Kyoto University Research Info	rmation Repository KYOTO UNIVERSITY
Title	Smallest complex nilpotent orbits with real points (Topics in Combinatorial Representation Theory)
Author(s)	Okuda, Takayuki
Citation	数理解析研究所講究録 (2012), 1795: 100-116
Issue Date	2012-05
URL	http://hdl.handle.net/2433/172887
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Smallest complex nilpotent orbits with real points

Takayuki Okuda*

Abstract

In this paper, we show that there uniquely exists a real minimal nilpotent orbit in a non-compact simple Lie algebra \mathfrak{g} if $(\mathfrak{g}, \mathfrak{k})$ is of non-Hermitian type. For the cases where \mathfrak{g} is isomorphic to $\mathfrak{su}^*(2k)$, $\mathfrak{so}(n-1,1), \mathfrak{sp}(p,q), \mathfrak{e}_{6(-26)}$ or $\mathfrak{f}_{4(-20)}$, the complexification $\mathcal{O}_{\min,\mathfrak{g}}^{G_{\mathbb{C}}}$ of such the real minimal nilpotent orbit in \mathfrak{g} is not the complex minimal nilpotent orbit in \mathfrak{g} . For such cases, we also determine $\mathcal{O}_{\min,\mathfrak{g}}^{G_{\mathbb{C}}}$ by describing the weighted Dynkin diagram of it.

1 Introduction and main results

Let $\mathfrak{g}_{\mathbb{C}}$ be a complex simple Lie algebra. In this paper, an adjoint nilpotent orbit in $\mathfrak{g}_{\mathbb{C}}$ will be simply called a complex nilpotent orbit in $\mathfrak{g}_{\mathbb{C}}$. It is wellknown that there exists a unique non-zero complex nilpotent orbit $\mathcal{O}_{\min}^{G_{\mathbb{C}}}$ in $\mathfrak{g}_{\mathbb{C}}$, which is called a complex minimal nilpotent orbit, with the following property: The closure of $\mathcal{O}_{\min}^{G_{\mathbb{C}}}$ in $\mathfrak{g}_{\mathbb{C}}$ is just $\mathcal{O}_{\min}^{G_{\mathbb{C}}} \sqcup \{0\}$. By the uniqueness of such $\mathcal{O}_{\min}^{G_{\mathbb{C}}}$, for any non-zero complex nilpotent orbit \mathcal{O} in $\mathfrak{g}_{\mathbb{C}}$, the closure of \mathcal{O} contains $\mathcal{O}_{\min}^{G_{\mathbb{C}}}$. In other words, $\mathcal{O}_{\min}^{G_{\mathbb{C}}}$ is minimum in $\mathcal{N}/G_{\mathbb{C}}$ without the zero-orbit, where $\mathcal{N}/G_{\mathbb{C}}$ denotes the set of complex nilpotent orbits in $\mathfrak{g}_{\mathbb{C}}$ with the closure ordering.

Let \mathfrak{g} be a non-compact real form of $\mathfrak{g}_{\mathbb{C}}$. Namely, \mathfrak{g} is a non-compact real simple Lie algebra without complex structures and $\mathfrak{g}_{\mathbb{C}}$ is the complexification of \mathfrak{g} . Our concern in this paper is in real minimal nilpotent orbits in \mathfrak{g} . Here, we say that a non-zero real nilpotent orbit \mathcal{O}^G in \mathfrak{g} is minimal if the closure

^{*}Graduate School of Mathematical Science, The University of Tokyo

of \mathcal{O}^G in \mathfrak{g} is just $\mathcal{O}^G \sqcup \{0\}$. In general, real minimal nilpotent orbits are not unique for real simple \mathfrak{g} .

If the complex minimal nilpotent orbit $\mathcal{O}_{\min}^{G_{\mathbb{C}}}$ in $\mathfrak{g}_{\mathbb{C}}$ meets \mathfrak{g} , then the intersection $\mathcal{O}_{\min}^{G_{\mathbb{C}}} \cap \mathfrak{g}$ is the union of all real minimal nilpotent orbits in \mathfrak{g} . It is known that $\mathcal{O}_{\min}^{G_{\mathbb{C}}}$ meets \mathfrak{g} if and only if \mathfrak{g} is not isomorphic to $\mathfrak{su}^*(2k)$ $(k \geq 2)$, $\mathfrak{so}(n-1,1)$ $(n \geq 5)$, $\mathfrak{sp}(p,q)$ $(p \geq q \geq 1)$, $\mathfrak{f}_{4(-20)}$ nor $\mathfrak{e}_{6(-26)}$ (see Brylinski [3, Theorem 4.1]). In particular, if $(\mathfrak{g},\mathfrak{k})$ is of Hermitian type, then $\mathcal{O}_{\min}^{G_{\mathbb{C}}}$ meets \mathfrak{g} , where $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ is a Cartan decomposition of \mathfrak{g} . Furthermore, for the cases where $\mathcal{O}_{\min}^{G_{\mathbb{C}}}$ meets \mathfrak{g} , the number of real minimal nilpotent orbits (i.e. the number of adjoint orbits in $\mathcal{O}_{\min}^{G_{\mathbb{C}}} \cap \mathfrak{g}$) is two if $(\mathfrak{g},\mathfrak{k})$ is of Hermitian type; one if $(\mathfrak{g},\mathfrak{k})$ is of non-Hermitian type.

In this paper, we study real minimal nilpotent orbits in \mathfrak{g} including the cases where $\mathcal{O}_{\min}^{G_{\mathbb{C}}}$ does not meets \mathfrak{g} . For any real non-compact simple Lie algebra \mathfrak{g} without complex structures, we put

 $\mathcal{N}_{\mathfrak{g}}/G_{\mathbb{C}} := \{ \text{ Complex nilpotent orbits in } \mathfrak{g}_{\mathbb{C}} \text{ meeting } \mathfrak{g} \}$

and consider the closure ordering on it. Our first main result is here:

Theorem 1.1. There uniquely exists a complex nilpotent orbit $\mathcal{O}_{\min,\mathfrak{g}}^{G_{\mathbb{C}}}$ in $\mathfrak{g}_{\mathbb{C}}$ which is minimum in $\mathcal{N}_{\mathfrak{g}}/G_{\mathbb{C}}$ without the zero-orbit (i.e. for any non-zero complex nilpotent orbit \mathcal{O} in \mathfrak{g} , if $\mathcal{O} \cap \mathfrak{g} \neq \emptyset$, then the closure of \mathcal{O} in $\mathfrak{g}_{\mathbb{C}}$ contains $\mathcal{O}_{\min,\mathfrak{g}}^{G_{\mathbb{C}}}$). Furthermore, the intersection $\mathcal{O}_{\min,\mathfrak{g}}^{G_{\mathbb{C}}} \cap \mathfrak{g}$ is the union of all real minimal nilpotent orbits in \mathfrak{g} .

