

Title	Shape optimization for partial differential equations/system with mixed boundary conditions (The latest developments in theory and application on scientific computation)
Author(s)	Ohtsuka, Kohji
Citation	数理解析研究所講究録 (2012), 1791: 172-181
Issue Date	2012-04
URL	http://hdl.handle.net/2433/172826
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Shape optimization for partial differential equations/system with mixed boundary conditions

Kohji Ohtsuka (大塚 厚二) *

Faculty of Information Design Hiroshima Kokusai Gakuin University, Hiroshima 739–0321, Japan

1 Theory of GJ-integral

Let X and M be real Banach spaces and let X' and M' be their dual spaces, respectively. For $\mathcal{U}_0 \subset X$ ($\mathcal{U}_0 \neq \emptyset$) and an open subset $\mathcal{O}_0 \subset M$ ($\mathcal{O}_0 \neq \emptyset$), we consider a real valued functional $J: \mathcal{U}_0 \times \mathcal{O}_0 \to \mathbb{R}$. In general, for $u \in \mathcal{U}_0$ and $w \in X$, the Gâteaux derivative $\delta_X J(v, \mu)[w] \in \mathbb{R}$ is defined as

$$\delta_X J(u,\mu)[w] = \left. rac{d}{dt} J(u+tw,\mu)
ight|_{t=0},$$

when it exists. If $\delta_X J(u,\mu)[w]$ exists, from the linearity of the Gâteaux derivative, $\delta_X J(u,\mu)[\alpha w]$ exists for arbitrary $\alpha \in \mathbb{R}$ and it satisfies and it satisfies

$$\delta_X J(u,\mu)[\alpha w] = \alpha \delta_X J(u,\mu)[w].$$

We use the symbols ∂_X and ∂_M to denote the partial Fréchet derivative operators for $J(u,\mu)$ with respect to $u \in X$ and $\mu \in M$, respectively, and assume the following.

- (H1) $[\mu \mapsto J(w,\mu)] \in C^1(\mathcal{O}_0)$ for all $w \in \mathcal{U}_0$, and $\partial_M J : \mathcal{U}_0 \times \mathcal{O}_0 \to M'$ is continuous at $(u(\mu_0), \mu_0)$.
- (H2) The Banach space X is reflexive and \mathcal{U}_0 is closed and convex in X.
- (H3) For the functional $[v \mapsto J(v, \mu_0)]$, u_0 is a unique minimizer over \mathcal{U}_0 .
- (H4) The functional $[v \mapsto J(v, \mu_0)]$ is sequentially lower semicontinuous with respect to the weak topology of X.
- (H5) There is a monotone nondecreasing function β_0 defined on $[0, \infty)$ with $\lim_{s\to\infty} \beta_0(s) = \infty$ such that

$$\beta_0\left(\left\|v\right\|_X\right) \leq J\left(v,\mu\right) \qquad \left(v \in \mathcal{U}_0, \ \mu \in \mathcal{O}_0\right).$$

^{*}email: ohtsuka@hkg.ac.jp

(H6) For any $\varepsilon > 0$ and R > 0, there exists $\delta > 0$ such that

$$|J(v,\mu) - J(v,\mu_0)| \le \varepsilon$$
 $(v \in \mathcal{U}_0, \|v\|_X \le R, \mu \in \mathcal{O}_0, \|\mu - \mu_0\|_M \le \delta).$

(H7) For $v \in \mathcal{U}_0$, the function $[t \mapsto J(u_0 + t(v - u_0), \mu_0)]$ belongs to $C^1((0, 1])$. Moreover, for a sequence $\{u_n\}_n \subset \mathcal{U}_0$ which weakly converges to u_0 as $n \to \infty$, the condition $\overline{\lim}_{n\to\infty} \delta_X J(u_n, \mu_0)[u_n - u_0] \leq 0$ implies that $u_n \to u_0$ strongly in X as $n \to \infty$.

In particular, under the condition (H7),

$$\delta_X J(v, \mu_0)[v - u_0] = \frac{d}{dt} J(u_0 + t(v - u_0), \mu_0) \Big|_{t=1}$$

exists for all $v \in \mathcal{U}_0$. The condition (H7) is often called the (S_+) -property.

