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Abstract

We construct oriented matroids of rank 3 on 13 points whose realiza-
tion spaces are disconnected. They are defined on smaller points than
the known examples with this property. Moreover, we construct the one
on 13 points whose realization space is a connected and non-irreducible
semialgebraic variety.

1 Oriented Matroids and Matrices

Throughout this section, we fix positive integers r and n.

Let X = (21,...,2,) € R™ be a real (r,n) matrix of rank r, and E =
{1,...,n} be the set of labels of the columns of X. For such matrix X, a map
X can be defined as

Xy P E" = {-1,0,4+1}, xy(i1,... %) :=sgndet(zs,,..., 2, ).

The map x is called the chirotope of X. The chirotope x, encodes the infor-
mation on the combinatorial type which is called the oriented matroid of X. In
this case, the oriented matroid determined by x is of rank r on E.

We note for some properties which the chirotope x, of a matrix X satisfies.

1. Xy is not identically zero.

2. Xy is alternating, i.e. Xy (io(1),---»i0(r) = 880(0) Xy (11, - -, ir)
for all 41,...,i, € E and all permutation o.

3. For all i1,...,%y,j1,...,jr € E such that
Xx(jkai2a~'~7ir)'Xx(jl,-~~ajk71>ilajk+la~'~7jr) ZOfOI'k: ].,...,7’,
we have xy (i1,...,%) - Xy (J1,---,Jr) > 0.
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The third property follows from the identity
det(zq,...,2,) - det(y1,...,yr)
T
= Zdet(yka T2, .. ,.’177«) : det(yla e Y—1,T1, Yk+1s - - - 7y7“)a
k=1

for all x1,...,2r,y1,...,yr € R".

Generally, an oriented matroid of rank r on E (n points) is defined by a
map x : E” — {—1,0,+1}, which satisfies the above three properties ([1]). The
map Y is also called the chirotope of an oriented matroid. We use the notation
M(E, x) for an oriented matroid which is on the set E and is defined by the
chirotope x.

An oriented matroid M(E,x) is called realizable or constructible, if there
exists a matrix X such that x = x. Not all oriented matroids are realizable,
but we don’t consider non-realizable case in this paper.

Definition 1.1. A realization of an oriented matroid M = M(E, x) is a matriz
X such that xy = x or xy = —X-

Two realizations X, X’ of M are called linearly equivalent, if there exists
a linear transformation A € GL(r,R) such that X’ = AX. Here we have the
equation y, = sgn(det A) - x .

Definition 1.2. The realization space R(M) of an oriented matroid M is the
set of all linearly equivalent classes of realizations of M, in the quotient topology
induced from R"™.

Our motivation is as follows: In 1956, Ringel asked whether the realization
spaces R(M) are necessarily connected [6]. It is known that every oriented ma-
troid on less than 9 points has a contractible realization space. In 1988, Mnév
showed that R(M) can be homotopy equivalent to an arbitrary semialgebraic
variety [3]. His result implies that they can have arbitrary complicated topo-
logical types. In particular, there exist oriented matroids with disconnected
realization spaces. Suvorov and Righter-Gebert constructed such examples of
oriented matroids of rank 3 on 14 points, in 1988 and in 1996 respectively [7, 5].
However it is unknown which is the smallest number of points on which oriented
matroids can have disconnected realization spaces. See [1] for more historical
comments.

One of the main results of this paper is the following.

Theorem 1.3. There exist oriented matroids of rank 3 on 13 points whose
realization spaces are disconnected.

Let d and p be positive integers. The solution of a finite number of polyno-
mial equations and polynomial strict inequalities with integer coefficients on R?
is called an elementary semialgebraic set.



Let fi,...,fy € Z[v1,...,v4) be polynomial functions on R? and V C R¢
be an elementary semialgebraic set. For a p-tuple € = (e1,...,¢,) € {—,0,+}7,
let

V.= {UE 4 | sgn(f,;(v)) =¢ forizl,...,p}

denote the corresponding subset of V. The collection of the elementary semial-
gebraic sets (Ve)ee(— 0,41 is called a partition of V.

In the case r = 3, a triple (i, j, k) € E® is called a basis of x if x(i, j, k) # 0.
Let B = (i,7,k) be a basis of x such that x(B) = +1. The realization space
of an oriented matroid M = M(FE, x) of rank 3 can be given by an elementary
semialgebraic set

R(M, B) := {X e R3" | T =e€1,Tj =e€2, Ty = €3, Xy = X}’

where ey, e, e3 are the fundamental vectors of R3. For another choice of a basis
B’ of x, we have a rational isomorphism between R(M, B) and R(M, B’).
Therefore realization spaces of oriented matroids are semialgebraic varieties.

The universal partition theorem states that, for every partition (V;)ee(— 0, 4}»
of R?, there exists a family of oriented matroids (M) c(_ o+}» such that the
collection of their realization spaces with a common basis (R(M€, B))ce{— 0,4}
is stably equivalent to the family (Vi)ccq—,0,4}». See [2] or [4] for universal par-
tition theorems.

