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Periodic solutions of some double-diffusive convection systems
based on Brinkman-Forchheimer equations
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Waseda University

SREEAY - BTHHB AB HEF Mitsuharu Otani)
School of Science and Engineering,

Waseda University

1 Introduction

In this paper, we shall consider a double-diffusive convection system based upon Brinkman-Forchheimer

Equations in a bounded domain Q € RY with smooth boundary 89, which is given as follows.

du = vAu —au —Vp+gT + hC + fi in Qx[0,5],

T +uwVT = AT + f in Qx0, S],
(BF){ 8:C+uVC=AC+pAT + f3 in Qx[0, 5],
Vau=0 in Qx[0, S],

U'an = 0’ TI@Q = 0) CIBQ = Oa

where u,T,C,p are unknown functions and represent the solenoidal velocity, temperature of the fluid,
concentration of a solute, pressure of the fluid respectively. Given constant vectors g, h are derived from
gravity. The positive constants p,a are called the Soret’s coefficient and Darcy’s coefficient respectively.
f1, f2, f3 are the given external forces. Throughout this paper, d;u and u, designate the time derivative

of u,i.e., %‘. In this note, we consider equations (BF) under the time periodic condition with peried S.
u(-,O) = u('a S)v T(-,0)= T("S)’ C(,0)= C(’S) (1)

The first equation of (BF) comes from the Brinkman-Forchheimer equation, which describes the be-
havior of the fluid velocity in some porous medium. Originally, the Brinkman-Forchheimer equation has
a convection term and another nonlinear term, and in each term of the equation, there appears another
space-dependent function which stands for the rate of the void space in the porous medium (which is
called the porosity). However, under some physical conditions we linearize the Brinkman-Forchheimer
equation. First we assume that the medium is homogeneous, whence follows that the porosity is constant.
Second we presume that the flow is relatively calm and nonlinear terms are very small. This assumption
is realized when we are concerned with the porous medium, which disturbs the flow. It is also known
that the nonlinear terms in the Brinkman-Forchheimer equation become negligibly small when we deal
with the convection of temperature and concentration together. Third we assume that the porosity of
the porous medium is sufficiently large. This assumption makes the diffusion term more effective than
the nonlinear terms. Under these assumption, we derive the linearized Brinkman-Forchheimer equation

given in (BF). Here gT', hC are the effect from gravity.



The second equation and the third equation of (BF) originate from the result of the irreversible
thermodynamics. The term pAT, which is called Soret’s effect, describes the certain interaction between
the temperature of the fluid and the concentration of a solute. Naturally, the second equation also
contains a interaction term p’ AC, which is called Dufore’s effect. However, Dufore’s effect is generally
much smaller than Soret’s effect, especially for the case where we deal with liquid fluid. Therefore we
here consider only Soret’s effect.

There are many studies for (BF), for example, about the dependence of the solutions on the Soret’s
coefficient p and so on. However, to the best of our knowledge, it seems that there are very few studies
for the solvability of (BF). In [1], there is a result of the existence of the unique global solution of (BF)
under some initial condition.

The system has convection terms - VT, u - VC as nonlinear terms. In addition, the third equation
has the term of pAT which may not be small perturbation. In order to solve the periodic problem
for (BF), we try to apply an abstract result developed in [2]. However, this abstract result can not
be applied directly to (BF) because of the presence of terms u - VT, u - VC,gT and hC. In order to
cope with this difficulty, we introduce some approximation system involving some dissipation terms and
cut-off functions, whose solvability can be assured by the abstract result in [2]. In addition to this, we
establish appropriate a priori estimates independent of the approximation parameter and apply standard
convergence arguments. In section 2, we prepare some preliminary and our main result is stated. In
section 3, we check some conditions required in the abstract theorem to assure the existence of the
solution of approximation equations. Making use of the boundedness derived from appropriate a priori

estimates in section 4, we discuss the convergence of solutions of approximation equations in section 5.

2 Preliminaries and Main Result
2.1 Notation

In this paper, we use following notations in order to formulate our results.