We will construct such $\mathcal{O}_{\min,\mathfrak{g}}^{G_{\mathbb{C}}}$ as the complex adjoint orbit through a non-zero longest restricted root vector in \mathfrak{g} . By the definition of $\mathcal{O}_{\min,\mathfrak{g}}^{G_{\mathbb{C}}}$, the complex minimal nilpotent orbit $\mathcal{O}_{\min}^{G_{\mathbb{C}}}$ is not our $\mathcal{O}_{\min,\mathfrak{g}}^{G_{\mathbb{C}}}$ if and only if $\mathcal{O}_{\min}^{G_{\mathbb{C}}}$ does not meet \mathfrak{g} (namely, \mathfrak{g} is isomorphic to $\mathfrak{su}^*(2k)$ ($k \geq 2$), $\mathfrak{so}(n-1,1)$ $(n \geq 5)$, $\mathfrak{sp}(p,q)$ ($p \geq q \geq 1$), $\mathfrak{f}_{4(-20)}$ or $\mathfrak{e}_{6(-26)}$). This means that for such cases, a non-zero longest restricted root vector in \mathfrak{g} is not a longest root vector in $\mathfrak{g}_{\mathbb{C}}$.

Theorem 1.1 claims that $\mathcal{O}_{\min,\mathfrak{g}}^{G_{\mathbb{C}}} \cap \mathfrak{g}$ is the union of all real minimal nilpotent orbits in \mathfrak{g} . Our second main result is here:

Theorem 1.2. For the cases where the complex minimal nilpotent orbit $\mathcal{O}_{\min}^{G_{\mathbb{C}}}$ does not meet \mathfrak{g} , there exists a unique real minimal nilpotent orbit in \mathfrak{g} . In particular, the complex nilpotent orbit $\mathcal{O}_{\min,\mathfrak{g}}^{G_{\mathbb{C}}}$ in Theorem 1.1 (which is not $\mathcal{O}_{\min}^{G_{\mathbb{C}}}$ in these cases) is the complexification of the unique real minimal nilpotent orbit in \mathfrak{g} . Therefore, we have the following corollary:

Corollary 1.3. Let \mathfrak{g} be a non-compact real simple Lia algebra without complex structures. If $(\mathfrak{g}, \mathfrak{k})$ is of non-Hermitian type, there uniquely exists a real minimal nilpotent orbit in \mathfrak{g} . If $(\mathfrak{g}, \mathfrak{k})$ is of Hermitian type, there are just two real minimal nilpotent orbits in \mathfrak{g} .

By Theorem 1.2, our $\mathcal{O}_{\min,g}^{G_{\mathbb{C}}}$ is just the complexification of the unique real minimal nilpotent orbit in \mathfrak{g} for the cases where \mathfrak{g} is isomorphic to $\mathfrak{su}^*(2k)$ $(k \geq 2)$, $\mathfrak{so}(n-1,1)$ $(n \geq 5)$, $\mathfrak{sp}(p,q)$ $(p \geq q \geq 1)$, $\mathfrak{f}_{4(-20)}$ or $\mathfrak{e}_{6(-26)}$. We will determine our $\mathcal{O}_{\min,g}^{G_{\mathbb{C}}}$ by describing the weighted Dynkin diagram of it for such cases (recall that for another cases, $\mathcal{O}_{\min,g}^{G_{\mathbb{C}}}$ is just $\mathcal{O}_{\min}^{G_{\mathbb{C}}}$). The result is here (see also Table 2 in §2 for the weighted Dynkin diagrams of $\mathcal{O}_{\min}^{G_{\mathbb{C}}}$):

Theorem 1.4. For the cases where $\mathcal{O}_{\min,g}^{G_{\mathbb{C}}} \neq \mathcal{O}_{\min}^{G_{\mathbb{C}}}$, the weighted Dynkin diagram of $\mathcal{O}_{\min,g}^{G_{\mathbb{C}}}$ are the following:

g	$\dim_{\mathbb{C}}\mathcal{O}^{G_{\mathbb{C}}}_{\min,\mathfrak{g}}$	Weighted Dynkin diagram of $\mathcal{O}^{G_{\mathbf{C}}}_{\min,\mathfrak{g}}$
$\mathfrak{su}^*(2k)$	8k-8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		$\begin{array}{ccc} 0 & 2 & 0 \\ \circ \circ \circ \end{array} (k=2)$
$\mathfrak{so}(n-1,1)$	2n - 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		$\underbrace{\begin{smallmatrix} 2 & 0 & 0 & \cdots & 0 \\ \circ & \bullet & \bullet & \bullet \\ \circ & \bullet & \bullet & \bullet \\ \circ & \bullet & \bullet & \bullet \\ \circ & \circ & \circ & \circ \\ \circ & \circ & \circ & \circ \\ \circ & \circ &$
$\mathfrak{sp}(p,q)$	4(p+q)-2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		$ \underset{ \propto}{\overset{0}{\longrightarrow}} 2 (p = q = 1) $
€ ₆₍₋₂₆₎	32	
$\mathfrak{f}_{4(-20)}$	22	

Table 1: List of $\mathcal{O}_{\min,\mathfrak{g}}^{G_{\mathbf{C}}}$ for $\mathfrak{su}^*(2k)$, $\mathfrak{so}(n-1,1)$, $\mathfrak{sp}(p,q)$, $\mathfrak{e}_{6(-26)}$ and $\mathfrak{f}_{4(-20)}$.

This works motivated by recent works [7], by Joachim Hilgert, Toshiyuki Kobayashi and Jan Möllers, on the construction of an L^2 -model of irreducible unitary representations of real reductive groups with smallest Gelfand-Kirillov dimension; and [8], by Toshiyuki Kobayashi and Yoshiki Oshima, on the classification of reductive symmetric pairs $(\mathfrak{g}, \mathfrak{h})$ with a (\mathfrak{g}, K) -module which is discretely decomposable as an $(\mathfrak{h}, H \cap K)$ -module.

2 Preliminary results for weighted Dynkin diagrams of complex minimal nilpotent orbits

In this section, we recall weighted Dynkin diagrams of complex minimal nilpotent orbits in complex simple Lie algebras.

Let $\mathfrak{g}_{\mathbb{C}}$ be a complex semisimple Lie algebra, and denote by $G_{\mathbb{C}}$ the inner automorphism group of $\mathfrak{g}_{\mathbb{C}}$. Fix a Cartan subalgebra $\mathfrak{h}_{\mathbb{C}}$ of $\mathfrak{g}_{\mathbb{C}}$. We denote by $\Delta(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$ the root system of $(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$. Then, the root system $\Delta(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$ can be regarded as a subset of the dual space \mathfrak{h}^* of

$$\mathfrak{h} := \{ H \in \mathfrak{h}_{\mathbb{C}} \mid \alpha(H) \in \mathbb{R} ({}^{\forall} \alpha \in \Delta(\mathfrak{g}_{\mathbb{C}}, \mathfrak{h}_{\mathbb{C}})) \}.$$

We write $W(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$ for the Weyl group of $\Delta(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$ acting on \mathfrak{h} . Take a positive system $\Delta^+(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$ of the root system $\Delta(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$. Then, a closed Weyl chamber

$$\mathfrak{h}_+ := \{ H \in \mathfrak{h} \mid \alpha(H) \ge 0 \ (\forall \alpha \in \Delta_+(\mathfrak{g}_{\mathbb{C}}, \mathfrak{h}_{\mathbb{C}})) \}$$

is a fundamental domain of \mathfrak{h} under the action of $W(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$.

Let Π be the simple system of $\Delta^+(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$. Then, for any $H \in \mathfrak{h}$, we can define a map

$$\Psi_H: \Pi \to \mathbb{R}, \ \alpha \mapsto \alpha(H).$$

We call Ψ_H the weighted Dynkin diagram corresponding to $H \in \mathfrak{h}$, and $\alpha(H)$ the weight on a node $\alpha \in \Pi$ of the weighted Dynkin diagram. Since Π is a basis of \mathfrak{h}^* , the map

$$\Psi: \mathfrak{h} \to \operatorname{Map}(\Pi, \mathbb{R}), \ H \mapsto \Psi_H$$

is a linear isomorphism (between vector spaces). Furthermore,

 $\mathfrak{h}_+ \to \operatorname{Map}(\Pi, \mathbb{R}_{\geq 0}), \ H \mapsto \Psi_H$

is also bijective.

