Title	Existence and non－existence results of the Fucik type spectrum for the generalized \＄p\＄－Laplace operators（Progress in Variational Problems：V ariational Methods in the Study of Evolution Equations）
Author（s）	Tanaka，Mieko
Citation	数理解析研究所講究録（2012），1779：1－10
Issue Date	2012－02
URL	http：／hdl．handle．net／2433／171812
Right	Departmental Bulletin Paper
Type	Textversion
publisher	

Existence and non－existence results of the Fučík type spectrum for the generalized p－Laplace operators

東京理科大学理学部二部数学科 田中 視英子（Mieko Tanaka）

Department of Mathematics，Tokyo University of Science

1 Introduction

In this paper，we consider the existence of $(\alpha, \beta) \in \mathbb{R}^{2}$ for which the following quasilinear elliptic equation has a non－trivial solution：
$(F)_{(\alpha, \beta)}$

$$
\begin{cases}-\operatorname{div} A(x, \nabla u)=\alpha u_{+}^{p-1}-\beta u_{-}^{p-1} & \text { in } \Omega, \\ \frac{\partial u}{\partial \nu}=0 & \text { on } \partial \Omega,\end{cases}
$$

where ν denotes the outward unit normal vector on $\partial \Omega, 1<p<\infty, \Omega \subset$ \mathbb{R}^{N} is a bounded domain with C^{2} boundary $\partial \Omega$ ．Here，$A: \bar{\Omega} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a map which is strictly monotone in the second variable and satisfies certain regularity conditions（see the following assumption (A) ）．The equation $(F)_{(\alpha, \beta)}$ contains the corresponding p－Laplacian problem as a special case，and in this case，(α, β) admitting a non－trivial solution to $(F)_{(\alpha, \beta)}$ is said to belong to the Fučik spectrum of the p－Laplacian．Although the p－Laplace operator is （ $p-1$ ）－homogeneous，the operator A is not supposed generally to be $(p-1)$－ homogeneous in the second variable．

Here，we say that $u \in W^{1, p}(\Omega)$ is a（weak）solution of $(F)_{(\alpha, \beta)}$ if

$$
\int_{\Omega} A(x, \nabla u) \nabla \varphi d x=\int_{\Omega} \alpha u_{+}^{p-1} \varphi d x-\int_{\Omega} \beta u_{-}^{p-1} \varphi d x
$$

for all $\varphi \in W^{1, p}(\Omega)$ ．
Throughout this paper，we assume that the operator A satisfies the following assumption（A）：
（A）$A(x, y)=a(x,|y|) y$ ，where $a(x, t)>0$ for all $(x, t) \in \bar{\Omega} \times(0,+\infty)$ and
（i）$A \in C^{0}\left(\bar{\Omega} \times \mathbb{R}^{N}, \mathbb{R}^{N}\right) \cap C^{1}\left(\bar{\Omega} \times\left(\mathbb{R}^{N} \backslash\{0\}\right), \mathbb{R}^{N}\right)$ ；
（ii）there exists a $C_{1}>0$ such that

$$
\left|D_{y} A(x, y)\right| \leq C_{1}|y|^{p-2} \quad \text { for every } x \in \bar{\Omega}, \text { and } y \in \mathbb{R}^{N} \backslash\{0\} ;
$$

（iii）there exists a $C_{0}>0$ such that

$$
D_{y} A(x, y) \xi \cdot \xi \geq C_{0}|y|^{p-2}|\xi|^{2} \quad \text { for every } x \in \bar{\Omega}, y \in \mathbb{R}^{N} \backslash\{0\} \text { and } \xi \in \mathbb{R}^{N} .
$$

(iv) there exists a $C_{2}>0$ such that

$$
\left|D_{x} A(x, y)\right| \leq C_{2}\left(1+|y|^{p-1}\right) \quad \text { for every } x \in \bar{\Omega}, y \in \mathbb{R}^{N} \backslash\{0\}
$$

Throughout this paper, we assume $C_{0} \leq p-1 \leq C_{1}$ because we can take such desired C_{0} and C_{1} anew if necessary.

The hypothesis (A) has been considered in the study of the quasilinear elliptic problems (cf. [6], [12], [13]). For example, we can treat the operators like the p-Laplacian with the positive weight and

$$
\operatorname{div}\left(\left(|\nabla u|^{p-2}+|\nabla u|^{q-2}\right)\left(1+|\nabla u|^{q}\right)^{\frac{p-q}{q}} \nabla u\right) \quad \text { for } 1<p \leq q<\infty .
$$

