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Shape optimization for partial differential
equations/system with mixed boundary conditions

Kohji Ohtsuka (KK EZ) *
Faculty of Information Design
Hiroshima Kokusai Gakuin University, Hiroshima 739-0321, Japan

1 Theory of GJ-integral

Let X and M be real Banach spaces and let X’ and M’ be their dual spaces, respectively.
For Uy C X (Up # 0) and an open subset Oy C M (Op # B), we consider a real valued
functional J : Uy x Oy — R. In general, for u € Uy and w € X, the Gateaux derivative
0xJ(v, u)[w] € R is defined as

d
OxJ(u, plw] = = J(u+tw,p)| -,
t=0

when it exists. If dxJ(u,p){w] exists, from the linearity of the Gateaux derivative,
dxJ(u, p)[ow] exists for arbitrary o € R and it satisfies and it satisfies

dxJ(u, p)law] = adx J(u, p)[w].

We use the symbols Ox and Jjs to denote the partial Fréchet derivative operators for
J (u, u) with respect to u € X and u € M, respectively, and assume the following.

(H1) [u— J(w,pn)] € CHOy) for all w € Uy, and OpJ : Uy X Oy — M’ is continuous at
(u(po), po)-

(H2) The Banach space X is reflexive and Uy is closed and convex in X.
(H3) For the functional [v — J(v, uo)], %o is a unique minimizer over U.

(H4) The functional [v — J(v, o)) is sequentially lower semicontinuous with respect to
the weak topology of X.

(H5) There is a monotone nondecreasing function Gy defined on [0, co) with lim,_,o, Go(s) =

oo such that
Bo(llvllx) £ J(v,p)  (vEls, p € Oo).
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(H6) For any £ > 0 and R > 0, there exists § > 0 such that

T (w,) = T, po)l Se (veUs, olx SR, p€ O, I~ pollar < 9).

(H7) For v € Uy, the function [t — J(up + t(v — uo), o)] belongs to C((0, 1]). Moreover,
fo_r a sequence {u,}, C Uy which weakly converges to up as n — 00, the condition
limy, —000x J (Un, o) [tn — o] < 0 implies that u, — up strongly in X as n — oo.

In particular, under the condition (H7),

OxJ (v, po)[v — ug) = %J(uo + t(v — ug), to)

t=1

exists for all v € Uy. The condition (H7) is often called the (S, )-property.

Theorem 1 Under the conditions (H1)-(H7), [u — J«(1)] is Fréchet differentiable at
u = o and the following holds.

Dyu[J(u(po), )] = OarJ (u(po), po) (1)
where the D,, denotes the Fréchet differential operator with respect to u € M.

See [9] for the proof. Theorem 1 will play an important role in design sensitivity
analysis by considering mu to be a design variable. We shall show that Theorem 1 derive
an important result in the shape sensitivity analysis of energy.

1.1 Boundary value problems and its Lipschitz perturbation

Let 2 be a bounded domain in R? (d > 2) and LP(Q2, R™) Lebesgue space of all measurable
functions v :  — R™ (a real number 1 < p < co and an integer m > 1) with ||v||, o

m 1/p
[0l = (Z/lwlp) U= (v1,* , V)
i=1

P(f,V(Q,Tp)): For a given function f € L” (Q,R™),p’ = p/(p—1), find u minimizing
the following functional

E(v; £,Q) = /Q {W(m,v, Vv) — f-v} dz

over the space
V(Q,Tp)={ve WP QR™:v=00nTp}

where I'p stands for the part of 002 and a scalar function W(ﬁ ,2,0) : REXR™ x R>*™ —
R is in C* (R? x R™ x R™™) and W'?(Q2,R™) denote Sobolev space of functions v €
LP(, R™) with [|v]|, ,q-

We now give a condition of the existence of minimizers for P(f,V(Q,T'p)).
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Theorem 2 If W satisfies the coercivity condition
W(E,2,0) > ailgP + calzl® + e (€) (2)

for almost every £ € Q and for every (z,{) € R™ x R™¢ and for some a; € L'(Q),
c2€R,c;>0andp>q>1. Assume that ( — W (&, z,() is convez and E(0; f, ) < oo,
then there is a minimizer u

E(w; /,) = min &(v; £,Q)

UGV(Q,FD)

attains its minimum. e
Furthermore, if (z,{) — W(&, 2,() is strictly convez for almost every £ € Q, then the
MINUMIZET 1S Unique.