A triple (H, X, Y) is said to be an \mathfrak{sl}_2 -triple in $\mathfrak{g}_{\mathbb{C}}$ if

$$[H, X] = 2X, \ [H, Y] = -2Y, \ [X, Y] = H \ (H, X, Y \in \mathfrak{g}_{\mathbb{C}}).$$

For any \mathfrak{sl}_2 -triple (H, X, Y) in $\mathfrak{g}_{\mathbb{C}}$, the elelements X and Y are nilpotent in $\mathfrak{g}_{\mathbb{C}}$, and H is hyperbolic in $\mathfrak{g}_{\mathbb{C}}$ (i.e. $\operatorname{ad}_{\mathfrak{g}_{\mathbb{C}}} H \in \operatorname{End}(\mathfrak{g}_{\mathbb{C}})$ is diagonalizable with only real eigenvalues).

Combining the Jacobson-Morozov theorem with Kostant [9], for any complex nilpotent orbit $\mathcal{O}^{G_{\mathbf{C}}}$, there uniquely exists an element $H_{\mathcal{O}}$ of \mathfrak{h}_+ with the following property: There exists $X, Y \in \mathcal{O}^{G_{\mathbf{C}}}$ such that $(H_{\mathcal{O}}, X, Y)$ is an \mathfrak{sl}_2 -triple in $\mathfrak{g}_{\mathbf{C}}$. Furthermore, by Malcev [10], the following map is injective:

{ Complex nilpotent orbits in $\mathfrak{g}_{\mathbb{C}}$ } $\hookrightarrow \mathfrak{h}_+, \ \mathcal{O}^{G_{\mathbb{C}}} \mapsto H_{\mathcal{O}}.$

The weighted Dynkin diagram corresponding to $H_{\mathcal{O}}$ is called the weighted Dynkin diagram of $\mathcal{O}^{G_{\mathbf{C}}}$. Dynkin [6] proved that for any complex nilpotent orbit $\mathcal{O}^{G_{\mathbf{C}}}$, any weight of the weighted Dynkin diagram of $\mathcal{O}^{G_{\mathbf{C}}}$ is given by 0, 1 or 2, and classified weighted Dynkin diagrams of complex nilpotent orbits (More precisely, Dynkin [6] classified \mathfrak{sl}_2 -triples in $\mathfrak{g}_{\mathbb{C}}$. See Bala–Carter [2] for more details).

In the rest of this subsection, we suppose that $\mathfrak{g}_{\mathbb{C}}$ is simple. Let ϕ be the highest root of $\Delta^+(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$. Then, the complex minimal nilpotent orbit in $\mathfrak{g}_{\mathbb{C}}$ can be written by

$$\mathcal{O}_{\min}^{G_{\mathbf{C}}} = G_{\mathbf{C}} \cdot \mathfrak{g}_{\phi} \setminus \{0\}.$$

We define the element $H_{\phi^{\vee}}$ of \mathfrak{h} by

$$lpha(H_{\phi^{ee}}) = rac{2\langle lpha, \phi
angle}{\langle \phi, \phi
angle}$$

for any $\alpha \in \mathfrak{h}^*$ (where \langle , \rangle is the inner product on \mathfrak{h}^* induced by the Killing form on $\mathfrak{g}_{\mathbb{C}}$). Namley, $H_{\phi^{\vee}}$ is the element of \mathfrak{h} corresponding to the coroot ϕ^{\vee} of ϕ . Since ϕ is dominant, $H_{\phi^{\vee}}$ is in \mathfrak{h}_+ . Furthermore, $H_{\phi^{\vee}}$ is the hyperbolic element corresponding to $\mathcal{O}_{\min}^{G_{\mathbb{C}}}$ since we can find $X_{\phi} \in \mathfrak{g}_{\phi}$, $Y_{\phi} \in \mathfrak{g}_{-\phi}$ such that $(H_{\phi^{\vee}}, X_{\phi}, Y_{\phi})$ is an \mathfrak{sl}_2 -triple. The list of weighted Dynkin diagrams of $\mathcal{O}_{\min}^{G_{\mathbb{C}}}$ for all simple $\mathfrak{g}_{\mathbb{C}}$ can be found in Collingwood–McGovern [4, Ch.5.4 and 8.4]. Recall that our concern in this paper is in real simple Lie algebras $\mathfrak{su}^*(2k)$, $\mathfrak{so}(n-1,1)$, $\mathfrak{sp}(p,q)$, $\mathfrak{e}_{6(-26)}$ and $\mathfrak{f}_{4(-20)}$. The complexifications of such algebras are $\mathfrak{sl}(2k,\mathbb{C})$, $\mathfrak{so}(n,\mathbb{C})$, $\mathfrak{sp}(p+q,\mathbb{C})$, $\mathfrak{e}_{6,\mathbb{C}}$ and $\mathfrak{f}_{4,\mathbb{C}}$, respectively. For the convenience of the reader, we give a list of weighted Dynkin diagrams of complex minimal nilpotent orbits in such complex simple Lie algebras.

₿C	$\dim_{\mathbb{C}}\mathcal{O}^{G_{\mathbb{C}}}_{\min}$	Weighted Dynkin diagram of $\mathcal{O}^{G_{\mathbb{C}}}_{\min,\mathfrak{g}}$
$\mathfrak{sl}(n,\mathbb{C})$	2n	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\mathfrak{so}(n,\mathbb{C})$	2n - 6	$ \underbrace{ \begin{smallmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ \circ & & \circ & & \circ \\ \hline \circ & & \circ & & \circ \\ \hline & & \circ & & \circ \\ \hline & & & & \circ \\ \hline & & & & & & \\ \hline & & & & & & \\ \hline & & & &$
		$ \underset{\substack{\longrightarrow 0\\ \substack{\longrightarrow}}}{0} (n=5) $
		$ \underbrace{\begin{smallmatrix} 0 & 1 & 0 & \cdots & 0 \\ \circ & \circ & \circ & \bullet \\ \bullet & \bullet & \bullet & \bullet \\ \circ & \circ & \circ & \bullet \\ 0 & & (n \text{ is even}, n \ge 6) \\ \end{array} $
$\mathfrak{sp}(n,\mathbb{C})$	2n	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
¢ _{6,ℂ}	22	
$\mathfrak{f}_{4,\mathbb{C}}$	16	

Table 2: List of weighted Dynkin diagrams of $\mathcal{O}_{\min}^{G_{\mathbb{C}}}$ for $\mathfrak{sl}(n,\mathbb{C})$, $\mathfrak{so}(n,\mathbb{C})$, $\mathfrak{sp}(n,\mathbb{C})$, $\mathfrak{e}_{6,\mathbb{C}}$ and $\mathfrak{f}_{4,\mathbb{C}}$.

3 Outline of a proof of Theorem 1.1

Let $\mathfrak{g}_{\mathbb{C}}$ be a complex simple Lie algebra and \mathfrak{g} a non-compact real form of \mathfrak{g} with a Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. In this section, we describe an idea of the proof of Theorem 1.1.

