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Abstract

Several methods have been proposed for determining paleostress states from

orientations of dilatant fractures such as dikes and veins. Recently a stochas-

tic inversion method was invented to objectively estimate the principal stress

axes and the stress ratio. Whether a fracture is dilated or not is controlled

by the balance of the fluid pressure and the normal stress acting on it.

The magnitude of normal stress depends on the fracture orientation, which

causes anisotropic orientation distribution of dilatant fractures. The inver-

sion method assumes that the orientation distribution of fractures can be

approximated by a Bingham distribution, an exponential probability distri-

bution on the unit sphere, of which symmetric axes are interpreted as the

principal stress axes. However, it is unknown if the exponential type of

distribution function is suitable or not. Here, we examine the distribution

functions and propose two improved methods. One method uses the shifted

power-law function as the shape of probability distribution, which is more
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flexible than the Bingham distribution and is applicable to various shapes of

orientation distributions. Furthermore, an index of the driving fluid pressure

can be estimated with a confidence interval. The other is a non-parametric

(distribution-free) method, which can avoid the a priori assumption on the

shape of distribution function without significantly losing accuracy or pre-

cision. The new methods were applied to an Early Miocene dike swarm

formed during the back-arc opening of the Japan Sea. A normal-faulting

stress regime with the minimum principal stress axis trending roughly per-

pendicular to the arc was obtained from the dikes. A moderately high stress

ratio and a high fluid pressure were also estimated.

Keywords: dilatant fracture, dike swarm, tectonic stress, inversion,

non-parametric statistics

1. Introduction

Orientations of dilatant fractures such as dikes and mineral veins pro-

vide clues to the tectonic paleostress under the influence of crustal fluid.

Extension fractures have been thought to be perpendicular to the regional

minimum compressive principal stress axis (e.g. Anderson, 1951; Nakamura,

1977). However, natural fractures have variations in their orientations to

some extent. As is mentioned below, we can explain some types of such vari-

ations without assuming spatiotemporal changes of tectonic stress states, and

the variations carry information on the other parameters of stress tensors.

Delaney et al. (1986) formulated the criterion for re-opening of pre-

existing fractures as

Pf ≥ σn, (1)
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where Pf is the pressure of the fluid which makes dikes or veins, and σn

is the tectonic normal stress acting on the fracture surface (Fig. 1). This

criterion neglects tensile strength of pre-existing fracture. Even in a uniform

and constant stress field the magnitude of normal stress acting on a fracture

varies with its orientation (Fig. 2). Then the criterion (Eq. 1) restricts the

range of orientations of dilatant fractures.

Jolly and Sanderson (1997) proposed a graphical method to determine

stress conditions from the range of fracture orientations (Fig. 3a). Let σ1, σ2

and σ3 be the maximum, intermediate and minimum compressive principal

stresses. The feasible range of fracture poles should be centered by σ3-axis.

If the fluid pressure satisfies Pf < σ1, there is a blank region centered by σ1-

axis. After specifying σ3- and σ1-axes as the orientations with the maximum

and minimum frequencies of fracture poles, σ2-axis can be determined so as

to be perpendicular to both σ1- and σ3-axes. The determination of principal

axes can be achieved numerically by utilizing eigenvectors of orientation-

distribution tensor (Scheidegger, 1965; Woodcock, 1977). The feasible range

of fracture poles is not always concentric around σ3-axis but tends to extend

broader toward σ2-axis than toward σ1-axis. Jolly and Sanderson (1997)

proposed to determine the stress ratio Φ = (σ2 − σ3)/(σ1 − σ3) from the

geometry of feasible range in relation to the fluid pressure level (Fig. 3a). Φ

ranges from 0 (axial compression) to 1 (axial tension), which represents the

shape of stress ellipsoid. Consequently, the purpose of an analysis of dilatant

fractures is to constrain the combination of the three principal stress axes

and the stress ratio. These independent four variables of a stress tensor are

mathematically expressed by a normalized symmetric matrix, which is called
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‘reduced stress tensor’ in the methodology of stress tensor inversion from

fault-slip data (e.g. Angelier, 1989). In this study, σ1 and σ3 are normalized

to be 1 and 0, respectively.

Although the Jolly and Sanderson’s method has been applied to natural

dilatant fractures (e.g. Andre et al., 2001; Mazzarini and Isola, 2007), there is

a difficulty in the recognition of the border of feasible region on stereograms

(Fig. 3a). In many cases the frequency of poles to fractures gradually di-

minishes toward the border. We have proposed that the problem can be

solved by assuming that the variation of frequency reflects the difference of

tectonic normal stress arising from the difference of fracture orientation (Fig.

