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Weak variational formulation
for the constrained Navier-Stokes equations
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School of Education (Mathematics), Bukkyo University

Abstract

In this paper, the well-posedness of the variational inequality of Navier-Stokes
type is considered in 3-dimensional space. The absolute value of the velocity field
is constrained by a given smooth function depends on time. The abstract theory
of nonlinear evolution equations governed by subdifferentials of a time-dependent
convex functional is useful in constructing approximate solutions. In the proof of
the main theorem, the crucial point is to specify the closure of the class of convex
functionals, which satisfy a weak time-dependence condition.

1 Introduction

In this paper we consider Navier-Stokes equations with a time-dependent velocity
constraint of the form

3

Z(Uj)z <, v:=(v1,v2,v3),

j=1

where 1 is a time-dependent given constraint function, which is continuous and strictly
positive. In particular, the initial boundary value problem for the constrained partial
differential equation is considered. This kind of problem can be treated from various
mathematical perspectives, not only for the heat equation, but also systems between
the fluid dynamics. It is well known that the constraint is the surplus condition so the
problem is interpreted as a variational inequality under the suitable constraint set, and
the abstract theory of evolution equations governed by the subdifferential is useful for
showing the well-posedness. Our objective is to specify a wider class of weak solutions
treated by Lions [25] and Brézis, [9], it is called weak variational formulation. Under
an intricate assumption, we treated the same problem in [14], finding that the solution
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satisfies the strong variational formulation. We specify the class of convex functionals
that satisfy a weak time-dependence condition, in order to discuss the well-posedness of
our problem.

The motivation of this work is as follows. Our problem comes from an initial boundary
value problem for a thermohydraulics model that is related to the solid-liquid phase
transition. The solid-liquid phase transition is one of the most interesting phenomena
in the material science. From the view point of partial differential equations, it is a sort
of free boundary problems. When we take account of the influence of fluid flow in the
material €, it is natural that the fluid dynamics are considered only in the liquid region.
However, the liquid region is unknown and is determined as a part of solution. In the
enthalpy formulation of the Stefan problem, an idea was proposed by Rodrigues [33] and
Rodrigues and Urbano [35, 36| for using the penalty method. They considered a coupled
system consisting of a heat equation and a variational formulation of the Navier-Stokes
equations in €2, having test functions whose compact supports are included in the unknown
liquid region €2,. To establish the variational formulation on §2,, we need at least continuity
of the temperature field in (). However, in the case of 3-dimensional space, it is difficult to
observe this property, because the corresponding heat equation includes a convective term
due to fluid flow, and the velocity field is not enough smooth (see Remark 1 and 2 in {33]).
We recall now the terminology for our constrained problem. If we suppose that the critical
temperature for the phase transition is 0 and the constraint function v vanishes when the
temperature is negative, then we can realize that the velocity v is 0 in the negative
temperature region, namely in the solid region. However, in this case 1 is not strictly
positive and the convex constraint set K (t) depends on the unknown function. This kind of
problem is called a quasi-variational inequality and arises in various mathematical models
of nonlinear phenomena. Many papers, for example Baiocchi and Capelo [3] and Mignot
and Puel [26], treat the classical concept, and others [1, 2, 11, 23, 27, 34] deal with various
concrete problems such as the system of nonlinear parabolic partial differential equations
with an unknown dependent constraint. We shall discuss the details and an application
to the variational inequality for the Navier-Stokes type with a temperature-dependent
constraint in our forthcoming paper [15).

In Section 2, we present the main theorem and known results. In Section 3, we prove
the main theorem using an auxiliary proposition and some lemmas. The outline of the
proof is as follows: First, approximating the constraint function, namely approximating
the convex functional by a smooth one, we construct approximate solutions by applying
the abstract theory of time-dependent subdifferentials, and then obtain uniform estimates.
Second, from these uniform estimates we observe the strong convergence to a candidate for
the solution, which satisfies the definition of our solution. The uniqueness is guaranteed
by the constraint imposed on the velocity fields. In the last section, we prove the auxiliary
proposition and lemmas which are used in Section 3. To prove the auxiliary proposition
for the variational inequality for the Navier-Stokes type, we use a similar idea to that of
Kano, Kenmochi and Murase [16] (see also [14]).
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2 Definition and main theorem

In this section, we state the main theorem concerning the well-posedness. First we
note some definitions and recall the basic concepts under consideration.

2.1 Definitions and notation

Let 0 < T < 400, 2 C R3 be a bounded domain with a smooth boundary, Q :=
(0,T) x Q. Let H := L*(2), denoting by |-| & the usual norm on H, and let V := W, 2(f2)
and V* be the dual space W=12()) of V. H is a Hilbert space with the usual inner product
(-,-)g. Then V < H < V* holds with continuous and compact imbeddings. In terms of
vector-valued function spaces, D,(2) = {u € CP(N) := (CL(N))3;dive = 0 in N},
H:=L20),V =Wy (Q) w1th the usual norms, where L2(Q2) and WOU(Q) are the
closures of D, (f2) in the spaces L*(€)) and W5?(€2), respectively. H is a Hilbert space
with inner product (-,)z, which is induced from L?*(2), and V < H <> V* holds. We
work in the standard framework for the Navier-Stokes equations (see, [32]). Accordingly,
we define the bilinear functional a(-,-) : V' x V — R and the trilinear functional (-, -, ") :
VXV xV 5 Rby

()wJ

a(u, w) := ”Z 31;:( (:E)dx
b(u,v,w) := Z/ u;(x .L)’LUJ(.L)d.L for all w,v,w eV,
3,5=1
noting that b(u,v,w) = —b(u w,v) and b(u,w,w) = 0 for all u,v,w € V. Moreover,
we define ||u| := a(u,u)? for all uw € V, which is the equivalent norm of |uly.