We fix a maximal abelian subspace \mathfrak{a} of \mathfrak{p} (such \mathfrak{a} is called a maximally split abelian subspace of \mathfrak{g}) and write $\Sigma(\mathfrak{g}, \mathfrak{a})$ for the restricted root system

for $(\mathfrak{g},\mathfrak{a})$. For any restricted root ξ of $\Sigma(\mathfrak{g},\mathfrak{a})$, we define $A_{\xi^{\vee}} \in \mathfrak{a}$ by

$$\eta(A_{\xi^{\vee}}) = \frac{2(\xi, \eta)}{(\xi, \xi)} \quad (\forall \eta \in \mathfrak{a}^*)$$

(where (,) is the inner product on \mathfrak{a}^* induced by the Killing form on \mathfrak{g}). Namley, $A_{\xi^{\vee}}$ is the element of \mathfrak{a} corresponding to the coroot ξ^{\vee} of ξ . Then, the fact below holds:

Fact 3.1. For any restricted root ξ of $\Sigma(\mathfrak{g}, \mathfrak{a})$ and any non-zero root vector X_{ξ} in \mathfrak{g}_{ξ} , there exists $Y_{\xi} \in \mathfrak{g}_{-\xi}$ such that $(A_{\xi^{\vee}}, X_{\xi}, Y_{\xi})$ is an \mathfrak{sl}_2 -triple in \mathfrak{g} .

We fix an ordering on \mathfrak{a} and write $\Sigma^+(\mathfrak{g},\mathfrak{a})$ for the positive system of $\Sigma(\mathfrak{g},\mathfrak{a})$ corresponding to the ordering on \mathfrak{a} . We denote by λ the highest root of $\Sigma^+(\mathfrak{g},\mathfrak{a})$ with respect to the ordering on \mathfrak{a} . Next two lemmas give charactorizations of the highest root λ of $\Sigma^+(\mathfrak{g},\mathfrak{a})$ (we omit proofs of the two lemmas in this paper):

Lemma 3.2. The highest root λ of $\Sigma^+(\mathfrak{g}, \mathfrak{a})$ is a unique dominant longest root of $\Sigma(\mathfrak{g}, \mathfrak{a})$.

Lemma 3.3. Let ξ be a root of $\Sigma(\mathfrak{g}, \mathfrak{a})$. If ξ is not the highest root λ , then for any non-zero root vector X_{ξ} in \mathfrak{g}_{ξ} , there exists a positive root η in $\Sigma^+(\mathfrak{g}, \mathfrak{a})$ and a root vector $X_{\eta} \in \mathfrak{g}_{\eta}$ such that $[X_{\xi}, X_{\eta}] \neq 0$. In particular, $\xi = \lambda$ if and only if $\xi + \eta \in \mathfrak{a}^*$ is not a root of $\Sigma(\mathfrak{g}, \mathfrak{a})$ for any $\eta \in \Sigma^+(\mathfrak{g}, \mathfrak{a})$.

We write $G_{\mathbb{C}}$ for the inner automorphism group of $\mathfrak{g}_{\mathbb{C}}$. Then, the following two propositions hold:

Proposition 3.4. For any non-zero real nilpotent orbit \mathcal{O}'_0 in \mathfrak{g} . Then, there exists a non-zero highest root vector X_{λ} in \mathfrak{g}_{λ} such that X_{λ} is in the closure of \mathcal{O}'_0 in \mathfrak{g} .

Proposition 3.5. For any two highest root vectors X_{λ} , X'_{λ} in \mathfrak{g}_{λ} , there exists $g_{\mathbb{C}} \in G_{\mathbb{C}}$ such that $g_{\mathbb{C}}X_{\lambda} = X'_{\lambda}$.

Proof of Proposition 3.4. There is no loss of generality in assuming that the ordering on \mathfrak{a} is lexicographic. Let us put $\mathfrak{m} = Z_{\mathfrak{k}}(\mathfrak{a})$. Then, \mathfrak{g} can be decomposed as

$$\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{a} \oplus \bigoplus_{\xi \in \Sigma(\mathfrak{g},\mathfrak{a})} \mathfrak{g}_{\xi}.$$

For any $X' \in \mathfrak{g}$, we denote by

$$X' = X'_{\mathfrak{m}} + X'_{\mathfrak{a}} + \sum_{\xi \in \Sigma(\mathfrak{g}, \mathfrak{a})} X'_{\xi} \quad (X'_{\mathfrak{m}} \in \mathfrak{m}, \ X'_{\mathfrak{a}} \in \mathfrak{a}, \ X'_{\xi} \in \mathfrak{g}_{\xi}).$$

We put $\overline{\mathcal{O}'_0}$ to the closure of \mathcal{O}'_0 in \mathfrak{g} and fix an element X' in $\overline{\mathcal{O}'_0}$. Let us denote by λ' the highest one of

$$\Sigma_{X'} := \{ \xi \in \Sigma(\mathfrak{g}, \mathfrak{a}) \mid X'_{\mathcal{E}} \neq 0 \}$$

with respect to the ordering on \mathfrak{a} (if $X' \neq 0$, then $\Sigma_{X'}$ is not empty since X' is nilpotent element in \mathfrak{g}). As a first step of the proof, we shall prove that the root vector $X'_{\lambda'}$ is also in $\overline{\mathcal{O}'_0}$. We take $A' \in \mathfrak{a}$ satisfying that

$$\xi(A') < \lambda'(A') \quad (\forall \xi \in \Sigma_{X'} \setminus \{\lambda'\}).$$

(such A' exists since λ' is highest in $\Sigma_{X'}$ with respect to the lexicographic ordering on \mathfrak{a}). Let us put

$$X'_{k} := \frac{1}{e^{k\lambda'(A')}} \exp(\operatorname{ad}_{\mathfrak{g}} kA') X' \quad (\text{for } k \in \mathbb{N})$$

Then, X'_k is in $\overline{\mathcal{O}'_0}$ for any k since $\overline{\mathcal{O}'_0}$ is stable by positive scalars. Furthermore,

$$\lim_{k \to \infty} X'_k = \lim_{k \to \infty} \sum_{\xi \in \Sigma_{X'}} e^{k(\xi(A') - \lambda'(A'))} X'_{\xi} = X'_{\lambda'}.$$

This means that $X'_{\lambda'}$ is in $\overline{O'_0}$. To complete the proof, we only need to show that there exists $X' \in \overline{O'_0}$ such that $\lambda' = \lambda$ (where λ' is the highest one of $\Sigma_{X'}$). Let λ_0 be the highest one of

$$\Sigma_{\overline{\mathcal{O}}'_{0}} := \{ \xi \in \Sigma(\mathfrak{g}, \mathfrak{a}) \mid \exists X' \in \overline{\mathcal{O}'_{0}} \text{ such that } X'_{\xi} \neq 0 \}$$

(namely, $\Sigma_{\overline{O}'_0} = \bigcup_{X' \in \overline{O'_0}} \Sigma_{X'}$) with respect to the ordering on \mathfrak{a} . Then, we can find a root vector X'_{λ_0} in $\mathfrak{g}_{\lambda_0} \cap \overline{\mathcal{O}'_0}$ by the argument avobe. We assume that $\lambda_0 \neq \lambda$. Then, by Lemma 3.3, there exists $\eta \in \Sigma^+(\mathfrak{g}, \mathfrak{a})$ and $X_\eta \in \mathfrak{g}_\eta$ such that $[X_\eta, X'_{\lambda_0}] \neq 0$. In particular, for the element $X'' := \exp(\operatorname{ad}_{\mathfrak{g}}(X_\eta))X'_{\lambda_0}$ in $\overline{\mathcal{O}'_0}$, we obtain that

$$\lambda_0 + \eta \in \Sigma_{X''} \subset \Sigma_{\overline{\mathcal{O}'_0}}.$$

This contradicts the definition of λ_0 . Thus, $\lambda_0 = \lambda$.

