
Title Entropic release of a big sphere from a cylindrical vessel

Author(s) Mishima, Hirokazu; Oshima, Hiraku; Yasuda, Satoshi; Amano,
Ken-ichi; Kinoshita, Masahiro

Citation Chemical Physics Letters (2013), 561-562: 159-165

Issue Date 2013-03

URL http://hdl.handle.net/2433/172456

Right © 2013 Elsevier B.V.

Type Journal Article

Textversion author

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39298731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 1 

Entropic release of a big sphere from a cylindrical vessel  

 

Hirokazu Mishima
1
, Hiraku Oshima

2
, Satoshi Yasuda

1
, Ken-ichi Amano

3
, 

Masahiro Kinoshita
2
 

 

1
Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011, Japan  

2
Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan 

3
Graduate School of Science, Kobe University, Nada, Kobe, Hyogo 657-8501, Japan 

 

 

Author to whom correspondence should be addressed: Masahiro Kinoshita.  

E-mail address: kinoshit@iae.kyoto-u.ac.jp. 

 

 

ABSTRACT 

 

Insertion and release of a solute into and from a cylindrical vessel comprising 

biopolymers is a fundamental function in biological systems. In earlier works, we 

reported that the solvent-entropy (SE) effect plays imperative roles for insertion. Here 

we show that release is also achievable by the SE effect: The solute can be moved from 

an entrance at one end of the vessel to an exit at the other end using a continuous 

variation of the vessel geometry. Since the SE effect is rather insensitive to the 

solute-solvent affinity, our result may provide a clue to the “multidrug efflux” of TolC. 
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1. Introduction 

 

Insertion of a solute into a vessel comprising biopolymers followed by release of 

the same solute from it is a fundamental function in biological systems. It is quite 

interesting that the two apparently opposite events, insertion and release, successively 

occur in a system. A typical example of such an insertion/release process is found for 

TolC: an important component of the tripartite efflux system, AcrA/AcrB/TolC [1-3]. 

AcrB is an efflux pump protein, TolC is a cylindrical vessel possessing an entrance at 

one end and an exit at the other end for the solute, and AcrA mediates the contact 

between AcrB and TolC. AcrB interacting with TolC at the entrance sends the solute to 

the central position within the vessel cavity of TolC, and then the solute is moved to 

the exit. 

In earlier works [4-6], we showed that the solute-vessel potential of mean force 

(PMF denoted by ) formed by the solvent plays imperative roles for insertion. The 

PMF represents “the free energy of the solvent for a fixed configuration of the 

solute-vessel pair” minus “that for the configuration where the solute is infinitely far 

from the vessel”. It is physically insightful to decompose the PMF scaled by kBT (kB is 

Boltzmann’s constant and T is the absolute temperature), /(kBT), into its energetic 

and entropic components denoted by E/(kBT) and S/kB, respectively: 

/(kBT)=E/(kBT)S/kB. 

A target of our earlier works was the protein flux through a chaperonin system 

[5-9]: An unfolded protein is inserted into the chaperonin from bulk aqueous solution, 

protein folding occurs within the chaperonin cavity, and the folded protein is released 

back to the bulk. The conclusions drawn were as follows [5,6]. 

 

(1) S/kB represents the solvent-entropy effect originating from the translational 

displacement of solvent molecules. It is closely related to the excluded volume (EV) 

generated by the solute. (The solute generates a space which the centers of solvent 

molecules cannot enter, and the volume of this space is the EV.) S/kB is rather 

insensitive to the solute-solvent and vessel inner surface-solvent affinities, namely, to 

whether the solute or the vessel inner surface is solvophobic or solvophilic (on 

condition that they are neither too solvophobic nor too solvophilic). S/kB always 

drives the solute to be inserted into the vessel cavity and constrained within a small 

space almost in the center. The power of insertion and constraint becomes stronger as 

the EV increases. 