Let us recall the known results in the special case of $A(x, y)=|y|^{p-2} y$ that is, p-Laplace problem and $C_{0}=C_{1}=p-1$. The set of all points $(\alpha, \beta) \in \mathbb{R}^{2}$ for which the equation

$$
\begin{equation*}
-\Delta_{p} u=\alpha u_{+}^{p-1}-\beta u_{-}^{p-1} \text { in } \Omega, \quad \frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega \tag{1}
\end{equation*}
$$

has a non-trivial solution is called the Fučik spectrum of the p-Laplacian under the Neumann boundary condition. In this paper, we denote the Fučík spectrum of p-Laplacian by Θ_{p}. It is well known that the first eigenvalue $\mu_{1}=0$ of $-\Delta_{p}$ is simple and every eigenfunction corresponding to $\mu_{1}=0$ is a constant function. Therefore, Θ_{p} contains the lines $\{0\} \times \mathbb{R}$ and $\mathbb{R} \times\{0\}$ (we call these lines as "the trivial lines"). Furthermore, by the same argument as in [5], it can be proved that there exists a Lipschitz continuous curve contained in Θ_{p} which is called "the first nontrivial curve" \mathscr{C} (see Section 2). In the p-Laplacian case, many authors have treated the Fučik spectrum (see [5], [7], [8], [10] under the Dirichlet boundary condition and [2], [3] for Neumann boundary condition).

Let us return to the general case. In [14], D. Motreanu and the present author treated the equation

$$
\begin{equation*}
-\operatorname{div} A(x, \nabla u)=f(x, u) \quad \text { in } \Omega, \quad \frac{\partial u}{\partial \nu}=0 \quad \text { on } \partial \Omega \tag{2}
\end{equation*}
$$

with the following nonlinearity:

$$
f(x, u)= \begin{cases}\alpha_{0} u_{+}^{p-1}-\beta_{0} u_{-}^{p-1}+o\left(|u|^{p-1}\right) & \text { at } 0, \\ \alpha u_{+}^{p-1}-\beta u_{-}^{p-1}+o\left(|u|^{p-1}\right) & \text { at } \infty\end{cases}
$$

for $\left(\alpha_{0}, \beta_{0}\right),(\alpha, \beta) \in \mathbb{R}^{2}$. Roughly speaking, by constructing two curves $\tilde{\mathscr{C}}$ and $\mathscr{\mathscr { C }}$ related to the map A (see section 3), it was shown that the equation (2) has a sign-changing solution in the case where (α, β) is below the curve $\mathscr{\mathscr { C }}$ and $\left(\alpha_{0}, \beta_{0}\right)$ is above the curve $\tilde{\mathscr{C}}$. In the p-Laplacian case, we see that two curves $\tilde{\mathscr{C}}$ and $\underline{\mathscr{C}}$ coincide with the first nontrivial curve \mathscr{C}. Moreover, if the first nontrivial curve lies between $\left(\alpha_{0}, \beta_{0}\right)$ and (α, β), then equation $-\Delta_{p} u=f(x, u)$ in Ω (under the Dirichlet boundary condition) has a non-trivial solution. Therefore, even for the general case of A, it seems reasonable to expect the existence of uncountably many Fučík type spectrum between $\tilde{\mathscr{C}}$ and $\mathscr{\mathscr { C }}$.

Mainly, this paper consists of results in [14] and [15]. In the final section, we see further results and several questions concerning our problem.

2 The first nontrivial curve contained in Θ_{p}

Here, we recall the result for the special case of $A(x, y)=|y|^{p-2} y$, that is, p Laplacian problems (note that we can take $C_{0}=C_{1}=p-1$ in (A)). The construction of the curve \mathscr{C} contained in the Fučík spectrum is carried out by the same argument as in [5]: For $s \geq 0$, we define

$$
\begin{aligned}
J_{s}(u) & :=\int_{\Omega}|\nabla u|^{p} d x-s \int_{\Omega} u_{+}^{p} d x \text { for } u \in W^{1, p}(\Omega), \quad \tilde{J}_{s}:=\left.J_{s}\right|_{S} \\
S & :=\left\{u \in W^{1, p}(\Omega) ; \int_{\Omega}|u|^{p} d x=1\right\}, \\
\Sigma & :=\left\{\gamma \in C([0,1], S) ; \gamma(0)=\psi_{1}, \gamma(1)=-\psi_{1}\right\},
\end{aligned}
$$

where $\psi_{1}=1 /|\Omega|^{1 / p}$ (so $\left\|\psi_{1}\right\|_{p}=1$). Here, the set $C([0,1], S)$ denotes the set of continuous functions from $[0,1]$ to S with the topology induced by the $W^{1, p}(\Omega)$ norm. Finally, we set

$$
\begin{equation*}
c(s):=\inf _{\gamma \in \Sigma} \max _{t \in[0,1]} \tilde{J}_{s}(\gamma(t)) . \tag{3}
\end{equation*}
$$

Then, it can be proved that $c(s)$ is a positive critical value of \tilde{J}_{s} with $c(0)=$ μ_{2}, where μ_{2} is the second eigenvalue of the p-Laplacian under the Neumann boundary condition. Moreover, we can see that $c(s)$ is continuous, strictly decreasing in $s \geq 0$ and $c(s)+s$ is strictly increasing in $s \geq 0$ (refer to [1, Lemma2.2] and [5, Proposition 4.1]). Then, \mathscr{C} is defined as follows:

$$
\mathscr{C}:=\{(c(s)+s, c(s)) ; s \geq 0\} \cup\{(c(s), c(s)+s) ; s \geq 0\} .
$$

