly applied, and this absence of the “normal“ boundary
conditions has been a crucial obstacle for the detailed mathematical study
of (1.1). As is observed in [1], the boundary conditions for vorticity fields are
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derived from a simple mathematical consideration through the Biot-Savart
law. In the case of the half plane these conditions are written as

(1.2) $l$ノ $(\partial_{2}+(-\partial_{1}^{2})^{\frac{1}{2}})\omega=-\partial_{2}(-\Delta_{D})^{-1}(u\cdot\nabla\omega)$ $t>0$ , $x\in\partial \mathbb{R}_{+}^{2}$ .

Here $h=(-\triangle_{D})^{-1}f$ denotes the solution to the Poisson equation with
the homogeneous Dirichlet condition: $-\triangle h=f$ in $\mathbb{R}_{+}^{2}$ and $h=0$ on $\partial \mathbb{R}_{+}^{2}$ .
Under the compatibility conditions on $a$ such that $diva=0$ in $\mathbb{R}_{+}^{2}$ and $a=0$
on $\partial \mathbb{R}_{+}^{2}$ , the equation (1.1) equipped with (1.2) is shown to be equivalent
with (NS).

The aim of this report is to analyze the vorticity equations in the half
plane by using the vorticity formulation. The details of the proofs for the
results are given in the paper [29]. Although (1.2) is not a familiar condition
due to the presence of the term $(-\partial_{1}^{2})^{1/2}\omega$ , we can derive a solution formula
to $(1.1)-(1.2)$ through the Fourier-Laplace transform. This will be stated in
Section 2. We note that a solution formula for the (Navier-) Stokes equations
is obtained by [36, 40] for $\mathbb{R}_{+}^{n}$ with any $n\geq 2$ , and it is a basic tool in the
study of (NS) in the half space. Our solution formula leads to $L^{p}-L^{q}$

estimates of the propagator to the linear vorticity equations, from which
the mathematical validity of $(1.1)-(1.2)$ , i.e, the (time local) solvability of
$(1.1)-(1.2)$ in suitable function spaces, is confirmed; see Theorem 2.2.

The solution formula helps to carry out a detailed analysis of vorticity
fields even in the region near the boundary. Making use of this advantage,
we investigate in Section 3 the behavior of vorticity at the zero viscosity
limit $\iota$ノ $arrow 0$ . The precise statement of the result will be given in Theorem
3.1. Roughly speaking, we will see that the following asymptotic expansion
holds at $\nuarrow 0$ near the initial time:

(1.3) $\omega(t)\sim\omega_{E}(t)+\omega_{BL}(t)$ , $0<t\leq c_{0}$ ノ S.

Here $\omega_{E}$ is the vorticity field for the solution to the Euler equations with
the initial velocity $a,$ $\omega_{BL}$ is the function describing the boundary layer, and
$c_{0}$ is a constant independent of $0<\nu\ll 1$ . The function $\omega_{BL}$ is written
rather explicitly in terms of the initial data (see (3.3)), and it is a nontrivial
function if and only if

(1.4) $\partial_{2}(-\triangle_{D})^{-1}(a\cdot\nabla Rota)\not\equiv 0$ on $\partial \mathbb{R}_{+}^{2}$ .

When (1.4) holds $\omega_{BL}$ will be shown to satisfy
(1.5)

$c\nu^{-\frac{1}{2}(1-\frac{1}{p})}t^{\frac{1}{2}(1+\frac{1}{p})}\leq\Vert\omega_{BL}(t)\Vert_{Lp(\Omega_{\nu t})}\leq\Vert\omega_{BL}(t)\Vert_{L^{p}}\leq C\nu^{-\frac{1}{2}(1-\frac{1}{p})}t^{\frac{1}{2}(1+\frac{1}{p})}$

for all $\nu,$ $t>0$ and $1\leq p\leq\infty$ , where $\Omega_{\nu t}=\{x\in \mathbb{R}_{+}^{2}|0\leq x_{2}\leq(\nu t)^{1/2}\}$

is the region of the boundary layer. In particular, (1.3) and (1.5) imply the
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high creation of vorticity near the boundary in $L^{p}$ for $2<p\leq\infty$ as follows:
(1.6)

$\Vert\omega(c_{0}\nu^{\frac{1}{3}})\Vert_{L^{p}(\{c_{0}^{2}\nu 3\})}0\leq x2\leq^{1_{2}}\geq c’\nu^{-\frac{1}{3}(1-\frac{2}{p})}arrow\infty(\nuarrow 0)$ if $2<p\leq\infty$ ,

see Corollary 3.1 for details. We note that, when (1.4) holds, the vorticity
creation itself may be proved by contradiction arguments if we do not ask
for the concrete estimates such as (1.3) or (1.6). But it will be difficult to
gain further insight from such contradiction arguments.