 

(2) E/(kBT) is strongly dependent on the solute-solvent and vessel inner 

surface-solvent affinities. The roles of E/(kBT) can be summarized as follows. When 

the inner surface of the vessel is solvophilic, the solvent number density within the 

vessel cavity is higher than that in the bulk aqueous solution. As a result, a solvophilic 

solute is preferentially solvated within the cavity, whereas a solvophobic solute is 

more stabilized in the bulk solution. When the inner surface is solvophobic, the solvent 

number density within the cavity is lower than that in the bulk. Consequently, a 
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solvophobic solute is more stabilized within the cavity, whereas a solvophilic solute is 

preferentially solvated in the bulk. 

 

(3) As for the protein flux through a chaperonin system, when a protein is inserted or 

released, the inner surface of chaperonin is weakly hydrophobic [5-9]. An unfolded 

protein with large EV and weak hydrophobicity is driven to be weakly inserted by 

E/(kBT) and strongly inserted by S/kB, and the net action is insertion. The switch 

from insertion to release is achieved by altering the protein properties  as follows. The 

folding reduces the EV and makes the protein more hydrophilic. S/kB and the power 

of insertion then become weaker, with the result that E/(kBT) dominates. The folded 

protein is released back to the bulk aqueous solution to become preferentially hydrated 

in the bulk. The switch from insertion to release is thus realized, and S/kB drives 

insertion while E/(kBT) is requisite in release. 

 

In TolC, by contrast, the solute properties remain unchanged for insertion and 

release, and the switch from insertion to release should occur through a different 

mechanism. AcrA/AcrB/TolC extrudes a variety of drug molecules (i.e., nonpolar, 

polar, and charged solutes), and this variability is known as “multidrug efflux” [1-3]. 

However, its microscopic mechanism remains rather mysterious and has not been 

elucidated yet. We emphasize that the multidrug efflux of AcrA/AcrB/TolC can be 

performed only when TolC as well as AcrB exhibits this feature. In this Letter, we are 

concerned with the multidrug efflux of TolC. The multidrug efflux is indicative that its 

mechanism cannot be chemically specific but rather has to be based on a physical 

factor. We show that the factor is a time-dependent entropic force acting on a solute, 

which originates from the solvent-mediated interaction between the solute and TolC 

whose geometry is time dependent. The model system employed is very simple but 

takes this important factor into consideration. 

On the basis of the results summarized in (2), if E/(kBT) dominates, we can 

conclude the following. In cases where the inner surface of the vessel is hydrophilic, 

only hydrophilic solutes are inserted, and they are released when the inner surface 

turns hydrophobic. In cases where the inner surface is hydrophobic, only hydrophobic 

solutes are inserted, and they are released when the inner surface turns hydrophilic. It 

is thus difficult to treat both of hydrophilic and hydrophobic solutes: The multidrug 

efflux cannot be exhibited if E/(kBT) dominates. To realize the multidrug efflux, the 

PMF must be governed by S/kB with the insensitivity mentioned in (1). An important 

point is that when the vessel inner surface is neither hydrophilic nor hydrophobic and 

the solute within the cavity and that in the bulk aqueous solution share almost the same 

stability, E/(kBT) is much less powerful than S/kB (i.e., S/kB dominates). This 

can be relevant to TolC whose inner surface possesses a mixture of predominantly 

nonpolar and isolated electronegative patches [1]. However, S/kB always acts for 

insertion. A question then arises: Can a solute be released without adjusting E/(kBT) 

unlike in the chaperonin case? 

Here we explore the possibility of releasing the solute by S/kB alone. We 
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calculate the spatial distribution of the PMF between a big sphere and a cylindrical 

vessel with open ends immersed in small spheres using the three-dimensional (3D) 

integral equation theory [4-6,10-15] combined with rigid-body models. With the 

rigid-body models, all of the allowed system configurations share the same energy and 

the system behavior is purely entropic in origin [15]. Namely, /(kBT) possesses only 

the entropic component:/(kBT)= S/kB. Unlike in our earlier works, the vessel 

geometry is made variable after the solute insertion. It is demonstrated that release can 

also be achieved by S/kB: The solute is entropically moved from the entrance to the 

exit by a continuous variation of the vessel geometry. Since the spatial distribution of 

the PMF becomes largely positive and largely negative with the periodicity of the 

molecular diameter of the solvent, dS=0.28 nm, even a variation of the vessel geometry 

within the scale of dS leads to a drastic change in the spatial distribution, thus enabling 

the vessel to control the solute motion. 

