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IDR VERSUS OTHER KRYLOV SUBSPACE SOLVERS*

JENS-PETER M. ZEMKE \dagger

Abstract. We compare members of the IDR family for the solution of linear systems and eigen-
value problems with traditional Krylov subspace solvers. This comparison is based on a description
of IDR as a means to construct generalized Hessenberg decompositions, whereas traditional Krylov
methods construct Hessenberg decompositions.
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1. Introduction. Krylov subspace methods are named after the Russian naval
engineer $AneKce\dot{M}$ HWIく$OJIaeBM^{\iota}II\{P^{bIJIOB}$ (Aleksei Nikolaevich Krylov), who in 1931
wrote a paper on a method to compute the coefficients of the characteristic polynomial
of a matrix. cf. [7]. In 1940 the first modern Krylov subspace method was developed
[5]. The best known Krylov subspace methods are based on Lanczos $s[8,9]$ and
Arnoldi $s[1]$ method. The first IDR method is [28]; the IDR$(s)$ methods [21. 27] are
relatively new. The generalization to use larger shadow spaces of dimension $s\in \mathbb{N}$

offers advantages: these appear to be more stable than the original IDR variant.
BICGSTAB [25. 24], and most of its relatives.

We simply term all methods form the IDR family. e.g.. original IDR, BICGSTAB,
IDR$(s)$ and IDRSTAB [22. 19, 23] amongst others. as $IDR$ methods or Sonneveld
methods. Sonneveld methods are linked to Lanczos processes termed Lanczos(s, 1).
This process is based on a left block Krylov subspace and a simple right Krylov
subspace. Even though this link explains some of the details, it does not account for
all the subtleties associated with Sonneveld methods.

1.1. Notation. We use standard notation. The identity matrix of size $n\cross n$ is
denoted by $I=I_{n:}$ its column vectors by $e_{j}$ and its elements by the Kronecker delta
$\delta_{ij}$ . The vector of the sums of all columns, i.e., the vector of all ones, is denoted by
$e$ . The matrix $O=O_{n}$ denotes the zero matrix of size $n\cross n$ , the zero column vector
of length $n$ is denoted by $0=0_{n}$ . The sizes are omitted if easily deducible from the
context. We are interested in the properties of a square matrix A $\in \mathbb{C}^{n\cross n}$ , e.g., its
inverse and$/or$ some of its eigenvalues. Unreduced Hessenberg matrices are denoted
by letter $H_{k}\in \mathbb{C}^{k\cross k}$ , upper triangular matrices by letter $U_{k}\in \mathbb{C}^{k\cross k}$ . Extended
counterparts of $I_{k},$ $H_{k}$ , and $U_{k}$ exist, which are denoted by $\underline{I}_{k},$ $\underline{H}_{k}$ , and $\underline{U}_{k}$ , respec-
tively. The rectangular matrices $\underline{I}_{k}\in \mathbb{C}^{(k+1)\cross k}$ and $\underline{U}_{k}\in \mathbb{C}^{(k+1)\cross k}$ are obtained by
appending a row of zeros at the bottom, $\underline{H}_{k}$ is an unreduced extended Hessenberg
matrix that has $H_{k}$ as leading square part. The columns of $\underline{I}_{k}$ are denoted by $\underline{e}_{j}$ .
The vector of all ones of length $k+1$ is denoted by $\underline{e}\in \mathbb{C}^{k+1}$ . The inverse, trans-
pose. complex conjugate transpose, and pseudo-inverse (or Moore-Penrose inverse) is
denoted by appendin$g^{-1}$ . $T,$

$H$ , and $\dagger$ , respectively.

We remark that like in [4] we use a simplified way to denote Krylov subspace
methods, e.g., we write GMRES in place of GMRES as is done in the original publi-
cation, since the acronym stands for the phrase Generalized Minimal RESidual.