Theorem 1 Under the conditions (H1)-(H7), $[\mu \mapsto J_*(\mu)]$ is Fréchet differentiable at $\mu = \mu_0$ and the following holds.

$$D_{\mu}[J(u(\mu_0), \mu_0)] = \partial_M J(u(\mu_0), \mu_0) \tag{1}$$

where the D_{μ} denotes the Fréchet differential operator with respect to $\mu \in M$.

See [9] for the proof. Theorem 1 will play an important role in design sensitivity analysis by considering mu to be a design variable. We shall show that Theorem 1 derive an important result in the shape sensitivity analysis of energy.

1.1 Boundary value problems and its Lipschitz perturbation

Let Ω be a bounded domain in \mathbb{R}^d $(d \geq 2)$ and $L^p(\Omega, \mathbb{R}^m)$ Lebesgue space of all measurable functions $v: \Omega \to \mathbb{R}^m$ (a real number $1 and an integer <math>m \geq 1$) with $||v||_{p,\Omega}$

$$\|v\|_{p,\Omega} = \left(\sum_{i=1}^{m} \int |v_i|^p\right)^{1/p}, v = (v_1, \dots, v_m)$$

 $P(f, V(\Omega, \Gamma_D))$: For a given function $f \in L^{p'}(\Omega, \mathbb{R}^m), p' = p/(p-1)$, find u minimizing the following functional

$$\mathcal{E}(v;f,\Omega) = \int_{\Omega} \left\{ \widehat{W}(x,v,
abla v) - f\cdot v
ight\} dx$$

over the space

$$V(\Omega,\Gamma_D) = \left\{ v \in W^{1,p}(\Omega,\mathbb{R}^m) : v = 0 \text{ on } \Gamma_D \right\}$$

where Γ_D stands for the part of $\partial\Omega$ and a scalar function $\widehat{W}(\xi, z, \zeta) : \mathbb{R}^d \times \mathbb{R}^m \times \mathbb{R}^{d \times m} \to \mathbb{R}$ is in $C^1(\mathbb{R}^d \times \mathbb{R}^m \times \mathbb{R}^{d \times m})$ and $W^{1,p}(\Omega, \mathbb{R}^m)$ denote Sobolev space of functions $v \in L^p(\Omega, \mathbb{R}^m)$ with $\|v\|_{1,n,\Omega}$.

We now give a condition of the existence of minimizers for $P(f, V(\Omega, \Gamma_D))$.

Theorem 2 If \widehat{W} satisfies the coercivity condition

$$\widehat{W}(\xi, z, \zeta) \ge c_1 |\zeta|^p + c_2 |z|^q + \alpha_1(\xi) \tag{2}$$

for almost every $\xi \in \Omega$ and for every $(z,\zeta) \in \mathbb{R}^m \times \mathbb{R}^{m \times d}$ and for some $\alpha_1 \in L^1(\Omega)$, $c_2 \in \mathbb{R}$, $c_1 > 0$ and $p > q \ge 1$. Assume that $\zeta \to \widehat{W}(\xi, z, \zeta)$ is convex and $\mathcal{E}(0; f, \Omega) < \infty$, then there is a minimizer u

$$\mathcal{E}(u; f, \Omega) = \min_{v \in V(\Omega, \Gamma_D)} \mathcal{E}(v; f, \Omega)$$

attains its minimum.

Furthermore, if $(z,\zeta) \to \widehat{W}(\xi,z,\zeta)$ is strictly convex for almost every $\xi \in \Omega$, then the minimizer is unique.

See [2][Theorem 3.30] for the proof.

We assume the growth conditions of \widehat{W} , that is, for almost every $\xi \in \Omega$, for every $(z,\zeta) \in \mathbb{R}^m \times \mathbb{R}^{m \times d}$

$$|\widehat{W}(\xi, z, \zeta)| \leq \alpha_{1}(\xi) + c(|z|^{p} + |\zeta|^{p})$$

$$|D_{z}\widehat{W}(\xi, z, \zeta)| \leq \alpha_{2}(\xi) + c(|z|^{p-1} + |\zeta|^{p-1})$$

$$|D_{z}\widehat{W}(\xi, z, \zeta)| \leq \alpha_{3}(\xi) + c(|z|^{p-1} + |\zeta|^{p-1})$$
(3)

where $\alpha_1 \in L^1(\Omega_0)$, $\alpha_2, \alpha_3 \in L^{p(p-1)}(\Omega_0)$ and $c \geq 0$,