We construct three oriented matroids M€ with € € {—,0,+} of rank 3 on
13 points, whose chirotopes differ by a sign on a certain triple. These oriented
matroids present a partial oriented matroid with the sign of a single base non-
fixed, whose realization space is partitioned by fixing the sign of this base.
Two spaces R(M™) and R(M™) are disconnected, and R(M?) which is a wall
between the two is connected and non-irreducible. So we also have the following.

Theorem 1.4. There exists an oriented matroid of rank 3 on 13 points whose
realization space is connected and non-irreducible.

Remark 1.5. An oriented matroid M(E,x) is called wuniform if it satisfies
X(i1,...,8.) # 0 for all 44 < --- < i, € E. Suvorov’s example on 14 points
is uniform and the examples which we construct are non-uniform. It is still
unknown whether there exists a uniform oriented matroid on less than 14 points
with a disconnected realization space.

Acknowledgment. I would like to thank Masahiko Yoshinaga for valuable
discussions and comments. I also thank Yukiko Konishi for comments on the
manuscript.

2 Construction of the examples

Throughout this section, we set E = {1,...,13}.



Let X (s,t,u) be a real (3,13) matrix with three parameters s,¢,u € R given
by

X(S t,’U,) : (3317 71‘13)
1 001 s s 0 1 1 st s+t—u—st+ su
= 01 01 0 1 ¢t t wu t t—u—+ su
0 01 11 1 11 0 1-—su 1—u+su
s+t—st—s?u s(t—u+su)
t t—u—+ su
1—su 1—u+su

This is a consequence of the computation of the following construction se-
quence. Both operations “V” and “A” can be computed in terms of the standard
cross product “x” in R®. The whole construction depends only on the choice of
the three parameters s, t,u € R.

z1 = '(1,0,0), z2 = £(0,1,0), 23 = *(0,0,1), x4 = *(1,1,1),
Ts = 5-T1 + T3,

xg = (z1 V 24) A (22 V T5),

Tz =1t w2+ x3,

xg = (21 V) A (22 V 2y),

Tg =U- -T2 + 21,

210 = (7 V xg) A (23 V T6),

x11 = (x4 V x5) A (T8 V 9),
x12 = (1 V T10) A (24 V 25),

(

T13 — .’Kg\/l'ﬁ) ((ﬂl\/l'll).

We set Xog =X (%, %, %) The chirotope € is the alternating map such that

€ lf (Z’]7k) = (9)12713)5
Xx, (1,4, k) otherwise,

for all (4,5, k) € E3(i < j < k),

X“(1, 5, k) = {

where € € {—,0,+}.
The oriented matroid which we will study is M€ := M(E, x°).

Remark 2.1. We can replace X with X (3,2,4/) where u' is chosen from
R\{-1,0, ;,1, ;’,2,3}. We will study the case 0 < v/ < % If we choose u’
otherwise, we can get other oriented matroids with disconnected realization
spaces.

In the construction sequence, we need no assumption on the collinearity of
Tg,X12,%13. Hence every realization of M€ is linearly equivalent to a matrix



X(s,t,u) for certain s,¢,u, up to multiplication on each column with positive
scalar.
Moreover, we have the rational isomorphism

R*(x°) % (0,00)"* 2 R(M),

where R*(x¢) := {(s,t,u) € R? | XX (st) = X¢}. Thus we have only to prove
that the set R*(x¢) is disconnected (resp. non-irreducible) to show that the
realization space R(M°€) is disconnected (resp. non-irreducible).

The equation XX (s,tu) = x€ means that

sgndet(z;, x;, k) = X°(4, 4, k), for all (4,5, k) € E3. (1)

We write some of them which give the equations on the parameters s, ¢, u. Note
that for all (4,4, k) € E3({i,j,k} # {9,12,13}), the sign is given by

X(i,7, k) = sgndet(xi, 5, T1) | s=t=1/2,u=1/3-

From the equation sgn det(xs, 3, z5) = sgn(s) = sgn(1/2) = +1, we get s > 0.
Similarly, we get det(xs,x5,24) =1 — s > 0, therefore

0<s <1 (2)
From the equations det(z1,27,z3) =t > 0,det(x1,z4,27) =1 —¢ > 0, we get
0<t<l1. (3)

Moreover, we have the inequalities

W

det(z1,x9,23) = u > 0,

det(zg,x7,29) =1 —t —u > 0,

det(z3, x9,28) =t —u > 0,

det(zs, 713, 27) = s(t* — (1 — s)u) > 0,
det(zg, z12,28) = (1 = 5)((1 = t)* — su) > 0.

(¥4
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From the equation det(zg, 212, 213) = u(1 — 2s)(1 — 2t 4 tu — su), we get
sgn(u(l —2s)(1 — 2t + tu — su)) =e. 9)

Conversely, if we have Egs. (2) - (9), then we get (1).

We can interpret a (3,13) matrix as the set of vectors {z1,..., 213} C R3.
After we normalize the last coordinate for z; (i € E\{1,2,9}), we can visualize
the matrix on the affine plane {(z,y,1) € R3} = R2. Figure 1 shows the affine
image of Xy. See Figures 2, 3 for realizations of M¢.