The high creation of vorticity at the zero viscosity limit, which arises due
to the nonlinearity of $(1.1)-(1.2)$ , is naturally expected from the boundary
layer theory. Nevertheless, to the best of the author $s$ knowledge, this phe-
nomenon with explicit estimates has been mathematically observed only
under some restricted situations. In [16] the nonlinear instability of the
Prandtl boundary layer is proved around linearly-unstable stationary solu-
tions to the Euler equations. As a product of the calculations based on the
spectral analysis and the energy argument for velocity fields, it is also shown
that there exist a sequence of solutions $\{u^{(\nu)}\}$ to (NS) and $\{T_{\nu}\}$ such that

$\Vert$ Rot $u^{(\nu)}(T_{\nu})\Vert_{L\infty}arrow\infty$ and $T_{\nu}arrow 0$ as $\nuarrow 0$ . So in [16] the high vorticity
creation in $L^{\infty}$ is observed around certain class of stationary solutions to the
Euler equations. On the other hand, in [32, 33] the asymptotic expansion for
solutions to (NS) of the form $u(t, x)=u_{E}(t, x)+u_{P}(t, x_{1}, x_{2}/\sqrt{\nu})+O(\sqrt{\nu})$

at $varrow 0$ is established for analytic initial data. Here $u_{E}$ is the solution to
the Euler equations and $u_{P}$ is the solution to the modified Prandtl equa-
tions. Hence, the results of [32, 33] imply the high vorticity creation in $L_{loc}^{p}$

for any $p>1$ , but under the regularity condition of analyticity on initial
data.

In Theorem 3.1 the expansion (1.3) is proved just under the assumptions
of some Sobolev regularity on initial data, so the class of initial data we
handle with is rather general. Furthermore, $\omega_{BL}$ has a simple representation
and at least up to the time $c_{0}\nu^{1/3}$ we do not need the approximation using
the Prandtl-type equations in the boundary layer. This observation of the
order $\nu^{1/3}$ is newly obtained, though it is still not clear if the power 1/3 is
optimal or not for (1.3) to hold with $\omega_{BL}$ in Theorem 3.1; note that this
expansion should hold at most only up to the time $\nu^{\beta}$ for some $\beta>0$

in general, because the function $\omega_{BL}$ in Theorem 3.1 does not take into
account the nonlinear interaction in the boundary layer region. It seems to
be meaningful to improve the power 1/3 in (1.3) for initial data in a Sobolev
class even if the resulting power would be strictly positive.

The condition (1.4) is necessary and sufficient for the vorticity to exhibit
an unbounded growth at $T_{\nu}=c_{0}\nu^{1/3}$ as $\nuarrow 0$ . The meaning of (1.4)
is nothing but $\partial_{t}u_{E,1}|t=0\not\equiv 0$ on $\partial \mathbb{R}_{+}^{2}$ , where $u_{E}=(u_{E,1}, u_{E,2})$ denotes
the solution to the Euler equations with the initial data $a$ . Hence (1.4)
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represents the nondegenerate condition for $u_{E}$ to be a nonzero velocity field
on the boundary right after the initial time. In such situations it is natural
that the boundary layer immediately appears and thus the high vorticity
creation occurs near the initial time.

In Theorem 3.1 it is also proved that the $L^{\infty}$ norm of $u$ is uniformly
bounded in $0<\nu\ll 1$ for the time period $(0, c_{0}\nu^{1/3})$ . In fact, if one does
not use the vorticity equations it might be difficult to obtain this uniform
bound rigorously for such a “long” time for general initial data. This is one
of the advantages of the approach to (NS) from the vorticity formulation.