2). Our method fits a Bingham distribution (Bingham, 1974), an exponential

probability distribution on sphere, to the orientation distribution of poles to

fractures (Fig. 3b). The Bingham stochastic model carries parameters which

can be interpreted as those of a reduced stress tensor. The symmetric axes

of the optimized Bingham distribution represents the principal stress axes.

The anisotropy of distribution on sphere indicates the stress ratio (Fig. 2).

Our approach seemed to have succeeded in analyzing epithermal quartz vein

swarm in an area in southern Japan and a normal-faulting tectonic stress

was obtained.

However, the validity of the exponential stochastic model has not been

examined. There possibly is an orientation distribution which is not suitable

for the approximation by an exponential function. This study proposes two

improved methods. One employs a stochastic model of shifted power-law

function which has a larger degrees of freedom than the exponential function.

The new function is expected to express various types of decreasing function
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flexibly (Fig. 3c). The other modified method is non-parametric without any

stochastic model. This method searches for a stress state which optimizes

the rank correlation coefficient between fracture frequencies and normal stress

magnitudes. Its advantage is in the exclusion of a priori assumption on the

shape of orientation distribution function. For the purpose of comparing the

methods, this paper presents analyses of simulated and natural datasets.

2. Method

Let σ and σ0 be a stress tensor and its expression in the principal coor-

dinate system, respectively. They can be written as

σ0 =


1 0 0

0 Φ 0

0 0 0

 . (2)

and

σ = QTσ0Q, (3)

where Q is the orthogonal matrix as the coordinate rotation operator and the

superscript T denotes transpose of matrix. When σ1 and σ3 are normalized

to be 1 and 0, σ2 corresponds to the stress ratio Φ by definition. Given a unit

normal of fracture plane ~v = (x, y, z)T, where x, y and z are the Cartesian

coordinates in the physical space, and its expression in the principal coordi-

nate system ~v0 = (x0, y0, z0)
T, the magnitude of normal stress is calculated

to be

σn (~v;σ) = ~vTσ~v = ~vT0 σ0~v0 = x2
0 + Φy20. (4)
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Our assumption is that the probability of dilatant fracturing to have an

orientation ~v is written as a monotonic decreasing function of

P (~v;σ) = f (σn (~v;σ)) dA, (5)

where f is an arbitrary decreasing function and dA is the area element of

the unit sphere on which the end point of ~v lies. The nature of stress tensor

inversion methods discussed in this paper is the optimization of σ in Eq. (5)

so as to fit P to the observed frequency distribution of fracture orientations

(~v). The formula of f can be freely chosen and three methods are defined

and examined below.

2.1. Bingham method

Yamaji et al. (2010) used the Bingham distribution (Bingham, 1974) for

its simplicity and resemblance to the two-dimensional normal distribution.

The distribution can express a variety of concentrations of spherical axial

data including a point concentration and a concentration along girdle. The

probability density function involves two concentration parameters κ1 and

κ2 (κ1 ≤ κ2 ≤ 0) in two orthogonal principal directions,

fB (~v;σ) = AB exp
(
κ1x

2
0 + κ2y

2
0

)
= AB exp

{
κ1

(
x2
0 + Φy20

)}
= AB exp (κ1σn) , (6)

where Φ = κ2/κ1 and Eq. (4) was employed. The normalization constant

AB is set so as to satisfy
∫
S3
fBdA = 1, where S3 is the unit sphere. The

principal stress axes coincide with principal axes of Bingham distribution;

the maximum concentration at σ3-axis. When κ1 = κ2, the probability is
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concentric around this axis; and when κ2 = 0, the concentration becomes

girdle-type along the great circle connecting σ3- and σ2-axes.

The unknowns to be determined in an inversion analysis are the reduced

stress tensor and the concentration parameter κ1. Accordingly, the degrees

of freedom of the Bingham model is five. Given a set of fracture orientations

~vi (i = 1, · · · , N), where N is the number of fracture, the sum of logarithmic

likelihood is defined as

LB (σ, κ1) =
N∑
i=1

ln fB (~vi;σ) dA. (7)

The unknown parameters are optimized by maximizing LB.

The optimization is performed by the simplex method (Nelder and Mead,

1965). This method requires the initial values of unknown parameters, which

are chosen according to the eigenanalysis of orientation-distribution tensor,

T =
1

N

N∑
i=1

~vi~v
T
i . (8)

Let T1, T2 and T3 be the maximum, intermediate and minimum eigenvalues

of T . The eigenvectors corresponding to T1, T2 and T3 are assigned to initial

orientations of σ3-, σ2- and σ1-axes, respectively. The initial estimates of

the concentration parameters are set as κ1 = −1/(2T1) and κ2 = −1/(2T2),

accordingly Φ = T1/T2.