CP(Q) = {u=(u',?, - w0 eCP(Q) Vi =1,2,--- ,N, V-u=0},
L2(Q) = (L2(@)", H'(Q)= (H'(@)N =W2@Q)",

L2(9) : The closure of C3°(Q) under the L2(£)-norm,

H () : The closure of C°(€2) under the H'(£2)-norm,

H=12(Q) x L*(Q) x L*(Q) : Hilbert space,

Cx([0,8); H) = {U € C([0,S]; H); U(0) = U(S)},

Pq : The orthogonal projection L2(Q2) onto L2 (1),

A = —PqoA : The Stokes operator with domain D(A) = H?(Q) N H. (Q).
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2.2 Subdifferential Operator

Let ¢ be a proper lower semi-continuous convex function from H to (—o0,+oc]. Define the effective
domain of ¢ by D(p) = {U € H; p(U) < +oo} and the subdifferential of ¢ by

dp(U) = {f € H;p(V) - (U) < (f,V —U)y for all V € H}

with domain D(8y) = {U € H;9¢p(U) # @}.

In the later arguments, it will be shown that the leading terms can be given as the subdifferential
of some lower semi-continuous convex function. Generally, subdifferential operators are multivalued
maximal monotone operators. However, since the subdifferential operators used in this note are always

single-valued, we restrict ourselves to the single-valued subdifferential operators.

2.3 Reduction to an Abstract Problem

In this section, we shall reduce problem (BF) to an abstract periodic problem in the Hilbert space H.
Operating the projection Pg to the first equation of (BF) to erase the pressure term Vp, we obtain the
following equations:

Byu = VPaAu — au + PagT + PohC + Po fi,
&T +uVT = AT + f2, (2
8,C + u-VC = AC + pAT + fs.

Here we introduce the inner product of H as follows:
1 .
(U1,U2)n = (’ul,'u'_))],g +(T1,To)2 + '972-(01,02)1,2 for U; = (u;, T3,C:), (i = 1,2). 3)

The inner product of C has a coefficient which depends on p in order to deal with the term pAT as a
small perturbation.

Define ¢ by

o0y < [FIVulE + HIVTIG + VOIS, i UeDl) =By xHyx B,
+00 if Ue H\D(y).

Then it is easy to see that ¢ becomes a lower semi-continuous convex function from H into (—oo, +00].

Moreover the subdifferential Jy is given by

—vPoAu
8p(U) = —25 with domain D(dyp) = (H2NHL) x (H2NH}) x (H2NHE).  (5)

Furthermore, we put

u(t) U Byu(t)
vy =| 1) |, So={ ar® |,
c(t) 3,C(t)

( au(t) — PagT(t) — PohC(t) ) ( fi(t) )
BU(t) = u-VT , Fy={ f) |.
w-VT — pAT f3(t)

(6)



Then (2) is reduced to the following abstract periodic problem in H:

(4P) { 2O +8p(U(t)) + BU() = F(t) teo,89], 7)

U(0) = U(S).

2.4 Known Abstract Theorem

In order to prove the existence of a periodic solution, we apply the following theorem given in [2] .

Theorem2.1 Let the following assumptions (A.1) — (A.4) be satisfied by (AP).
(A.1) For any L € (0,+o00), the set {U € H;o(U) + ||U||% < L} is compact in H.
(A.2) B(') is ¢p-demiclosed in the following sense:
U, — U strongly in C([0, S]; H),8¢(U,) — 8p(U) weakly in L*(0,S; H), B(U,) — b weakly in
L*(0,S; H), then b(t) = B(U(t)) holds for almost every ¢ € [0, S].
(A.3) There exists a monotone increasing function £(-) and a positive constant k € [0,1) such that
IBWO)I% < Ellde(U)I% + e(IUNa) (@(U) +1)2, for aet € [0,S], YU € D(dp).
(A.4) There exist positive constants a, K such that
(=0p(U) = B(U),U)u + ap(U) < K, for a.e.t €[0,8],YU € D(dyp).
Then for every F € L*(0,S; H), (AP) has a strong solution U € C, ([0, S]; H), such that
dU/dt € L?(0, S; H),
9p(U), B(U) € L*(0,S; H),
©(U) is absolutely continuous on [0, .5] and ¢(U(0)) = p(U(S)).
Here U(¢t) € Cx([0, S]; H) = {U € C(0,S; H); U(0) = U(S)} is said to be a strong solution of (AP)
if U(¢) is an H-valued absolutely continuous function on [0, S] and belongs to D(dy) (the domain
of Op) for a.e.t € [0, 5] and U, dp(U), B(U) satisfy (AP) for a.e.t € [0, 5].