In biological systems, the solvent is water characterized by hydrogen bonds. 

However, in hydration thermodynamics of a solute, the translational entropy 

predominates over the rotational entropy [16]. The entropic effect originating from the 

translational displacement of water molecules can be described by modeling water as 

hard spheres except when its temperature dependence plays essential roles (e.g., in the 

elucidation of cold denaturation of a protein [17,18]), as long as the diameter and 

number density of the hard-sphere solvent are set at those of water [19-21]. We note 

that the hydrogen-bonding allows water to exist as a dense liquid despite its quite a 

small molecular size, leading to an exceptionally large entropic effect [20,21]. 

In AcrA/AcrB/TolC, the proton motive force causes structural changes of AcrB 

which are transmitted to TolC through AcrA [1-3]. This action may lead to a 

continuous vessel-geometry variation of TolC. A molecular dynamics (MD) simulation 

study [2] has also suggested that TolC can vary its geometric characteristics (e.g., they 

have observed a peristaltic motion of the periplasmic domain). However, the details of 

the variation during the insertion/release process are still unknown. What we 

emphasize in this Letter is that release as well as insertion can be accomplished by 

S/kB which is rather insensitive to the solute-solvent and vessel inner 

surface-solvent affinities and that a continuous vessel-geometry variation is a key 

factor. This result may provide us with a clue to the microscopic mechanism of the 

multidrug efflux of TolC, pending further studies. 

 

 

2. Model and Theory 

 

TS considered in this Letter is essentially the so-called depletion potential 

whose physical essence was first discussed by the Asakura-Oosawa theory [22,23]. The 

depletion potential between big bodies with simple geometries (e.g., big spheres, a big 

sphere and a convex, planer, or concave surface, etc.) [24-28] or between big, 

nonspherical bodies [13,29,30] has been analyzed using more advanced theories. A 

feature of the present study is that one of the big bodies possesses a complex geometry 
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[4-6,12-15]. 

We consider a big vessel and a big sphere immersed at infinite dilution in small 

spheres with diameter dS forming the solvent. The big sphere, whose diameter is 

denoted by dB, corresponds to a solute. The initial geometry of the vessel is illustrated 

in Fig. 1a. After the solute insertion, the vessel geometry is varied for the solute 

release as explained in Fig. 1b-f. The Cartesian coordinate system is chosen as 

illustrated in Fig. 1a. The cross section of z=0 is shown for each geometry. More 

details are described in a later paragraph. 

The vessel with a prescribed geometry is considered. First, the vessel-solvent 

correlation functions are calculated using the 3D integral equation theory [4,6,10-15] 

described below. Second, the solute-solvent correlation functions are calculated using 

the radial-symmetric HNC theory [25] for spherical particles. The PMF between the 

vessel and the solute is then calculated by assuming that the solvent particles are 

always in equilibrium with each configuration of the vessel-solute pair [6,14]. 

The Ornstein-Zernike (OZ) equation in the Fourier space is expressed by 

 

W1S(kx, ky, kz)=SC1S(kx, ky, kz)HSS(k)                                    (1) 

 

and the hypernetted-chain (HNC) closure equation is written as 

 

c1S(x, y, z)=exp{−u1S(x, y, z)/(kBT)}exp{w1S(x, y, z)}−w1S(x, y, z)−1.           (2) 

 

Here, the subscripts “1” and “S” denote the vessel and the solvent, respectively, w=h−c, 

c is the direct correlation function, h the total correlation function, u the potential, and 

S the bulk density. The molecular diameter dS is set at the value of water, 0.28 nm. 

The reduced number density SdS
3
 is taken to be the value of water at 298 K and 1 atm, 

0.7317. The capital letters (C, H, and W) represent the Fourier transforms. HSS(k) 

(k
2
=kx

2
+ky

2
+kz

2
) calculated using the radial-symmetric HNC theory for spherical 

particles is part of the input data. We emphasize that the OZ equation is exact. On the 

other hand, the bridge function is neglected in the HNC closure equation. However, it 

has been verified that the 3D-OZ-HNC theory gives quantitatively reliable results [12]. 

