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Abstract
The effects of polymer additives on decaying isotropic turbulence were numeri-

cally investigated using a hybrid approach. The approach consisted of a Brownian
dynamics simulation with an enomous number of dumbbells and a turbulence DNS
with large-scale parallel computations. A reduction of the energy dissipation rate
and modification of the kinetic energy spectrum were observed when the reactions
of the polymers were incorporated into the fluid motion. It was shown that the
increase of concentration of polymers or of Weissenberg number yielded more mod-
ifications of turbulence statistics. We also observed that the generation of intense
vortices was suppressed by polymer additives, being consistent with the previous
studies using constitutive equations. It was found that the field structures of poly-
mer stress field depended on the intensity of fluctuation, sheet-like stmctures for
the intermediate intensity region or filamentary ones for intense region. We found
the results with few polymers and large replicas could approximate those with many
polymers and smaller replicas as far as the large-scale statistics were concerned.

1 Introduction
It is well known that small amounts of polymers added to a fluid significantly affect the
large-scale flow structures, i. e., turbulence drag reduction [1, 2, 3] or enhancing the mixing
in the microchannel devices [4, 5, 6]. The later is due to the generation of random flows
with low Reynolds numbers caused by elastic instability, so called the elastic turbulence
[7, 8, 9]. On the other hand for larger Reynolds numbers, it is shown that the bulk of
turbulence is affected by polymer additives, suggesting the modification of energy transfer
dynamics over the inertial range scales [10].

It is vital to examine the meso-scale dynamics of polymers in turbulent flows for deep
insight into the peculiar flow nature of dilute polymer solutions. The previous studies have
been investigating the single polymer dynamics in a simple shear [11, 12, 13] and random
flows [14, 15, 16, 17, 18, 19, 20]. The coil-stretch transition is an important concept to
understand the polymer dynamics in turbulence [21]. In the case for simple shear flow, the
polymer takes the coiled configuration if the shear intensity $S$ is smaller than $1/\tau_{s}$ where
$\tau_{\epsilon}$ is the characteristic relaxation time of polymer chain. Wlule for $S\tau_{s}>1$ , it prefers
to be an extended configuration by the action of local flow. Because the direction and
amplitude of the local shear in turbulence fluctuates in time randomly and intermittently,
the polymers in turbulence manifest the complicated behavior moving along the fluid
particle trajectories, indicating the difficulty for understanding their interactions.

In a previous study, we investigated single polymer chain dynamics in isotropic tur-
bulence [22]. We found that the coil-stretch transition occurred for characteristic Weis-
senberg numbers $W_{i}=3\sim 4$ , where the Lagrangian correlation time of the velocity gra-
dient $\nabla u$ was a key quantity to determine whether the polymers were stretched or not.
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We also found that the statistical nature of the polymer chain was well approximated by
the dumbbell model. Moreover the relationship between the polymer elongation and local
flow topology was discussed by analyzing the statistics of polymer elongation conditioned
on the invariants of $\nabla u$ . Although several implications could be drawn from these results,
we did not consider the effects of polymer dynamics on turbulence (we considered a one-
way coupling regime only). To discuss turbulence modification by polymer additives, we
must incorporate the reaction from the enormous number of polymers to the fluid motion.

In the past, turbulent dilute polymer solution flow has mainly been investigated using
the constitutive equations like the Oldroyd-B or FENE-P equations [23]. These are the
evolution equations for the field of polymer conformation tensor and constructed on the
basis of the simple polymer model [23]. The constitutive equations have widely been used
for the investigations of turbulence drag reduction [24, 25, 26, 27, 28, 29] or the elastic
turbulence [30] because of the easiness to handle the polymers effects on turbulence by
the numerical simulations. Recent study pointed out that the resolution condition much
more stringent than that of velocity field is required for the adequate computation of
FENE-P equation [31].

The hybrid approach, the fluid motion is computed using the Navier-Stokes (NS)
equation while the polymers dynamics is done by the molecular dynamics or Brownian
dynamics simulations of the appropriate polymer model [23, 32], is the new trend for
investigating the dilute polymer solution flow. There were several studies for this issue
using the combination of computational fluid dynamics with particle-based simulations
of polymer model with/without the reaction to fluid motion [33, 34, 35, 36, 37, 38]. The
advantage of hybrid approach is that we can construct the polymer solution model having
rich variety of rheological properties by introducing several interacting forces among beads.
Moreover it may be suitable to investigate the phenomena that the Lagrangian view is an
intrinsic; the diffusion of polymer solution in turbulent boundary layer [39] or the effects
of the degradation of polymers on turbulence [40]. While the disadvantage is that the
computational cost becomes much larger as the number of polymer is increased. However
we can neglect the interaction among polymers in the case for the dilute solution, implying
the computational cost for evaluating forces among particles is proportial to the number
of polymers. Then we can perform the efficient simulations for the enormous number of
polymers in turbulence using the large-scale parallel computations.