Finally, we remark that in the case of $N \geq p$, it is shown in [3] that $c(s) \rightarrow 0$ as $s \rightarrow \infty$, whence the asymptotic lines of the first nontrivial curve are the trivial lines $\mathbb{R} \times\{0\}$ and $\{0\} \times \mathbb{R}$. However, if $N<p$, then $c(s) \rightarrow \bar{\lambda}$ as $s \rightarrow \infty$, where $\bar{\lambda}$ is a positive constant defined by

$$
\bar{\lambda}=\inf _{B} \int_{\Omega}|\nabla u|^{p} d x, \quad \text { where } B:=\left\{u \in S ; u\left(x_{0}\right)=0 \text { for some } x_{0} \in \bar{\Omega}\right\}
$$

This yields that the trivial lines are not the asymptotic lines of the first nontrivial curve.

3 Existence and non-existence results

To state the results for $(F)_{(\alpha, \beta)}$, we define curves $\underline{\mathscr{C}}$ and $\tilde{\mathscr{C}}$ by

$$
\begin{aligned}
& \mathscr{C}:=\frac{C_{0}}{p-1} \mathscr{C}:=\left\{\left(a C_{0} /(p-1), b C_{0} /(p-1)\right) ;(a, b) \in \mathscr{C}\right\}, \\
& \tilde{\mathscr{C}}:=\frac{C_{1}}{p-1} \mathscr{C}=\left\{\left(a C_{1} /(p-1), b C_{1} /(p-1)\right) ;(a, b) \in \mathscr{C}\right\},
\end{aligned}
$$

where C_{0} and C_{1} are positive constants satisfying (A). First, we state the elementary results for the equation $(F)_{(\alpha, \beta)}$ which is shown in [14].

Proposition 1 ([14, Proposition 2]) The following assertions hold:
(i) if $\alpha \beta<0$ or $\max \{\alpha, \beta\}<0$ holds, then $(F)_{(\alpha, \beta)}$ has no non-trivial solutions;
(ii) ifu is a non-trivial solution of $(F)_{(\alpha, \beta)}$ with $\min \{\alpha, \beta\}>0$, then u changes sign;
(iii) if u is a non-trivial solution of $(F)_{(\alpha, \beta)}$ with $\alpha \beta=0$, then u is a constant function;
(iv) if $0<\alpha<\alpha^{\prime}$ and $0<\beta<\beta^{\prime}$ for some $\left(\alpha^{\prime}, \beta^{\prime}\right) \in \mathscr{C}$, then $(F)_{(\alpha, \beta)}$ has no non-trivial solutions.

Define $\beta_{0}(s)$ and $\beta_{1}(s)$ for $s \geq 0$ by

$$
\beta_{0}(s):=\frac{C_{0}}{p-1} c\left(\frac{p-1}{C_{0}} s\right), \quad \beta_{1}(s):=\frac{C_{1}}{p-1} c\left(\frac{p-1}{C_{1}} s\right)
$$

where $c(\cdot)$ is a function defined by (3) (see the following figure):

Now, we state existence results.
Theorem 2 ([15]) For every $s \geq 0$ and $R>0$, there exists a $\beta \in\left[\beta_{0}(s), \beta_{1}(s)\right]$ such that $(F)_{(\beta+s, \beta)}$ and $(F)_{(\beta, \beta+s)}$ have at least one sign-changing solution $u \in C^{1}(\bar{\Omega})$ with $\int_{\Omega}|u|^{p} d x \leq R^{p}$.

Theorem 3 ([15]) Let $s \geq 0, \varepsilon>0$ and $R_{2}>R_{1}>0$ be constants satisfying

$$
R_{2}>\max \left\{\frac{\beta_{1}(s)+s+\varepsilon}{\min \left\{\beta_{0}(s), \varepsilon\right\}}, \frac{C_{1}\left(\beta_{1}(s)+s+\varepsilon\right)^{2}}{C_{0}\left(\beta_{1}(s)+\varepsilon\right)^{2}}, \frac{s\left(C_{1}-C_{0}\right)}{C_{0}\left(\beta_{1}(s)+\varepsilon\right)}\right\}^{1 / p} R_{1}
$$

Then, there exists a $\beta \in\left[\beta_{0}(s), \beta_{1}(s)+\varepsilon\right]$ such that $(F)_{(\beta+s, \beta)}$ and $(F)_{(\beta, \beta+s)}$ have at least one sign-changing solution $u \in C^{1}(\bar{\Omega})$ with $R_{1}^{p} \leq \int_{\Omega}|u|^{p} d x \leq R_{2}^{p}$.