Proof of Proposition 3.5. Let $A_{\lambda^{\vee}}$ be the element in a corresponding to the coroot λ^{\vee} of the highest root λ . We put

$$(\mathfrak{g}_{\mathbb{C}})_2 = \{ X \in \mathfrak{g}_{\mathbb{C}} \mid [A_{\lambda^{\vee}}, X] = 2X \}.$$

Then, \mathfrak{g}_{λ} is included in $(\mathfrak{g}_{\mathbb{C}})_2$. We note that there exists $X, Y \in \mathfrak{g}_{\mathbb{C}}$ such that $(A_{\lambda^{\vee}}, X, Y)$ is an \mathfrak{sl}_2 -triple in $\mathfrak{g}_{\mathbb{C}}$ (in fact, we can find such X, Y in \mathfrak{g}_{λ} by Fact 3.1). Therefore, we can use Malcev's theorem. Namely, for any two non-zero vectors X and X' in $(\mathfrak{g}_{\mathbb{C}})_2$, there exists $g_{\mathbb{C}} \in G_{\mathbb{C}}$ such that $g_{\mathbb{C}}X = X'$. Since $\mathfrak{g}_{\lambda} \subset (\mathfrak{g}_{\mathbb{C}})_2$, the proof is completed.

By using Proposition 3.4 and Proposition 3.5, Theorem 1.1 follows by taking $\mathcal{O}_{\min,g}^{G_{\mathbf{C}}}$ as

$$\mathcal{O}^{G_{\mathbf{C}}}_{\min,\mathfrak{g}} := G_{\mathbb{C}} \cdot \mathfrak{g}_{\lambda} \setminus \{0\}.$$

4 Outline of a proof of Theorem 1.2

Let us consider the same setting in §3. Recall that $\mathcal{O}_{\min,g}^{G_{C}}$ is not the complex minimal nilpotent orbit $\mathcal{O}_{\min}^{G_{C}}$ if and only if $\mathcal{O}_{\min}^{G_{C}}$ does not meet \mathfrak{g} . The proposition below give a characterization of \mathfrak{g} for which $\mathcal{O}_{\min}^{G_{C}}$ is not $\mathcal{O}_{\min,g}^{G_{C}}$ (see Proposition 5.6 for another characterizations of it).

Proposition 4.1. The following conditions on g are equivalent:

- 1. dim_{\mathbb{R}} $\mathfrak{g}_{\lambda} \geq 2$.
- 2. $\mathcal{O}_{\min}^{G_{\mathbf{C}}} \cap \mathfrak{g} = \emptyset$.

We can prove the proposition without any classification, but we omit it in this paper.

Here, we put $\mathfrak{m} := Z_{\mathfrak{k}}(\mathfrak{a})$ and denote by M_0 , A to the analytic subgroups of G corresponding to \mathfrak{m} , \mathfrak{a} , respectively. Then, the connected Lie group M_0A (which is the analytic subgroup of G corresponding to $\mathfrak{m} \oplus \mathfrak{a}$) acts on \mathfrak{a} . Furthermore, the following proposition holds:

Proposition 4.2. If dim_{\mathbb{R}} $\mathfrak{g}_{\lambda} \geq 2$, then $\mathfrak{g}_{\lambda} \setminus \{0\}$ is a single M_0A -orbit.

Combining Proposition 3.4, Proposition 4.1 with Proposition 4.2, we obtain Theorem 1.2.

We will use the next lemma to prove Proposition 4.2.

Lemma 4.3. Suppose that \mathfrak{g} has real rank one (i.e. $\dim_{\mathbb{R}} \mathfrak{a} = 1$) and $\dim_{\mathbb{R}} \mathfrak{g}_{\lambda} \geq 2$. Then, $\mathfrak{g}_{\lambda} \setminus \{0\}$ is a single M_0A -orbit.

Proof of Lemma 4.3. Let $A_{\lambda^{\vee}}$ be the element of \mathfrak{a} corresponding to the coroot λ^{\vee} of the highest root λ in $\Sigma^+(\mathfrak{g},\mathfrak{a})$ (see §3). Since \mathfrak{g} has real rank one, we have $\mathfrak{a} = \mathbb{R}A_{\lambda^{\vee}}$, and \mathfrak{g} can be written by

$$\mathfrak{g} = \mathfrak{g}_{-\lambda} \oplus \mathfrak{g}_{-\frac{\lambda}{2}} \oplus \mathfrak{m} \oplus \mathfrak{a} \oplus \mathfrak{g}_{\frac{\lambda}{2}} \oplus \mathfrak{g}_{\lambda}$$

 $(\mathfrak{g}_{\pm\frac{\lambda}{2}} \text{ can be zero})$. Let us denote by $\mathfrak{g}_{\mathbb{C}}$, $\mathfrak{m}_{\mathbb{C}}$, $\mathfrak{a}_{\mathbb{C}}$, $(\mathfrak{g}_{\pm\lambda})_{\mathbb{C}}$, $(\mathfrak{g}_{\pm\frac{\lambda}{2}})_{\mathbb{C}}$ the complexification of \mathfrak{g} , \mathfrak{m} , \mathfrak{a} , $\mathfrak{g}_{\pm\lambda}$, $\mathfrak{g}_{\pm\frac{\lambda}{2}}$, respectively. We set

$$(\mathfrak{g}_{\mathbb{C}})_i = \{ X \in \mathfrak{g}_{\mathbb{C}} \mid [A_{\lambda^{\vee}}, X] = iX \} \quad (\text{for } i \in \mathbb{Z}).$$

Then,

$$(\mathfrak{g}_{\mathbb{C}})_0 = \mathfrak{m}_{\mathbb{C}} \oplus \mathfrak{a}_{\mathbb{C}}, \ (\mathfrak{g}_{\mathbb{C}})_{\pm 1} = (\mathfrak{g}_{\pm \frac{\lambda}{2}})_{\mathbb{C}}, \ (\mathfrak{g}_{\mathbb{C}})_{\pm 2} = (\mathfrak{g}_{\pm \lambda})_{\mathbb{C}}.$$

By Fact 3.1, for any non-zero highest root vector X_{λ} in \mathfrak{g}_{λ} , there exists $Y_{\lambda} \in \mathfrak{g}_{-\lambda}$ such that $(A_{\lambda^{\vee}}, X_{\lambda}, Y_{\lambda})$ is an \mathfrak{sl}_2 -triple in $\mathfrak{g}_{\mathbb{C}}$. By the theory of representations of $\mathfrak{sl}(2, \mathbb{C})$, we obtain that $[(\mathfrak{g}_{\mathbb{C}})_0, X_{\lambda}] = (\mathfrak{g}_{\mathbb{C}})_2$. In particular, we have

 $[\mathfrak{m} \oplus \mathfrak{a}, X_{\lambda}] = \mathfrak{g}_{\lambda}.$

Therefore, for the M_0A -orbit $\mathcal{O}^{M_0A}(X_\lambda)$ in \mathfrak{g}_λ through X_λ , we obtain that

$$\dim_{\mathbb{R}} \mathcal{O}^{M_0 A}(X_\lambda) = \dim_{\mathbb{R}} \mathfrak{g}_\lambda.$$

This means that the M_0A -orbit $\mathcal{O}^{M_0A}(X_\lambda)$ is open in \mathfrak{g}_λ for any non-zero root vector X_λ in \mathfrak{g}_λ . Recall that we are assuming that $\dim_{\mathbb{R}} \mathfrak{g}_\lambda \geq 2$. Hence, $\mathfrak{g}_\lambda \setminus \{0\}$ is connected. Therefore, $\mathfrak{g}_\lambda \setminus \{0\}$ is a single M_0A -orbit. \Box

We are ready to prove Proposition 4.2.