2.2 Main theorem and basic concept

The unknown function v := v(¢,z) = (vi(t, z), v2(¢, z), v3(t, z)) is the velocity field.
We now define the convex constraint set K(t), which depends on time ¢ € [0, 7] and plays
an important role in this paper:

3
Z(zj(a;))2 <Y(t,z) foraa. z € for all ¢ € [0, T,

j=1

K(t):=Q z€ V;|z(z)] ==

where ¢ : @ — R is a given time-dependent constraint function satisfying:

(A1) ¢ € C(Q), and there exist positive constants ¢y, ¢, > 0 such that 0 < ¢p < 1 < ¢,

in Q.

Using this, we define variational formulations for the constrained Navier-Stokes in-
equality:
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Definition 2.1. The vector functionv € W12(0, T; H)NL>®(0,T; V) is called a solution
of the strong variational formulation if it satisfies

v(t) € K(t) for a.a.t€(0,T), (1)

(v'(®),v(t) — 2)m + a(v(?), v(t) = 2) + b(v(?), v(t), v(t) - 2)
< (g(t),v(t) — 2)g for all z € K(t) and for a.a.t € (0,T), (2)

v(0) =v, in H. (3)

Definition 2.2. The vector function v € L%(0,T; V)N L>(0,T; H) is called a solution
of the weak variational formulation if it satisfies

v(t) € K(t) for a.a. t€(0,T), (4)

T

/0 (7 (), 0(r) — () erd + / a(w(7),v(r) — n(r))dr
+ / b(w(r), v(r), v(r) — n(r))dr
0

1 T
< oo =@+ [ @0),o(r) = n)udr foralinek, )
0
where

K:= {n € L*(0,T;V);n' € L*(0,T; H),m(t) € K(t) for a.a.t € [O,T]}

Remark. In the definition of the weak variational formulation we do not specify that
the solution v satisfies the initial condition v(0) = v,. If additionally v € C([0,T]; H),
then we expect that v(0) = wo. Actually, in the case of time-independent constraint,
Theorem 2 of [9] shows this additional property in 2-dimensional case. See also Theorem
6.2, Chapter 3 of [25]. We also obtain

1 T
ST = nDBy + [ (7). 0(0) = m()dr
0
T T
+ /0 a(v(7),v(1) — n(7))dr +/0 b(v(r),v(r),v(1) — n(7))dr

1 T
< 5l =1 + [ (o(n).o(r) = n(r)mdr forall mek, (©

in place of (5). The original definition of X in [25, 9] is slightly different from ours, namely
require 7' € L2(0,T; V™), but it is essentially the same.

The main theorem is concerned with the well-posedness of the variational inequality
of the Navier-Stokes type with a time-dependent constraint:



Theorem 2.1. Assume g € L*(0,T; H), vy € K(0) and (A1). Then there ezists at
least one function v € C([0,T]; H) N L*(0,T; V) N L*(Q) such that v is a solution of
the weak variational formulation. Additionally, v satisfies v(t) € K(t) for allt € [0,T],
v(0) = vo in H and (6).

Let g, € L?(0,T; H) and vg,v € K(0), and let the functions v, ¥ be solutions
obtained in Theorem 2.1 corresponding to the data {g,vo}, {@, Do}, respectively. Then
we have the following continuous dependence of v and ¥ on the data.

Theorem 2.2. The solutions v, ¥ satisfy the following estimate:
T
[v(t)=B(t)[3 < (l’Uo ~ Dol + /0 lg(7) - Q(T)l%;dT) exp((3c,+1)T) for allt € [0, T].

Remark. Theorem 2.2 with g = g and vy = ¥¢ implies the uniqueness of the solution.
This is an advantage of the constraint imposed on the velocity field. In spite of the
3-dimensional domain and the weak variational formulation, the continuous dependence
namely the uniqueness can be obtained. This is a point of emphasis in this paper.

2.3 Known results

We first discuss the Cauchy problem of the evolution equation for the variational in-
equality of the Navier-Stokes type. In the case of a time-independent constraint function,
the problem is treated in Prouse [31] for a constraint on the ball, which is the same as
P(t,z) := ¢, for all (¢,7) € Q in our setting. It was an extension of the 2-dimensional
abstract results by Lions [25] and Biroli [6]. For the other kinds of constraints, Biroli
[7] treated a problem with time-dependent gradient constraint, Barbu and Sritharan [5]
treated a bilateral problem as an example of the abstract evolution equations in dual
spaces, where constraints were not functions. See also [13] for a time-dependent unilat-
eral problem of the Stokes equations, which can be formulated as a variational inequality.
Also there are some related applications of the abstract theory of evolution equations
governed by subdifferentials, see [4, 10]. For a proper, lower semi-continuous, convex
functional ¢ : H — R U {400}, the subdifferential of ¢ is a possibly multi-valued opera-
tor in H, and is defined by u* € 9¢(u) if and only if u € D(¢) = {z € H; ¢(z) < +o0},
u* € H and

(w2 —u)g < ¢(z) —¢(u) forall ze€ H. (7)

Formally, taking the indicator function on a suitable convex constraint K as ¢, we see that
the variational inequality is compatible with the constrained problem, and the abstract
existence results for evolution equations governed by the subdifferential are useful. We
refer the readers to Brézis [10], Naumann [29] and Otani [30] for the abstract approach
from the theory of evolution equations to the Navier-Stokes equations.

The related abstract theory of evolution equations governed by time-dependent subd-
ifferentials, Brézis [10], Yamada [39], Kubo and Yamazaki [22] (see also [17, 18]). For the
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direction of Moreau’s sweeping processes, see Rossi and Stefanelli [37], Stefanelli [38] and
the references therein. The further developments recently made by Kano, Kenmochi and
Murase [16], are useful in this paper. Based on the time-dependent theory developed in
[18, 39], Otani [30] obtained an abstract result regarding existence and regularity for the
following evolution equation:

v'(t) + 9t (v(t)) + B(t,v(t)) 2 g(t) in H,

where ¢! : H — R is a time-dependent, proper, lower semi-continuous, convex functional,
and B(t,-) is a non-monotone nonlinear term. Recently, a different approach was given in
Barbu and Sritharan [5] and Lefter [24]. In [14], under an intricate assumption, the same
problem for the Navier-Stokes equations with a time-dependent constraint was treated in
the following abstract form essentially due to [16]:

v'(t) + Ot (v;v(t)) > g(t) in H.