$$D_{\zeta}\widehat{W}(u) = \begin{pmatrix} \frac{\partial}{\partial \zeta_{11}}\widehat{W}(\xi, z, \zeta) & \cdots & \frac{\partial}{\partial \zeta_{m1}}\widehat{W}(\xi, z, \zeta) \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial \zeta_{1d}}\widehat{W}(\xi, z, \zeta) & \cdots & \frac{\partial}{\partial \zeta_{md}}\widehat{W}(\xi, z, \zeta) \end{pmatrix} \Big|_{(\xi, z, \zeta) = (x, v(x), \nabla v(x))}$$

$$D_{z}\widehat{W}(u) = \begin{pmatrix} \frac{\partial}{\partial z_{1}}\widehat{W}(\xi, z, \zeta), \cdots, \frac{\partial}{\partial z_{d}}\widehat{W}(\xi, z, \zeta) \end{pmatrix}^{T} \Big|_{(\xi, z, \zeta) = (x, v(x), \nabla v(x))}$$

Then, we have the following proposition.

Proposition 3 If u is the solution of $P(f, V(\Omega, \Gamma_D))$ and \widehat{W} satisfy Condition (3), then

$$\int_{\Omega} \left\{ D_{\zeta} \widehat{W}(x, u, \nabla u) : \nabla v + D_{z} \widehat{W}(x, u, \nabla u) v - f v \right\} dx = 0$$

for all $v \in W_0^{1,p}(\Omega, \mathbb{R}^m)$, where $A : B = A_{ij}B_{ij}$ for two matrices A and B.

See [2][Theorem 3.37] for the proof.

Putting

$$F(v) = \int_{\Omega} \widehat{W}(x, v, \nabla v) dx$$

we have for $X = W^{1,p}(\Omega, \mathbb{R}^m)$,

$$\langle \delta_X F(v), w \rangle_X = \lim_{\epsilon \to 0} \epsilon^{-1} [F(v + \epsilon w) - F(v)]$$
$$= \int_{\Omega} \left\{ D_{\zeta} \widehat{W}(x, v, \nabla v) : \nabla w + D_z \widehat{W}(x, v, \nabla v) w \right\} dx$$

The operator $[v \mapsto \delta_X F(v)]$ is called uniformly monotone, if there is a strictly monotone increasing continuous function $a : \mathbb{R}_+ \to \mathbb{R}_+$ with a(0) = 0 and $\lim_{t \to \infty} a(t) = +\infty$ such that

$$\langle \delta_X F(v) - \delta_X F(w), v - w \rangle_X \ge a(\|v - w\|_X) \|v - w\|_X$$

If $[v \mapsto \delta_X F(v)]$ is uniformly monotone, then the condition (H7) is satisfied. Indeed, taking a sequence $u_n \to u$ weakly in X, we have

$$\langle \delta_X F(u_n) - f, u_n - u \rangle_X = \langle \delta_X F(u_n) - \delta_X F(u), u_n - u \rangle_X$$

$$\geq a(\|v - w\|_X) \|v - w\|_X$$

Since X is reflexive, the strong convergence $u_n \to u$ follows from

$$a(\|v - w\|_X) \le \|\delta_X F(u_n) - f\|_{X'}$$

1.1.1 Perturbation

We choose a bounded convex domain Ω_0 with $\overline{\Omega} \subset \Omega_0$, and define $M = W^{1,\infty}(\Omega_0, \mathbb{R}^d)$ and

$$\mathcal{O}_0 = \left\{ \varphi \in M : |\varphi - \varphi_0|_{\mathrm{Lip},\Omega_0} < a_0 < 1, \ \overline{\varphi(\Omega)} \subset \Omega_0 \right\},\tag{4}$$

where $a_0 \in (0,1)$ is a fixed number and we denote by φ_0 the identity map on \mathbb{R}^d , i.e., $\varphi_0(x) = x \ (x \in \mathbb{R}^d)$. Then $\varphi \in \mathcal{O}_0$ becomes a bi-Lipschitz transform from Ω onto $\varphi(\Omega)$.