Before stating the results, let us introduce some function spaces. $C_{0}^{\infty}(\mathbb{R}_{+}^{2})$

is the set of smooth functions with compact support in $\mathbb{R}_{+}^{2};W_{0}^{l,p}(\mathbb{R}_{+}^{2}),$ $l\in \mathbb{N}$ ,
1 $\leq p\leq\infty$ , is the closure of $C_{0}^{\infty}(\mathbb{R}_{+}^{2})$ with respect to the norm of the
Sobolev space $W^{l,p}(\mathbb{R}_{+}^{2});C_{0,\sigma}^{\infty}(\mathbb{R}_{+}^{2})$ denotes the set of all $C^{\infty}$-vector functions
$u=(u_{1}, u_{2})$ with compact support in $\mathbb{R}_{+}^{2}$ such that $divu=0;L_{\sigma}^{p}(\mathbb{R}_{+}^{2})$ is
the closure of $C_{0,\sigma}^{\infty}(\mathbb{R}_{+}^{2})$ with respect to the norm in $(U(\mathbb{R}_{+}^{2}))^{2}$ .

2. SOLUTION FORMULA FOR THE HALF PLANE CASE

For (1.1) in $(0, T)\cross \mathbb{R}_{+}^{2}$ with (1.2) we can apply the Fourier-Laplace
transform to derive a solution formula. This formula is considered as a
vorticity counterpart of the well-known formula for solutions to (NS) by
[36, 40]. For the moment let us consider the linear problem

(LV) $\{$

$\partial_{t}\omega-l$ノ $\triangle\omega=f$ $t>0$ ,
$x\in \mathbb{R}_{+}^{2}x\in \mathbb{R}_{+}^{2\prime}$

,$\omega|_{t=0}=b$

together with the boundary condition

(LBC) $\nu(\partial_{2}+(-\partial_{1}^{2})^{\frac{1}{2}})\omega=g$ $t>0$ , $x\in\partial \mathbb{R}_{+}^{2}$ .

Here $f,$ $g,$
$b$ are assumed to be smooth and decay fast enough at spatial

infinity. The integral equation for the vorticity equations will be obtained
by taking

(2.1) $f=-u\cdot\nabla\omega$ , $g=-\partial_{2}(-\triangle_{D})^{-1}(u\cdot\nabla\omega)|_{x_{2}=0}$ ,

and $u=\nabla^{\perp}(-\triangle_{D})^{-1}\omega$ with $\nabla^{\perp}=(\partial_{2}, -\partial_{1})$ . We set

(2.2) $\Xi=2(\partial_{1}^{2}+(-\partial_{1}^{2})^{\frac{1}{2}}\partial_{2})$ ,

(2.3) $G(t, x)= \frac{1}{4\pi t}\exp(-\frac{|x|^{2}}{4t})$ , $E(x)=- \frac{1}{2\pi}\log|x|$ ,

(2.4) $\Gamma(t, x)=(\Xi E*G(t))(x)$ ,

(2.5) $(h_{1} \star h_{2})(x)=\int_{\mathbb{R}_{+}^{2}}h_{1}(x-y^{*})h_{2}(y)dy$, $y^{*}=(y_{1}, -y_{2})$ .
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Theorem 2.1. The integml equation for $(LV)-(LBC)$ is given by

$\omega(t)=e^{\nu t\Delta_{N}}b+\Gamma(\nu t)\star b-\Gamma(0)\star b$

$+ \int_{0}^{t}e^{\nu(t-s)\Delta_{N}}(f(s)-g(s)\mathcal{H}_{\{x_{2}=0\}}^{1})ds+\int_{0}^{t}\Gamma(\nu(t-s))\star(f(s)-g(s)\mathcal{H}_{\{x_{2}=0\}}^{1})ds$

$- \int_{0}^{t}\Gamma(0)\star(f(s)-g(s)\mathcal{H}_{\{x_{2}=0\}}^{1})ds$ .

Here $e^{t\Delta_{N}}$ is the semigroup for the heat equation in $\mathbb{R}_{+}^{2}with$ the homogeneous
Neumann boundary condition, $\Gamma(0)\star$ $:= \lim_{t\downarrow 0}\Gamma(t)\star$, and $g\mathcal{H}_{\{x_{2}=0\}}^{1}$ is the
one-dimensional Hausdorff measure with density $g$ defined by

$\langle h,$ $g \mathcal{H}_{\{x_{2}=0\}}^{1}\}=\int_{\mathbb{R}}h(x_{1},0)g(x_{1})dx_{1}$ , $h\in C_{0}(\mathbb{R}_{+}^{2})$ .