2. Classical Krylov subspace methods. Essentials of classical Krylov sub-
space methods can be captured by a so-called Hessenberg decomposition [5, 4]

$AQ_{k}=Q_{k+1}\underline{H}_{k}$ , $k\in N$ , $k<n$ , (2.1)
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where $Q_{k+1}=(Q_{k},$ $q_{k+1})=(q_{1},$ $q_{2},$ $\ldots,$
$q_{k+1})\in \mathbb{C}^{n\cross(k+1)}$ accounts for the basis

vectors $\psi\cdot 1\leq j\leq k+1$ . produced to span the $(k+1)$st Krylov subspace $(q:=q_{1})$

$\mathcal{K}_{k+1}$ $:=\mathcal{K}_{k+1}(A, q)$ $:=$ span $\{q, Aq, A^{2}q, \ldots, A^{k}q\}=$ span $\{q_{1}, q_{2}, \ldots, q_{k+1}\},$ $(2.2)$

and an unreduced extended Hessenberg matrix $\underline{H}_{k}\in \mathbb{C}^{(k+1)\cross k}$ that in some man-
ner collects information about the action of the operator A on the Krylov subspace
$\mathcal{K}_{k}(A, q)$ .

These Hessenberg decompositions as well as their perturbed counterparts are
related to polynomial approximation theory [30]. The iterates of linear linear system
solvers for

Ax $=r_{0}$ , $A\in \mathbb{C}^{n\cross n},$ $r_{0}\in \mathbb{C}^{n}$ , (2.3)

based on the Orthogonal Residual (OR) and the Minimal Residual (MR) approach.
respectively, to be defined below, can be thought of as if they are obtained as the
evaluation of interpolation polynomials. The OR iterates satisfy

$x_{k}=\mathcal{L}_{k}[z^{-1}](A)r_{0}$ , (2.4)

where $\mathcal{L}_{k}[z^{-1}]$ is the interpolation of the function $f$ : $z\mapsto z^{-1}$ at the eigenvalues of the
trailing Hessenberg matrix $H_{k}$ , i.e.. the Ritz values, counting multiplicity. Similarly,
the MR iterates satisfy

$\underline{x}_{k}=\underline{\mathcal{L}}_{k}[z^{-1}](A)r_{0}$, (2.5)

where $\underline{\mathcal{L}}_{k}[z^{-1}]$ is the interpolation of the function $f$ : $z\mapsto z^{-1}$ at the the eigenvalues
of the matrix $(\underline{H}_{k}^{\dagger}\underline{I}_{k})^{-1}$ , i.e.. the harmonic Ritz values, counting multiplicity.

The convergence properties of linear system solvers are intimately related to the
convergence properties of (harmonic) Ritz values. Optimal methods like Arnoldi [1]
and GMRES [15] compute the best polynomial with respect to some approximation
problem, i.e., Arnoldi computes a least squares approximation to an annihilating
polynomial,

$\Vert p_{k}(A)r_{0}\Vert=\min_{p_{k}\in P_{kk}},$ ’
$\mathbb{P}_{k,k}$ $:= \{p|p(z)=z^{k}+\sum_{i=0}^{k-1}a_{i}z^{i}\}$ , (2.6)

and GMRES computes aleast squares approximation to an residual polynomial (these
are polynomials with trailing coefficient one),

$||p_{k}( A)r_{0}\Vert=\min_{p_{k}\in P_{kO}},$ ’
$\mathbb{P}_{k,0}:=\{p|p(z)=1+\sum_{i=1}^{k}a_{i}z^{i}\}$ . (2.7)

This optimality ensures that the methods terminate with the solution once the degree
of the minimal polynomial of the vector $r_{0}$ has been reached.

These optimal polynomials can be expressed in terms of the (extended) Hessen-
berg matrices $H_{k}$ and $\underline{H}_{k}$ . The residual polynomial for the Arnoldi approximation,
defined only for regular $H_{k}$ (which is used in all OR approximations, e.g., in CG) is
given by the polynomial

$\mathcal{R}_{k}(z)$ $:=\det(I_{k}-zH_{k}^{-1})$ , (2.8)

the residual polynomial for the GMRES approximation (which is used in all MR
approximations) is given by the polynomial

$\underline{\mathcal{R}}_{k}(z)$
$:=\det(I_{k}-z\underline{H}_{k}^{\dagger}\underline{I}_{k})$ . (2.9)

The roots of these polynomials, i.e., the eigenvalues of $H_{k}$ and the eigenvalues of the
inverse of a section of the pseudoinverse are known as the Ritz values and harmonic
Ritz vaJues. respectively.
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The success of the Lanczos‘s method and related methods like CG. e.g., [8, 6. 9]
shows that methods which are not optimal for general matrices are still of interest.
This is due to the fact that these methods are based on coupled short recurrences. In
exact arithmetic, provided that no breakdown occurs, Lanczos $s$ methods also show
the finite termination property. As Lanczos $s$ methods change their behavior in an
unexpected manner when executed in finite precision, the convergence analysis has to
be adopted to perturbed methods.