For the domain $\varphi(\Omega)$, $\varphi \in \mathcal{O}_0$, we consider the problem $P(f, V(\varphi(\Omega), \varphi(\Gamma_D)))$: Find u(t) minimizing the following functional

$$\mathcal{E}(oldsymbol{v};f,arphi(\Omega)) = \int_{\Omega(\Omega)} \left\{ \widehat{W}(x,w,
abla w) - f\cdot w
ight\} dx$$

over the space

$$V(\varphi(\Omega), \varphi(\Gamma_D)) = \left\{ w \in W^{1,p}(\varphi(\Omega), \mathbb{R}^m) : w = 0 \text{ on } \varphi(\Gamma_D) \right\}$$

We define a pushforward operator φ_* which transforms a function v on Ω to a function $\varphi_*v = v \circ \varphi^{-1}$ on $\varphi(\Omega)$. For $q \in [1, \infty]$, φ_* is a linear topological isomorphism from $L^q(\Omega)$ onto $L^q(\varphi(\Omega))$, and a linear topological isomorphism from $W^{1,q}(\Omega)$ onto $W^{1,q}(\varphi(\Omega))$. For $v \in V(\Omega, \Gamma_D)$, we get the equivalence,

$$\mathcal{E}(\varphi_* v, f, \varphi(\Omega)) = \int_{\Omega} \left\{ \widehat{W}(\varphi(x), v(x), [A(\varphi)(x)] \nabla v(x)) - f \circ \varphi(x) v(x) \right\} \kappa(\varphi)(x) dx \quad (5)$$

where

$$A(\varphi) = (\nabla \varphi^T)^{-1} \in L^{\infty}(\Omega_0, \mathbb{R}^{d \times d}), \quad \kappa(\varphi) = \det \nabla \varphi^T \in L^{\infty}(\Omega_0, \mathbb{R}).$$

We denote the right-hand side of (5) by $J(v,\varphi)$, and apply Theorem 1 to $J(v,\varphi)$. If \widehat{W} satisfy the growth condition (3) and

$$|D_{\varepsilon}\widehat{W}(\xi, z, \zeta)| \le \alpha_1(\xi) + c(|z|^p + |\zeta|^p)$$

then we have the following proposition.

Proposition 4 Suppose that $f \in W^{1,p/(p-1)}(\Omega_0)$. Then $J \in C^1(X \times \mathcal{O}_0)$ and

$$\partial_{M}J(u,\varphi_{0})[\mu] = \frac{d}{dt} \int_{\Omega} \widehat{W}(x+t\mu(x),u(x),[A(\varphi_{0}+t\mu)(x)]\nabla u(x))\kappa(\varphi_{0}+t\mu)(x)dx\Big|_{t=0}$$

$$-\int_{\Omega} f\circ(\varphi_{0}+t\mu)(x)v(x)\kappa(\varphi_{0}+t\mu)(x)dx\Big|_{t=0}$$

$$= \int_{\Omega} \left(D_{\xi}W(u)\cdot\mu-(D_{\zeta}W(u))^{T}(\nabla\mu^{T})\nabla u+W(u)\operatorname{div}\mu-\operatorname{div}(f\cdot\mu)v\right)dx.$$
(6)

where $(D_{\zeta}W(u))^T(\nabla \mu^T)\nabla u = \sum_{i,j,k} \partial_{\zeta_{ij}}\widehat{W}(x,u,\nabla u)(\partial_j \mu_k)(\partial_k u_i).$

1.1.2 Definition of GJ-integral

For an open subset ω in \mathbb{R}^d and $\rho \in W^{1,\infty}(\mathbb{R}^d,\mathbb{R}^d)$, GJ-integral [5, 6, 7, 8]

$$\mathcal{J}_{\omega}\left(u,\rho\right) = P_{\omega}\left(u,\rho\right) + R_{\omega}\left(u,\rho\right)$$

is defined by

$$\begin{split} P_{\omega}\left(u,\rho\right) &= \int_{\partial(\omega\cap\Omega)} \left\{ \widehat{W}\left(u\right) \left(\rho\cdot n\right) - \widehat{T}\left(u\right) \cdot \left(\nabla u\cdot\rho\right) \right\} ds \\ R_{\omega}\left(u,\rho\right) &= -\int_{\omega\cap\Omega} \left\{ \nabla_{\xi}\widehat{W}\left(u\right) \cdot \rho + f \cdot \left(\nabla u\cdot\rho\right) - \left(\nabla_{\zeta}\widehat{W}\left(u\right)\right)^{T} \left(\nabla\rho^{T}\right) \nabla u + \widehat{W}\left(u\right) \operatorname{div}\rho \right\} dx \end{split}$$

where $n=(n_1,\cdots,n_d)^T$ is the outward unit normal of $\partial (\omega \cap \Omega)$, *i*-th component of $\widehat{T}(u)$ is $n_j \nabla_{\zeta_{ij}} \widehat{W}(x,u,\nabla u)$ and ds the surface(line) element of $\partial (\omega \cap \Omega)$.