We note that $\Gamma(0)\star h=\Xi E\star h$ in $\mathbb{R}_{+}^{2}$ . In the above formula the terms
$\Gamma(0)\star$ seem to cause trouble when solving the vorticity equations, for ap-
parently they could give rise to a derivative loss near the boundary. In fact,
these terms do not appear in the vorticity equations, due to the following
cancellation property.

Proposition 2.1. If $g=\partial_{2}(-\Delta_{D})^{-1}f|_{x_{2}=0}$ then

(2.6) $\Xi E\star(f-g\mathcal{H}_{\{x_{2}=0\}}^{1})=0$ in $\mathbb{R}_{+}^{2}$ .

In particular, we have

(2.7) $\Xi E\star b=0$ in $\mathbb{R}_{+}^{2}$ if $\partial_{2}(-\triangle_{D})^{-1}b=0$ on $\partial \mathbb{R}_{+}^{2}$ .

The condition in (2.7) is nothing but the no-slip boundary condition for
the initial velocity field. Thus, reminding also (2.1), we do not have the
problematic terms $\Gamma(0)\star$ in the solution formula for the vorticity equations.
It will be useful to rewrite the result of Theorem 2.1 under the conditions
in Proposition 2.1.

Corollary 2.1. Assume that $\partial_{2}(-\triangle_{D})^{-1}b|_{x_{2}=0}=0$ and $g=\partial_{2}(-\triangle_{D})^{-1}f|_{x_{2}=0}$ .
Then the integml equation for $(LV)-(LBC)$ is given by

(2.8) $\omega(t)=e^{\nu tB}b+\int_{0}^{t}e^{\nu(t-s)B}(f(s)-g(s)\mathcal{H}_{\{x2^{=0\}}}^{1})ds$ ,

where

(2.9) $e^{tB}h=e^{t\Delta_{N}}h+\Gamma(t)\star h$ .
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Corollary 2.1 shows that the integral equation for the vorticity equation
is written as
(2.10)

$\omega(t)=e^{\nu tB}b-\int_{0}^{t}e^{\nu(t-s)B}(u\cdot\nabla\omega(s)-\partial_{2}(-\triangle_{D})^{-1}(u\cdot\nabla\omega)(s)\mathcal{H}_{\{x_{2}=0\}}^{1})ds$ ,

with $u=\nabla^{\perp}(-\triangle_{D})^{-1}\omega$ . It is possible to show the local-in-time solvability
of (2.10) if $b\in U(\mathbb{R}_{+}^{2})$ for some $p\in[1,2)$ by the contraction mapping
theorem. There the following $IP-L^{q}$ estimates for $e^{tB}$ are essential.

Lemma 2.1. (i) Let $1\leq q<p\leq\infty$ or $1<q\leq p<\infty$ . Then we have
$\Vert e^{tB}f\Vert_{L^{p}}\leq Ct^{-\frac{1}{q}+\frac{1}{p}}\Vert f\Vert_{L^{q}}$ $t>0$ .

(ii) Let $1\leq q\leq p\leq\infty$ and $p>1$ . Then we have

$\Vert e^{tB}(g\mathcal{H}_{\{x_{2}=0\}}^{1})\Vert_{Lp}\leq Ct^{-\frac{1}{2}(1+\frac{1}{q}-\frac{2}{p})}\Vert g\Vert_{L_{x_{1}}^{q}}$ $t>0$ .

(iii) Let $1\leq q\leq p\leq\infty$ and $k\in \mathbb{N}$ . Then we have
$\Vert\nabla^{k}e^{tB}f\Vert_{L^{p}}\leq Ct^{-\frac{1}{q}+\frac{1}{p}-\frac{k}{2}}\Vert f\Vert_{L^{q}}$ $t>0$ .