The purpose of the present study is to explore two-way coupled simulation methods
using the hybrid approach. The Brownian dynamics simulation for the polymer chain
model coupled with the direct numerical simulation (DNS) of turbulent flow were per-
formed using large-scale parallel computations. We used the dumbbell model for the long
chain polymer because the dumbbell model can satisfactorily reproduce the overall results
obtained by the chain model [22, 31]. To gain the significant reaction from polymers to
fluid, we needed a much large number of dumbbells in the flow domain. In this study
the enormous number $(O(10^{9}))$ of dumbbells were dispersed in turbulent flow, and their
advections and deformations were strictly tracked during the time evolution. Then we
examined the degree of modification of turbulent flow by investigating the concentration
and Weissenberg number effects on the fundamental quantities and the vortical structures
in the case for decaying isotropic turbulence. Because there is no mean shear in isotropic
turbulence, it is suitable to investigate the effects of polymers on the bulk of turbulence
by analyzing the interaction between polymers and the velocity gradient fluctuations.
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Modification of isotropic turbulenoe by polymer additives have been investigated by the
DNS of FENE-P model [27, 28, 29]. Making a comparison between the present results
and the previous ones obtained by FENE-P model may be useful to assess the hybrid ap-
proach introduced in this study. Moreover we examined the validation for the assumption
introduced for evaluating the polymer stress field which is added to the NS equation as
the reaction term from dumbbells.

This paper is organized as follows. We briefly describe the model equations and
numerical method in Secs. 2 and 3. The effects of the polymer additives on decaying
turbulence are examined by varying the parameters like concentration and Weissenberg
number in Sec. 4. Section 5 is assigned for examining the nature of coherent structures
with and without polymers, where the specific structures in the polymer stress field are
discussed. The variation of results when the number of polymers is changed are also
discussed in Sec. 6. We summarized the main results obtained in this study in Sec. 7.

2 Polymer solution model

2.1 Governing equations
We used the dumbbell model to represent the polymer dynamics dispersed in the flow
domain. In this method, each polymer is represented by two beads connected by a non-
linear spring [23]. The interaction among different dumbbells is neglected because we
considered dilute polymer solutions. Moreover, we neglected the inertia of the particles
because the inertia of the coiled polymer was very small. Thus, the equations of mo-
tion for the end-to-end vector $R^{(n)}(t)=x_{1}^{(n)}(t)-x_{2}^{(n)}(t)$ and the center of mass vector
$r_{g}^{(n)}(t)=(x_{1}^{(n)}(t)+x_{2}^{(n)}(t))/2$ of the n-th dumbbell are respectively given by

$\frac{dR^{(n)}}{dt}=u_{1}^{(n)}-u_{2}^{(n)}-\frac{1}{2\tau_{\epsilon}}f(\frac{|R^{(n)}|}{L_{m}})R^{(n)}+\frac{r_{eq}}{\sqrt{2\tau_{s}}}(W_{1}^{(n)}-W_{2}^{(n)})$ , (1)

$\frac{dr_{g}^{(n)}}{dt}=\frac{1}{2}(u_{1}^{(n)}+u_{2}^{(n)})+\frac{r_{eq}}{\sqrt{8\tau_{s}}}(W_{1}^{(n)}+W_{2}^{(n)})$ , $(u_{\alpha}^{(n)}\equiv u(x_{\alpha}^{(n)}(t), t))$ , (2)

where $u(x, t)$ denotes the velocity field of the solvent fluid. We adopted the finitely
extensible nonlinear elastic (FENE) model [23] given by $f(z)=1/(1-z^{2})$ . The dumbbell
cannot extend beyond the maximum length $L_{mm}$ . The term $W_{1,2}^{(n)}(t)$ indicates a Brownian
random force acting on the particles from the solvent fluid, obeying Gaussian statistics
with a white-in-time correlation as $\langle W_{\alpha,i}^{(n)}(t)\rangle=0,$ $\langle W_{\alpha,i}^{(m)}(t)W_{\beta,j}^{(n)}(s)\rangle=\delta_{\alpha\beta}\delta_{ij}\delta_{mn}\delta(t-s)$ .
Here, $6_{ij}$ denotes the Kronecker delta and $\delta(t)$ is the delta function. $\tau_{s}$ and $r_{eq}$ are the
relaxation time and the equilibrium length of the dumbbell under $u(x,t)=0$.

The turbulent velocity field obeys the incompressible Navier-Stokes equation

$\nabla\cdot u=0$ , $\frac{\partial u}{\partial t}+u\cdot\nabla u=-\nabla p+\nu\nabla^{2}u+\nabla\cdot T^{p}$ , (3)

where $\nu$ is the kinematic viscosity. $T^{p}(x, t)$ is the polymer stress tensor due to the force
acting on the fluid from the dispersed dumbbells. It is defined by

$T_{ij}^{p}( x, t)=\frac{\nu\eta}{\tau_{s}}(\frac{L_{box}^{3}}{N_{t}})\sum_{n=1}^{N_{t}}[\frac{R_{i}^{(n)}R_{j}^{(n)}}{r_{eq}^{2}}f(\frac{|R^{(n)}|}{L_{R}})-\delta_{ij}]\delta(x-r_{g}^{(n)})$. (4)
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$\eta\equiv(3r_{eq}/4a)^{2}\Phi_{V}$ is the zero shear contribution of polymers to the total solution viscosity,
$a$ is the radius of the bead, and $\Phi_{V}\equiv(8\pi N_{t}/3)(a/L_{box})^{3}$ represents the volume fraction
of the ensemble of dumbbells. Thus $\eta$ is proportional to the polymer concentration.