Proposition 5 If $u|_{\omega \cap \Omega} \in W^{2,p}(\omega \cap \Omega, \mathbb{R}^m)$ and the divergence formula

$$\int_{\omega \cap \Omega} \nabla \widehat{W}(u) \cdot \rho dx = \int_{\partial(\omega \cap \Omega)} \widehat{W}(u) (\rho \cdot n) ds - \int_{\omega \cap \Omega} \widehat{W}(u) \operatorname{div} \rho dx \tag{7}$$

holds, then

$$\mathcal{J}_{\omega}(u,\rho) = 0 \text{ for all } \rho \in W^{1,\infty}\left(\Omega_0, \mathbb{R}^d\right)$$
 (8)

Consider the perturbation $\Omega(t)$, $0 \le t < \epsilon$ of Ω and the problems $P(f, V(\Omega(t), \Gamma_D(t)))$ that are given by φ_t such as $\Omega(t) = \varphi_t(\Omega)$ and $\Gamma_D(t) = \varphi_t(\Gamma_D)$.

[M1] For each $t \in [0, \epsilon)$, φ_t is 1-1 mapping and has the inverse φ_t^{-1} .

[M2]
$$[t \mapsto \varphi_t] \in C^1([0, \epsilon), W^{1,\infty}(\Omega_0, \mathbb{R}^d)).$$

Theorem 6 If $\widetilde{E}(v,\varphi) = \mathcal{E}(\varphi_*v, f, \varphi(\Omega))$ satisfies the conditions [H1] - [H7], then it follows for all φ_t satisfying [M1] and [M2] that

$$\left. \frac{d}{dt} \mathcal{E}\left(u\left(t\right); f, \Omega\left(t\right)\right) \right|_{t=0} = -R_{\Omega}\left(u, \mu_{\varphi}\right) - \int_{\partial \Omega} f \cdot u\left(\mu_{\varphi} \cdot n\right) ds \tag{9}$$

where $\mu_{\varphi} = d\varphi_t/dt|_{t=0}$.

2 Application to shape optimization (Energy)

In Theorem 6, we get the shape sensitivity analysis of the potential energy $\Omega \mapsto \mathcal{E}(u; f, \Omega)$. We introduce Azegami's method[1, 4] to find optimum shape Ω^o assuming that the cost function is the energy, that is, find u^o and Ω^o such that

$$\mathcal{E}(f; u^o, \Omega^o) \leq \mathcal{E}(f; u(\widetilde{\Omega}), \widetilde{\Omega})$$
 for all domain $\widetilde{\Omega}$

under some restrictions, where $u(\widetilde{\Omega})$ is the solution of $P(f, V(\widetilde{\Omega}, \widetilde{\Gamma_D}))$.

2.1 Azegami's method

Let $\mathcal{V}(\Omega)$ be the subspace of $W^{1,2}(\Omega, \mathbb{R}^d)$ and let $b_{\Omega}(V, \mu)$ be a bilinear defined on $\mathcal{V}(\Omega) \times \mathcal{V}(\Omega)$ stisfying the following conditions.

[A1] $b_{\Omega}(V,\mu) \leq \alpha_8 \|V\|_{1,2,\Omega} \|\mu\|_{1,2,\Omega}$ for all $V,\mu \in \mathcal{V}(\Omega)$ with a constant $\alpha_8 > 0$.

[A2]
$$b_{\Omega}(V, V) \geq \alpha_9 \|V\|_{1,2,\Omega}^2$$
 for all $V \in \mathcal{V}(\Omega)$ with a constant $\alpha_9 > 0$.

Consider the variational problem $\Pi(u, f, \Omega)$: Under the condition of Theorem 6, find $V^o \in \mathcal{V}(\Omega)$ such that

$$b_{\Omega}(V^{o}, \mu) = R_{\Omega}(u, \mu) + \int_{\partial \Omega} f \cdot u(\mu \cdot n) ds \text{ for all } \mu \in \mathcal{V}(\Omega)$$
 (10)

The mapping $\varphi_t(x) = x + tV^o(x)$ from Ω to \mathbb{R}^d is 1-1 if t is near 0. Unfortunately, $[\mu \mapsto R_{\Omega}(u,\mu)]$ is linear functional on $W^{1,\infty}(\Omega,\mathbb{R}^d)$, and is not on $W^{1,2}(\Omega,\mathbb{R}^d)$. To extend it on $W^{1,2}(\Omega,\mathbb{R}^d)$, we need slightly smoothness of u.