2.2. Shifted power-law method

In the pioneering work of Jolly and Sanderson (1997), a distribution of

dilatant fracture poles was expected to have a clear limit when it is visualized

on a stereogram (Fig. 3a). If the frequency of fracture poles has a step-wise
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decrease, one can easily recognize the limit. However, it is not easy for the

Bingham distribution model to express a step-wise change of frequency. Here

we introduce another type of probability distribution, which we call shifted

power-law distribution,

fp (~v;σ) =

 Ap (λ− σn)
n (σn ≤ λ)

0 (σn > λ) ,
(9)

where Ap, λ and n are constants. The normalization factor Ap is chosen

so as to satisfy
∫
S3
fpdA = 1. The parameter λ corresponds to the fluid

pressure level; if the tectonic normal stress exceeds this value, a fracture is

not supposed to open (Eq. 1). Since magnitude of stress are normalized

in our formulation, λ is the nondimensionalized fluid pressure, λ = (Pf −

σ3)/(σ1−σ3). The exponent n allows the function to flexibly express various

shapes of decreasing functions (Fig. 4). Not only a convex shape like an

exponential function (n > 1) but also a linear (n = 1) and a concave shape

(0 < n < 1) are included in this model.

The degrees of freedom of shifted power-law model is six; four for the

parameters of a reduced stress tensor and two for the nondimensionalized

fluid pressure λ and the exponent n. They are optimized by maximizing the

sum of logarithmic likelihood,

Lp (σ, λ, n) =
N∑
i=1

ln fp (~vi;σ) dA. (10)

The simplex method is employed for optimization. The initial solution

of principal stress orientations are given as eigenvectors of the orientation-

distribution tensor (Eq. 8). The initial values of the other parameters are

set as Φ = T1/T2, λ = 1 and n = 1.
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2.3. Non-parametric method

The above-mentioned two methods (Sections 2.1 and 2.2) make a pri-

ori assumptions on the shape of probability distribution functions in the

stochastic models. For the purpose of excluding this assumption, we pro-

pose a non-parametric approach assuming only the monotonic decrease of

frequency against normal stress magnitude:

If σn (~vi) > σn (~vj) , then f (~vi) ≤ f (~vj) , (11)

where ~vi and ~vj are arbitrary unit normals to fractures, and f (~v) is the

frequency of fractures around ~v. As the objective function of inversion anal-

ysis, we introduce Spearman’s rank correlation coefficient (Spearman, 1904),

which is not affected by the gradient of decreasing function and can quantify

to what extent the relationship of Eq. (11) is satisfied.

When we have a set of fracture orientations, frequency of their poles are

estimated at 500 grid points uniformly distributed on the unit sphere. The

grid points were generated according to the method of Rakhmanov et al.

(1994). Similarly to the way of drawing density diagram on stereogram,

the probability density of the Fisher distribution (Fisher, 1953) with the

concentration parameter set to 100 is assigned to each datum point and

summed up for all data to obtain the frequencies at the grid points. If an

arbitrary reduced stress tensor is given, normal stress magnitudes on the

fractures corresponding to the grid points can be calculated immediately.

Let Di be the difference between the rank of normal stress magnitude in

ascending order and that of frequency of fracture normals in descending order

for ith grid point among all grid points (Fig. 5). Spearman’s rank correlation
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coefficient is defined as

ρ = 1− 6
∑NG

i=1 D
2
i

NG(N2
G − 1)

, (12)

where NG is the number of grid points. The value of ρ ranges from −1

(negative correlation) to 1 (positive correlation).

Our task is to search for an optimal reduced stress tensor to maximize the

rank correlation coefficient. The degrees of freedom in this non-parametric

method is four, just for the unknown parameters of reduced stress tensor.

Note that we use the word ‘non-parametric’, and this method is also para-

metric as for stress model. The optimization is again made by the sim-

plex method. The initial solution of reduced stress tensor is given by the

orientation-distribution tensor similarly to the Bingham method and the

shifted power-law method.

2.4. Confidence region

The confidence regions of optimal solutions are estimated by the boot-

strap technique for all the three methods. In a trial of bootstrap process, N

data are resampled with replacement from the original N data. Then the

resampled dataset is analyzed to obtain a bootstrap solution. This trial is

repeated NB times. The number of bootstrap solutions NB should satisfy

NB � N and it is set to 1000 in the following analyses.

The bootstrap solutions are ranked according to their distances to the

optimal solution for the original dataset in ascending order. The distance is

measured by the stress difference (Orife and Lisle, 2003; Yamaji and Sato,

2006), which evaluates the differences between reduced stress tensors. The

lowest (distant) 5% of bootstrap solutions are excluded and the spread of
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the rest 95%, 950 solutions in this case, is interpreted as the 95% confidence

region. The outline of distribution of 950 solutions are drawn as to principal

stress orientations and the other parameters optimized in inversion analyses

to visualize the confidence regions.