3.1 Variational setting and notations

In what follows, we define the norm of $W:=W^{1, p}(\Omega)$ by $\|u\|^{p}:=\|\nabla u\|_{p}^{p}+\|u\|_{p}^{p}$, where $\|u\|_{q}$ denotes the norm of $L^{q}(\Omega)$ for $u \in L^{q}(\Omega)(1 \leq q \leq \infty)$. Define $G(x, y):=\int_{0}^{|y|} a(x, t) t d t$, then we can easily see that

$$
\nabla_{y} G(x, y)=A(x, y) \quad \text { and } \quad G(x, 0)=0
$$

for every $x \in \bar{\Omega}$.
Remark 4 The following assertions hold:
(i) for all $x \in \bar{\Omega}, A(x, y)$ is maximal monotone and strictly monotone in y;
(ii) $|A(x, y)| \leq \frac{C_{1}}{p-1}|y|^{p-1}$ for every $(x, y) \in \bar{\Omega} \times \mathbb{R}^{N}$;
(iii) $A(x, y) y \geq \frac{C_{0}}{p-1}|y|^{p}$ for every $(x, y) \in \bar{\Omega} \times \mathbb{R}^{N}$;
(iv) $G(x, y)$ is convex in y for all x and satisfies the following inequalities:

$$
\begin{equation*}
A(x, y) y \geq G(x, y) \geq \frac{C_{0}}{p(p-1)}|y|^{p} \quad \text { and } \quad G(x, y) \leq \frac{C_{1}}{p(p-1)}|y|^{p} \tag{4}
\end{equation*}
$$

for every $(x, y) \in \bar{\Omega} \times \mathbb{R}^{N}$,
where C_{0} and C_{1} are the positive constants described in (A).
For parameters $s \geq 0$ and $\beta \in \mathbb{R}$, we define the C^{1} functionals $I_{\beta, s}$ and $I_{\beta, s}^{+}$ on $W^{1, p}(\Omega)$ by

$$
I_{\beta, s}(u):=\int_{\Omega} G(x, \nabla u) d x-\frac{\beta+s}{p} \int_{\Omega} u_{+}^{p} d x-\frac{\beta}{p} \int_{\Omega} u_{-}^{p} d x
$$

with

$$
\begin{aligned}
\left\langle I_{\beta, s}^{\prime}(u), v\right\rangle & =\int_{\Omega} A(x, \nabla u) \nabla v d x-(\beta+s) \int_{\Omega} u_{+}^{p-1} v d x+\beta \int_{\Omega} u_{-}^{p-1} v d x \\
I_{\beta, s}^{+}(u) & :=\int_{\Omega} G(x, \nabla u) d x-\frac{\beta+s}{p} \int_{\Omega} u_{+}^{p} d x
\end{aligned}
$$

for $u, v \in W^{1, p}(\Omega)$. In this paper, we use the following notations:

$$
\begin{array}{ll}
B(r):=\{u \in W ;\|u\| \leq r\}, & B_{p}(r):=\left\{u \in W ;\|u\|_{p} \leq r\right\}, \\
D\left(r, r^{\prime}\right):=\left\{u \in W ; r \leq\|u\| \leq r^{\prime}\right\}, & D_{p}\left(r, r^{\prime}\right):=\left\{u \in W ; r \leq\|u\|_{p} \leq r^{\prime}\right\} \\
r S:=\left\{u \in W ;\|u\|_{p}=r\right\}, & r S_{+}:=\left\{u \in W ;\left\|u_{+}\right\|_{p}=r\right\}
\end{array}
$$

for $r^{\prime} \geq r>0$. Here, we note that the topology of all subsets above are induced by the $W^{1, p}(\Omega)$ norm. We set

$$
K\left(I_{\beta, s}\right):=\left\{u \in W ; I_{\beta, s}^{\prime}(u)=0\right\} \quad \text { and } \quad I_{\beta, s}^{c}:=\left\{u \in W ; I_{\beta, s}(u) \leq c\right\}
$$

for $c \in \mathbb{R}$.

Remark 5 Let $u \in W^{1, p}(\Omega)$ be a critical point of $I_{\beta, s}$, namely, u satisfies the equality

$$
\int_{\Omega} A(x, \nabla u) \nabla \varphi d x=(\beta+s) \int_{\Omega} u_{+}^{p-1} \varphi d x-\beta \int_{\Omega} u_{-}^{p-2} \varphi d x
$$

for every $\varphi \in W^{1, p}(\Omega)$. Then, because of $u \in L^{\infty}(\Omega)$ (see Appendix in [14]), we see $u \in C^{1, \gamma}(\bar{\Omega})(0<\gamma<1)$ by the regularity result (cf. [11]).