2.5 Approximation Equations

For the case of the initial boundary value problem treated in [1], the existence of a local solution is
assured by applying a result for abstract Cauchy problems developed in [3]. When one tries to follow
the same strategy as in [1], i.e., to apply Theorem2.1 to (AP), one faces some difficulties. The worst one

arises in (A.3). More precisely, according to the estimate given in [1], we have
1
IBO)IE < 3100 + aw(U)’ + BIU I,

where the growth order for ¢(U) is cubic which does not satisfy the required growth order in (A.3).
Additionally, when the constant vectors g, h are very large, it is difficult to check whether condition
(A.4) is satisfied.

From these reasons, we are led to introduce some relaxed approximation problems, for which the
conditions (A.3) and (A.4) are satisfied. More precisely, we replace the T,C by their cut-off function,
[T]e, [C]e, and we add some dissipation terms to second and third equation. Indeed, we consider the
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following approximation equations.

dyu = vPaAu — au + Pag[T). + Pah|C]. + Paf1,
OT + uVT = AT — |T|P72T + fo, 8)
8;C +u-VC = AC + pAT — ¢|C|P~2C + f3,

where cut-off function [T, is defined as follows:

: ]E={ T if |T] < 1/, ©

(Sgn T)1/e if |T| 2 1/e, e>0,

and p is a large exponent to be fixed later on.
Then we shall reduce these approximation equations (8) to an abstract problem similar to (AP). For

the perturbation term, we replace it by

au — Pqag[T]. — Pah|C).
B.(U) = ( u-VT ) . (10)

u-VC — pAT
We need to modify the lower semicontinuous convex function ¢ by ¢, as follows;

$IVall: + 3IVTIZ: + w5z lIVOIZ: + SITIE, + 555 lICIE,
0e(U) = p(U)+ 9 (U) = if U € D(pe) =D(p)N (HL x LP x LP), (11)
+ oo if Ue H\D(ge).

Because ), is lower semicontinuous convex function on H and Fréchet differentiable on D(%.) = L2(Q) x
LP(Q) x L?P(Q), the subdifferential of 1. coincides with the dissipation term:

e (U) = (0,€|T|P~2T,e|CIP2C)". (12)

In general, the sum of two subdifferentials is not always maximal monotone. But for this case, we have

the following good property:
(0(U), 0%(U))u = (=AT,e|TP~2T) 2 + (—AC,e|CIP~2C) 2

=e(p-1) /Q [TP=2|VT|?dz + e(p — 1)_/9 |CIP~2|VC|3dz > 0. (13)

By virtue of (13), together with Proposition2.17, Theoremd4.4 and Proposition4.6 in Brézis[4], we can
deduce that 8¢ + S, becomes maximal monotone, and hence we get 8(¢ + 9.) = Op + JyY. with
D(0(p + ¥¢)) = D(3p) N D(8e) .

Thus, we have another abstract problem associated with approximation problems:

(AP), { WO 4 8o (U(t) + B(U(t)) = F(t) teo,89], 14)

U(0) = U(S).



2.6 Main Result

Our main result is stated as follows:
Theorem2.2 Let N <3 and (f1, 2, f3) € L%(0, S; H). Then (BF) has a solution (u, T, C) satisfying
dyu, Au € L2(0, S;L2()),
u € C([0, S]; H (),
6:T,8,C, AT, AC € L2([0, S]; L*()),
T,C € Cr([0, S]; H} ().

3 Solvability of Approximation Equations

In this section, we are going to verify that Th.2.1 can be applied to (AP),, that is to say, we are going
to check (A.1)-(A.4).
In what follows, let the space dimension N be 3. For the case where N = 2, the proof can be done by

the same (much easier) arguments.

3.1 Check of (A.1)

(A.1)< Compactness condition >
For any L € (0, +00), the set {U € H;p(U) + ||U||4 < L} is compact in H.

Proof. The level set {U € H; o(U)+||U||% < L} is bounded in the function space HZ () x H} (22) x H ().