See also Stefanelli [38], Kenmochi and Stefanelli [20] for related advanced topics. The
first component v of ¢*(v;v(t)) is a parameter which determines the convex functional
¢'(v;-), and we are required to seek for a parameter v that coincides with the solution
v(t). This is called a quasi-variational evolution inequality.

3 Proof of the main theorem

In this section, we prove the main theorem using an auxiliary proposition and some
lemmas, the proofs of which are given in the final section.
First, we define the following convex set K and the functional ¢y : H — RU {400}

as follows:
K := {z eV;|z(z)| < ¢y foraa.ze (2},

1 1 .
wo(2) := 5"2”2_%”z”+'2‘02 if zeK,
+00 if ze H\K,

where ¢, := 3cfp|&'2|% and [§2] is the volume of . Moreover, for a fixed constant § > 0,
we introduce a vector-valued function space:

V(=8o,t) := {'u, € W2(=do, b; H) N L®(—d0, £, V);u(s) € K forall s € [—50,4}.

3.1 Convex functionals and auxiliary problems

Under a suitable regularization of 1, we have already seen in [14] that the strong
variational formulation (1)—(3) can be solved by the usual fixed point argument. We shall
apply this result, taking an approximate sequence {1, }nen C W12(0,T; C(Q)) satistying

0<c<¥Y.<c¢y, Yn—v inC(Q) asn— 400, (8)
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and an approximate sequence {vg , }nen satisfying
Von € K,(0) forallneN, vy, >vy inV asn— +oo,
where
Ky(t) = {z € V;|z(z)| < n(t,z) foraa. ze SZ} for all t € [0, 7).

In fact, for sufficiently large n € N we have [1,(0) — 4(0)|¢) < co, since v € K(0) and
¥(0,2)/co > 1, we can take

1
0n = (1= 2100 = Ol ) w0
0

which satisfies

Ivo,n(x)l

1
(1- 2.0 - 50)le ) o)

(1= 2150 - 40 ) ¥(0.0)

0,z
#(0,2) = L2, 0) - 9(O)loqe

< 1/)(07 "[") - 'L/)n(ov T") + 1/}TL(OJ -’L) - |"/)n(0) - 1/)(0)|C(ﬁ)
< Y,(0,2) foraa. xz €

INA

Now, divwvg, = 0 implies that vy, € K,(0). For each n € N and ¢ € [0, T], we define the
functional ¢!, : V(—dp,t) x H — R U {+o0} by:

1 1, .
ot (u; 2) = §||z||2 + b(u(t), u(t), z) + §c(2p if z € K, (t), for all u € V(—0o, 1),
+o00 if z. € H\ K,(t),
We remark that 0 € K,(t) and @[ (u;0) = ¢2/2 = 9¢|Q/2 > 0 for all n € N and
t € [0, T]. Moreover the following lemma holds.

Lemma 3.1. Foreachn € N, t € [0,T] and u € V(—6,1), the functionals ¢! (u;-) and
po are proper, lower semi-continuous and convex on H. Moreover, we have
oh(u;2) > @o(z) >0 for all z € K,(t) C K, 9)

and the subdifferential 0¢%,(u;-) is characterized by: z* € 8¢t (u;2) if and only if z €
K,(t), z* € H and

(22 - 2)u < a(z,2 — 2) + b(u(t),u(t),z — z) for all z € K,(t). (10)

For each n € N, the uniform continuity of 4, means that there exists 73" € (0,7
such that

|¥n(t) = Yu(s)lea < co for all s,t € [0,T] with |s —t| < T,

From this we verify the following time-dependence condition of the convex functionals:
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Lemma 3.2. [[18], Proposition 3.2.2] For eachn € N, Let u be any function in V(—=&,T).
Then, for each s,t € [0,T] with |s —t| < TS and z € Ko(s), there exists % € K, (t) such
that

1
12 = 2lm < _[9a(t) = Yuls)leql=lm (11)

(13 2) — (3 2) < e [9n(t) ~ Pals)leqm + [0(t) — w(o)lm 1+ i(wi2), (1)

where ¢; > 0 s a positive constant independent of u € V(—08y,T) and n € N.

Using these settings, we now consider the following strong variational formulation:

v.(t) € K,(t) forallte (0,T), (13)

(0 (1),vn(t) — 2) i + a(Va(2),V.(t) — 2) + b(vn(t), va(t), va(t) — 2)
< (g(t),vn(t) — z)m for all z € K,(t) and for a.a. t € (0,T), (14)
v,(0) = vp,, in H. (15)

Lemmas 3.1 and 3.2, along with the regularity of v, € W'2(0,T;C(f1)), allows us to
prove the solvability of (13)—(15). Actually, we have:

Proposition 3.1. [[14], Theorem 2.1, 2.2] For each n € N, there erists a unique v,, €
W12(0,T; H) N L>(0,T; V) N L>(Q) such that

v, (t) + 04 (Vn; va(t)) 2 g(t) in H for a.a. t € (0,T), (16)
v,(t) = von(t) == vo, n H for all t € [—dp,0]. (17)
Moreover, there exist positive constants My, M, independent of n € N such that
lva(t)7r < M, (18)
t
/ lona(r)|2dr < My for all t € [0,T). (19)
0

Lemma 3.1 implies that the Cauchy problem, expressed by (16) and (17), is equivalent
to the strong variational formulation (13)—(15). The first component v,, of ¢}, (v,; 2) is
a parameter that determines the convex functional ¢%(v,;-). In (16), we are required to
seek for the parameter v, that coincides with the solution v,(t). In this respect, we call
(16) a quasi-variational evolution inequality.

3.2 Convergence and key lemma

From the uniform estimates (18) and (19), we see that there exists a subsequence
{Vn, }ren of {Vn}nen and v € L°(0,T; H) N L*(0,T; V') such that
v, — v weakly-* in L=°(0,T; H),
v, — v weakly in L?(0,T;V) as k — +oo0.