The numerical procedure is briefly summarized  as follows: (1) u1S(x, y, z) is 

calculated at each 3D grid point, (2) w1S(x, y, z) is initialized to zero, (3) c1S(x, y, z) is 

calculated from Eq. (2), and c1S(x, y, z) is transformed to C1S(kx, ky, kz) using the 3D 

fast Fourier transform (3D-FFT), (4) W1S(kx, ky, kz) is calculated from Eq. (1), and 

W1S(kx, ky, kz) is inverted to w1S(x, y, z) using the 3D-FFT, and (5) steps (3) and (4) are 

repeated until the input and output functions for w1S(x, y, z) become identical within 

convergence tolerance. On grid points where a solvent particle and the solute overlap, 

exp{−u1S(x, y, z)/(kBT)} is zero. On those where a solvent particle is in contact with the 

solute, it is set at 0.5, and otherwise it is unity. The grid spacing (∆x, ∆y, and ∆z) is set 

at 0.1dS, and the grid resolution (Nx×Ny×Nz) is 256×256×256. It has been verified that 

the spacing is sufficiently small and the box size (Nx∆x, Ny∆y, Nz∆z) is large enough 

for the correlation functions at the box surfaces to be essentially zero.  
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First, the Fourier transform of the vessel-solvent direct correlation function 

denoted by C1S(kx, ky, kz) is calculated by following the procedure described above. 

Second, the Fourier transforms of the solute-solvent total correlation function denoted 

by H2S(k) (the subscript “2” denotes the solute) is calculated using the radial 

symmetric HNC theory for spherical particles. The PMF between the vessel and the 

solute, Φ12(x, y, z), is then obtained from 

 

Φ12(x, y, z)/(kBT)=u12(x, y, z)/(kBT)−w12(x, y, z),                            (3) 

 

where w12(x, y, z) is calculated by inverting W12(kx, ky, kz) given by 

 

W12(kx, ky, kz)=SC1S(kx, ky, kz)H2S(k).                                    (4) 

 

The physical meaning of Φ12(x, y, z) [6,14] can be understood from 

 

Φ12(x, y, z)=F(x, y, z)−F(, , )                                       (5) 

 

and 

 

g12(x, y, z)=exp{−Φ12(x, y, z)/(kBT)}, g12(, , )=1.                       (6) 

 

F(x, y, z) is the free energy of small spheres in the case where the big-sphere center is 

at the position (x, y, z), and g12(x, y, z) the pair distribution function. For rigid-body 

models, the behavior of Φ12(x, y, z) is purely entropic in origin. Due to the microscopic 

structure of small spheres formed within the domain confined by the big sphere and the 

vessel, Φ12(x, y, z) exhibits a complex spatial distribution. A great advantage of the 3D 

integral equation theory is that the values of Φ12 on all the grid points are obtained 

from only a single calculation, which is in marked contrast with the usual computer 

simulation. 

We emphasize that the geometry variation is made continuously though it is 

presented in a stepwise manner in Fig. 1. Figure 1a shows the initial geometry of the 

vessel, a cylinder with inner diameter 8dS, length 14dS, and thickness dS. These 

dimensions roughly mimic those of TolC except that the length is set at a much shorter 

value (the length of TolC is 35dS). This is because all we need in this Letter is a 

length which is sufficiently longer than the diameter of the solute dB set at 4dS. The left 

and right ends of the cylindrical vessel are the entrance and exit, respectively. The 

inner diameter at the entrance is first reduced to 7.7dS (Fig. 1b). L1 and L2 in Fig. 1c 

(lengths of the portions with inner diameter 7.7dS and 8dS, respectively) are gradually 

increased and decreased, respectively. The length of the tapering portion is set at 2dS 

(L1+L2=12dS). The PMF for L1=L2=6dS is presented in this Letter. After the geometry 

shown in Fig. 1d, the inner diameter uniformly becomes 7.7dS (Fig. 1e). As the final 

geometry, the inner diameter at the exit is further reduced to 7.4dS (Fig. 1f). Hereafter, 

the vessel geometries shown in Fig. 1a, b, c, d, e, and f are referred to as vessel 
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geometries a, b, c, d, e, and f, respectively. 