Sketch of a proof of Proposition 4.2. Let $\mathfrak{h}' := [\mathfrak{g}_{\lambda}, \mathfrak{g}_{-\lambda}] \subset \mathfrak{m} \oplus \mathfrak{a}$. Then $\mathfrak{g}' := \mathfrak{g}_{-\lambda} \oplus \mathfrak{h}' \oplus \mathfrak{g}_{\lambda}$ becomes a subalgebra of \mathfrak{g} (since $\pm 2\lambda$ is not a root). Furthremore, one can prove that \mathfrak{g}' is a real rank one simeple Lie algebra with a maximally split abelian subspace $\mathfrak{a}' := \mathbb{R}A_{\lambda^{\vee}}$, where $A_{\lambda^{\vee}}$ is the element of \mathfrak{a} corresponding to the coroot λ^{\vee} of the highest root λ in $\Sigma^+(\mathfrak{g},\mathfrak{a})$ (see §3). We put $\mathfrak{m}' \oplus \mathfrak{a}' := Z_{\mathfrak{g}'}(\mathfrak{a}')$ and denote by M'_0A' the analytic subgroup of G corresponding to $\mathfrak{m}' \oplus \mathfrak{a}'$. Then, by Lemma 4.3, we obtain that $\mathfrak{g}_{\lambda} \setminus \{0\}$ is a single M'_0A' -orbit. Since M'_0A' is a subgroup of M_0A , the proof is completed.

5 Determination of $\mathcal{O}_{\min,\mathfrak{g}}^{G_{\mathbb{C}}}$

In this section, we determine $\mathcal{O}_{\min,\mathfrak{g}}^{G_{\mathbb{C}}}$ by describing the weighted Dynkin diagram of $\mathcal{O}_{\min,\mathfrak{g}}^{G_{\mathbb{C}}}$. Recall that Proposition 4.1 claims that $\mathcal{O}_{\min}^{G_{\mathbb{C}}} = \mathcal{O}_{\min,\mathfrak{g}}^{G_{\mathbb{C}}}$ if and only if $\dim_{\mathbb{R}} \mathfrak{g}_{\lambda} = 1$. Thus, our concern is in the cases where $\dim_{\mathbb{R}} \mathfrak{g}_{\lambda} \geq 2$ (i.e. \mathfrak{g} is isomorphic to $\mathfrak{su}^*(2k)$, $\mathfrak{so}(n-1,1)$, $\mathfrak{sp}(p,q)$, $\mathfrak{e}_{6(-26)}$ or $\mathfrak{f}_{4(-20)}$).

5.1 Satake diagrams and weighted Dynkin diagrams

In order to determine the weighted Dynkin diagram of our $\mathcal{O}_{\min,g}^{G_{\mathbb{C}}}$, we describe some lemmas of relationship between weighted Dynkin diagrams of $\mathfrak{g}_{\mathbb{C}}$ and Satake diagrams of \mathfrak{g} in this subsection.

Let $\mathfrak{g}_{\mathbb{C}}$ be a semisimple Lie algebra and \mathfrak{g} a real form of it through this subsection. First, we recall briefly the definition of Satake diagram of a real form \mathfrak{g} of a complex semisimple Lie algebra $\mathfrak{g}_{\mathbb{C}}$ (see also [1] for more details). Fix a Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ of \mathfrak{g} . We take a maximal abelian subspace \mathfrak{a} in \mathfrak{p} , and extend it to a maximal abelian subspace $\mathfrak{h} = \sqrt{-1}\mathfrak{t} \oplus \mathfrak{a}$ in $\sqrt{-1}\mathfrak{k} \oplus \mathfrak{p}$. Then, the complexification, denoted by $\mathfrak{h}_{\mathbb{C}}$, of \mathfrak{h} is a Cartan subalgebra of $\mathfrak{g}_{\mathbb{C}}$, and \mathfrak{h} coincide with the real form

$$\{X \in \mathfrak{h}_{\mathbb{C}} \mid \alpha(X) \in \mathbb{R} \ ({}^{\forall}\alpha \in \Delta(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}}))\}$$

of $\mathfrak{h}_{\mathbb{C}}$, where $\Delta(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$ is the root system of $(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$. Let us denote by

$$\Sigma(\mathfrak{g},\mathfrak{a}):=\{\alpha|_{\mathfrak{a}}\mid \alpha\in\Delta(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})\}\setminus\{0\}\subset\mathfrak{a}^{*}$$

the restricted root system of $(\mathfrak{g},\mathfrak{a})$. We will denote by $W(\mathfrak{g},\mathfrak{a})$, $W(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$ the Weyl group of $\Sigma(\mathfrak{g},\mathfrak{a})$, $\Delta(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$, respectively. Fix an ordering on \mathfrak{a} and extend it to an ordering on \mathfrak{h} . We write $\Sigma^+(\mathfrak{g},\mathfrak{a})$, $\Delta^+(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$ for the positive system of $\Sigma(\mathfrak{g},\mathfrak{a})$, $\Delta(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$ corresponding to the ordering on \mathfrak{a} , \mathfrak{h} , respectively. Then, $\Sigma^+(\mathfrak{g},\mathfrak{a})$ can be written by

$$\Sigma^+(\mathfrak{g},\mathfrak{a}) = \{\alpha|_\mathfrak{a} \mid \alpha \in \Delta^+(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})\} \setminus \{0\}.$$

We denote by Π the fundamental system of $\Delta^+(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$. Then,

$$\overline{\Pi} := \{ \alpha |_{\mathfrak{a}} \mid \alpha \in \Pi \} \setminus \{ 0 \}$$

is the simple system of $\Sigma^+(\mathfrak{g},\mathfrak{a})$. Let Π_0 be the set of all simple roots in Π whose restriction to \mathfrak{a} is zero. The Satake diagram $S_{\mathfrak{g}}$ of \mathfrak{g} consists of the

following data: The Dynkin diagram of $\mathfrak{g}_{\mathbb{C}}$ with nodes Π ; black nodes Π_0 in $S_{\mathfrak{g}}$; and arrows joining $\alpha \in \Pi \setminus \Pi_0$ and $\beta \in \Pi \setminus \Pi_0$ in $S_{\mathfrak{g}}$ whose restrictions to \mathfrak{a} are the same.

Second, we define that a weighted Dynkin diagram $\Psi_H \in \text{Map}(\Pi, \mathbb{R})$ "matches" the Satake diagram $S_{\mathfrak{g}}$ of \mathfrak{g} as follows:

Definition 5.1. Let $\Psi_H \in \text{Map}(\Pi, \mathbb{R})$ be a weighted Dynkin diagram (see §2) and $S_{\mathfrak{g}}$ the Satake diagram of \mathfrak{g} with nodes Π . We say that Ψ_H matches $S_{\mathfrak{g}}$ if all the weights on black nodes are zero and any pair of nodes joined by an arrow has the same weights.