2.1. Lanczos’s method. Like Hessenberg‘s method [5], Lanczos‘s method [8, 9]
is based on bi-orthogonality. In contrast to Hessenberg. who uses the standard unit
vectors $e_{j}$ as left vectors. Lanczos does not use a fixed set of vectors, but instead for
this purpose computes a basis of a left Krylov subspace

$\hat{\mathcal{K}}_{k+1}$ $:=\mathcal{K}_{k+1}(\hat{A},$
へ

$q)=$ span $\{^{\text{へ}},$
$A^{\text{へ}},\hat{A}^{2\text{へ}},.,\hat{A}^{k\text{へ}}$ span $\{$

へ

$q_{1},$

へ$q2, . . ., q_{k+1}$へ

$\}$ ,
(2.10)

where A is the adjoint in some bilinear or sesquilinear form. For ease of presentation,
we think of $A$

へ

being the Hermitean adjoint, i.e., $A=$
へ

$A^{H}$ , and the form being the
usual inner product in $\mathbb{C}^{n}$ . The method of Lanczos computes (formally) bi-orthogonal
bases of $\hat{\mathcal{K}}_{k}$ and $\mathcal{K}_{k}$ via some two-sided Gram-Schmidt process. As all vectors in the
Krylov subspace $\mathcal{K}_{k}$ correspond to polynomials in $A$ ,

$q_{k}\in \mathcal{K}_{k}$ $\Rightarrow$ $q_{k}=\sum_{j=1}^{k}A^{j-1}q\alpha_{j}=p_{k-1}(A)q$, (2.11)

the products of left vectors $\sum_{j=1}^{k}A^{j-1}\hat{q}\alpha_{j}$
へへ

and right vectors $\sum_{j=1}^{k}A^{j-1}q\alpha_{j}$ can be
expressed using solely the so-called moments of A. compare with [8. \S V., Eqn. (34)
p. 258]:

$\langle A^{i}\hat{q},$ $A^{j}q\rangle=$

へ

$\langle\hat{q},$ $A^{i+j}q\}=c_{i+j}$ , $0\leq i,j\leq n$ . (2.12)

Lanczos derives a three-term recurrence for the solutions $\eta_{k}=(\eta_{0,k}, \ldots, \eta_{k-1,k})^{T}$ to
the Hankel systems

$(\begin{array}{lllll}c_{0} c_{1} \cdots \cdots c_{k}c_{1} c_{2} \cdots \cdots c_{k+1}| | \ddots |c_{k} c_{k+1} \cdots \cdots c_{2k}\end{array})(\begin{array}{l}\eta_{0,k}|\eta_{k-1,k}1\end{array})=(\begin{array}{l}0|0h_{k}\end{array})$ (2.13)

with a certain $h_{k}\in \mathbb{C}$ that eventually becomes zero. see [8, \S VI., Eqn. (50), p. 262].
This “progressive” form of his algorithm is the basis for his method of “minimized
iterations“ [8, \S VII., pp. 265-268], which is the well-known reduction to tridiagonal
form by means of a two-sided Gram-Schmidt process. The quantities constructed in
this algorithm can be captured with two Hessenberg decompositions

$AQ_{k}=Q_{k+1}\underline{T}_{k}$ , $AQ_{k}=\hat{Q}_{k+1}\underline{T}_{k}$へへへ, where $T_{k}=T_{k}^{H}$へ. (2.14)

Here, $T_{k}\in \mathbb{C}^{k\cross k}$ and $T_{k}$

へ

$\in \mathbb{C}^{k\cross k}$ denote the leading square parts of the unreduced
extended tridiagonal (i.e., Hessenberg) matrices $\underline{T}_{k}$ and $\underline{\hat{T}}_{k}$ . respectively.