We should note that v,, satisfies strong variational formulations of the form (13)-(15)
for all k € N, respectively, where (14) holds for each test function z € K,,(t) (the test
functions are dependent on k € N). Now we have:



Lemma 3.3. For each r € (0,1) there exists N, € N such that

TUn, (t) € Kn,(t), 71U,,(t) € K, (t) for all k,¢ > N, and t € [0,T).

Proof. The uniform convergence in (8) means that for each r € (0,1) there exists
N, € N such that

[Yne = Yneley < (1 =) for all k,£ > N,.

"Therefore, using (13) and 9, (¢,z)/co > 1, we see that

Ir'vmc (t1 1)'

1
(1 - Z;hbnk - ’ll’nglc@‘)) 'l,bnk (t, 1")

<
S '(/Jnk (t, I) - wne (tv -E) + wng(ta 1:) - 'wnk - ¢n¢|c@)
< ,(t,z) foraa .z e forall k> N,.

Now, divv,, (t) = 0 implies that rv,, (t) € K,,(t) for all k,£ > N,, t € [0,T]. The same
approach works for rv,,(t) € K, (¢). O

3.3 Proof of main theorem

The essential idea is due to [19].

Proof of Theorem 2.1. Let {v,, }ren C W'2(0,T; H) N L®(0,T; V) N L*=(Q) be the
subsequence of approximate solutions which was constructed in Proposition 3.1. Now
consider the strong variational formulations of v,, and v, of the form (13)-(15) at ¢ = 7.
Denote them by (13), (13)e, (14)k, - - -, respectively. Let r € (0,1). First, we show the
convergence of the subsequence {v,, }ren in C([0,T]; H). In fact, letting k,¢ > N, and
using Lemma 3.3, we can choose rv,,(7) as the test function z € K,, (1) of (14), at t = 7
and rv,,, (7) as the test function of (14),. Then we have

(07, (7): V0 (T) = Vo (7)) + (1 = 7)(¥],, (7), 00, (7)) 10
+ a(vnk (T)’ Vny (T) - vne(T)) + (1 - T)a'(v"k (T)? vnz(T)) - Tb(”nk (T), Un, (T)r Uny, (T))
< (9(7), 0 (T) = Vo, (7)) + (1 = 7)(g(7), V0, (7)) &1,

(1, (7), V0, (7) — Vo (1)) 11 + (L = 7) (0, (7), 00, (7)) 10
+ a0, (7), Uny (7) = 0 (7)) + (1 =~ 1)@V, (7), V0, (7)) = 1D(V1, (7), U, (T), 0, (7))
< (g(T)’ vne(T) — Uy (T))H + (1 - T)(g(7)> vﬂe(T))H’



66

fora.a. 7 € [0,T) and k,£ > N,. Adding these and using b(¥n, (7) =¥n,(7), Vn,(T), V5, (7)) =
0, we have

1d 9 2
e () = (g + e (7) = 0 ()
< (1= 1)L 0 (1), D (7))t = 2(1 = 1)V (7), D7)

dr
+ (0, () = V(1) 0, (T) = V0, (7), V0, (7)) + (1 = 7)(g(7), V5 (T) + V0, (7)) 1

(1= 1) (00 (), ()1 + 20 = 7)o (D] [0 (D] + 5104 (7) = O (DI

IA

+ 5 0au(7) = n () + (1 = P)lg() vy (7) + v (Dl (20)

for a.a. 7 € (0,T) and for all k,¢ > N,. The uniform estimates (18), (19) and Gronwall’s
inequality imply that

Iv"k (t) - v"e (t)I%I
< {Ivo,n,c — Vo |l +2(1 — 1) (l”o,nk!Hl"’o,nelH + |v"k(t)|H|vﬂt(t)|H)

+4(1-7) / 0 (D] 1077

.
421 =1) [ la(la(fon ()l + |vm<7)|H)dT} exp(3c21)
0
S {l'vﬂ,nk - vO,n[liI + 4(1 - T)(Ml + M2) + 4(1 - T)IgiLz(D,T;H)MIET% } exp(3c12pT),
for all t € [0,T] and all k,£ > N,. Thus

lim sup | vy, (2) — vn, ()|%
k,£—+00

< 4(]. - ’I‘) {M] + M2 + Igle(g'T;H)MI%T%} exp(3c,2pT) for all t € [O,T]

Letting r — 1, we see that limg ¢ ;o0 |Vn, (t) — Vn,(t)|g = O for all t € [0,T], namely
{vn, ren C W2(0,T; H) is a Cauchy sequence in C([0,T]; H). Thus v € C([0,T}]; H),
and

v,, —»v inC(0,T);H) ask— +oo, (21)

and hence v(0) = v, in H. Moreover, for each t € [0,T], we can choose a subsequence
{vn, (t) }ken satisfying

v, (t,z) > v(t,z) foraa. z€ ask— +oo.
Then, using vy, (t) € K, (t), we obtain

I’U(t, “C)l < |'v(t,1') = Uy (t’ .CL')' + 2/),,,‘(15, ‘5)
< |o(t,z) — v, (& )| + Y (8, 2) — (L, )| +¥(t,z) for aa. z €,



so letting k — +o0, we see that v(t) € K(¢) for all t € [0,7]. On the other hand,
integrating (20) with respect to 7 over [0, T], and taking lim SUD} ¢ s 1 05

T 1
lim sup / [0 (7) = wa (D)IPdr < 41 =) { M3 + Mo + |gliaoren METH
£—+o00 JO

Letting r — 1, we see that
v, —v in L*0,T;V) ask — 4. (22)

Finally, we show that v satisfies a weak variational formulation of the form (6). Let
n € K. For each r € (0, 1), there exists N* € N such that

[Yn, — ¢|C@) <c(l—7r) forall k> N}
Then, using the same approach as in the proof of Lemma 3.3, we see that rn(t) € K, (t)
forallm € K, k > N} and ¢ € [0,T]. From Proposition 3.1, we see that Uy, satisfies
the strong variational formulation (13),—(15);. Now, choose r1(7) as the test function
z € K, (7) of (14); at t = T, to give