Therefore it is clear that the level set is compact in H by virtue of Rellich’s compactness theorem. [

3.2 Check of (A.2)

(A.2)< p-demiclosedness condition >
B(-) is ¢-demiclosed

Proof. Assume
uy, — u strongly in C([0, 5], L2()),
T — T strongly in C([0, S], L2(Q2)), (15)
Cx — C strongly in C([0, S], L2(?)),

—vPaAuy, — ~vPoAu weakly in L2(0,S;1L2(02)),
— ATy, + e|Te[P~2T}, — —AT + €|T|P~2T weakly in L2(0, S; L2(Q2)), (16)
~ACk + €|C[P~2C, — —AC + £|CIP~2C weakly in L2(0, S; LA(R)),

and let
aug — Pﬂg[Tk]e - Pﬂh[Ck]g — hy weakly in LZ(O, S; ]L?,(Q)),

u-VT; — hy weakly in L2(0, S; L3(R)), (17)
ui-VCi — pAT — hz weakly in L2(0, S; L%(Q)).
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From the strong convergences of (15), we easily get

h; =au — PQg[T]E - PQh[C]e (18)

and additionally from (13), we derive the weak convergence —~AT; — —AT,—-AC, — —AC.

Because uy is a solenoidal function, applying the integration by parts, we obtain

(ug - VTi, ¢) = —(uxTk, Vo) — —(uT, V¢) = (u - VT, ¢) (19)

for all ¢ € C§°(Q2 x (0,5)). Consequently we find hy = w-VT. Similarly, we also find h3 = u-VC —
pAT. |

3.3 Check of (A.3)

(A.3)< Boundedness condition >
For all U € D(8yp), there exists a monotone increasing function £(-) and a constant k € [0, 1) such that

IBO)IE < klde@)IF + €U a)(eU) + 1)%.

Proof. By the definition of B(U) and the inner product of H, we get
2 2
1B < AIOT + [ fu-VTPdo+ o7 [ u-VCOPds + SIATIE, (20)

for some constant 3.

We begin with the estimate for the convection terms. Since divu = 0, the integration by parts give
/ - VT2dz = / VT - u(u- VT)ds = — / TuV(u-VT)dz < / Tl|u||V(u - VT)dz.  (21)
o) ) Q Q
Hence by the elliptic estimate and Holder’s inequality, we have

[ w1z < ([ TiullullaTide + [ [Tl1ullVulvTIds)
Q Q Q
< BUITl oz llwllee llulls IAT N L2 + [ Tl L2 [leeflus [Vaslles [ VT 22)

(22)

Then, by virtue of the fact ||ullf. < [lullL2|lu|l$s, Sobolev’s inequality and Young’s inequality, we get

1
/Q lu- VT Pdz < SIATIZ: + BIVeliL: + 171 luli)

(23)
1
+ gllAullﬁg +B(IVullgs + IVTIIZ2 + TN ),
for some constant (3. The convection term for C can be estimated by the same way.
Hence we obtain 1
1B < §Ila¢sll§1 +2(|Ullm)(ee(U) + 1) (24)
Thus the assumption (A.3) is assured with k£ = 1/3, provided that p > 12. O

In the above arguments, in order to estimate [|B(U)||% from above by ||Vullf., ||VT||1, and |VC|1.,
we need the additional terms ||VT||1%, and ||VC||}§., which can be covered by the presence of the

dissipation terms in approximation equations.



3.4 Check of (A.4)

(A.4)< Angular condition >
For all U € D(8y), there exist positive constants o and K such that
(=0p(U) — B(U),U)u + ap(U) < K.

Proof. Calculating the H—inner product between U and B (U), we have

1
(B¢ (U), V)i = v||Vullf, + |IVT||Z2 + @HVCII% +el TN + 5z ICIE-

= 2‘PE(U)

<
9p? (25)

Moreover, noting that (u- VT, T)2 = (u- VC,C) 2 = 0 and the cut-off function is bounded by 1/, we
get

1
(Be(U), U)n > allullf; — lglliwlez [T]llz2 — Rlllelz [Clell 22 — ‘9;“VT"L2 IVC

>l - 2 (Gl + 5 ) - JI9TIE - 5 1vOE: (26)
>-2 o)
Hence we get
(~0e(V) — Be(U), V) + 9e(U) < 5, (27)
whence follows (A.4) with K = %@- and a = 1. O

4 A Priori Estimates

In this section, we are going to establish some a priori estimates independent of the approximation

parameter €. In what follows, we donate by (u., 7., C.) the periodic solutions of approximation equations

(8)-
Throughout this section we set Q = [0, 5] x Q and donates by « the general constant depending on

|l F1llzo,5:L2 )5 I f2ll L2(0,5522()) 1 31l L2(0,5;22(2))- 9] and |R| but not on e.