3. Sonneveld methods. Sonneveld methods are based on the IDR Theorem.
IDR spaces, a special case of Sonneveld subspaces [19, Definition 2.2. p. 2690]. are
defined as follows. Define $\mathcal{G}0$ by

$\mathcal{G}0=\mathcal{K}(A, q)=\mathcal{K}_{n}(A, q)=$ span $\{q, Aq, ..., A^{n-1}q\}\subset \mathbb{C}^{n}$ . (3.1)

In case of non-derogatory $A\in \mathbb{C}^{n\cross n}$ and a generic starting vector $q\in \mathbb{C}^{n}$ . $\mathcal{G}_{0}=\mathbb{C}^{n}$ .
IDR Sonneveld spaces $\mathcal{G}_{j}$ are recursively defined by

$\mathcal{G}_{j}=g_{j}(A)(\mathcal{G}_{j-1}\cap S)$ , $g_{j}(z)=\eta_{j}z+\mu_{j}$ , $\eta_{j},$ $\mu_{j}\in \mathbb{C},$ $\eta_{j}\neq 0$ , $j=1,2,$ $\ldots.(3.2)$
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Here. $S$ is a space of codimension $s\in$ N. The IDR Theorem is given as follows:

THEOREM 3.1 (IDR Theorem [21]). Under mild conditions on the matrices A
and the space $S$ ,

(i) $\mathcal{G}_{j}\subseteq \mathcal{G}_{j-1}$ for all $\mathcal{G}_{j-1}\neq\{0_{n}\},$ $j>0$ .
(ii) $\mathcal{G}_{j}=\{0_{n}\}$ for some $j\leq n$ .
For the proof we refer to [21. 17].

The relation of IDR to Krylov subspaces is given in [3, 16, 4, 17]. The latter
includes an alternate description of Sonneveld spaces [17. Theorem 11, p. 1104] based
on left block Krylov subspaces. Implementations of the recursion (3.2) are given in
[21. 27. 26]:

Initialization: compute $s+1$ basis vectors $g_{i},$ $1\leq i\leq s+1$ . in $\mathcal{K}_{s+1}\subset \mathcal{G}0$ using your
favorite Krylov subspace method. We advocate the use of Amoldi$/GMRES$ .

Recursion: for $j>0$ until convergence perform the following:
Intersection: compute a linear combination $v_{i}$ of vectors in $\mathcal{G}_{j-1}\cap S$ . Typ-

ically, $s+1$ vectors are used in this stage, mostly the newest vectors,
as is done in [21, 27, 23. 26], or a fixed set of $s$ vectors for several steps
and one that changes, as is done in [19]. Numerically, using all vectors
available is more robust (but more costly); this was observed in several
experiments.

Update: if constructing the first vector in a new space $\mathcal{G}_{j}$ . chose a new lin-
ear polynomial $g_{j}$ of exact degree 1. Here, the remarks on the accuracy
of the Lanczos coefficients apply, the techniques from [18] find here $a\triangleright$

plications. Alternatives to minimization include the use of eigenvalue
information. either using another Krylov subspace method [16] or the
purified Sonneveld pencil of the Sonneveld method [4].

Map: compute the new vector $g_{j}(A)v_{i}$ in $\mathcal{G}_{j}$ and compute a new basis vector
as linear combination of $g_{j}(A)v_{i}$ with other vectors in $\mathcal{G}_{j}$ . The first vec-
tor is essentially unique up to scaling; experiments show that computing
linear combinations increases the numerical stability significantly.

Sonneveld Krylov subspace methods can be described by a $s(\succ called$ generalized Hes-
senberg decomposition [4]

$AV_{k}=AG_{k}U_{k}=G_{k+1}\underline{H}_{k}$ , $k\in N$ , $k<n$ , (3.3)

where $V_{k}=G_{k}U_{k}$ , with $U_{k}\in \mathbb{C}^{k\cross k}$ upper triangular, and all other matrices are
defined like in Eqn. (2.1).

The small change from the Hessenberg decomposition (2.1) to the generalized
Hessenberg decomposition (3.3) is the main change in devising new algorithms or
applying well-known techniques from the pool of existing Krylov subspace method
techniques.

The relation to Lanczos $s$ methods with $s$ left-hand vectors can be used to give a
rule of thumb for the convergence of IDR$(s)$ when these left-hand or shadow vectors
are chosen at random [20]. We present two sets of plots to highlight some aspects of
the statements in [20].

Our first example. Figure 3.1, is based on a random matrix of size $100\cross 100$

shifted such that it is positive real. GMRES needs 100 steps to compute the solution
and converges in a nice superlinear curve. Such matrices are very nice test examples
for numerical experiments involving Krylov subspace methods: the convergence has
almost no peaks and the probability of a breakdown is small.