See [2][Theorem 3.30] for the proof.

We assume the growth conditions of W, that is, for almost every £ € , for every
(2,¢) € R™ x Rmxd

W20l < () + (2 +1¢P) 3)
DW(&20l < aa®) +ellalP +1CP)
IDW(& 2,0l < as(€) + el +1CP)

where a; € L*(Qy), oz, as € LPP~ () and ¢ > 0,

- %‘W (57 2, C) EZ‘%IW (fa 2, C)
DW (u) = : :

— —~

- R -
1d W20 Cma Wi(£20) (§:2,.)=(z,v(2), V()

DzW (’U,) = (B?W(E’ Z, ()a ,bjw ({az, C))
' ¢ (€20 =((2),Vo(2))

Then, we have the following proposition.

Proposition 3 If u is the solution of P(f,V(Q,T'p)) and W satisfy Condition (3), then
/ {D{W(ac, u, Vu) : Vv + DZW\(x, u, Vu)v — fv} dr =0
Q

for allv € Wol‘p(Q,]Rm), where A : B = A;;B;; for two matrices A and B.
See [2][Theorem 3.37] for the proof.

Putting
F(v) =/W(x, v, Vv)dz
Q



we have for X = WH?(Q,R™),
(6xF(v),w)x = lim € F(v + ew) — F(v)]

- / {DCW(JZ, v, Vo) : Vw + Dz/V[?(x,v, Vv)w} dz
0

The operator [v — dx F(v)] is called uniformly monotone, if there is a strictly monotone
increasing continuous function a : R, — R, with a(0) = 0 and lim; ., a(t) = 400 such
that

(0x F(v) — 0xF(w),v — w)x 2 a(llv — wl|x)llv — wllx

If [v — 6xF(v)] is uniformly monotone, then the condition (H7) is satisfied. Indeed,
taking a sequence u, — u weakly in X, we have

(0xF(un) = frun —u)x = (OxF(un) = 0xF(u);un —u)x
> a(llv - wllx)llv - wlix

Since X is reflexive, the strong convergence u, — u follows from

a(llv — wllx) < [10xF(un) = fllx

1.1.1 Perturbation
We choose a bounded convex domain )y with © C Qo, and define M = W1H*(, R¢) and

Oy = {go €M: |o— voluipa, < <1, () C Qo} , (4)

where ag € (0,1) is a fixed number and we denote by ¢, the identity map on RY, i.e.,
vo(z) = = (z € R%). Then ¢ € Oy becomes a bi-Lipschitz transform from € onto ().

For the domain (), ¢ € Oy, we consider the problem P(f,V(¢(Q),¢(I'p))): Find
u(t) minimizing the following functional

E(v; f, () = / {W(x, w,Vw) — f- w} dz

()
over the space
V(p(9),¢(Tp)) = {w € W' (p(2),R™) : w =0 on ¢(T'p)}

We define a pushforward operator ¢, which transforms a function v on Q to a function
@.v=1vop*on (). For g € [1,00], ¢, is a linear topological isomorphism from L¢(§2)
onto L4((Q)), and a linear topological isomorphism from W14(Q) onto W4(¢(f)). For
v € V(,Tp), we get the equivalence,

E(uv, f,90(Q)) = /Q {W ((2), v(2), [Alp) ()] Vo(2)) — fo w(r)v(w)} k(p)(z)dz  (5)

where

Alp) = (V7)™ € L®(Q0,R™),  k(p) = det V" € L(Q0,R).
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We denote the right-hand side of (5) by J(v, ¢), and apply Theorem 1 to J(v, ¢).
If W satisfy the growth condition (3) and

—~

|DeW (&, 2, )| < a(§) + (|2l + [CIP)
then we have the following proposition.