3. Test

In this section the three methods are compared through analyses of two

artificial fracture orientation datasets with known stress solutions and a nat-

ural dataset acquired by Yamaji et al. (2010).

3.1. Test 1: Exponential frequency distribution

Artificial 100 fracture orientations were randomly generated by using

acceptance-rejection method so that their poles obey a Bingham distribu-

tion (Fig. 6a). The following principal stress axes were assigned, σ1: 000/00,

σ2: 090/00 and σ3: 000/90 (reverse-faulting regime). The concentration pa-

rameters were set as κ1 = −6 and κ2 = −3. Therefore, the assumed stress

ratio is Φ = κ2/κ1 = 0.5. The Bingham method is of course expected to

work better than the other two methods in both accuracy and precision for

this dataset.

The results of analyses by the three methods are shown in Fig. 7. The

95% confidence regions of the principal stress axes determined by all three

methods include the correct orientations, although the deviations of optimal

axes are up to 15◦ (Fig. 7a). The areas of confidence regions of the Bingham

method are smaller, i.e., the precision is higher, than those of the other two

methods. Though the precision of the non-parametric method is the lowest,

the differences of precisions among methods are not so large.
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Fig. 7b shows the other parameters optimized in the analyses and their

confidence intervals. The assumed stress ratio Φ = 0.5 is within the confi-

dence regions for all three methods. The three methods roughly have similar

precisions. However, the optimal stress ratios of the shifted power-law and

the non-parametric methods slightly deviate from the correct solution: 0.55

and 0.60, respectively. The concentration parameters were also determined

successfully through the Bingham method: κ1 = −6.1 + 1.7/ − 3.6 and

κ2 = −3.2 + 1.3/− 1.7.

Fig. 7c includes the Mohr’s diagrams (the first row) and frequencies of

normal stress magnitudes (the second row) calculated according to the opti-

mal reduced stress tensors. The frequencies in the second row were calculated

through a correction as follows. If the isovalue line of a σn value is long on the

unit sphere (Fig. 2), we should observe a larger number of fractures having

the value of normal stress. This geometrical effect is removed by dividing the

frequencies by the areas on the unit sphere corresponding to the ranges of

σn. Appendix A explains the calculation of the area which depends on the

stress ratio. The corrected frequencies were normalized as a probability den-

sity. The optimized functions of the Bingham and shifted power-law methods

are also shown in the second row of Fig. 7c. Note that the frequencies of

fractures roughly decrease against the normal stress magnitude in all three

results.

The optimal exponent of the shifted power-law method is n = 6.5 +

155.5/ − 6.3 which gives a convex shape of distribution function so as to

simulate the exponential decrease of the assumed Bingham distribution (Figs.

7b and 7c). Since a large n (> 1) gives a distribution function asymptotic to
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the horizontal axis, the nondimensionalized fluid pressure has an extremely

large uncertainty interval; λ = 1.4+253/−1.1. This result implies that when

n is large, we cannot determine the nondimensionalized fluid pressure well.

The non-parametric method produces only the parameters of reduced

stress tensors (Fig. 7b). Spearman’s rank correlation coefficient for the

optimal stress solution was ρ = 0.892 which indicates a strong positive cor-

relation. Note that the optimal reduced stress tensor of the non-parametric

method was almost equivalent to those of parametric methods.

3.2. Test 2: Step-wise frequency distribution

Another artificial fracture dataset was generated so that its orientational

frequency obeys a step-wise distribution function (Fig. 6b). A stress state

with σ1-axis at 090/00, σ2-axis at 000/00, σ3-axis at 000/90 (reverse-faulting

regime) and a stress ratio Φ = 0.3 was assigned. The assumed distribution

can be described by the shifted power-law function with n = 0 and λ = 0.6,

which means a constant frequency for 0 ≤ σn ≤ 0.6 and zero frequency for

0.6 < σn ≤ 1. The acceptance-rejection method was used to generate the

artificial fracture orientations obeying this distribution. The shifted power-

law method is expected to work better than the other two.

The results of analyses are shown in Fig. 8. The principal stress axes

were correctly determined by all three methods (Fig. 8a). Note that the ori-

entations of σ2- and σ3-axes were poorly determined because of the assumed

small stress ratio (nearly axial compressional stress). As for the precision of

σ1 axis, the shifted power-law method was the highest.

The optimal stress ratios of all three methods have confidence regions

including the correct value, Φ = 0.3 (Fig. 8b). However, the optimal values
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of Bingham and non-parametric methods are largely deviated (Φ = 0.15 +

0.22/− 0.13 and Φ = 0.49+ 0.18/− 0.48, respectively), while that of shifted

power-law method is almost exact (Φ = 0.28 + 0.31/− 0.28).