Our second example, Figure 3.2, is based on a Rank matrix of size $100\cross 100$ .
GMRES stagnates more or less in a first phase. and only when almost the full space
has been spanned, makes rapid progress. The Frank matrix is an upper Hessenberg
matrix with integer entries that has only real eigenvalues that come in reciprocal
pairs. The small eigenvalues are ill-conditioned. These ill-conditioned eigenvalues are
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not approximated very well by Krylov subspace methods, which typically results in
a delay in the convergence. The Frank matrix is a good test example to depict the
failure of (short recurrence type) Krylov subspace methods.

In [20], Sonneveld relates GMRES and a random projection Galerkin method,
which in tum is then related to a Lanczos $s$ method with $s$ random shadow vectors.
We omit the full random Galerkin method, but show how in theory the Lanczos‘s
method with $s$ random shadow vectors relates to GMRES. The two plots in the first
rows of Figure 3.1 and Figure 3.2 depict the relation of GMRES to Lanczos(s, 1),
first with reorthogonalization, then without reorthogonalization. The reorthogonal-
ization procedure does not give reliable results beyond step 100. We implemented
the OR approach using the backslash operator in MATLAB for the small resulting
block-tridiagonal Hessenberg square matrices, which is by no means the stablest way.
Thus, the curves are not reliable once there have been some peaks in the convergence.

$\infty m\cdot rx-r-muw$
荅

$r\mathfrak{v}\infty 1\infty$

$1\mathfrak{D}$

$\infty m-Kw-\mathfrak{m}|uple\cdot m^{\prime\infty}$

$1\infty$

FIG. 3.1. Lanczos(s, 1), $QMR(s, 1)$ , and QMRIDR$(s)$ versus GMRES; Example based on a
random matrzx. The shadow vectors are the first vectors of a mndomly chosen matnc in $R^{100\cross 40}$ .
The parameter $s$ vanes between 1 and 40. The curves of QMRIDR$(s)$ are tuned by omitting every
$(s+1)th$ step. The GMRES convergence curve is indicated by plus signs, the solid lines are the
convergence curves of Lanczos(s, 1), $QMR(s, 1)$ , and QMRIDR$(s)$ , respectively.

As GMRES is of type MR and Lanczos(s, 1) is of type OR. we switch from
Lanczos(s, 1) to QMR$(s, 1)$ , the MR variant of Lanczos(s, 1). The resulting plots
with and without reorthogonalization are depicted in the second row of Figure 3.1 and
Figure 3.2. We see in both examples that the QMR$(s, 1)$ curves are even closer to the
GMRES curve. It is an interesting future investigation to derive an explicit formula
for the residual surplus. comparable to the formula in [20]. We remark that similar to
the computation of these curves in the case of Lanczos(s, 1), the reorthogonalization
procedure does not give reliable results beyond step 100. Also, we implemented the
MR approach using the backslash operator in MATLAB for the small resulting block-
tridiagonal rectangular Hessenberg matrices. which is by no means the stablest way.
Thus, the curves are not reliable once there have been some peaks in the convergence
of the corresponding Lanczos(s, 1) curves.

The last row of Figure 3.1 and Figure 3.2 only contains a single plot, namely,
the convergence of QMRIDR$(s)$ in finite precision versus the convergence curve of
GMRES. The reason might be obvious: we do not know of any scheme to mimic
the “true” convergence of unperturbed QMRIDR$(s)$ . as IDR based methods only
implicitly compute left block Krylov subspaces.

There are some observations we state here for future investigation: the “conver-
gence model” [20] by Sonneveld seems to hold true in “nice cases” like the one given
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$\infty’\infty m\cdot-m--$
$t\Phi$

$\infty m-m\propto-\mathfrak{n}u\Phi tm^{1\infty}$

$t\infty$

FIG. 3.2. Lanczos(s, 1), $QMR(s, 1)$ , and QMRIDR$(s)$ versas GMBES; Example based on a
Rrank matnx. The shadow vectors are the first vectors of a mndomly chosen matnx in $\mathbb{R}^{100\cross 40}$ .
The parameter $s$ varnes between 1 and 40. The curves of QMRIDR(s) are tuned by omitting every
$(s+1)th$ step. The GMRES convergence curve $\iota s$ indicated by plus signs, the solid lines are the
convergence $cu$rves of Lanczos(s, 1), $QMR(s, 1)$ , and QMRIDR$(s)$ , respectively.

in Figure 3.1 and seems to fail in “bad cases” like the one given in Figure 3.2. The
crucial question is, if we can figure out whether we deal with a “nice” or a “bad“
case while using the algorithm to compute a solution. The convergence of all methods
based on short recurrences is delayed in finite precision with respect to the number of
matrix-vector-multiplications. Is it possible to come up with a rule of thumb or even
mathematical theory that explains this behavior?