Proposition 7 If d=2 or 3, and the solution u of $P(f,V(\Omega,\Gamma_D))$ is in $W^{1,2p}(\Omega,\mathbb{R}^m)$, then there is a constant $\alpha_{10}>0$ such that

$$R_{\Omega}(u,\mu) + \int_{\partial\Omega} f \cdot u(\mu \cdot n) ds \le \alpha_{10} \|\mu\|_{1,2,\Omega} \quad \text{for all } \mu \in W^{1,\infty}(\Omega,\mathbb{R}^d)$$

If $u \in W^{1,2p}(\Omega, \mathbb{R}^m)$, then there is a unique solution $V^o \in W^{1,2}(\Omega, \mathbb{R}^d)$ of $\Pi(u, f, \Omega)$. If $V^o \in W^{1,\infty}(\Omega, \mathbb{R}^d)$, then $[t \mapsto \varphi_t(x) = x + tV^o(x)] \in C^1([0, \epsilon), W^{1,\infty}(\Omega, \mathbb{R}^d))$. So we can apply Theorem 6

$$\begin{split} \mathcal{E}(u(t);f,\Omega(t)) - \mathcal{E}(u;f,\Omega) &= -t \left\{ R_{\Omega}(u,V^o) + \int_{\Omega} f \cdot u \left(V^o \cdot u \right) ds \right\} + o(t) \\ &= -t b_{\Omega}(V^o,V^o) + o(t) \\ &\leq -t \alpha_9 \left\| V^o \right\|_{1,2,\Omega}^2 + o(t) \end{split}$$

2.2 Numerical examples

We now check the method for the following simple two cases: We start from the initial shapes, $\Omega^0 = \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 < 1\}$, $\Gamma_D^0 = \{(\cos \theta, \sin \theta) : 0 < \theta < \pi\}$, $\Gamma_N^0 = \{(\cos \theta, \sin \theta) : \pi < \theta < 2\pi\}$.

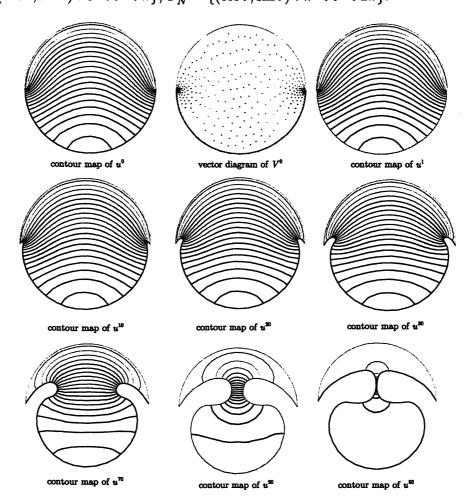


Figure 1: Optimization process under the condisions $|\Omega^i|=\pi$ and $\Gamma^i_D=\Gamma_D$

When Ω^i was already obtained, find a shape Ω^{i+1} such that

$$\begin{split} \mathcal{E}(u^{i+1};f,\Omega^{i+1}) &< & \mathcal{E}(u^i;f,\Omega^i) \\ \mathcal{E}(v;f,\Omega^i) &= & \int_{\Omega^i} \left\{ \frac{1}{2} |\nabla v|^2 - fv \right\} dx \\ \mathcal{E}(u^i;f,\Omega^i) &= & \min_{v \in V(\Omega^i,\Gamma_D^i)} \mathcal{E}(v;f,\Omega^i) \end{split}$$

under the condition: $|\Omega^i| = \pi, i = 0, 1, \dots$, where $|\Omega^i|$ denotes the area of Ω^i . We find Ω^{i+1} by Azegami's method using the vector field V^i calculated by (10) and for some $t_0^i > 0$

$$\Omega^{i+1} = \{x + t_0^i V^i(x) : x \in \Omega^i\}$$

In the first example, $f=0.5, \Gamma_D$ is fixed and Γ_N is changeable, so we use for $\mathcal{V}(\Omega)$ in (10), the following

$$\mathcal{V}(\Omega) = \{ A \in W^{1,2}(\Omega, \mathbb{R}^d) : A = 0 \quad \text{on } \Gamma_D \}$$

We get the shapes in Fig.1 with finite element programming language FreeFem++ [3].