The shifted power-law method succeeded in determining the other param-

eters n = 0.028+0.465/− 0.028 (assumed to be 0) and λ = 0.586+0.134/−

0.084 (assumed to be 0.6). The optimized stochastic model is approximately

step-wise (Fig. 8c). We can also see that the optimized Bingham model

has difficulties in simulating the step-wise frequency distribution, which may

cause the deviation of optimal stress ratio. The optimized rank correlation

coefficient of the non-parametric method was ρ = 0.736. This test demon-

strated that the accuracy of principal stress axes is relatively independent

of the choice of method, while the stress ratio and the other parameters are

significantly affected.

3.3. Test 3: A natural vein swarm

A natural vein swarm investigated by Yamaji et al. (2010) was re-analyzed

by the new methods. The Pliocene epithermal quartz veins are distributed

in the Hashima area, southern Japan. Yamaji et al. (2010) acquired 233 vein

orientations (Fig. 6c), which were analyzed by the Bingham method and a

normal-faulting stress was detected.

Fig. 9 shows the results of analyses in this study. There is no significant

difference in the optimal reduced stresses calculated by the three methods,

except that the precision of the Bingham method is slightly higher. The

frequency of veins drastically decreases against the increase of tectonic nor-

mal stress (Fig. 9c) and the Bingham model appears to be suited for this

data. A large exponent n = 5 + 206.2/− 4.0 of the shifted power-law model
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was chosen to simulate the quasi-exponential distribution and the optimized

models of the two parametric methods are very similar. At least in this case

the choice of stochastic models does not affect the result as Yamaji et al.

(2010) pointed out. The non-parametric method, of which optimized rank

correlation coefficient was ρ = 0.946, is also worked well. It achieved the

equivalent precisions to the two parametric methods without assumption on

the stochastic model. Consequently, this natural example showed that all

the three methods are usable to infer tectonic stress from a natural fracture

orientations which has a simple frequency distribution against normal stress.

Yamaji et al. (2010) estimated the nondimensionalized fluid pressure level

at λ = 0.55 by picking up the maximum normal stress among all the veins.

However, because of the nature of the quasi-exponential distribution which is

asymptotic to zero frequency, the confidence region of the nondimensionalized

fluid pressure determined by the shifted power-law method is large: λ =

0.90 + 24.58/ − 0.50. It is therefore difficult to estimate λ from this vein

swarm.

4. Application to Miocene dike swarm

4.1. Geological setting

We applied the new inversion methods to a dike swarm in the Tsuruga

Bay area, back-arc side of central Japan (Fig. 10a). The host rock of the

dikes is a late Paleozoic to early Mesozoic accretionary complex called the

Mino terrain which is composed of mélange of sandstones and mudstones,

siliceous mudstone, limestone, chert and basalt (Wakita et al., 1992). Lower

Miocene lava and pyroclastic rocks cover them. There also occur Lower
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Miocene andesitic dikes intruded into the basement (Fig. 10b). A K-Ar age

of 19 Ma was obtained from one of the andesitic dike by Hoshi and Takagawa

(2009).

Hoshi and Takagawa (2009) measured the orientations of 47 dikes and

found the cluster of dike poles in the SE-quadrant, thereby a NW-SE trending

σHmin was inferred. They did not determined the stress regime at the time of

intrusion, but they thought on the basis of this arc-parallel trend and the age

that the swarm represents the extensional stress during the backarc opening

in the Japan Sea.

The purpose of the present analysis is to refine the paleostress estimation

by Hoshi and Takagawa (2009) by determining the stress regime, stress ratio

and nondimensionalized fluid pressure.

4.2. Data

We collected 100 orientations of andesitic dikes from outcrops along the

coast of about 15 km long (Fig. 10a). Most of the dikes are roughly planar

and their widths range from 5 cm to 10 m. If a dike is sinuous, the general

attitude of the boundary between the dike and the host rock was adopted.

Although the opening directions of dikes are rarely identified, there is no

slicken striation on the surfaces of dikes and no shear deformation parallel

to a dike was recognized. A few jigsaw structures evidence the opening

directions perpendicular to the dikes (Fig. 10c).

Fig. 6d shows the measured orientations of the dikes. They have diverse

orientations while a concentration of their poles is found at NW-SE. It should

be noted that there is obviously an elliptic vacant area around the vertical

axis. This implies that the outline of the ellipse corresponds to the boundary
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between the orientations for which the condition Pf ≥ σn is satisfied or not

(Jolly and Sanderson, 1997). The host rock of the study area is dominated

by mélange of sandstones and mudstones which has fractures of various ori-

entations. Therefore, re-opening of pre-existing fractures appears to be likely

to occur as is assumed by Jolly and Sanderson (1997).