(V7 (7), O (7) = (1))t + (1 = 7)(¥),, (7), (7)) Ex
+ a’('vnk (T)’ Uy, (T) - "7(7-)) + (1 - r)a(vnk (T), T](T)) - Tb(vvck(7)7 Uny, (T)’ 77(7-))
< (9(7), vu, (1) = (7)) e + (1 = 7)(g(7),n(7))n,

for a.a. 7 € (0,T) and for all £ > N;. Integrating this with respect to 7 over [0, T], and
using the fact that

| @u0),00u(0) = () e
0 ’ .
- / (¥, () = 1 (7), o () — () srdr + /0 (1(7), One (7) — () sadlr

= 2T~ D)~ 2fvom O+ [ (o = n(r)ud
= 3n D) = D) = 500 = 1O+ [ (), 000 (1) = (),

we obtain
310D =Dl + [ (1), 00,(7) = m() e
+ / (O (7), 0 (7) — () — T / B(Uny (1), 0 (), 1(7)) dr
< 3100m = 1O ~ (1= 1) (0 (1), 2Dt ~ (010,1(0))21)
T T
+(1- 7")/0 (Vn (1), ' (7)) dr — (1 - 'r)/o a(vn, (1), m(7))dr

+ / (9(7), Vny (7) = (P mrdr + (1 = 7) / (g(r), n(r))dr for all k> N
0 0
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Letting k — +o00, we have from (21) and (22) that

/0 b(Uny (7), Oy (7), (7)) T — / b(w(r), v(r), n(r))dr

T
< +/o b(v(7), vn, (1) — v(7),n(T))dT

T
/0 b('vnk (T) - v(T)a 77(7-)7 Un, (T))dT

< Vi /0 |9, () — v(7) | n(7)lldr + V3ey /0 0n, (7) — oDl In(7)|adr

1
< V3eylvn, — vlcomanlerviT? + V3ey|va, — vlzorv)nlerH)

— 0 ask— +oo.
Therefore,
1 9 T
HEGRE R MCIORTORL M

T

T
+/0 a(v(r),v(r) — n(7))dr + T/o b(v(r),v(7),v(r) — n(7))dT

< 3loo —nO) — (1 = (@), 7Tz - (w0,1(0)) )

va-n | (o), ) — (1 -7) [ " afo(r), n(r)dr
T T
4 / (g(r), v(r) — () srdr + (1 1) / (g(r), (™)) ardr.

Letting r — 1, we see that v satisfies (6). This accomplishes the proof. a

Proof of Theorem 2.2. Let g,§ € L?(0,T; H) and vy, ¥y € K(0), and denote by v
the solution constructed in the proof of Theorem 2.1 corresponding to the data {g,vo},
and by ¥ any solution corresponding to the data {g,¥o}. That is, ¥ is not necessarily
the limit of approximate solutions for (16) and (17). Now we see that € C([0,T]; H) N
L>(0,T; V) N L™®(Q) satisfies ¥(t) € K(t) for all ¢ € [0, T, #(0) = ¥o in H, and

1 T
S1T) = Dy + [ (), 5(7) = ()
T 0 T
+ /0 a(v(7),v(r) — n(7))dr +/0 b(v(7),v(7),0(7) — n(7))dT

< 3100 -n@Fy+ [ @()5(r) ~n(r)mdr foralne K. (23)

Now, v is constructed from approximate solutions, so there exists a sequence {vy, }ren C
W12(0, T; H)NL>®(0, T; V)NL®(Q) such that vy, satisfies (13)x—(15)x. That is, v, (t) €
K, (t) for all t € [0,T)] as in (13)y,

("’:;k (t), v, (t) — 2)Er + a(vy, (1), V0 (t) — 2) + b(Vn, (2), Vs (t), 0, (t) — 2)
< (g(t), v, (t) — z)m for all z € K, (t) and for a.a. t € (0,T),
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as in (14)i, and v, (0) = vo ., in H asin (15)y, for all k € N, with the strong convergences
(21) and (22). Now using the same way as in the proofs of Lemma 3.3 and Theorem 2.1,
for each r € (0,1) we see that ro(t) € K, (t) and rv,, (t) € K(t) for all k > N and
t € [0,T). Now choose rv,, € Wh2(0,T; H) N L?(0,T; V) as the test function 17 € K of
the weak variational formulation (23), and r9(7) as the test function z € K, (7) of the
strong formulation (14) at t = T, respectively. Then we have

5190 = ron Oy +7 [ (0 (0), o)

— T'2A ('U:Lk (T)a 'Umc(T))HdT + /Ot a(f)('r% f’(T) — Un, (T))dT

=) [ a@) o+ 7 [ 450,700

0
1 _ t . . t _
< 3lo0—ron O+ [ @0)5() — on(Ddr + (1= 1) [ @) v
0
for all kK > N}, and integrating (14), with respect to 7 over [0, 7], we have
¢ ¢
| @D vm@ardr =7 [ @), 80
0 0

t

+ (20 (1), 0o (7) — () + (1= 1) [ otwun(r),2(m)dr

0
—y /0 (0, (1), B, (1), B(r))dr
< /0 t(g(T),vn,c(r) —B(r))gdr+ (1 —7) /0 t(g(T),’fJ(T))HdT for all k£ > N?.
Adding these inequalities, we get
3150 = ron O + [ 157) —vun ()P

1 . r?—1 t o
< 5180 = rvomfir + 5= (10 Ol = oo i) + 26 = 1) [ 15O w7 lar

1/t 3 L.
+5 [ 16) = o (DPdr + 557 [ 19() = v ()
0 0
1 ¢ ~ 2 1 't ~ 2 1 t ~ 2
+35 [ 180 = g(ldr+ 5 [ 19(r) = v (r)igdr + 5(1=7) [ |a(r)dr
0 0 0
1 1 L 2
+ 5(1 — )Myt + —2—(1 - r)/ |g(7')|§{dr + %(1 - r)/ I'IJ(T)IiIdT for all k > N;.
0 0
Letting £k — +o00 and r — 1, we have

(1) —v()|x

t t
< [0 — vol?y + / §(r) — g(r)adr + (3 + 1) / [5(r) — v(7)edr,
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for all t € [0,T]. Hence, by Gronwall’s inequality,

|o(t) —v(t)|% < (l’bo — vol% +‘/0 |g(T) — g(T)ﬁ,dT) exp((3c,2,,+1)T) for allt € [0, 7).