4.1 First Energy Estimate for T,
Multiplying the second equation of (8) by 7. and integrating over 2, we have
1d 5 1 2 »
é'gillTsllL?(Q) + ’2‘”VTE”L2(Q) + E”Telle(Q) = o foTedz. (28)

Since the periodic condition gives

s
d
/0 T Te(MZ2@)dr = I Te(Z2(0) — I Te(Ol2() = 0, (29)
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integrating (28) over [0, S}, we obtain
VTl 20,5220 < Ifellzzo,s:L2@) 1 TellL2c0,5:22())-
By T, € C([0, S]; L%(2)), there exists to € [0, S] where ||T:(t)||12(q) attains its minimum, i.e.,
T (to)ll L2y = Ogltigs I Tl L2

Hence applying Poincaré’s inequality and Cauchy’s inequality, we have

M
ITe (o)l 2oy < g”lelm(o,s;m(n)) <7,

where M is a constant depending on the Poincaré constant. Then, integrating (28) over [to,t] (to <

to +.5) and over [tg, tg + 5], we deduce

||T5|IC([0,S];L2(Q)), |IVT€||L2(0,S;L2(Q)))E"Tellip(o'S;Lp(Q)) < Y.

4.2 First Energy Estimate for C.

Multiplying the third equation of (8) by C. and integrating over 2, we have

1d

5%"06“%,3 + “VCe”%ﬁ + 6”05”11),19 = P/ C.AT.dx +/ f2Cedzx.
Q Q

1 p?
< IVCIEs + IVELIZ: + 1 f2I2:Cl

26

(32)

t<

(33)

(34)

Since we already know the boundedness of HVT5||%2(O’ s;12(n)) Tepeating the same arguments as above,

we obtain
ICellcqio.s1;L2(0)) IV Cell2(0,5522(0)), N Ce 00, 5,10(0)) € V-

4.3 First Energy Estimate for u.

Multiplying the first equation of (8) by u. and integrating over €2, we have

l1d

3 gl + VI Vucls + alluclEy = [ (Tile g+ weds+ [ [Cule - uedo + / i teds
Q Q Q

< glITelczlluelliz + 1AlICellLalluclicz + I fulle lleell
< vlluell:

by (33) and (35). Then, as above, we get

luellcqo, 12y IV Uell2(0,5;L2()) < V-

(35)

(36)

(37)



4.4 Second Energy Estimate for u,
Multiplying the first equation of (8) by 8,u. and integrating over ), we have

”at'“'s"L2 +35 5 dt"v 6”1.2 + 2 dt ”“s"U /([T leg + [Ccleh + f1) - Bpucdx

< (19l Tell 22 + [RICell 2 + N Frlle2) ) Orue ez
< 18sue|Lz

(38)

On the other hand, in view of (33), (35) and (37), we find that || (U(t))|lz2(0,5) < 7. Hence, since
¢:(U(t)) is absolutely continuous on [0, S], there exists ¢; € [0, S], where @ (U(t)) attains its minimum

at t =tq, i.e.,

oeU0)) = i pe0(0) < & [ oe@utrir < L (39)
whence follows
Ve ()2, IVTe (1)) 72, IVCe (1) 12, €l Te (021 5 €l C () I < . (40)
Then integrating (38) over [t1,t] and [t1,¢ + 5], we derive
IVuelico,s;c2(@)s |0ctell 20,522 () < - (41)
Furthermore, by using the first equation of (8), we also obtain
lAuc]l 220,522 ) < 7- (42)
4.5 Second Energy Estimate for 7,
Multiplying the second equation of (8) by —AT. and integrating over 2, we have
2 ZIVTLIZ + IAT I, = —<(p— 1) / (T /P=2|V T, [2dz — / AT, - VT.do - / f2AT, dz.
(43)
< [ AT IV lde + 12l 2 IAT. e
Here, using again || 7. [|2s < [|T:||z2||7¢]|Ls, we get
[ WAV LIIAT. ds < e s VT2 AT 2
< Kl Vatellea | VT 57 AT 722 (44)