4.3. Result of analyses

Similarly to Section 3, the dikes in the Tsuruga Bay area were analyzed

by the three methods. The three optimal reduced stress tensors are roughly

similar and are normal-faulting regimes (Fig. 11). Nearly vertical σ1-axis,

NE-SW trending σ2-axis, NW-SE trending σ3-axis and a moderately high

stress ratio (Φ ≈ 0.7) were obtained. Differences were found in precision.

The precision of the shifted power-law method is superior to the other two.

The exponent of the shifted power-law model was determined as n =

0.84+18.0/−0.84 indicating a linear to slightly concave shape (Fig. 11c). The

nondimensionalized fluid pressure is λ = 0.76+3.59/−0.20, which defines the

horizontal intercept of the model function. This shape appears to be suited to

the data distribution which has an abrupt extinction at σn = λ, while the long

tail of the Bingham model cannot express it. The non-parametric method

resulted in the optimized rank correlation coefficient of ρ = 0.802. The

precisions of the Bingham and the non-parametric methods are comparable.

4.4. Comparison to the Jolly-Sanderson method

We applied the graphical method of Jolly and Sanderson (1997) to the

dikes for comparison to the present methods (Fig 6d). The principal stress

axes were supposed to coincide with the eigenvectors of orientation-distribution
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tensor. The vacant area was roughly centered by σ1-axis. Then the size of

the vacant area is measured along the principal planes; θ3 = 60◦ toward σ2-

axis and θ2 = 30◦ toward σ3-axis. According to Jolly and Sanderson (1997)

and Andre et al. (2001), the stress ratio was calculated:

Φ = 1− cos 2θ2 − 1

cos 2θ3 − 1
≈ 0.67. (13)

As for this dike swarm, the vacant area can be clearly recognized so that this

ratio does not have a significant difference to those by the inversion analyses.

5. Discussion

Through the tests using artificial and natural fracture data, the present all

three methods were confirmed to be generally useful to determine a reduced

stress tensor from an dilatant fracture dataset according to the assumption

that the frequency of fracture decreases against the tectonic normal stress

magnitude. Among the methods, the shifted power-law method was found

to have the widest availability to achieve a high precision. Meanwhile, it

was found to be difficult for the Bingham method (Yamaji et al., 2010) to

simulate a data distributions having abrupt decreases (Figs. 6b and 6d).

Another advantage of the shifted power-law method is the objective deter-

mination of the nondimensionalized fluid pressure with confidence intervals,

though the uncertainty was found to be large especially when the shape of

distribution is concave. The problem in the method of Jolly and Sanderson

(1997) is in the graphical recognition of the angles θ3 and θ2 from stereogram

(Fig. 6d). It is difficult to determine them objectively without subjectivity.

Commonly to all the methods, the precisions of principal stress axes are

sufficient, while those of stress ratios are relatively low. It seems to be difficult
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to detect a difference of stress ratio by 0.1. A risk of wrong choice of stochastic

model is represented by the test with a step-wise distribution (Section 3.2,

Fig. 8), in which the Bingham method almost failed to give the correct stress

ratio.

Generally speaking, non-parametric methods have lower precision than

parametric ones in return for the exclusion of assumptions on stochastic

models. This is of course the case for the present non-parametric method. Al-

though it has lower precisions than the method with the appropriate stochas-

tic model, the level of precision is not unacceptable. Since we should not

make an unfounded assumption on natural data, the non-parametric method

is worth using.

Yamaji and Sato (2011) extended the model of the Bingham method

into the mixed probability distribution in order to detect multiple fracturing

events distinguished by stress states. Their method selects the optimal num-

ber of stress states by minimizing the index of Bayesian information criterion

(BIC, Schwarz, 1978). We applied the method to the dikes in the Tsuruga

Bay area. By changing the number of stress states from one to three, the

single stress model was found to be optimal (Fig. 12). The homogeneity of

the dikes were confirmed at least for the Bingham model. The shifted power-

law model can be easily extended to mixed distribution model. However,

the non-parametric method is difficult to be improved for multiple events

because it does not quantify the frequencies of fractures. The detection of

multiple events without a parametric model will be a next methodological

challenge.

The analysis of Early Miocene dike swarm in the Tsuruga Bay area suc-
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cessfully revealed the stress regime to be normal-faulting. Hoshi and Taka-

gawa (2009) managed to infer the extensional regime by referring to the exis-

tence of map-scale NE-SW trending normal faults (Yoshikawa et al., 2002) in

the Noto Peninsula located about 200 km to the north of the study area (Fig.

10a). Our result has an importance in that the stress regime was estimated

directly from the dikes. Although the dikes in the study area of about 15 km

long are compatible with the single stress tensor, the spatial and temporal

stability of stress state should be investigated in the future works. In the

Noto Peninsula, the tectonic blocks recognized by Kobayashi et al. (2005)

are several kilometers in size, and the growth normal faults described by

Yoshikawa et al. (2002) imply that the NW-SE trending extensional stress

continued from 25 Ma to 19 Ma.