(iv) Let $1\leq q\leq p\leq\infty$ . Assume that $g=\partial_{2}(-\triangle)^{-1}f|_{x_{2}=0}$ . Then we have
$\Vert e^{tB}(f-g\mathcal{H}_{\{x2^{=0\}}}^{1})\Vert_{L^{p}}\leq Ct^{-\frac{1}{q}+\frac{1}{p}-\frac{1}{2}}\Vert\nabla^{\perp}(-\triangle_{D})^{-1}f\Vert_{L^{q}}$ $t>0$ .

We conclude this section by stating the local solvability of (2.10).

Theorem 2.2. Assume that $b\in L^{p}(\mathbb{R}_{+}^{2})$ for some $p\in(1,2)$ . Then there is
$T>0$ such that (2.10) has a unique solution $\omega\in C([0, T);L^{p}(\mathbb{R}_{+}^{2}))$ satisfy-
ing $\sup_{0<t<T}t^{1/p-1/4}\Vert\omega(t)\Vert_{L^{4}}<\infty$ . If $b$ satisfies the compatibility condition
$\partial_{2}(-\Delta_{D})^{-1}b=0$ on $\partial \mathbb{R}_{+}^{2}$ in addition, then the solution $\omega(t)$ converges to $b$

as $tarrow 0$ in $U(\mathbb{R}_{+}^{2})$ .

Remark 2.1. Even for $b\in L^{1}(\mathbb{R}_{+}^{2})$ we can construct a local unique solution
$\omega$ to (2.10) such that $t^{1-1/r}\omega(t)\in L^{\infty}(0, T;L^{r}(\mathbb{R}_{+}^{2}))$ and $\lim_{tarrow 0}t^{1-1/r}\Vert\omega(t)\Vert_{L^{r}}=$

$0$ with $r=4/3,4$ . Furthermore, under the smallness assumption of $\Vert b\Vert_{L^{1}}$ it
is also possible to show that the solution exists globally in time.

Remark 2.2. By the bootstrap argument using Lemma 2.1 the solution $\omega$

in Theorem 2.2 is shown to be smooth in positive time. We note that, in or-
der to ensure that $u=\nabla^{\perp}(-\triangle_{D})^{-1}\omega$ solves (NS), we need the compatibility
condition $\partial_{2}(-\triangle_{D})^{-1}b=0$ on $\partial \mathbb{R}_{+}^{2}$ for the initial data.

Remark 2.3. When $b\in L^{P}(\mathbb{R}_{+}^{2})$ for some $p\in(1,2)$ the related velocity $a$

belongs to $L_{\sigma}^{q}(\mathbb{R}_{+}^{2})$ with $1/q=1/p-1/2$ by the Hardy-Littlewood-Sobolev
inequality. Since $q>2$ we already know the solvability of (NS) in this case
from the $L^{q}$ theory of the Stokes or the Navier-Stokes equations in the half
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space; for example, see [36, 11, 37, 42, 12, 28, 14, 40, 34, 10] and references
therein. On the other hand, if $b\in L^{1}(\mathbb{R}_{+}^{2})$ then $a$ belongs to the weak $L^{2}$

space. The reader is referred to [25] for the analysis of the Navier-Stokes
equations in the weak $L^{p}$ spaces.

3. APPLICATION TO ANALYSIS OF VORTICITY AT ZERO VISCOSITY LIMIT

The inviscid limit behavior of solutions to the Navier-Stokes equations
is a classical theme in fluid mechanics. However, if the no-slip boundary
conditions are imposed on velocity fields, only partial results are known
even in the two-dimensional case; so far we need either the analyticity of
initial data or the radial symmetry of the domain and the solutions. More
precisely, if the initial data is analytic it is proved in [32, 33] that the
inviscid limit is described by the Euler equations and the Prandtl equations;
we also refer to [2]. When $\Omega$ is a disk and the solution possesses a radial
symmetry, the inviscid limit is already well studied in various functional
settings [30, 5, 26, 27, 22, 31]. On the other hand, [18] gave necessary and
sufficient conditions for the convergence of weak solutions of (NS) to that
of the Euler equations in the energy class. The analysis in this direction
has been developed by several authors [39, 41, 9, 20, 21, 22].

Making use of (2.8), in this section we study the behavior of vorticity
fields at the zero viscosity limit and establish the asymptotic expansion
near the initial time. The main result is stated as follows.