4. Some classical techniques and remarks on results. We $vel\gamma$ briefly
sketch the application of some classical Krylov subspace techniques to Sonneveld
methods. The Ritz approach is based on the Sonneveld pencil $(H_{k}, U_{k})[4]$

$H_{k}s_{j}=\theta_{j}U_{k}s_{j}$ (4.1)

and gives Ritz pairs $(\theta_{j}, y_{j};=V_{k}s_{j}=G_{k}U_{k}s_{j})[4,13,14]$ . The harmonic Ritz
approach [10. 11, 2, 12]

$I_{k}\underline{s}_{j}=\underline{\theta}_{j}\underline{H}_{k}^{\dagger}\underline{U}_{k}\underline{s}_{j}$ (4.2)

gives harmonic Ritz pairs $(\underline{\theta}_{j},\underline{y}_{j};=V_{k}\underline{s}_{j}=G_{k}U_{k}\underline{s}_{j})$. The Orthogonal Residual
(OR) approach: The kth OR solution is given by

$H_{k}z_{k}:=e_{1}\Vert r_{0}||$ , e.g.. mostly $z_{k}:=H_{k}^{-1}e_{1}\Vert r_{0}||$ , (4.3)

the kth OR iterate by

$x_{k};=V_{k^{Z}k}=G_{k}U_{k^{Z}k}$ . (44)

The Minimal Residual (MR) approach: The kth MR solution is given by

$\rho_{k}$
$:= \Vert\underline{H}_{k}\underline{z}_{k}-\underline{e}_{1}\Vert r_{0}\Vert\Vert=\min$ , $i$ . $e$ .. $\underline{z}_{k}$

$:=\underline{H}_{k}^{\dagger}\underline{e}_{1}\Vert r_{0}\Vert$ , (4.5)

the kth MR iterate by

$\underline{x}_{k}:=V_{k}\underline{z}_{k}=G_{k}U_{k}\underline{z}_{k}$ . (4.6)

Other flavors like ORTHORES, ORTHOMIN, and ORTHODIR, and techniques like flex-
ible. multi-shift, and inexact variants can now be developed based on (3.3). Methods
like (flexible or multi-shift) QMRIDR [26] provide a smooth transition between the
methods of Lanczos and Arnoldi and do not rely on the transposed matrix. but are a
little less stable.
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4.1. Harmonic Ritz using Sonneveld methods. As the eigenvalue compu-
tations and the OR and MR approaches applied to Sonneveld methods have been con-
sidered by several authors, we give a numerical example of a harmonic Ritz approach
using Sonneveld methods. We compare the eigenvalue approximations returned by
the harmonic Ritz approach and the Lanczos Ritz approach for IDRSTAB [22, 19, 23].

In the following example we used the matrix $e05r0500$ from Matrix Market. The
degree of the stabilizing polynomial was $P=3$ . the size of the shadow space was $s=5$ .
The resulting undeflated Lanczos-IDRSTAB pencil [14] was of size $120\cross 120$ (for the
Ritz value computations). the resulting extended $Lanczos-IDRSTAB$ pencil was of size
121 $\cross 120$ (for the harmonic Ritz value computations).

In the first plot. Figure 4.1. the extended Lanczos-IDRSTAB pencil is depicted.
Observe that the matrix $U$ of the $Lanczos-IDRSTAB$ pencil is singular. as every 6th
$(s+1=6)$ diagonal element is zero.

Lanczos-lDRStab pencil: $uH$

$0$ 50 100
nz $=840$

Lanczos-lDRStab pencil: $\cup$

$0$ 50 100
nz $=180$

FIG. 4.1. The resulting Lanczos-IDRSTAB pencil of size 121 $\cross 120$ for IDRSTAB applied with
$\ell=3$ and $s=5$ to the matrix $e05r0500$ from Matrex Market with the starting vector $r0$ given as the
residual of a random initial guess for the linear system with the right-hand side $\epsilon 05r0500_{-}r\hslash s1$ .

In the second plot. Figure 4.2, the Ritz values and the harmonic Ritz values
computed using the Lanczos-IDRSTAB pencil and the extended Lanczos-IDRSTAB
pencil are depicted. We observe what is observed frequently for the harmonic Ritz
values: they approximate the same eigenvalues as the Ritz values with a slower rate
of convergence.