1
Z”AT 132 + £ Vuelf2 | VT3

where k is the constant which depends on Sobolev’s embedding constant. Therefore, using previous

estimates, we obtain

1d 1
§‘d‘||VT ||L2(n)+ ”AT 1320y < ’Y”VTe“%Z(m+§||f2”%2(9)- (45)

27
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Then, by Gronwall’s inequality, we obtain
IVT:llco,s:c2@)) 1ATel L2q) < 7- (46)

Next multiplying the second equation of (8) by 8;T. and integrating over 2, we get

10T sy + 5 IV Ty + = My = [ 8Tt VTt + [ poTae. (4

24dt
The above argument with AT, replaced by 8,7, gives

1
AIOTe @y + 5 VTl aey + S Tel ey <MVTLl gy + 5l (49

whence follows
19¢Tell2@), U lTeloqe) < 7 (49)

4.6 Second Energy Estimate for C,

We multiply the third equation of (8) by —AC. or 9;C. and integrating over €. Since we already

obtain the a priori bounds for 7, by the same arguments as above, we get

1
2 p ||VC Iz + 3 ||ACs||§.2 <Vl IVCT: + PIAT L + Sl fsllZe, (50)
1
IIBtC 2+ 5 T ||VC'e||L2 + ||Cs|| SNV IVCe s + PIATENE: + Sl f2llZ2 (51)
Hence we obtain
IVCellc(o,s;12(0)), 1ACell L2(q), ||5tCe||L2(Q),Ogltlgsfllcell';,p(n) <7 (52)

5 Convergence

In this section, making use of a priori estimates given in the previous section, we shall discuss the
convergence of solutions of the approximation equations.

We first recall
sup @e(Ue(t)) < (53)
0<t<S

Therefore by virtue of Rellich’s compactness theorem, the sequence of the solution {Ue(t)}e>0 is pre-
compact in H for all t € [0, S]. Moreover, noting

100~ Vo)l = | | 0,Ue(marl < J 18U lldr
s s (54)

t t
<( j 10, U (r) ) /2( / 12dr)/? < At - s]/2,
8 8

we see that {U.(t)}e>o forms an equi-continuous subset in Cr ({0, S]; H). Hence, applying Ascoli’s theo-

rem, there exists a sequence U,, = U, with ¢, — 0 as n — oo such that

U, — U strongly in C([0,S]; H) as n — oco. (55)



Furthermore, we have

au, d .
70;— - Ti[_t{ = (Byu, BT, 8;C)t weakly in L%(0,S; H) as n — oo,

VU, — VU = (Vu, VT, VC)! weakly in L>(0,S; H) as n — oo, ' (56)
dp(Uy,) — 8p(U) = (Au, —AT, —AC)* weakly in L2(0,S; H) as n — co.

Since the fact that U; and 8p(U) belong to L?(0, S; H) implies the absolute continuity of VU, we easily

find
VU = (Vu, VT, VC)* € C,([0, S]; H). (57)

Now it remains to show that the limit function (u,T,C) gives a solution of (2). Since the terms in the
second and third equations of (8) except the dissipation terms are all bounded in L?(Q), we find that

the dissipation terms are also bounded in L%(Q). Therefore, there exists a sequence {Ty,, }xen such that
Eng|Tni [P~ 2T, — Ix  weakly in L2(0,S; L*(Q)) as k — 0. (58)

On the other hand, by (49), we get
lelTe P2 Te[?, = ¥ | Tellf = e~ (el TIE0) < &, (59)

which implies that y = 0. Similarly we find that e, |Th, |P~2T,, — 0 weakly in L2(Q). Thus we obtain

B, (Ue,) = Bcp(U) weakly in L2(0,S; H).

From the strong convergences of U.,,, cut-off functions [T, ], and [C.,]., weakly converge to original
function T',C in L?(0, S; L%(2)). Hence, we get

B, (U.,) — B(U) weakly in L?(0,S; H).
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