By Theorem 3 in [4], u satisfies $(\mathrm{F})_{(\beta+s, \beta)}$ in the distribution sense and the boundary condition

$$
0=\frac{\partial u}{\partial \nu_{A}}:=A(\cdot, \nabla u) \nu=a(\cdot,|\nabla u|) \frac{\partial u}{\partial \nu} \quad \text { in } W^{-1 / q, q}(\partial \Omega)
$$

for every $1<q<\infty$ (see [4] for the definition of $W^{-1 / q, q}(\partial \Omega)$). Since $u \in$ $C^{1, \gamma}(\bar{\Omega})$ and $a(x, y)>0$ for every $y \neq 0, u$ satisfies the Neumann boundary condition, that is, $\frac{\partial u}{\partial \nu}(x)=0$ for every $x \in \partial \Omega$.

By Proposition 1 and the remark above (note also that $A(x, y)$ is odd in y), it is sufficient to prove the following theorems for the proofs of Theorem 2 and 3.

Theorem 6 ([15]) For every $s \geq 0$ and $R>0$, there exists a $\beta \in\left[\beta_{0}(s), \beta_{1}(s)\right]$ such that $K\left(I_{\beta, s}\right) \cap B_{p}(R) \backslash\{0\} \neq \emptyset$.

Theorem 7 ([15]) Let $s \geq 0, \varepsilon>0$ and $R_{2}>R_{1}>0$ be constants satisfying (3) as in Theorem 3. Then, there exists a $\beta \in\left[\beta_{0}(s), \beta_{1}(s)+\varepsilon\right]$ such that $K\left(I_{\beta, s}\right) \cap D_{p}\left(R_{1}, R_{2}\right) \neq \emptyset$.

Roughly speaking, to show the existence of a non-trivial critical point near zero of $I_{\beta, s}$, we see the variation of the critical groups at 0 for $I_{\beta, s}$ when a parameter β changes from $\beta_{0}(s)$ to $\beta_{1}(s)$. Moreover, it is necessary to construct a flow for which $B_{p}(R)$ (or $D_{p}\left(R_{1}, R_{2}\right)$) is invariant. Furthermore, we shall produce suitable paths to see that 0 -th reduced homology group is trivial. For this purpose, we need to consider the constrained variational problems. The key point of our proof is to introduce a Finsler manifold $r S_{+}$.

Finally, we state the result characterizing $c(s)$ by Morse theory.
Corollary 8 ([15]) Let $C_{0}=C_{1}=p-1$ (that is, the case of p-Laplace operator). Then, for every $s \geq 0$

$$
c(s)=\min \left\{\beta>0 ; \widetilde{H}_{0}\left(I_{\beta, s}^{0} \backslash\{0\}\right)=0\right\}
$$

holds, where $c(s)$ is a function defined by (3) and \widetilde{H}_{*} denotes the reduced homology groups.

This corollary means that the mountain pass value $c(s)$ is attained by some continuous path $\gamma_{s} \in \Sigma$ for each $s \geq 0$.

4 The constrained variational problems

Throughout this section, we fix any $s \geq 0$. Thus, set $I_{\mathcal{\beta}, s}(\cdot)=I_{\mathcal{B}}(\cdot)$ for $\beta \in \mathbb{R}$ to simplify the notation. First, we define C^{1} functionals Φ and Φ_{+}on W by $\Phi(u):=\frac{1}{p}\|u\|_{p}^{p}$ and $\Phi_{+}(u):=\frac{1}{p}\left\|u_{+}\right\|_{p}^{p}$ for $u \in W$. Because r^{p} / p is a regular value of Φ and Φ_{+}for each $r>0$, it is well known that the norm of the derivative at $u \in(r S)$ or $u \in\left(r S_{+}\right)$of the restriction of I_{β} or I_{β}^{+}to $r S$ or $r S_{+}$is defined as follows:

$$
\begin{align*}
\left\|\tilde{I}_{\beta}^{\prime}(u)\right\|_{*} & :=\min \left\{\left\|I_{\beta}^{\prime}(u)-t \Phi^{\prime}(u)\right\|_{W^{*}} ; t \in \mathbb{R}\right\} \\
& =\sup \left\{\left\langle I_{\beta}^{\prime}(u), v\right\rangle ; v \in T_{u}(r S),\|v\|=1\right\}, \tag{5}\\
\left\|\left(\tilde{I}_{\beta}^{+}\right)^{\prime}(u)\right\|_{*} & :=\min \left\{\left\|\left(I_{\beta}^{+}\right)^{\prime}(u)-t \Phi_{+}^{\prime}(u)\right\|_{W^{*}} ; t \in \mathbb{R}\right\},
\end{align*}
$$

where $T_{u}(r S)$ denotes the tangent space of $r S$ at u, that is, $T_{u}(r S)=\{v \in$ $\left.W ; \int_{\Omega}|u|^{p-2} u v d x=0\right\}$ (cf. section 5.3 in [17] for (5)). It is known that $r S$ and $r S_{+}$are C^{1} Finsler manifolds (cf. section 27.4 and 27.5 in [9]). Hence, $r S$ and $r S_{+}$are locally path connected. Concerning $r S_{+}$, the following result is proved.