Remark 5.2. The concept of "match" defined above is same as "weighted Satake diagrams" in Djocovic [5] and the condition described in Sekiguchi [11, Proposition 1.16].

Recall that Ψ is a linear isomorphism from \mathfrak{h} to Map (Π, \mathbb{R}) (see §2). Then, the next two lemmas hold (we omit proofs of the two lemmas in this paper):

Lemma 5.3. $\Psi : \mathfrak{h} \to \operatorname{Map}(\Pi, \mathbb{R})$ induces a linear isomorphism below.

 $\mathfrak{a} \to \{ \Psi_H \in \operatorname{Map}(\Pi, \mathbb{R}) \mid \Psi_H \text{ matches } S_\mathfrak{g} \}.$

Lemma 5.4. For each simple root α of Π , we denote by $H_{\alpha^{\vee}}$ the element in \mathfrak{h} corresponding to the coroot α^{\vee} of the simple root α . Then, the set

 $\{H_{\alpha^{\vee}} \mid \alpha \text{ is black in } S_{\mathfrak{g}}\} \cup \{H_{\alpha^{\vee}} - H_{\beta^{\vee}} \mid \alpha \text{ and } \beta \text{ are joined by an arrow in } S_{\mathfrak{g}}\}$ is a basis of $\sqrt{-1}\mathfrak{t}$.

Lemma 5.3 and Lemma 5.4 will be used to compute the weighted Dynkin diagrams of $\mathcal{O}_{\min,g}^{G_{\mathbb{C}}}$ for the cases where $\mathcal{O}_{\min,g}^{G_{\mathbb{C}}}$ is not the complex minimal nilpotent orbit $\mathcal{O}_{\min}^{G_{\mathbb{C}}}$.

Recall that our concern in this paper is in real simple Lie algebras $\mathfrak{su}^*(2k)$, $\mathfrak{so}(n-1,1)$, $\mathfrak{sp}(p,q)$, $\mathfrak{e}_{6(-26)}$ and $\mathfrak{f}_{4(-20)}$. For the convenience of the reader, we give a list of Satake diagrams of such simple Lie algebras.

g	Satake diagrams of \mathfrak{g}
$\mathfrak{su}^*(2k)$	$\bullet - \circ - \bullet - \circ - \bullet - \circ - \bullet - \circ - \bullet - \bullet - $

 $\mathfrak{sp}(p,q), \mathfrak{e}_{6(-26)} \text{ and } \mathfrak{f}_{4(-20)}.$

5.2 Computation of weighted Dynkin diagrams of $\mathcal{O}_{\min,\mathfrak{g}}^{G_{\mathbb{C}}}$

We consider the same setting on §5.1 and suppose that $\mathfrak{g}_{\mathbb{C}}$ is simple and \mathfrak{g} is non-compact. Let us denote by

$$\mathfrak{a}_{+} := \{ A \in \mathfrak{a} \mid \xi(A) \ge 0 \ (\forall \xi \in \Sigma^{+}(\mathfrak{g}, \mathfrak{a})) \}.$$

Then \mathfrak{a}_+ is a fundamental domain of \mathfrak{a} under the action of $W(\mathfrak{g},\mathfrak{a})$. Since

$$\Sigma^+(\mathfrak{g},\mathfrak{a}) = \{ \alpha|_\mathfrak{a} \mid \alpha \in \Delta(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}}) \} \setminus \{0\},\$$

the domain \mathfrak{a}_+ coincide with $\mathfrak{h}_+ \cap \mathfrak{a}$. Recall that λ is dominant (by Lemma 3.2) and $\mathcal{O}_{\min,\mathfrak{g}}^{G_{\mathbb{C}}}$ contains $\mathfrak{g}_{\lambda} \setminus \{0\}$ (by the proof of Theorem 1.1). Thus, $A_{\lambda^{\vee}}$ is the hyperbolic element in \mathfrak{a}_+ corresponding to $\mathcal{O}_{\min,\mathfrak{g}}^{G_{\mathbb{C}}}$ (see §2) since we can find $X_{\lambda} \in \mathfrak{g}_{\lambda}, Y_{\lambda} \in \mathfrak{g}_{-\lambda}$ such that the triple $(A_{\lambda^{\vee}}, X_{\lambda}, Y_{\lambda})$ is an \mathfrak{sl}_2 -triple in $\mathfrak{g}_{\mathbb{C}}$ by Lemma 3.1 (then, $X_{\lambda}, Y_{\lambda} \in \mathcal{O}_{\min,\mathfrak{g}}^{G_{\mathbb{C}}}$). Therefore, to determine the weighted Dynkin diagram of $\mathcal{O}_{\min,\mathfrak{g}}^{G_{\mathbb{C}}}$, we shall compute the weighted Dynkin diagram corresponding to $A_{\lambda^{\vee}}$.

Let ϕ be the highest root of $\Delta^+(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$. Recall that the complex minimal nilpotent orbit $\mathcal{O}_{\min}^{G_{\mathbb{C}}}$ contains the root space $(\mathfrak{g}_{\mathbb{C}})_{\phi}$ without zero, and the weighted Dynkin diagram of $\mathcal{O}_{\min}^{G_{\mathbb{C}}}$ is the weighted Dynkin diagram corresponding to $H_{\phi^{\vee}}$ (see §2). The next lemma gives a formula for $A_{\lambda^{\vee}}$ by $H_{\phi^{\vee}}$ (we omit a proof of the lemma): **Lemma 5.5.** We denote by τ the anti \mathbb{C} -linear involution corresponding to $\mathfrak{g}_{\mathbb{C}} = \mathfrak{g} \oplus \sqrt{-1}\mathfrak{g}$ (i.e. τ is the complex conjugation of $\mathfrak{g}_{\mathbb{C}}$ with respect to the real form \mathfrak{g}). Then, $H_{\phi^{\vee}}$ is in \mathfrak{a} if and only if $\dim_{\mathbb{R}} \mathfrak{g}_{\lambda} \geq 2$ and

$$A_{\lambda^{\vee}} = \begin{cases} H_{\phi^{\vee}} & (if \dim_{\mathbb{R}} \mathfrak{g}_{\lambda} = 1), \\ H_{\phi^{\vee}} + \tau H_{\phi^{\vee}} & (if \dim_{\mathbb{R}} \mathfrak{g}_{\lambda} \ge 2). \end{cases}$$

In particular, we have another characterizations of \mathfrak{g} for which $\mathcal{O}_{\min,\mathfrak{g}}^{G_{\mathbb{C}}}$ is not $\mathcal{O}_{\min}^{G_{\mathbb{C}}}$ from Proposition 4.1.

Proposition 5.6. The following conditions on g are equivalent:

- 1. $\mathcal{O}_{\min,\mathfrak{g}}^{G_{\mathbb{C}}} \neq \mathcal{O}_{\min}^{G_{\mathbb{C}}}$.
- 2. $\mathcal{O}_{\min}^{G_{\mathbb{C}}} \cap \mathfrak{g} = \emptyset$.
- 3. dim_{\mathbb{R}} $\mathfrak{g}_{\lambda} \geq 2$.
- 4. The highest root ϕ in $\Delta^+(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$ is not a real root.
- 5. The weighted Dynkin diagram of $\mathcal{O}_{\min}^{G_{\mathbb{C}}}$ matches the Satake diagram $S_{\mathfrak{g}}$ of \mathfrak{g} (see Definition §5.1).
- 6. \mathfrak{g} is isomorphic to $\mathfrak{su}^*(2k)$, $\mathfrak{so}(n-1,1)$, $\mathfrak{sp}(p,q)$, $\mathfrak{e}_{6(-26)}$ or $\mathfrak{f}_{4(-20)}$, where $k \geq 2, n \geq 5$ and $p \geq q \geq 1$.