Theorem 3.1. Assume that $b=$ Rot $a$ with $a\in L_{\sigma}^{q}(\mathbb{R}_{+}^{2})\cap(W_{0}^{1,q}(\mathbb{R}_{+}^{2}))^{2}$ for
some $1<q<\infty$ and $b\in W^{l,4/3}(\mathbb{R}_{+}^{2})$ for $l\gg 1$ . Let $\omega$ be the solution to
$(1.1)-(1.2)$ in $(0, T)\cross \mathbb{R}_{+}^{2}$ with the initial data $b$ . Then there are $c_{0},$ $C>0$
such that the following estimates hold for sufficiently small $\nu>0$ :

(3.1) $\Vert u(t)||_{L}\infty\leq C$
$0<t\leq c_{0}\nu^{\frac{1}{3}}$ ,

(3.2) $\Vert\omega(t)-\omega_{E}(t)-\omega_{BL}(t)||_{Lp}\leq C\nu^{-\frac{1}{2}(\frac{1}{3}-\frac{1}{p})}t^{\frac{1}{2}(1+\frac{1}{p})}$ $0<t\leq c_{0}\nu^{\frac{1}{3}}$ .

Here $4/3\leq p\leq\infty$ and $c_{0}$ is independent of $\nu$ , and $C$ is independent of $\nu$

and $t\in[0, c_{0}\nu^{1/3}]$ . The function $\omega_{E}$ is the vorticity field of the solution to
the Euler equation with the initial velocity $a$ . The function $\omega_{BL}$ is defined
$by$

(3.3) $\omega_{BL}(t, x)=2\int_{0}^{t}(4\pi\nu s)^{-\frac{1}{2}}\exp(-\frac{x_{2}^{2}}{4\nu s})ds\cdot\partial_{2}(-\triangle_{D})^{-1}(a\cdot\nabla b)(x_{1},0)$ ,

and in particular, it is nontrivial if and only if
(3.4) $\partial_{2}(-\triangle_{D})^{-1}(a\cdot\nabla b)\not\equiv 0$ $on$ $\partial \mathbb{R}_{+}^{2}$ .
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When (3.4) holds $\omega_{BL}$ satisfies
(3.5) $\Vert\omega_{BL}(t)\Vert_{L^{p}}\leq C’\nu^{-\frac{1}{2}(1-\frac{1}{p})}t^{\frac{1}{2}(1+\frac{1}{p})}$ $t>0$ , $1\leq p\leq\infty$ ,

(3.6) $\Vert\omega_{BL}(t)\Vert_{L^{p}(\{0\leq x_{2}\leq(\nu t)^{1}\})}2\geq c_{1}\nu^{-\frac{1}{2}(1-\frac{1}{p})}t^{\frac{1}{2}(1+\frac{1}{p})}$ $t>0$ , $1\leq p\leq\infty$ .

Here the positive constants $c_{1}$ and C’ are independent of $\nu$ and $t$ .

Corollary 3.1. Under the assumptions of Theorem 3.1, if (3.4) holds in
addition, then the high creation of vorticity near the boundary in $U$ occurs
in the following sense.

$\Vert\omega(c_{0}\nu^{\frac{1}{3}})\Vert_{Lp(\{c_{0}^{2}\nu 3\})}0\leq x_{2}\leq^{1_{2}}\geq c_{2}\nu^{-\frac{1}{3}(1-\frac{2}{p})}arrow\infty$ $(\nuarrow 0)$ if $2<p\leq\infty$ .

Here $c_{2}>0$ is independent of $\nu$ and $t\in[0, c_{0}\nu^{1/3}]$ .

The details of the proof of Theorem 3.1 are given in [29]. Let $J(f)$ be the
velocity field recovered from $f$ via the Biot-Savart law, i.e.,

(3.7) $J(f)=(J_{1}(f), J_{2}(f))=\nabla^{\perp}(-\triangle_{D})^{-1}f$ , $\nabla^{\perp}=(\partial_{2}, -\partial_{1})$ .