 

 

3. Results and Discussion 

 

3.1. Entropic potential for vessel geometry a in Fig. 1 

 

Hereafter, the PMF scaled by kBT between the vessel and the solute are denoted 

simply by −ΦS/kB. We refer to −TΦS as “entropic potential”. The distribution of −ΦS/kB 

on the cross section of z=0 for the initial vessel geometry (see Fig. 1a) is shown in Fig. 

2a. −ΦS/kB becomes lower as the color approaches dark blue, and it becomes higher as 

the color approaches dark red. The center of the big sphere cannot enter the domain 

drawn in white. The profile of −ΦS/kB along the x-axis (y=z=0) is shown in Fig. 2b. 

There are three narrow domains within which −ΦS/kB is negative as indicated in Fig. 2a. 

In general, it is difficult for the solute to overcome a free-energy barrier well 

exceeding kBT [4] (an important exception is described in the second paragraph of 

Section 3.3). The solute can spontaneously be inserted into domain 2 or domain 3 due 

to the essentially zero barrier. The solute can also enter domain 1 without difficulty: 

The trajectory indicated by the black arrow in Fig. 2a possesses the lowest value of the 

barrier, 0.8kBT. However, we postulate that the solute is inserted into domain 3, the 

narrow domain around the central axis of the vessel (i.e., the x-axis). In the real system, 

AcrB interacting with TolC at its entrance sends the solute to the central position 

within the vessel cavity, and our postulation can thus be justified. Once the solute 

enters domain 3, it cannot move in the radial direction. At x/dS5.5 (the position of 

the lowest value of −ΦS), the barrier for the solute to overcome for moving from 

domain 3 to domain 2 is 8.5kBT and that for moving from domain 2 to domain 1 is 

6.7kBT. These barriers remain quite high for 6x/dS6. If the vessel geometry is not 

changed, the solute will be confined within the region of 6x/dS6 (see Fig. 2b). 

Here, we explain how the stripe pattern of the entropic potential is formed along 

the y-axis as observed in Fig. 2a. When the separation between the nearest solute and 

vessel inner surfaces, which is denoted by , is not sufficiently close to ndS (n=0, 1, 2, 

…), spaces unavailable to the translational displacement of solvent molecules appear 

as indicated in Fig. 3a. By contrast, in cases of ndS, such unfavorable spaces do not 

appear and the solvent particles can efficiently be packed within the domain confined 

between two surfaces as illustrated in Fig. 3b. The configuration in Fig. 3a is 

entropically unfavorable, while that in Fig. 3b is entropically favorable , leading to the 

stripe pattern formed along the y-axis. 

 

3.2. Entropic potentials for vessel geometries b, c, and d in Fig. 1 

 

The distributions of −ΦS/kB on the cross section of z=0 for vessel geometries b, c, 

and d (see Fig. 1b-d) are shown in Fig. 4a, b, and c, respectively. The profile of −ΦS/kB 

along the x-axis (y=z=0) for each entropic potential is shown in Fig. 5: Fig. 5a, b, and c 
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correspond to Fig. 4a, b, and c, respectively. As shown in Fig. 2a and explained in Fig. 

3, −ΦS/kB becomes largely positive and largely negative with the periodicity of the 

molecular diameter of the solvent, dS=0.28 nm. Therefore, even a variation of the 

vessel geometry within the scale of dS leads to a drastic change in −ΦS/kB. In the case 

of the variation illustrated in Fig. 1b-d, −ΦS/kB in the narrow domain around the 

central axis of the vessel turns largely positive for the region with inner diameter 7.7dS. 

Since this region is gradually lengthened, the solute is driven to move in the right 

direction along the x-axis (see Figs. 4 and 5). 