At the initial stage of the optimization, the stress concentrations at points $\gamma_1 = (1,0), \gamma_2 = (-1,0)$ are weaken by making a small circular hole near γ_1 and γ_2 . The optimization is going to be divided to two parts Ω_D^o and Ω_N^o in which Ω_D^o ruled by Γ_D and Ω_N^o ruled by Neumann boundary condition.

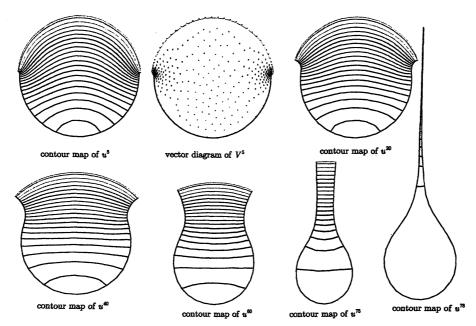


Figure 2: Optimization process under the condisions $|\Omega^i| = \pi$, in the condition to permit a change of Γ_D^i

In the second example, find the optimum shape under the conditions f = 0.5, and that Γ_D is changeable. The results are in Fig. 2, and we see that $|\Gamma_D^{i+1}| < |\Gamma_D^i|$ where

 $|\Gamma_D^i|$ is the length of the curve Γ_D^i . It's natural because

$$\min_{v \in V(\Omega, \Gamma_D^1)} \mathcal{E}(v; f, \Omega) \leq \min_{w \in V(\Omega, \Gamma_D^2)} \mathcal{E}(w; f, \Omega) \quad \text{if } \Gamma_D^1 \subset \Gamma_D^2$$

3 Application to shape optimization (general form)

We now consider the cost functional as follows: For the solution u of $P(f, V(\Omega, \Gamma_D))$,

$$\mathcal{J}^{o}\left(u,\Omega\right)=\int_{\Omega}g\left(u
ight)dx$$

3.1 Shape derivative of the solution

In this section, we limit $P(f, V(\Omega, \Gamma_D))$ to linear case, because the adjoint problem will be used. The following is the main theorem in the section.

Theorem 8 For any $\vartheta \in C_0^{\infty}(\Omega; \mathbb{R}^m)$, let u_{ϑ} be the solution of $P(\vartheta, V(\Omega, \Gamma_D))$. Then we have

$$\left. \frac{d}{dt} \int_{\Omega(t)} u\left(t\right) \cdot \vartheta dx \right|_{t=0} = \delta R_{\Omega}\left(u, u_{\vartheta}; \mu_{\varphi}\right) + \int_{\partial \Omega} f \cdot u_{\vartheta}\left(\mu_{\varphi} \cdot n\right) ds$$

where $\delta R_{\Omega}\left(u,u_{\vartheta};\mu_{\varphi}\right)=\lim_{\epsilon\to 0}\epsilon^{-1}\left\{R_{\Omega}\left(u+\epsilon u_{\vartheta};\mu_{\varphi}\right)-R_{\Omega}\left(u;\mu_{\varphi}\right)\right\}$. By the estimation

$$\left| \delta R_{\Omega} \left(u, u_{\vartheta}; \mu_{\varphi} \right) + \int_{\partial \Omega} f \cdot u \left(\mu_{\varphi} \cdot n \right) \right| \leq C_{3} \left\| f \right\|_{1,2,\Omega} \left\| \vartheta \right\|_{0,2,\Omega} \left\| \mu_{\varphi} \right\|_{1,\infty,\Omega}$$

and the result that $C_0^{\infty}(\Omega; \mathbb{R}^m)$ is dense in $W^{0,2}(\Omega; \mathbb{R}^m) = L^2(\Omega; \mathbb{R}^m)$, so $t^{-1}(u(t) \circ \varphi_t - u)$ converges weakly in $L^2(\Omega; \mathbb{R}^m)$ and

$$\left. \frac{d}{dt} \int_{\Omega(t)} u\left(t\right) \cdot \vartheta dx \right|_{t=0} = \int_{\Omega} \left(\dot{u} - \mu_{\varphi} \cdot \nabla u \right) \vartheta dx, \ \dot{u} = \lim_{t \to 0} t^{-1} \left(u\left(t\right) \circ \varphi_{t} - u \right)$$

See [8] for the proof.