We now determine the weighted Dynkin diagram of $\mathcal{O}_{\min,\mathfrak{g}}^{G_{\mathbb{C}}}$ for the cases where \mathfrak{g} is isomorphic to $\mathfrak{su}^*(2k)$, $\mathfrak{so}(n-1,1)$, $\mathfrak{sp}(p,q)$, $\mathfrak{e}_{6(-26)}$ or $\mathfrak{f}_{4(-20)}$. By Lemma 5.5, our purpose is to compute the weighted Dynkin diagram corresponding to $A_{\lambda^{\vee}} = H_{\phi^{\vee}} + \tau H_{\phi^{\vee}}$. We only give the computation for the case $\mathfrak{g} = \mathfrak{e}_{6(-26)}$ below. For the other \mathfrak{g} with $\dim_{\mathbb{R}} \mathfrak{g}_{\lambda} \geq 2$, we can compute the weighted Dynkin diagram corresponding to $A_{\lambda^{\vee}}$ by the same way.

Example 5.7. Let $(\mathfrak{g}_{\mathbb{C}},\mathfrak{g}) = (\mathfrak{e}_{6,\mathbb{C}},\mathfrak{e}_{6(-26)})$. We denote the Satake diagram of $\mathfrak{e}_{6(-26)}$ by

$$\begin{array}{c} \alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4 \ \alpha_5 \\ \circ & \bullet & \bullet \\ \bullet \ \alpha_6 \end{array}$$

By Table 2, the weighted Dynkin diagram corresponding to $H_{\phi^{\vee}}$ is

We now compute the weighted Dynkin diagram corresponding to $A_{\lambda^{\vee}} = H_{\phi^{\vee}} + \tau H_{\phi^{\vee}}$. By Lemma 5.3, the weighted Dynkin diagram corresponding to $A_{\lambda^{\vee}}$ matches the Satake diagram of $\mathbf{e}_{6(-26)}$. Thus, we can put the weighted Dynkin diagram corresponding to $A_{\lambda^{\vee}}$ as

$$\overset{a \quad 0 \quad 0 \quad 0 \quad b}{\overset{\circ}{\underset{0}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{}$$

To determine $a, b \in \mathbb{R}$, we also put

$$H_{\phi^{\vee}}^{im} = H_{\phi^{\vee}} - \tau H_{\phi^{\vee}} \in \sqrt{-1}\mathfrak{t}.$$

Since $A_{\lambda^{\vee}} + H_{\phi^{\vee}}^{im} = 2H_{\phi^{\vee}}$, the weighted Dynkin diagram corresponding to $H_{\phi^{\vee}}^{im}$ can be written by

$$- \begin{array}{c} -a & 0 & 0 & 0 & -b \\ \circ & \circ & \circ & \circ \\ \circ & 2 \end{array}$$

Namely, we have

$$\begin{aligned} \alpha_1(H_{\phi^{\vee}}^{im}) &= -a, \\ \alpha_2(H_{\phi^{\vee}}^{im}) &= \alpha_3(H_{\phi}^{im}) = \alpha_4(H_{\phi}^{im}) = 0, \\ \alpha_5(H_{\phi^{\vee}}^{im}) &= -b, \\ \alpha_6(H_{\phi^{\vee}}^{im}) &= 2. \end{aligned}$$

By Lemma 5.4, the set $\{H_{\alpha_2^{\vee}}, H_{\alpha_3^{\vee}}, H_{\alpha_4^{\vee}}, H_{\alpha_6^{\vee}}\}$ is a basis of $\sqrt{-1}\mathfrak{t}$. Thus, $H_{\phi^{\vee}}^{im} \in \sqrt{-1}\mathfrak{t}$ can be written by

$$H_{\phi^{\vee}}^{im} = c_2 H_{\alpha_2^{\vee}} + c_3 H_{\alpha_3^{\vee}} + c_4 H_{\alpha_4^{\vee}} + c_6 H_{\alpha_6^{\vee}} \quad (c_2, c_3, c_4, c_6 \in \mathbb{R}).$$

By the Dynkin diagram of $e_{6,\mathbb{C}}$, we can compute

$$lpha_i(H_{lpha_j^ee}) = rac{2\langle lpha_i, lpha_j
angle}{\langle lpha_j, lpha_j
angle}$$

for each i, j. Thus, we also have

$$\begin{split} &\alpha_1(H_{\phi^\vee}^{im}) = -c_2, \\ &\alpha_2(H_{\phi^\vee}^{im}) = 2c_2 - c_3, \\ &\alpha_3(H_{\phi^\vee}^{im}) = -c_2 + 2c_3 - c_4 - c_6, \\ &\alpha_4(H_{\phi^\vee}^{im}) = -c_3 + 2c_4, \\ &\alpha_5(H_{\phi^\vee}^{im}) = -c_4, \\ &\alpha_6(H_{\phi^\vee}^{im}) = -c_3 + 2c_6. \end{split}$$

Then, we obtain that a = b = 1. Therefore, the weighted Dynkin diagram of $\mathcal{O}_{\min,\mathfrak{g}}^{G_{\mathbb{C}}}$ for $\mathfrak{g} = \mathfrak{e}_{6(-26)}$ is

The result of our computation for all \mathfrak{g} with $\dim_{\mathbb{R}} \mathfrak{g}_{\lambda} \geq 2$ is Table 1 in §1.

References

- [1] S. Araki. On root systems and an infinitesimal classification of irreducible symmetric spaces. J. Math. Osaka City Univ., 13:1–34, 1962.
- [2] P. Bala and R. W. Carter. Classes of unipotent elements in simple algebraic groups. I, II. Math. Proc. Cambridge Philos. Soc., 79(3):401– 425, 1976 bid 80:1-17,1976.
- [3] R. Brylinski. Geometric quantization of real minimal nilpotent orbits. Differential Geom. Appl., 9(1-2):5–58, 1998. Symplectic geometry.
- [4] D. H. Collingwood and W. M. McGovern. Nilpotent orbits in semisimple Lie algebras. Van Nostrand Reinhold Mathematics Series. Van Nostrand Reinhold Co., New York, 1993.
- [5] D. Z. Djoković. Classification of Z-graded real semisimple Lie algebras. J. Algebra, 76(2):367–382, 1982.
- [6] E. B. Dynkin. Semisimple subalgebras of semisimple Lie algebras. Mat. Sbornik N.S., 30(72):349–462 (3 plates), 1952.

- [8] T. Kobayashi and Y. Oshima. Classification of symmetric pairs with discretely decomposable restrictions of (g,k)-modules. Technical Report arXiv:1202.5743, Feb 2012.
- [9] B. Kostant. The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group. Amer. J. Math., 81:973-1032, 1959.
- [10] A. I. Malcev. On semi-simple subgroups of Lie groups. Amer. Math. Soc. Translation, 1950(33):43, 1950.
- [11] J. Sekiguchi. The nilpotent subvariety of the vector space associated to a symmetric pair. *Publ. Res. Inst. Math. Sci.*, 20:155–212.