It is well known that it is better to use the Rayleigh quotients of the corresponding
harmonic Ritz vectors

$\underline{y}_{j}$
as approximate eigenvalues, as the harmonic Ritz vectors

are frequently better approximations to eigenvectors to inner eigenvalues than the
classical Ritz vectors $y_{j}$ . In classical Krylov subspace methods this poses no problem,
in Sonneveld methods this technique is not that easily applied.

There are basically two choices, which require future investigation:. We can use the Sonneveld pencil of IDR$(s)$ or QMRIDR$(s)$ to compute har-
monic Ritz pairs, select some that correspond to eigenvalues of $A$ , and com-
pute the Rayleigh quotients of these harmonic Ritz vectors as new eigenvalue
approximations. In case of IDRSTAB we have to use the full IDRSTAB pen-
cil [14]. This latter pencil has many zero and infinite eigenvalues which may
cause numerical instabilities.. We can strive for a way to compute harmonic Ritz vectors based on the
eigenvectors of a purified and$/or$ deflated pencil. This is sketched for classical
Ritz vectors in [4] for IDR$(s)$ and extends to QMRIDR$(s)$ . The transition
of this technique to IDRSTAB is not straightforward. even in the case of
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(Harmonic) $R\ovalbox{\tt\small REJECT} tz$ values based on the Lanczos-IDRStab pencil

real part

FIG. 4.2. The Ritz values and the harmonic Ritz values obtained using the (undefiated) Lanczos-
IDRSTAB pencil of size 121 $\cross 120$ depicted in Figure 4.1. Cross signs denote eigenvalues of the
matnx $e05r0500$ from $Matr x$ Market, diamonds denote the harmonic Ritz values and circles denote
the classical Ritz values. The outer eigenvalues are appronmated very well by both approaches,
three ghost eigenvalues close to roots of some stabilizing polynomial (which are not depicted) have
developed (one real value close to 26, two complex conjugate pairs with real parts close to 5 and
imaginary part with absolute value close to 40).

classical Ritz vectors. The extension to harmonic Ritz vectors might even be
intractable and requires a new theoretical foundation along the lines of [29].

The former approach has the drawback that it might be impossible to find any
good approximations to eigenvalues of A among the harmonic Ritz values, as these are
combinations of a Lanczos(s, 1) process and user-supplied values, e.g., the roots of the
stabilizing polynomials. As these informations are “smeared out” in the computation
of the harmonic Ritz values, they may suffer great damage and this might render them
useless. This depends very strongly on the stabilizing polynomials used, especially
when ghost eigenvalues already appeared. see Figure 4.3 obtained using for $\ell=1$ .
If we would use the full IDRSTAB pencil or a Sonneveld pencil, the outliers would
destroy the good approximation properties of the other harmonic Ritz values close to
eigenvalues. We remark that in the generic case the use of a full IDRSTAB pencil or
a Sonneveld pencil in eigenvalue computations is harmful.

The latter approach ensures that only the information on the operator A is used.
The harmonic Ritz values are very reliable. As we do need the harmonic Ritz vectors.
i.e., the prolonged eigenvectors, to compute the better Rayleigh quotients. we need
either a basis for the prolongation. which is usually not at hand (apart from the
first steps of IDRSTAB before the first stabilizing polynomial is computed). or we
have to compute in a numerically stable manner some “harmonic Ritz vector” of the
Sonneveld pencil [4] or the full IDRSTAB pencil [14]. The crucial point is that the
classical Ritz values other than the user-supplied polynomial roots survive the process
of purification and deflation described in [4. 14] and we do not know what happens
to the harmonic Ritz values in these steps.

We could try to recompute the basis vectors that we need for the harmonic Ritz
vectors by using the deflated pencils. This seems to work sometimes. and the exact
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(Harmonic) Ritz values based on the Lanczos-IDRStab pencil

$-30$ $-20$ $-10$ $0$ 10 20 30 40 50 60
real pa$rt$

FIG. 4.3. The Ritz values and the harmonic Ritz values obtained using a (undeflated) Lanczos-
IDRSTAB pencil of size 121 $\cross 120$ as depicted in Figure 4.1. Cross signs denote eigenvalues of the
matrix, diamonds denote the harmonic Ritz values and circles denote the classical Ritz values.

circumstances under which this works out fine still have to be investigated.
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