If we take g = g and vy = ¥y, then we see that the solution obtained using Theorem
2.1 is unique. Thus the continuous dependence for the solutions holds regardless of their
construction. O

4 Proofs of auxiliary proposition and lemmas

In this section we give proofs of the proposition and lemmas which were used in the
previous section.

4.1 Proofs of auxiliary lemmas

Proof of Lemma 3.1. First, for each n € N, ¢ € [0,T] and u € V(—&,T), it is easy
to see that the functionals ¢f (u;-) and ¢o are proper and convex on H. Second, we
show that ¢! (u;-) is lower semi-continuous on H. Let z,, — z in H as m — +oo. If
liminf,, 100 @%(U; 2,n) = +00, then it is evident that liminf,, . @ (¥; 2m) > ¢k (u; 2).
So we only consider the case when « := liminf,, , o ¢4 (u; 2,) < +00. We can choose a
subsequence {zm, }ren Of {Zm }men satisfying limg_, o0 L (U; 2m,) = @ and 2, € K,(t)
for all K € N. Then {2, }ren is bounded in V', so we may assume that {2m, }ren such
that z,,, — z weakly in V as k — +oo. Hence z € K,(t), because K,(t) is closed and
convex in V', namely K, (t) is weakly closed in V. Since u(t) € K, we see that

liminf ¢!, (u;2,,) = «

m——+00

- k-l—i)I—Poo #u(t; Zm,)
s £

> ¢ (u;z).

We also find that the functional ¢g is lower semi-continuous on H. Third, inequality (10)
is obtained from definition (7) of the subdifferential. In fact, for each n € N, t € [0,T]
and u € V(—0do,t), definition (7) means that 2* € d¢f,(u; 2) if and only if 2 € Ky(t),
z* € H and

1
(22— 2)m < I3 = 5 l2I” — blu(t), u(®), 2~ 2) for all 2 € Kn(t).

Now, for each Z € K,(t) and § € (0, 1), if we choose the vector function z := §2+(1-0)z €
K, (t), divide by ¢ and let § — 0, then we obtain (10). Finally, inequality (9) comes from



the definition of ¢!, (u;-). In fact, u(t) € K for all ¢ € [0, 7], and

oh(uiz) = huW—mmmzmu» %i

1
> ||z||2 dr + = 5 i
2,5=1
3 2\ 3
1 2 2 ' aZz ) 1 ]. 2

> §Hz|| —c,p/n (HZI a(q(.v) ) 92d:1:+§c¢
> —j|z|l2—3c,,, {/ Z ‘)Z’ d.L} |S2|2+lc2

i,7=1
= o(z)
> 0.

Thus inequality (9) holds.

Proof of Lemma 3.2. For each n € N, recall that TO(") € (0,7} and

1 n
— () = Yu(s)lgm <1 forall s,¢ € [0,T] with |s — ¢| < Tg™.
Co

For each z € K,,(s), put

- 1

zZ:=(1- af'!ﬁn(t) - d’n(s)l(;(ﬁ) Z
Using (s, )/co > 1, we have

|2(2)]

AN

(1 - %hﬁn(t) - ?/)n(s)|0(ﬁ)> ¥n(s,2)

S 'l,b"(s, ‘/L) - "p"(t’ ‘,L.) + w"(t’ :E) - I,llb"(t) - w"(s)lo(ﬁ)
< Pn(t,z) for a.a. xz €.

Since divZ = 0, Z € K,(t) and (11) hold. Next, using the inequality
Izl < Izl + b(u(s), u(s), 2) + ¢ ||2|
1 1
5(1+6)" + 5l12lI* + blu(s), u(s), 2)
2

c
1+ 2 4 (s 2)

(1+ 2) (14 ¢ (u; 2)),

<

N

IA
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we obtain
of(u; 2) — ¢} (u; 2)
< (1= L) = 0o ) L2l - Lz
= o n n Cc(9) 2 2

+ (1000) ~ Ul =1 ) U0, 2, (0) + Yl 2, ()

IA

Zn(®) = a()oble(t), 2 u(t) — Hu(t) - u(s), 2,u()
- bu(s), z,u(t) ~ u(s))
< —linlt) = Ul 2l + 2 VEeylu(t) - u(s)lul2]

< afln(®) = da(log + () — uls)l (1 + pi(w; 2)),
where ¢; == (1+ &/2)(c,/c + 2v/3¢y). Thus (12) holds. 0

4.2 Proof of Proposition 3.1.

The essential idea in the proof of Proposition 3.1 comes from Theorems 2.1 and 2.2
in [14]. It is enough to ensure that the time-dependent of ¢! (u;-) depends on n € N
(see Lemma 3.2), but positive constants M; and M, in (18) and (19) are independent of
n € N. To solve the Cauchy problem in (16) and (17), the fixed point theorem is applied.
We first prepare a vector-valued function space in which the solution is constructed. For
each R > 0,

u(t) = v,,(t) for all t € [—dp, 0],
Velvoni = T):= (V0D sy Linu) +5 [ (e} <R [
5€[0,7] 2 Jo

We now fix n € N, and take a positive constant R > 0 so that R > ¢2 (v, n; Vo»(0)). Then
we see that Vr(v,n; —0, T) is non-empty, convex and compact in C([—d,T]; H). Now,
we recall the basic concepts of the resolvent and the Yosida approximation for convex
functionals and their subdifferentials. For any A > 0, t € [0,7] and uw € V(—6,1),
the resolvent J: ,(u;-) := (I + Adyk(u;-))™' : H — H and the Yosida approximation
(04t (u; ) of Oyt (u;-) are as follows:

(0L (w3 D) (2) = +(z — Ji(wi2)) = Ohip(wiz) forallz € H,

where ¢!, ,(u;-) is the Moreau-Yosida regularization of ¢f,(u; -) defined by
1
. — A a2 L
dawiz) = f {55l = vl + ehwin) |
1
= ﬁ|z — Jp 5 (u 2)|% + o (u; Joa(u;2)) forall ze H.