Proposition 4 Suppose that f € WiP/®=1(Qy). Then J € C*(X x Op) and

OnrJ (u, po)lp] = '% /Q W (z + tu(), u(z), [Alpo + th)(2)] Vu(z)) K(po + tp)(z)de

t=0

- / 7 o (g0 + tu)()o(z)n(po + tu)()dz| (6)

t=0

= /Q (DeW (u) - p — (DeW (u))" (V") Vu + W(u)dive — div(f - p)v) de.

where (DeW (u))(ViF) Vs = 3,406, W (@, 1, V1) (By108) (Bes).

1.1.2 Definition of GJ-integral
For an open subset w in R% and p € W1 (Rd, ]Rd), GJ-integral [5, 6, 7, 8]

Tw (U,P) =P, (u) P) + R, (uv P)

is defined by
P, (u,p) = /3 . (W e-n - (Vu-p)}ds

R, (u,p) =— / {V{VV (wy-p+f-(Vu-p)— (VCW (u))T (Vp") Vu + W (u) div p} dx

wn

where n = (nq,- -+ ,n4)” is the outward unit normal of 8 (w N Q), i-th component of T (u)
is n;V¢,, W (z,u, Vu) and ds the surface(line) element of 0 (w N ).

Proposition 5 If u|.ng € WP (w N Q,R™) and the divergence formula

VW (v) - pdz = / W(u)(p - n)ds — /m W (v) div pdz (7)

wnQ (wn)

holds, then
T (u,p) =0 for all p € W™ (9, RY) (8)

Consider the perturbation Q(t),0 < ¢ < ¢ of 2 and the problems P(f, V/(€(t),'n(t)))
that are given by ¢; such as Q(t) = ¢;(2) and I'p(t) = ¢(T'p).

[M1] For each t € [0,€), ¢; is 1-1 mapping and has the inverse ;.



[M2] [t — @] € C* ([0,€), W™ (€, RY)).

Theorem 6 If E(v,p) = E(p.v, f, () satisfies the conditions [H1] - [H7], then it
follows for all ¢, satisfying [M1] and [M2] that

GE@®L.20) =Rl = [ Frulu s ©

t=0

where p, = dp,/dt|,_,.

2 Application to shape optimization (Energy)

In Theorem 6, we get the shape sensitivity analysis of the potential energy Q — E(u; f, Q).
We introduce Azegami’s method[1, 4] to find optimum shape Q° assuming that the cost
function is the energy, that is, find u° and Q° such that

E(f;u, Q) < E(F;u(),Q) for all domain Q

under some restrictions, where u(€2) is the solution of P(f, V (€, T'p)).

2.1 Azegami’s method

Let V(Q2) be the subspace of W12(Q, R?) and let bo(V, 1) be a bilinear defined on V(£2) x
V(Q) stisfying the following conditions.

[A1] bo(V,u) < ag||V]ly g0 llull o0 for all V,u € V(Q) with a constant ag > 0.
[A2] bo(V,V) > ag HVH?29 for all V € V(2) with a constant ag > 0.

Consider the variational problem II(u, f,2): Under the condition of Theorem 6, find
Ve € V() such that

bo(V°, 1) = Ra(u, 1) + /an f-u(p-n)ds for all p € V() (10)

The mapping ¢;(z) = = + tV°(z) from Q to R? is 1-1 if ¢ is near 0. Unfortunately,
[u — Rq(u, p)] is linear functional on Wh*°(£2,R%), and is not on W12(Q, R?). To extend
it on W2(Q, R?), we need slightly smoothness of u.

Proposition 7 If d = 2 or 3, and the solution u of P(f,V(Q,T'p)) is in WH?(Q,R™),
then there is a constant oo > 0 such that

Ralu)+ [ f-uu-n)ds S cvollullyp for all u € WH(@, RY
Q
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If u € WH2(Q, R™), then there is a unique solution V° € W2(Q, R?) of I1(u, f,Q). If
Ve e WHe(Q,R?), then [t — ¢y(z) = z+tV°(z)] € C* ([0,€), WH*(Q,R?)). So we can
apply Theorem 6

E(u(®); [,21) — E(u; £,Q) = —t {Rg(u, V) + /{; f-u(V°-u) ds} +o(t)