Corollary 9 ([15]) $r S_{+}$is path connected for each $r>0$.
To state our results for constrained variational problems, we set the following open subsets of $r S$ or $r S_{+}$as follows:

$$
\mathcal{O}\left(I_{\beta}, r, b\right):=\left\{u \in r S ; I_{\beta}(u)<b\right\}, \quad \mathcal{O}^{+}\left(I_{\beta}^{+}, r, b\right):=\left\{u \in r S_{+} ; I_{\beta}^{+}(u)<b\right\}
$$

for $r>0$ and $\beta, b \in \mathbb{R}$. Then, we have the following existence result.
Lemma 10 ([15]) Let $\beta \in \mathbb{R}, r>0$ and $b \in \mathbb{R}$. Then, any nonempty maximal open connected subset of $\mathcal{O}\left(I_{\beta}, r, b\right)$ or $\mathcal{O}^{+}\left(I_{\beta}^{+}, r, b\right)$ contains at least one critical point of $\left.I_{\beta}\right|_{r S}$ or $\left.I_{\beta}^{+}\right|_{r S_{+}}$, respectively.

The above lemma plays an important role for the proof of constructing a suitable path. It is the developed result from one as in [5] for the manifold S.

5 Further results and remaining questions

Finally, the present author would like to take up two questions. First one is "Is the set Θ_{A} closed?" where Θ_{A} denotes the set of all (α, β) such that $(F)_{(\alpha, \beta)}$ has a non-trivial solution. Of course, in the case where A is $(p-1)$-homogeneous in the second variable, we know that the above question is true. Second is "When dose Θ_{A} contain a similar curve to the first nontrivial curve \mathscr{C} ?" We state the following result related to the first question.

Proposition 11 For $R_{2} \geq R_{1}>0$, we set

$$
\begin{aligned}
\Theta_{A}\left(R_{1}, R_{2}\right) & :=\left\{(\alpha, \beta) \in \mathbb{R}^{2} ;(F)_{(\alpha, \beta)} \text { has a solution in } D\left(R_{1}, R_{2}\right)\right\}, \\
\Theta_{A}\left(R_{1}, R_{2}\right)_{p} & :=\left\{(\alpha, \beta) \in \mathbb{R}^{2} ;(F)_{(\alpha, \beta)} \text { has a solution in } D_{p}\left(R_{1}, R_{2}\right)\right\} .
\end{aligned}
$$

Then, $\Theta_{A}\left(R_{1}, R_{2}\right)$ and $\Theta_{A}\left(R_{1}, R_{2}\right)_{p}$ are closed for any $R_{2} \geq R_{1}>0$.

Proof. Let $\left\{\left(\alpha_{n}, \beta_{n}\right)\right\} \subset \Theta_{A}\left(R_{1}, R_{2}\right)_{p}$ (resp. $\left.\Theta_{A}\left(R_{1}, R_{2}\right)\right)$ be a sequence satisfying $\alpha_{n} \rightarrow \alpha_{0}$ and $\beta_{n} \rightarrow \beta_{0}$ as $n \rightarrow \infty$. Because of $\left(\alpha_{n}, \beta_{n}\right) \in \Theta_{A}\left(R_{1}, R_{2}\right)_{p}$ (resp. $\Theta_{A}\left(R_{1}, R_{2}\right)$), there exists a $u_{n} \in D_{p}\left(R_{1}, R_{2}\right)$ (resp. $\left.D\left(R_{1}, R_{2}\right)\right)$ being a solution of $(F)_{\left(\alpha_{n}, \beta_{n}\right)}$, that is, $-\operatorname{div} A\left(x, \nabla u_{n}\right)=\alpha_{n} u_{n+}^{p-1}-\beta_{n} u_{n-}^{p-1}$ in $\Omega, \partial u_{n} / \partial \nu=0$ on $\partial \Omega$. Then, we can see that $\left\{u_{n}\right\}$ is bounded in $£^{\infty}(\Omega)$. Indeed, by taking u_{n} as test function, we have

$$
\frac{C_{0}}{p-1}\left\|\nabla u_{n}\right\|_{p}^{p} \leq \int_{\Omega} A\left(x, \nabla u_{n}\right) \nabla u_{n} d x \leq \max \left\{\left|\alpha_{n}\right|,\left|\beta_{n}\right|\right\}\left\|u_{n}\right\|_{p}^{p} \leq \max \left\{\left|\alpha_{n}\right|,\left|\beta_{n}\right|\right\} R_{2}^{p}
$$

by Remark 4 (iii). This implies the boundedness of $\left\|u_{n}\right\|$. Moreover, it is known that there exists a positive constant C independ of n such that $\left\|u_{n}\right\|_{\infty} \leq C\left\|u_{n}\right\|$ because u_{n} is a solution of $(F)_{\left(\alpha_{n}, \beta_{n}\right)}$ and

$$
\begin{equation*}
\left|\alpha_{n} t_{+}^{p-1}-\beta_{n} t_{-}^{p-1}\right| \leq \max \left\{\left|\alpha_{0}\right|+1,\left|\beta_{0}\right|+1\right\}|t|^{p-1} \tag{6}
\end{equation*}
$$

for every $t \in \mathbb{R}$ and sufficiently large n (see Appendix in [14]). Thus, our claim is shown.