For further fundamental properties of convex functionals, refer to [4, 9.
We need the following auxiliary lemma for the proof of Proposition 3.1:



Lemma 4.1. [[18], Lemma 1.2.1, Lemma 1.5.4 and [21], Remark 1.3] Let u be any vector
function in VR(vo,n; —00,T). Then,

| s(u; 2) | < cp+ |2|la for all ze H, t€[0,T¢"] and A€ (0,1).  (24)
Moreover, s — % \(u; 2) is differentiable for a.a. s € [O,Té")] and its derivative is inte-
grable on [0,TS™), such that
d S 1 / ‘) .S
Z5Pma(wi2) < E(;Il/)n(S)lc(ﬁ)(ﬁkp + |2|m)|0vr A (u; 2) |

+ {1940 o@m + /() L+ 65 5(:.2)), (25)
for all z € H and for a.a. s € [0, T").

Proof. Put w := J.,(u;2). Then w € K,(t) C K and w + At (u;w) > z in H.
Since u € K, from definition (7) of subdifferential we see that

A 1 1
[w|3; + A, (u; w) < —2—ch + EIZI%LI + 'élwﬁz-

Therefore, A < 1 implies estimate (24). Next, for each 2 € H, by Lemmas 3.2 and the
fact that w := J;, ,(u; 2) € K,,(s), there exists Z € K,,(t) such that two estimates similar
to (11) and (12) hold, namely

‘:95;,)\(“; z) — 902,,\(“; z)

1 1 -
< gxle = 2+ ek (wB) — o5l — @l — g @)

1 . - . s .
+ 'ﬁlz - wl%{ + w:z(uv Z) - QO.,L(U; w)
H

< ) = (Vo bl lO (5 Dl + 55 hnE) = (e s
+ e {[9u®) = Ba()le + u(t) - w(s)ln } (1+ 03w @)
< l0u(t) = Yo o + ol a s 2o
+ 3 1nlt) = (o) o + 2
+ e {[8a(t) = n()lom + u(t) — u(s)]ar 1+ g5 5 (3 2)).
Thus (25) holds. O

Proof of Proposition 3.1. The proof of Proposition 3.1 consists of three steps. In
Step 1, the auxiliary problem of the Yosida approximation for the convex functional is

73
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considered, the component u € V(v,,; —00, T) of ¢ (w;-) being fixed. In Step 2, we seek
for the local solution v,, of (16) and (17) using Schauder’s fixed point theorem. For each
n € N, these local solutions satisfy the evolution equation on the time interval [0, Té")].
In Step 3, we consider the prolongation of this solution in time, and construct solutions
v,, on all time interval [0, 7). Moreover, we show the uniqueness of these solutions.

Step 1. For each fixed n € N, let u be any vector function in V(v,,; —&,T). By
Lemmas 3.1, 3.2 and 4.1, the abstract theory (see [9, 17, 18, 39]) shows that for each
A € (0, 1] there exists a unique vector function v,y € W2(—&, Ts"; H) such that

vl A (8) + 00l A (u;Vn (L) = g(t) in H foraa. t€ (O,Té")), (26)
Voa(t) = v,,(t) in H for all t € [-dp,0]. (27)
Multiplying (26) at ¢t = 7 by v, A(7) and using Young’s inequality we have
1d

1 1
53;|”n,,\(T)|§1 + @7 (U v05(7)) < S1g(7)[3 + §|”n.x(7')|iz-
Now, from this inequality and Gronwall’s inequality we deduce that

T
[van(®)% < (I’UQI%{ +&T + / |g(‘r)|§,dr) expT =: M; forall t € [0, ™).
0
Moreover,

t ot 4
[ errwivasar < g+ 5AT+ 5 [ o+ 5 [ ua@ihar
0 0 0
1
2
Next, multiplying (26) at ¢t = 7 by v}, ,(7) yields
r (Dt (BT @501, 2p(0) , = (@), a (i for all 7 € OT). (28)

According to Lemma 1.2.5 of [18], we see that the function ¢ — ¢}, ,(u; vna(¢)) is differ-
entiable for a.a. t € [0, T, its derivative is integrable on [0, T{"], and it satisfies

< MT =M, forallte[0,T).

1
SM;+

t
d
(150 (8)) = 02 (Ui Vma(8)) < / AW van(r))dr foralls,t€ [0, TV)s <t
Using Lemma 4.1, we obtain
d , .
2P a1 0ax(®) = (Var(®), 00 x (i van(0)))
1 nl
< ZWhOlom (e + M) ) (wha(@)] +1g(lir)
+a{ @l + @l } (1+ ¢4 vaa®))
1 1 ) 1) 1 0 1)2
T O + 51908 + (1+3) WO (o + (M)})

+a{ W ®lom + @l } (1 + 0hawivna®),

INA
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for all t € (0, T{™). Therefore, it follows from (28) that

/ 2 d T

[ (7)) + ES%,,\(U; Un (7))
1 1 1 3 .
< (sl + 1900 ) + J1oa(r ) + Ha )+ Sy + )
+a{lnlo@ + W Ola |+ a{ Do + 187l a8 0.1,

for all 7 € (0, T¢). Using Gronwall’s inequality again, we derive
P r (43 U, (1))

3 ‘ 3 * ' /
< (Rlwoan)+ 3 [laar+ 3+ M) [ WEdr
ver [ {0 lom + i ) exp (e [ {1e0loqn + o)l far

1 1,
< (FlwolP +9619 ool + 5+ / () + (& + b1 / 9 By
T
+Cl,/ lw:‘(T)IC(ﬁ)dT‘*’"lRETE) exp (01/ |¢L(7’)|c:(s_z)d7+clR5T§)
0 0
=: Mé"’R) forallt e [O,Té")],
and

JAAG
< 200(w;0,n(0)) + 3 / Jo(r)iadr + 55+ M) / ()2
+2¢; /0 {|¢;(T)|§.@+|u'(r)|H}dT+2c1M3"’R) /O {I%(T)Ic@+Iu’(T)IH}dT
< 2M§™P 4 20, M{P ( /0 T|¢;,(T)|C(ﬁ)dr+R%T%) : M for all t € [0, TyV).