Then $J(f)$ satisfies $\nabla\cdot J(f)=0$ in $\mathbb{R}_{+}^{2}$ and $J_{2}(f)=0$ on $\partial \mathbb{R}_{+}^{2}$ . The function
$\omega_{E}$ satisfies the equation

(3.8) $\{\begin{array}{l}\partial_{t}\omega_{E}+u_{E}\cdot\nabla\omega_{E}=0 t>0, x\in \mathbb{R}_{+}^{2},u_{E}=J(\omega_{E}) t>0, x\in \mathbb{R}_{+}^{2},\omega_{E}|_{t=0}=b x\in \mathbb{R}_{+}^{2}.\end{array}$

Eq.(3.8) is equivalent to the Euler equations with the boundary condition
$u_{E,2}=0$ on $\partial \mathbb{R}_{+}^{2}$ . Hence, under the assumption $b\in W^{l,4/3}(\mathbb{R}_{+}^{2})$ with $l\gg$

1 the existence and the uniqueness of solutions to (3.8) follow from the
methods developed in the literature [43, 44, 17, 3, 23, 6, 8, 7]. In particular,
we can show that $\omega_{E}\in C^{1}([0, T);W^{l’,4/3}(\mathbb{R}_{+}^{2}))$ with $l’\gg 1$ for all $T>0$ .
Next we consider the second and third expansions of $\omega$ which are directly
related with $\omega_{E}$ :

$(3.9)\{$

$\partial_{t}w_{E,1}-\nu\triangle w_{E,1}=0$ $t>0$ , $x\in \mathbb{R}_{+}^{2}$ ,
$\nu(\partial_{2}w_{E,1}+(-\partial_{1}^{2})^{\frac{1}{2}}w_{E,1})=-J_{1}(u_{E}\cdot\nabla\omega_{E})$ $t>0$ , $x\in\partial \mathbb{R}_{+}^{2}$ ,

$w_{E,1}|_{t=0}=0$ $x\in \mathbb{R}_{+}^{2}$ ,

$(3.10)\{$

$\partial_{t}w_{E,2}-\nu\triangle w_{E,2}=\nu\triangle\omega_{E}$ $t>0$ , $x\in \mathbb{R}_{+}^{2}$ ,
$\nu(\partial_{2}w_{E,2}+(-\partial_{1}^{2})^{\frac{1}{2}}w_{E,2})=-\nu J_{1}(\triangle\omega_{E})$ $t>0$ , $x\in\partial \mathbb{R}_{+}^{2}$ ,

$w_{E,2}|_{t=0}=0$ $x\in \mathbb{R}_{+}^{2}$ .
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The function $w_{E,1}$ is responsible for the creation of vorticity near the bound-
ary. Set
(3.11) $w_{E}=w_{E,1}+w_{E,2}$ , $F=J(\omega_{E}+w_{E})\cdot\nabla w_{E}+J(w_{E})\cdot\nabla\omega_{E}$.

Then $w=\omega-\omega_{E}-w_{E}$ satisfies $w|_{t=0}=0$ and

$(3.12)\{$$\partial_{t}w-\nu\triangle w=-L(\omega_{E}+w_{E})w-N(w, w)-F$ $t>0$ , $x\in \mathbb{R}_{+}^{2}$ ,
$\nu(\partial_{2}w+(-\partial_{1}^{2})^{\frac{1}{2}}w)=-J_{1}(L(\omega_{E}+w_{E})w+N(w, w)+F)$ $t>0$ , $x\in\partial \mathbb{R}_{+}^{2}$ .

Here

(3.13) $L(f)w=J(f)\cdot\nabla w+J(w)\cdot\nabla f$ , $N(f,g)=J(f)\cdot\nabla g$ .

By the above definitions we can check that each of $J(\omega_{E}+w_{E,1}),$ $J(w_{E,2})$ ,
and $J(w)$ , satisfies the no-slip boundary condition (see [29]), and this prop-
erty will be essentially used in the proof of Theorem 3.1. We note that
the above decomposition of $\omega$ should be effective only near the initial time
$0<t\leq\nu^{\beta}$ for some $\beta>0$ . For a longer time period we need to take
into account the vorticity counterpart of the Prandtl equations, where the
verification of such expansion is widely open except for the analytic initial
data.
The basic strategy for the proof of Theorem 3.1 is as follows: we will use
the integral equations (2.8) for the estimates of $w_{E,1}$ and $w_{E,2}$ , and also of
$w$ near the boundary. The estimates of $w$ away from the boundary will be
obtained by the energy argument. Theorem 3.1 then follows by combining
these a priori estimates.
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