Because of the boundedness of $\left\|u_{n}\right\|_{\infty}$ and (6), the regularity result in [11] guarantees that there exist $\gamma \in(0,1)$ and $M>0$ independ of n such that $u_{n} \in C^{1, \gamma}(\bar{\Omega})$ and $\left\|u_{n}\right\|_{C^{1, \gamma}(\bar{\Omega})} \leq M$. Since the inclusion of $C^{1, \gamma}(\bar{\Omega})$ to $C^{1}(\bar{\Omega})$ is compact, we may assume that u_{n} converges some u_{0} in $C^{1}(\bar{\Omega})$ by choosing a subsequence. As a result, u_{0} is a solution of $(F)_{\left(\alpha_{0}, \beta_{0}\right)}$ and $u_{0} \in D_{p}\left(R_{1}, R_{2}\right)$ (resp. $D\left(R_{1}, R_{2}\right)$). Thus, $\left(\alpha_{0}, \beta_{0}\right) \in \Theta_{A}\left(R_{1}, R_{2}\right)_{p}$ (resp. $\left.\Theta_{A}\left(R_{1}, R_{2}\right)\right)$ holds, whence our conclusion is shown.

For any $s \geq 0$ and $R_{2} \geq R_{1}>0$ such that $K\left(I_{\beta, s}\right) \cap D_{p}\left(R_{1}, R_{2}\right) \neq 0$ for some $\beta>0$, we can define $c_{A}\left(s, R_{1}, R_{2}\right)$ by

$$
c_{A}\left(s, R_{1}, R_{2}\right):=\inf \left\{\beta \geq \beta_{0}(s) ; K\left(I_{\beta, s}\right) \cap D_{p}\left(R_{1}, R_{2}\right) \neq \emptyset\right\}
$$

It follows from Proposition 11 that the above infimum is attained, that is,

$$
c_{A}\left(s, R_{1}, R_{2}\right)=\min \left\{\beta \geq \beta_{0}(s) ; K\left(I_{\beta, s}\right) \cap D_{p}\left(R_{1}, R_{2}\right) \neq \emptyset\right\}
$$

Then, the present author would like to consider the problem "What properties does $c_{A}\left(s, R_{1}, R_{2}\right)$ have?" to answer to the second question.

5.1 Asymptotically ($p-1$) homogeneous case

In this subsection, we deal with the special case where the map $A(x, y)$ is asymptotically $(p-1)$ homogeneous in the following sense:
$(A H)$ there exist a positive function $a_{\infty} \in C^{1}(\bar{\Omega}, \mathbb{R})$ and a function $\tilde{a}(x, t)$ on $\bar{\Omega} \times \mathbb{R}$ such that

$$
A(x, y)=a_{\infty}(x)|y|^{p-2} y+\tilde{a}(x,|y|) y \quad \text { for every } x \in \Omega, y \in \mathbb{R}^{N}
$$

and $\lim _{t \rightarrow+\infty} \frac{\tilde{a}(x, t)}{t^{p-2}}=0 \quad$ uniformly in $x \in \bar{\Omega}$.

For this weight a_{∞}, we can define the following mountain pass value $c_{a_{\infty}}(s)$ by the same argument as in $c(s)$, namely

$$
\begin{align*}
c_{a_{\infty}}(s) & :=\inf _{\gamma \in \Sigma} \max _{t \in[0,1]} \tilde{J}_{a_{\infty}, s}(\gamma(t)), \tag{7}\\
J_{a_{\infty}, s}(u) & :=\int_{\Omega} a_{\infty}(x)|\nabla u|^{p} d x-s \int_{\Omega} u_{+}^{p} d x, \quad \tilde{J}_{a_{\infty}, s}:=\left.J_{a_{\infty}, s}\right|_{S} .
\end{align*}
$$

It can be proved that the interval $\left(0, c_{a_{\infty}}(s)\right)$ has no critical values of $\tilde{J}_{a_{\infty}, s}$.
Under the hypothesis $(A H)$, we have the following result.
Proposition 12 Assume (AH). Let $s \geq 0, \beta>0$ and $\left\{u_{n}\right\}$ be a sequence of a solution for $(F)_{(s+\beta, \beta)}$. If $\left\|u_{n}\right\|_{p} \rightarrow \infty$ as $n \rightarrow \infty$, then $\beta \geq c_{a_{\infty}}(s)$ holds, where $c_{a_{\infty}}(s)$ is the constant defined by (7).