If
$$[z \mapsto g(z)] \in W^{1,2}(\mathbb{R}^m; \mathbb{R})$$
, then $[u(t) \to g(u(t))] \in W^{1,2}(\Omega(t); \mathbb{R})$ and

$$\int_{\Omega(t)} g(u(t)) dx - \int_{\Omega} g(u) dx = \int_{\Omega} \left\{ g(u(t) \circ \varphi_t) \kappa(\varphi_t) - g(u) \right\} dx$$

$$= \int_{\Omega} \left\{ \left(g(u(t) \circ \varphi_t) - g(u) \right) \kappa(\varphi_t) + g(u) (\kappa(\varphi_t) - 1) \right\} dx$$

from which it follows that

$$\begin{aligned} \frac{d}{dt} \int_{\Omega(t)} g\left(u\left(t\right)\right) dx \bigg|_{t=0} &= \int_{\Omega} \left\{ \nabla_{z} g\left(u\right) \dot{u} + g(u) \operatorname{div} \mu_{\varphi} \right\} dx \\ &= \int_{\Omega} \left\{ \nabla_{z} g\left(u\right) \dot{u} - \nabla_{z} g(u) \left(\mu_{\varphi} \cdot \nabla u\right) \right\} dx + \int_{\partial \Omega} g(u) (\mu_{\varphi} \cdot n) ds \\ &= \int_{\Omega} \nabla_{z} g\left(u\right) u' dx + \int_{\partial \Omega} g(u) (\mu_{\varphi} \cdot n) ds \end{aligned}$$

Proposition 9 Let u_g be the solution of $P(\nabla_z g(u), V(\Omega, \Gamma_D))$, then

$$\int_{\Omega} \nabla_{z} g\left(u\right) u' dx = \delta R_{\Omega}\left(u, u_{g}; \mu_{\varphi}\right) + \int_{\partial \Omega} f \cdot u_{g}\left(\mu_{\varphi} \cdot n\right) ds$$

which implies

$$\left. \frac{d}{dt} \int_{\Omega(t)} g\left(u\left(t\right)\right) dx \right|_{t=0} = \delta R_{\Omega}\left(u, u_g; \mu_{\varphi}\right) + \int_{\partial\Omega} \left(f \cdot u_g + g\left(u\right)\right) \left(\mu_{\varphi} \cdot n\right) ds \tag{11}$$

Acknowledgement

This work was supported by the Grant-in-Aid for Scientific Research(B)#1934007 and Research(C)#23540258, Japan. I would like to thank Prof. M.Kimura who made enormous contribution to prove Theorem 1 and to thank Prof. H.Azegami who provided great idea to solve shape optimization.

References

- [1] Azegami, H. and Wu, Z.: Domain Optimization Analysis in Linear Elastic Problems: Approach Using Traction Method, JSME International Journal Series A, 39 (2)(1996), 272-278.
- [2] Dacorogna, B.: Direct methods in the calculus of variations 2nd Ed., Springer, 2008.
- [3] Hecht, F., Pironneau, O., Morice, J. Hyaric, A. Le and Ohtsuka, K.: FreeFem++, http://www.freefem.org/ff++/.
- [4] Kaizu, S. and Azegami, H.: Optimal Shape Problems and Traction Method, Transactions of the Japan Society for Industrial and Applied Mathematics, 16(3)(2006) 277-290.
- [5] Khludnev, A.,Ohtsuka,K. and Sokolowski, J.: On derivative of energy functional for elastic bodies with cracks and unilateral conditions, Quarterly of Applied Mathematics, Vol. LX (2002), 99 109.
- [6] Ohtsuka, K: Generalized J-integral and three-dimensional fracture mechanics I. Hiroshima Math. J., Vol.11 (1981), 21-52.
- [7] Ohtsuka, K.: Generalized *J*-integral and its applications I Basic theory –. Japan J. Appl. Math. Vol.2, No.2 (1985), 329-350.
- [8] Ohtsuka, K. and Khludnev, A.: Generalized J-integral method for sensitivity analysis of static shape design. Control & Cybernetics, Vol.29 (2000), 513-533.
- [9] Ohtsuka, K. and Kimura, M.: Differentiability of potential energies with a parameter and shape sensitivity analysis for nonlinear case: the p-Poisson problem, Japan J. Indust. Appl. Math. DOI 10.1007/s13160-011-0049-6.