An important point is that the entropic potential does not remain constant : It is 

time dependent. There are three different time scales: time scales of the solvent motion, 

variation in the vessel geometry, and solute motion. The time scale of the solvent 

motion is doubtlessly the fastest. The solvent is practically in equilibrium with the 

solute-vessel configuration all the time. Here, we assume that the variation of the 

vessel geometry (that is, the variation of the entropic potential) is relatively faster than 

the solute motion. The faster variation of the vessel geometry could be realized by 

structural changes of AcrB caused by the proton motive force. An entropic force, 

which is given as {(TΦS)/x}, continuously acts on the solute in the right direction 

along the x-axis and accelerates its motion during the variation of the vessel geometry. 

When vessel geometry d is reached, the solute possesses a considerably high velocity. 

As a consequence, the solute is capable of overcoming even a barrier significantly 

exceeding kBT. 

 

3.3. Entropic potentials for vessel geometries d, e, and f in Fig. 1 

 

The profile of −ΦS/kB along the x-axis (y=z=0) for vessel geometry d is redrawn 

for 4x/dS12 in Fig. 6a. The minimum of −ΦS/kB is located at (x/dS, y/dS, z/dS)=(7.3, 0, 

0). The coordinate, (x/dS, y/dS, z/dS)=(7, 0, 0), corresponds to the position where the 

right half of the solute is outside the vessel. It is observed in Fig. 6a that the solute 

must overcome the barrier 3.6kBT to be released to the bulk in the right direction 

along the x-axis. It is not definite if the solute velocity is high enough to overcome this 

barrier. However, we find the following: As the inner diameter at the exit D decreases 

as (d)(e)(f) in Fig. 1d-f (the values of D are 8dS, 7.7dS, and 7.4dS in vessel 

geometries d, e, and f, respectively), the solute is driven to move further in the right 

direction along the x-axis and the barrier becomes progressively lower. The profiles of 

−ΦS/kB along the x-axis (y=z=0) for vessel geometries e and f are shown in Fig. 6b and 

c, respectively. The barriers in vessel geometries e and f are 2.0kBT and 1.2kBT, 

respectively. The barrier can further be reduced by decreasing D. 

The entropic potential is an effective one, which means that it is subject to 

fluctuation. When the solute has reached the potential minium in Fig. 6c, it must 

overcome the barrier 1.2kBT. However, due to the potential fluctuation, the actual 

barrier is higher than this value at some times and lower at other times. For this reason, 

the probability for the solute to overcome such an effective barrier is higher than one 

might expect from the barrier height. Further, we consider rigid-body interactions. 
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Potential barriers in such a model system are higher than in the real system. If the 

vessel wall and the solute are soft, the oscillation of the entropic potential should be 

weaker than that calculated in this Letter. It is probable that the barrier for the solute to 

overcome is smaller than in the rigid-body system. 

From the above argument, we conclude that the solute can definitely be released 

to the bulk. The key idea is a continuous variation of the vessel geometry 

accompanying that of the spatial distribution of the entropic potential. We remark that 

the solute velocity in the final vessel geometry becomes higher as the vessel length 

increases. In other words, a longer vessel enables the solute to overcome a higher 

barrier for being released to the bulk. Even a barrier well exceeding kBT could be 

overcome. The very large value of the length of TolC, 35dS, may play essential roles 

in the solute release. 

 

 

4. Concluding Remarks 

 

We have investigated insertion and release of a solute into and from a cylindrical 

vessel possessing an entrance at one end and an exit at the other end for the solute. The 

entropic potential formed by the solvent is calculated using the 3D integral equation 

theory and rigid-body models. With the rigid-body models, all of the allowed system 

configurations share the same energy, and the system behavior is purely entropic in 

origin [15]: The insertion/release process is described by the solvent-entropy effect 

arising from the translational displacement of solvent molecules.  It has been 

demonstrated that the two opposite events, insertion of a solute into the vessel and 

release of the solute from the vessel, can be driven by the same mechanism. It is quite 

interesting and important that such rich behavior is observed in a very simple model 

system. 