The pore fluid pressure ratio λ′ = Pf/Pl has a significant effect on the

brittle strength of the lithosphere, where Pl is the lithostatic (overburden)

pressure. It can controls whether the continental rifting is accelerated or

not (Takeshita and Yamaji, 1990). Assuming that nearly vertical σ1 in the

Tsuruga Bay area was equal to Pl, the nondimensionalized fluid pressure λ ≈

0.76 determined by the shifted power-law method is the minimum estimate

of λ′ for the case that σ3 = 0. Therefore, the fluid pressure ratio during

diking was at least around 0.8. This high level of fluid pressure might have

caused the weakening of the lithosphere, which is required for back-arc rifting

(Yamasaki and Stephenson, 2011). The problem remained to be solved is

how long the high fluid pressure was sustained. Another challenge is the

determination of absolute magnitudes of stress and fluid pressure, which

seems difficult to achieve only by means of orientation analysis. The shape
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and aperture geometry of dilatant fractures (Gudmundsson et al., in press)

and fluid inclusions in mineral veins (Andre et al., 2001; Becker et al., 2010)

are promising clues to the absolute magnitudes.
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Appendix A. Frequency of normal stress magnitudes on uniformly

distributed fractures

This appendix provides how to calculate the frequency of normal stress

magnitudes at uniformly distributed fractures, which is used to draw the

histograms of normal stresses in Section 3 and 4.

Eq. (4) says that a contour line of σn orthogonally projected from the

unit sphere onto the σ1-σ2 plane is an ellipse with the major radius of
√
σn/Φ

along σ2-axis and the minor radius of
√
σn along σ1-axis (Fig. 13). Then the

end points of unit normals to fractures with a constant σn can be written as

x =
√
σn cos t

y =
√

σn/Φ sin t

z =
√

1− x2 − y2

=
√

1− σn cos2 t− (σn/Φ) sin
2 t

(0 ≤ t ≤ 2π), (A.1)

where x, y and z are the coordinates along σ1-, σ2- and σ3-axes, respectively.
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Note that when σn > Φ, the ellipse of Eq. (4) has intersection points with

the unit circle x2 + y2 = 1. For example, the intersection point in the region

x ≥ 0, y ≥ 0, z ≥ 0 is indicated by

t = t0 = tan−1

(√
Φ

√
1− σn

σn − Φ

)
, (A.2)

which is illustrated as t0 in Fig. 13.

The length of contour line for a constant σn on the unit sphere is obtained

by the following integration,

L (σn) = 8

∫ t1

0

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt, (A.3)

where

t1 =

 π
2
(σn ≤ Φ)

t0 (σn > Φ)
. (A.4)

To calculate the area on unit sphere in which fracture normals are assigned

normal stresses between σn and σn + dσn, we need the spatial gradient of σn,

∇σn = (2x, 2Φy, 0)T . (A.5)

Then the frequency of uniformly distributed points is proportional to the

area:

fu (σn) = A

∫ t1

0

dL
dt

|∇σn| cos θ
dt, (A.6)

where θ is the angle between ∇σn and tangential plane of unit sphere at ~v

(Fig. 13), and A is the normalizing factor to make fu a probability density.

Since the integration in Eq. (A.6) cannot be calculated analytically, we

employed numerical integration. Fig. 14 shows the frequency for various

values of Φ.
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Figure captions

Figure 1

A schematic drawing of dilatant fractures in a rock mass. In a uniform and

constant stress state symbolized by σ1-, σ2- and σ3-axes, a dilatant fracture

occurs if the fluid pressure Pf exceeds the tectonic normal stress σn. The

shear stress τ and normal stress σn depend on the orientation of fracture

described by the unit normal vector v.

Figure 2

Orientational distribution of normal stress magnitude for various values

of stress ratio Φ. Lower-hemisphere and equal-area projection. Gray scale

colors at poles of fractures indicate normalized magnitude of normal stress

(0 ≤ σn ≤ 1). The principal stress magnitudes are normalized as σ1 = 1 and

σ3 = 0.

Figure 3

Schematic figures to explain the aim of this study. σ1, σ2 and σ3 are

principal stresses. σn and τ denotes normal and shear stresses. (a) Jolly

and Sanderson (1997) suggested that the orientations of fractures to be di-

lated are restricted by the fluid pressure (Pf) within the shaded regions in

the stereogram indicating fracture poles and the Mohr’s diagram. They did

not mentioned about the difference of frequency within the feasible range.