Proof of Theorem 1.3. We prove that R*(x~) and R*(x™) are disconnected.
From Egs. (2) - (9), we obtain

O0<s<l,0<u<t<]—u,
R (x7) =< (s,t,u) eR¥| (1 =t)2 —su>0,t> — (1 —s)u>0, 5,
(1-2s)(1—2t+tu—su) <0
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Figure 1: Column vectors of Xj.
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Figure 2: Realization of M~ (on the left) and that of M™ (on the right).
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Figure 3: Realizations of M".




O0<s<l,0<u<t<]l—u,
R*(xT) =< (s,t,u) e R¥| (1 =) —su >0, t? — (1 — s)u > 0,
(1—-2s)(1 —2t+tu—su) >0
First, we show that R*(x~) is disconnected, more precisely, consisting of
two connected components, by proving the next proposition.

Proposition 2.2.

R () = {<s,t,u> e B

0<s<1/2 . (1-t)2 2t-1
1/2<t<1 ,O<u<mm{1t,S i

1/2<s<1 0<u<mindt 2 1-2t
0<t<1/2” "1—-5" s—t ’

U {(s,tu)é R3

Proof. There are two cases

1-25>0,1—2t+tu—su <0,
(I1-28)1—2t+tu—su) <0< or
1—-2s<0,1—2t+tu—su>0.

Note that
(2—u)(2t —1) = —2(1 — 2t + tu — su) + u(l — 2s), (10)
t2—(1—s)u=—(1—2t+tu—su)+ (1 —t)(1 —t—u), (11)
(1—1)? —su= (1 — 2t +tu — su) +t(t —u). (12)

(C) For the case 1 —2s > 0 and 1 — 2t + tu — su < 0, the inequality 2t — 1 > 0
follows from Eq. (10). Since we have 0 < s < 1/2 <t < 1, we get

1—-2t+tu—su<0 2
’ 1-—t 2t — 1
-9 } (13)

(1—1)2 —su>0, ®u<min{1—t, ' S
1—t—u>0 5 s

For the other case 1 — 2s < 0, similarly, we get 1 — 2t > 0 from Eq. (10).
Since we have 0 <t < 1/2 < s < 1, we get

1 -2t +1tu— su>0, 2 1 _9
2 —(1—s)u>0, @u<min{t, T t}' (14)
t—u>0 m8 s

(D) For the component 0 < s < 1/2 < t < 1, the inequalities 1 — 2t + tu — su <
0, (1—t)2—su >0, 1—t—u > 0 follow from (13). Thus we get t? — (1 —s)u > 0
from Eq. (11). The inequality u < t holds because ¢t > 1/2 and v < 1 — 1.

For the other component 0 < ¢t < 1/2 < s < 1, similarly, we get the in-
equalities 1 — 2t + tu — su > 0,t> — (1 — s)u > 0, ¢t —u > 0 from (14), and
(1 —1t)% —su > 0 from Eq. (12). Last, we get u < 1 —¢ from ¢ < 1/2 and
u < t. O



For the set R*(x ™), we have the following proposition.
Proposition 2.3.

0<s<1/2,0<u<1/2 1—su
* +\ 3 I ) _—
R(X){(S,t,u)ER (1—u)2—(1—s)u>07 (1 S)u<t<2_u
1/2<s<1,0<u<1/2, 1—su
3 ) ) _
U{(s,t,u)eR (1—w)?— su>0, o <t<1 \/su}

The proof is similar to that of Proposition 2.2 and omitted.

Proof of Theorem 1.4.We show that R*(x?) consists of two irreducible compo-
nents whose intersection is not empty. From Egs. (2) - (9), we get

0<s<l,0<u<t<l—u,

R*(X°) =< (s,t,u) € R3| (1 —1)2 —su>0,t> — (1 —s)u >0,
(1-28)(1—2t+tu—su)=0

Here we have the decomposition
R*(x°) :{(s,t,u) cR? ’ 0<t<1,0<u<2?,u<21—-1t)?%1-25=0

0<s<1,0<u<1/2 (1—u)?—su>0,
1-u)?2—(1-8)u>0,1-2t+tu—su=0

U {(s,t,u) e R3

The intersection of the two irreducible components is the set
3 1 1] ~ 11 1
{(s,t,u)eR ‘S:t:§,0<u<§}:{X(§,§,u) ’0<u<§}.
The proof is also similar to that of Proposition 2.2 and omitted.

Figure 3 shows two realizations of M°. On the left, it shows the affine image
of X(%, %, i), on the irreducible component 1 —2s = 0. On the right, the image
of X(%, %7 %), so it is on the other component 1 — 2t 4+ tu — su = 0. They can
be deformed continuously to each other via X (%, %, u) O<u< %)

We set

R* = {(s,t,u) cR?

O0<s<l,0<u<t<]l—u,
1=t —su>0,t>—-(1—s)u>0

The set R* x (0, 00)'? is rationally isomorphic to a realization space of a partial
oriented matroid with the sign x(9,12,13) non-fixed. The collection of the
semialgebraic sets (R*(X®))ec—,0,+} is a partition of R*. Figure 4 illustrates
this partition in 3-space.
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