The results obtained are recapitulated as follows. As long as the vessel geometry 

is fixed, the entropic component always acts for insertion. We show, however, that a 

solute which has been inserted can also be released by the solvent-entropy effect using 

a continuous variation of the vessel geometry. An example of the variation is 

illustrated in Fig. 1. In the real system, the insertion/release process  is to be described 

in terms of the potential of mean force (PMF) consisting of the energetic and entropic 

components. The energetic component is strongly dependent on the solute-solvent and 

vessel inner surface-solvent affinities, whereas the entropic component is rather 

insensitive to them [6]. The entropic component dominates when the inner surface of 

the vessel is neither hydrophobic nor hydrophilic. The present study, which shows that 

both of insertion and release can be achieved solely by the entropic component being 

uninfluenced by the solute-solvent affinity, is an important first step toward 

elucidating the microscopic mechanism of the multidrug efflux of TolC [1-3]. 

To complete a physical picture of the multidrug efflux, we have to find a manner 

of the entropic release (i.e., a reliable manner of varying the geometric features of the 

vessel) which can handle a fairly wide range of the solute size. To know how high a 
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barrier can be overcome in the final stage of the solute release (see Section 3.3), we 

need to know dynamic aspects of the entropic release by simulating a biased Brownian 

motion of the solute in a time-dependent force field. In any case, a continuous 

variation of the vessel geometry is the key as pointed out in this Letter. The details of 

the polyatomic structures of the vessel and/or the solute are also important factors. 

Further, the solvent-entropy effect should play crucially important roles even in the 

functioning of AcrB, which is to be investigated. Works in these directions are in 

progress. 
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Figure Captions 

 

 

Fig. 1. Variation of vessel geometry: (a)(b)(c)(d)(e)(f). The geometry in (a) 

is a cylinder with inner diameter 8dS, length 14dS, and thickness dS. The coordinate 

system is chosen as illustrated here. The cross section of z=0 is shown for each 

geometry. Though the geometry variation is illustrated in a stepwise manner in this 

figure, it is made continuously. 

 

Fig. 2. (a) Distribution of −ΦS/kB on the cross section of z=0 for the initial vessel 

geometry shown in Fig. 1a. −ΦS/kB becomes lower as the color approaches dark blue, 

and it becomes higher as the color approaches dark red (“max” and “min” represent the 

maximum and minimum values, respectively). The center of the large sphere cannot 

enter the domain drawn in white. “0.8” represents that the free-energy barrier along 

the black arrow is 0.8kBT. (b) Profile of −ΦS/kB along the x-axis (y=z=0) for the initial 

vessel geometry shown in Fig. 1a. The two broken lines represent positions of the 

vessel ends, x/dS=7. 

 

Fig. 3. Cartoons illustrating how the stripe pattern of the entropic potential shown in 

Fig. 2a is formed along the y-axis. (a) Separation between the nearest solute and vessel 

inner surfaces, which is denoted by η, is not sufficiently close to ndS (n=0, 1, 2, . . .). 

(b) In the case of ηndS. 

 

Fig. 4. (a) Distribution of −ΦS/kB on the cross section of z=0 for the vessel geometry 

shown in Fig. 1b. (b) That for the vessel geometry shown in Fig. 1c (both of L1 and L2 

are set at 6dS). (c) That for the vessel geometry shown in Fig. 1d. −ΦS/kB becomes 

lower as the color approaches dark blue, and it becomes higher as the color approaches 

dark red (“max” and “min” represent the maximum and minimum values, respectively). 

The center of the large sphere cannot enter the domain drawn in white.  

 

Fig. 5. (a) Profile of −ΦS/kB along the x-axis (y=z=0) for the entropic potential shown 

in Fig. 4a. (b) That shown in Fig. 4b. (c) That shown in Fig. 4c.  The two broken lines 

in each plot represent positions of the vessel ends, x/dS=7. 

 

Fig. 6. (a) Profile of −ΦS/kB along the x-axis (y=z=0) for the vessel geometry shown in 

Fig. 1d. (b) That for the vessel geometry shown in Fig. 1e. (c) That for the vessel 

geometry shown in Fig. 1f. The broken line in each plot represents position of the right 

end of the vessel, x/dS=7. 
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