(b) Yamaji et al. (2010) modified the Jolly and Sanderson’s method to ex-

press the monotonically-decreasing feature of fracture frequency against the

increase of tectonic normal stress acting on the fracture surface by utilizing

Bingham type of stochastic model. Grayscale colors indicate the frequency of
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fractures. (c) This study intends to test the validity of the stochastic model

and proposes modified methods to deal with various types of frequency dis-

tributions.

Figure 4

Various shapes of shifted power-law distribution without normalization

as probability density. The values in boxes are the exponents n in Eq. (9).

Figure 5

A schematic figure to explain how to calculate the rank correlation co-

efficient. (a) Open circles are grid points uniformly distributed on the unit

sphere. Small dots are observed fracture poles, of which frequency distri-

bution is shown by the contour lines (gray solid lines). The italic numbers

attached on the grid points are the ranks according the frequency in de-

scending order. σ3-axis is of an arbitrary chosen reduced stress tensor. The

bold numbers are the ranks of the grid points according to the normal stress

magnitude in ascending order (the smallest around σ3-axis). (b) Correlation

chart for the fracture frequency and the normal stress magnitude. Spear-

man’s rank correlation coefficient does not assume this scattered points to

lie on a straight line so as Peason’s correlation coefficient does. Only the

correspondence between the orders of points along horizontal and vertical

axes are evaluated.

Figure 6

Fracture orientation datasets analyzed in this study. Small dots are the

fracture poles plotted in stereograms in lower-hemisphere and equal area
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projections. Their densities are also visualized as grayscale contour lines.

Large circle, diamond and square symbols are the principal stress axes. (a)

Data obeying a Bingham distribution with κ1 = −6 and κ2 = −3, i.e.,

Φ = 0.5. (b) Data obeying a step-wise frequency distribution which has

λ = 0.6, n = 0 and Φ = 0.3 when expressed as a shifted power-law function.

(c) Data from the quartz vein swarm from Hashima area, southern Japan.

(d) Data from the andesitic dike swarm from the Tsuruga Bay area, central

Japan. A stress solution by the method of Jolly and Sanderson (1997), of

which stress ratio is Φ = 0.67, is superimposed.

Figure 7

The results of analyses of an artificial data (Fig. 6a) obeying a Bingham

distribution. Left, middle and right columns corresponds to the Bingham

method, the shifted power-law method and the non-parametric method. (a)

Principal stress axes of the optimal solutions with 95% confidence regions

defined by 950 bootstrap solutions. Large open symbols (circles, diamonds

and squares) are of the optimal solutions and tiny ones are of the bootstrap

solutions which broken lines enclose. Small black dots are the fracture poles

analyzed. (b) The other parameters determined in the analyses; κ1 and κ2

for the Bingham method, n and λ for the shifted power-law method and the

stress ratio Φ for all the three methods. Black diamonds are the optimal solu-

tions and broken lines indicate the assumed solutions. The histograms show

the distributions of bootstrap solutions within the 95% confidence intervals.

(c) Normal stress magnitudes on fracture surfaces calculated according to the

optimal stresses. The first row includes Mohr’s diagrams where open circles

indicate normal and shear stress magnitudes on the fractures. The second
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row shows the corrected frequency histograms of normal stress magnitudes

and optimized distribution functions (bold lines with parameters shown in

the formulas fB(κ1, κ2,Φ) and fp(n, λ,Φ)). See text and Appendix A for the

details about correction.

Figure 8

The results of analyses of an artificial data (Fig. 6b) obeying a step-wise

distribution. Charts and symbols are similar to those of Fig. 7.

Figure 9

The results of analyses of the quartz vein swarm in the Hashima area,

southern Japan. The data measured by Yamaji et al. (2010) is shown in Fig.

6c. Charts and symbols are similar to those of Fig. 7.

Figure 10

(a) Geologic map of the Tsuruga Bay area (simplified from Wakita et al.,

1992). (b) A dike intruded into mélange of the Mino accretionary complex.

(c) A jigsaw structure showing the opening direction perpendicular to the

general trend of dike.

Figure 11

The results of analyses of the andesitic dike swarm in the Tsuruga Bay

area, central Japan. Charts and symbols are similar to those of Fig. 7.

Figure 12

BIC indices obtained by the mixed Bingham distribution analysis (Yamaji

and Sato, 2011) applied to the dikes in the Tsuruga Bay area. The smallest
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index was achieved by the single stress model, showing the homogeneity of

the data.

Figure 13

Schematic figure showing the isovalue lines with respect to normal stress

magnitude on unit sphere. Grayscale colors indicates normal stress magni-

tudes. Only the first octant (x ≥ 0, y ≥ 0, z ≥ 0) is drawn for the orthogonal

symmetry. See Appendix A for explanation of values on this figure.

Figure 14

Isovalue area on unit sphere with respect to normal stress magnitude σn,

which are normalized as probability densities. Numbers in boxes are values

of stress ratio Φ.
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