Proof. Here, we give the sketch of the proof. Set $v_{n}:=u_{n} /\left\|u_{n}\right\|_{p}$. Then, by the same argument as in [16, Proposition 36], we can prove that $\left\{v_{n}\right\}$ has a subsequence strongly convergent to a solution v of

$$
-\operatorname{div}\left(a_{\infty}(x)|\nabla u|^{p-2} \nabla u\right)=(s+\beta) u_{+}^{p-1}-\beta u_{-}^{p-1} \quad \text { in } \Omega, \quad \frac{\partial u}{\partial \nu}=0 \quad \text { on } \partial \Omega,
$$

where a_{∞} is the positive function as in $(A H)$. This means that v is a critical point of $\tilde{J}_{a_{\infty}, s}$ with $\beta=\tilde{J}_{a_{\infty}, s}(v)$. Because $\beta>0$ and ($0, c_{a_{\infty}}(s)$) contains no critical values of $\tilde{J}_{a_{\infty}, s}$, we obtain $\beta \geq c_{a_{\infty}}(s)$.

Corollary 13 Assume $(A H)$ and $s \geq 0$. Then, we have

$$
\liminf _{R \rightarrow \infty} c_{A}(s, R, \infty) \geq c_{a_{\infty}}(s)
$$

where $c_{A}(s, R, \infty):=\inf \left\{\beta \geq \beta_{0}(s) ; K\left(I_{\beta, s}\right) \cap D_{p}(R, \infty) \neq \emptyset\right\}$.
Proof. By way of contradiction, we prove our assertion. So, we assume that there exists $s \geq 0$ such that $\left(0<\beta_{0}(s) \leq\right) \beta:=\liminf _{R \rightarrow \infty} c_{A}(s, R, \infty)<$ $c_{a_{\infty}}(s)$. Then, by choosing a subsequence, we can take a sequence $\left\{u_{n}\right\}$ of a solution for $(F)_{\left(\beta_{n}+s, \beta_{n}\right)}$ with $\left\|u_{n}\right\|_{p} \rightarrow \infty$ and $\beta_{n} \rightarrow \beta$. By the same argument as in [16, Proposition 36], we can show that β is a critical value of $\tilde{J}_{a_{\infty}, s}$. Therefore, we have a contradiction because of $0<\beta<c_{a_{\infty}}(s)$.

The present author expect that in Theorem 3, we can choose β close to $c_{a_{\infty}}(s)$ under the additional hypothesis $(A H)$.

References

[1] M. Alif and P. Omari, On a p-Laplace Neumann problem with asymptotically asymmetric perturbations, Nonlinear Analysis TMA 51 (2002), 369389.
[2] M. Arias, J. Campos, M. Cuesta and J.-P. Gossez, An asymmetric Neumann problem with weights, Ann. Inst. Henri Poincaré 25 (2008), 267-280.
[3] M. Arias, J. Campos and J.-P. Gossez, On the antimaximum principle and the Fučik spectrum for the Neumann p-Laplacian, Differential Int. Equations 13 (2000), 217-226.
[4] E. Casas and L. A. Fernandez, A Green's formula for quasilinear elliptic operators, J. Math. Anal. Appl. 142 (1989), 62-73.
[5] M. Cuesta, D. de Figueiredo, and J.-P. Gossez, The beginning of the Fuc̆ik spectrum for the p-Laplacian, J. Differential Equations 159 (1999), 212238.
[6] L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. Henri Poincaré 15 (1998), 493-516.
[7] E. Dancer, On the Dirichlet problem for weak nonlinear elliptic partial differential equations, Proc. Royal Soc. Edinburgh, 76A(1977), 283-300.
[8] N. Dancer and K. Perera, Some Remarks on the Fučlk Spectrum of the pLaplacian and Critical Groups, J. Math. Anal. Appl. 254 (2001), 164-177
[9] K. Deimling, "Nonlinear Functional Analysis", Springer-Verlag, New York, 1985.
[10] S. Fučík, Boundary value problems with jumping nonlinearities, Casopis Pest. Mat. 101 (1976), 69-87.
[11] G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203-1219.
[12] M. Montenegro, Strong maximum principles for supersolutions of quasilinear elliptic equations, Nonlinear Anal. 37 (1999), 431-448.
[13] D. Motreanu and N. S. Papageorgiou, Multiple solutions for nonlinear Neumann problems driven by a nonhomogeneous differential operator, Proc. Amer. Math. Soc., to appear.
[14] D. Motreanu and M. Tanaka, Existence of solutions for quasilinear elliptic equations with jumping nonlinearities under the Neumann boundary condition, to appear in Calc. Var. Partial Differential Equations.
[15] M. Tanaka, Existence of the Fučlk type spectrums for the generalized pLaplace operators, submitted.
[16] M. Tanaka, The antimaximum principle and the existence of a solution for the generalized p-Laplace equations with indefinite weight, submitted.
[17] M. Willem, "Minimax Theorem", Birkhäuser, Boston, 1996.