As a consequence of these uniform estimates for A € (0, 1], there exists a subsequence
{vn Jren Of {053} re(0,1), @ vector function v, € W2(0, T, H) and vz, € L2(0, T, H),
such that

Una, — U, weakly- * in L°°(O,T0(") s H), wv,, — v, weaklyin L*(0, TO(");H )

(')cpf;,),\k(u;vn,,\k(-)) — v weakly in L2(0,T0(");H) as k — +o0.

Moreover, by the standard argument in the theory of nonlinear evolution equations (cf.
Lemma 2.4 in [12] or Lemma 1.4.1 in [18]), we have the following strong convergences:

Vna, = Vn  in C([0,T{M); H),
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Al (w; V() = v}, in L0, T, H) as k — +oo.

n,Ak

By the demi-closedness of the subdifferentials we have
V2 (t) € 9p (u;va(t)) in H for a.a. t € [0, T3V).
Thus v,, satisfies
v.(t) + O¢t (u; v,(t)) 3 g(t) in H for a.a. t € (0,T™),
V,(t) = v,,(t) in H for all t € [—d,0].

Moreover,

i t
[ eonnar < [imintol, (v rar
t
< lminf | ¢, (60,4, (7))dT

k—+oo Jq
< M, (29)
oL (u; va(t)) < ME™, (30)

ot t
/ 2 fn s / 2
[ ear < mint [ o), () har
< M™® forallte [0, TV

The estimate (30) means that v,(t) € K,(t) C K for all t € [0, T.™], and thus
loa ()% < E|0)7 =: M; for all ¢ € [0,T¢"). (31)

Step 2. The parameter n € N is still fixed. We remind the reader that the solution
v, of (16) and (17) is the same as a solution of (26) and (27) with v = v,,. We shall
seek for a solution of (26) and (27) with the help of Schauder’s fixed point theorem. Let
Tp > 0 such that
909,('”0,1;;”0,1;(0)) + 70 < R.

Then there exists a positive number T € (0, T."] such that

v (0) + | () g

< P (Von; Von(0) + 10 for all £ € [0, 7] and u € Va(Von; —00, T™), (32)



. where v, is the solution of (26) and (27) obtained by Step 1. In fact, by equation (28)
and using Lemma 4.1, we have

s 07 (0) + [ Wa(Pirdr
t 1 t
< Pa@va0) + [ o+ 7 [ Whaolr
1 1 t
+ (6 + 0608 [ o (arPli + g7l o
+a [V (Dl + 14 (T)e ¢ (14 ¢f, (w5 v02(7)) ) dr,
0

namely
1 t
Cur@ivna(®) + 5 [ Wa(

t 1 "l 2 i
< Ao venO) + [ aOfhdr + 3 (6 + 00)2) [ WD ydr

+2(erom) ([ nw:xr)lz.@dv-}% {[ |g(r>|%,d7}%

vt
+ M / (Dl + Mg Ratk,
0

for all t € [0, TO(")]. Since the right-hand side of the above inequality is independent of
A € (0,1] and u € Vg(v,; —00, T), there exists a small positive number 7; ") e (0, T¢)
such that the condition (32) holds. Now, we define the mapping S : Vp(v,; —d,T) —
C([—d0,T); H) as follows:

va(t) if te (0, T,

’Uo,n(t) if te [“60,0],
Su(t) :=
v (T™) if te(T™,T],

where v, is the solution obtained in Step 1 associated with w € Vg(v,,; —d0,T). Then,
we conclude from (32) that the inclusion S(Vr(vyn; —00,T)) C Vr(Von; —d,T) holds.
Moreover, let {wy}ren C Vr(Von; —0,T) and w € Vg(vyn; —0o, T) such that

wip = w in C([—0,T]; H) ask — +oo.

Then ¢! (wy;-) — ¢L(w;-) on H in the sense of Mosco as k — +oo (see [14, 18, 28]).
Thus the mapping S is continuous in Vg(v,,; —0,T) with respect to the topology of
C([—00,T]; H). Schauder’s fixed point theorem can be now applied to the solution op-
erator S in Vg(Von; —00,T) to find a fixed point Sw,, = v, that is, to find v,, satisfying

(16) on (0, ™) and (17).

7
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Step 3. Next, we consider the prolongation of this solution onto the entire time
interval [0, T]. Let T* be the supremurmn of all finite T > 0 such that the problem has

a solution v,, on [0, Tl(")]. Assume that T* < T. For a certain positive constant Ms,
depending only on |vo|a, ¢y, T and |g|.2(0.1;s), independent of n € N,we have

T
/ Or(Vn; vn(7))dT < M3 for all n € N,
0

namely v,, € L*(0,T*; V). Moreover |v,(t,z)| < ¥(t,z) for a.a. z € 2 for all ¢t € [0,T™)
and n € N. So there exists B, € L2(0,T*; H) such that

(Bu(t), 2) i = b(v,(t),v,(t),2) forallz€ H and for a.a. te[0,T),
and v, is a unique solution of
vl (t) + 0 (v, (t)) 3 g(t) — B,(t) in H for a.a. t € (0,T7),

v,(0) = vy, in H,

where ]
2 .
#(z) = gl I ze ko),
+oo if z€ H\ Kyt),

On account of the general theory ([17, 18]), the above problem has a unique solution in
W2(0, T*; H)NL>*(0,T*; V'), which implies that v,, € C([0,T*]; H) and oI (v,; v.(T*))
< +00, namely v,(T*) € K,(T*). Hence, by taking T* as the initial time and v,(T™) as
the initial condition, and by repeating the same arguments as above, the solution can be
extended beyond T*. This is a contradiction. Thus there must exist a solution of (16)
and (17) on [0,T] for all n € N. The uniform estimates (18) and (19) come from (29)
and (31), and are independent of n € N. Uniqueness also holds because of the uniform
estimate |v,(t, z)| < ¢y for a.a. x € 2 and for all ¢ € [0,T7. a
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