= —tbo(V°, V°) + o(t)
< —tog ||V°I[2 5. + O(t)

2.2 Numerical examples

We now check the method for the following simple two cases: We start from the initial
shapes, Q0 = {(z1,2;) € R? : 12 + 22 < 1},
Iy = {(cosf,sinf) : 0 < § < 7}, I} = {(cosf,sinf) : 7 < 6 < 2x}.

contour map of u™ contour map of 4™ contour map of u®

Figure 1: Optimization process under the condisions || = 7 and I'y, = I'p



179

When Q* was already obtained, find a shape Q¢! such that
EW™ £,QM) < E(u £, )
e ) = [ {3op-po}as
o 12
EW,£,Q) = min E(v; f, Q)

veV(Qi,I'y)
under the condition: [Q°| = m,i = 0,1,---, where || denotes the area of Q. We find
Q"+ by Azegami’s method using the vector field V¢ calculated by (10) and for some ¢ > 0

O = {2+ 8Vi(z) : z € O}
In the first example, f = 0.5, I'p is fixed and Ty is changeable, so we use for V() in
(10), the following
VQ)={AeW"(Q,RY):A=0 onIp}

We get the shapes in Fig.1 with finite element programming language FreeFem++ [3].

At the initial stage of the optimization, the stress concentrations at points y; =
(1,0),72 = (—1,0) are weaken by making a small circular hole near v; and v4,. The
optimization is going to be divided to two parts Q% and Q% in which Q% ruled by I'p
and Q%; ruled by Neumann boundary condition.

contour map of u®

contour map of ™

contour map of u*

contour map of u® contour msp of ™

Figure 2: Optimization process under the condisions |Q¢| = , in the condition to permit
a change of I'%,

In the second example, find the optimum shape under the conditions f = 0.5, and
that I'p is changeable. The results are in Fig. 2, and we see that [I'3!| < |I'| where
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IT'%,| is the length of the curve I'y,. It’s natural because

E(v; £,9) < E(w; f,Q) ifTh C T}
e, wif Q)< min &l ) ifIpCIp

3 Application to shape optimization (general form)

We now consider the cost functional as follows: For the solution u of P(f,V(2,T'p)),

T°(w,Q) = / g(u)do

3.1 Shape derivative of the solution

In this section, we limit P(f,V(2,p)) to linear case, because the adjoint problem will
be used. The following is the main theorem in the section.

Theorem 8 For any 9 € C (;R™), let uy be the solution of P(9,V(Q,T'p)). Then we

have p
kLl / u(t) - 9dz
dt Ja) 40

where 6 Ro (u, ug; p,) = lime_o €7} {Ra (u + eug; py) — Ra (u; y) }. By the estimation

~ GRa (wuaisiy) + [ f s (g ) ds

< Gl flli a0 19Mloz0 kel wa

léRn(u,uo;w)+/mf~U(u¢-n)

and the result that CS° (Q; R™) is dense in W2 (Q;R™) = L? (S R™), sot™! (u (t) o ¢y — u)
converges weakly in L? (Q; R™) and

d : :
— . = — Uy, - =limt Y (u(t -
7 /n o u(t) - 9dz /Q (u Mo Vu) ddz, u lim ¢ (u(t)opr —u)

See [8] for the proof.
If [z — g (2)] € WY (R™;R), then [u(t) — g (u(t))] € W12 (Q(t); R) and

/Q RCOLS /Q g (u) dz = /Q {9(u(t) o ge) K(r) — 9(u)} dz
- /Q {9 (u(t) 0 @) — g(a)) m(pe) + g(u)(x(r) — 1)} dz

t=0

from which it follows that

d
RGO

_ / (V.0 (u) i — Vag(u) (p - Vu)} da + / 9(w) (1 - m)ds
Q N

=/Vz9 (u) u’dx—{-/ g(u)(uy - n)ds
Q N

= ‘/ﬂ {V.9 ()t + g(u)div p,} dz



Proposition 9 Let u, be the solution of P(V,g (u),V(,Tp)), then

/ V.9 (u) v'dr = 6Rq (u, ug; ) +/ [ ug(pp-n)ds
Q 80

which implies

il oo
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