2.2 Parameter setting
We evaluated how many polymers were required to realize a significant turbulence mod-
ification. According to an experimental study using polyacrylamide $(M_{p}=18\cross 10^{6}$

a.m.u.), the number of polymers per box with volume $l_{K}^{3},$ $l_{K}$ being the Kolmogorov
length, can be estimated by $N_{K}=3.6\cross 10^{6}$ when $R_{\lambda}\simeq 50$ with a 5 ppm solution
[10]. Therefore, the total number of polymers in the computational box was estimated
as $N_{t}=N_{k}(L_{box}/l_{K})^{3}=O(10^{13})$ when using adequate DNS conditions $(\Delta x=l_{K})$ for
small-scale statistics. The order $N_{t}=O(10^{13})$ is much too large, even for using a state-
of-the-art supercomputer. Thus an approximate method was required to represent the
interaction between the fluid and polymers. We supposed that $N_{t}$ was represented by
$N_{t}=b\tilde{N}_{t}$ , where $\tilde{N}_{t}$ indicates the total number of dumbbells in the computation and $b$ is
an artfficial parameter representing the number of “replica dumbbells” per a dumbbell.
In this case, the polymer stress tensor was approximated by replacing $N_{t}$ in (4) by $\tilde{N}_{t}$ .

Dumbbell parameters $r_{eq},$ $a$ , and $L_{mm}$ were determined using experimental parameters
[10] under fixed $l_{K}$ . It is shown in [10] that $R_{g}=0.5\mu m,$ $L_{mm}=77\mu m$ for polymer
solution using Polyacrylamide. Then we evaluated as $L_{\max}/l_{K}=0.3,$ $r_{eq}/l_{K}=3.0\cross 10^{-3}$

and $a/l_{K}=(3\Phi_{V}/4\pi N_{K})^{1/3}=7.0\cross 10^{-5}$ , where we use the relationship $\sqrt{3}r_{eq}\simeq\sqrt{6}R_{g}$

for Gaussian coil and $l_{K}\simeq 280\mu m$ when $R_{\lambda}=50$ . The Weissenberg number $W_{i}$ controls
the elastic nature of the polymer model. It is defined by $W_{i}=\tau_{S}/\tau_{K}$ , where $\tau_{K}$ is the
Kolmogorov time. In this study $W_{i}$ is used for the control parameter to determine the
elastic nature of dumbbell, i.e. $\tau_{s}$ is determined by using the values of $W_{i}$ and $\tau_{K}$ .

3 Numerical simulations
Direct numerical simulations (DNSs) of Eqs. (3) were performed in a periodic box with
periodicity $2\pi$ using the pseudo-spectral method in space and the 2nd order Runge-Kutta
method in time. The initial conditions of the velocity field were set to random, obeying
Gaussian statistics with an energy spectrum

$E(k, 0)=16\sqrt{2/\pi}(u_{0}^{2}/k_{0})(k/k_{0})^{4}\exp(-2(k/k_{0})^{2})$ $(u_{0}=1, k_{0}=2)$ . (5)

The total number of grid points for DNS were set to $N^{3}=128^{3}$ . The Taylor micro-scale
Reynolds number $R_{\lambda}(t)$ was $R_{\lambda}(O)=52$ , which monotonically decayed with time. In this
process, the decaying turbulence was approximately regarded as statistically isotropic and
homogeneous. $l_{K}(t)=(\nu^{3}/\epsilon(t))^{1/4}$ , where $\epsilon(t)$ is the energy dissipation rate, was always
larger than the grid spacing $\Delta x$ , i. e., the velocity field was adequately smooth at small
scales. $\tau_{K}=(\nu/\epsilon(t))^{1/2}$ and $l_{K}$ used for determining several parameters are evaluated
using the maximum value $\epsilon_{\max}$ of $\epsilon(t)$ in the one-way coupling case.

Initial positions of dumbbells were uniformly distributed over the computational do-
main by using uniform random numbers. The initial configuration of each dumbbells were
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Table 1: Parameters for DNS of decaying turbulence and Brownian dynamics simulation
for dispersed dumbbells. Run $0$ means the one-way case.

set by $R^{(m)}(0)=r_{eq}n^{(m)}$ where $n^{(m)}$ was the unit random vector taken over the all orien-
tations. Time integration of eqs. (1) and (2) were performed by using the similar scheme
proposed in [11], where the velocity components at each bead position were interpolated
using a TS13 scheme [41]. Multi-scale method was used for the temporal evolution of
$R^{(n)}(t)$ , where the time increment $\Delta t_{p}$ for $R^{(n)}(t)$ was chosen by $\Delta t_{p}=\Delta t_{DNS}/5$ when
$|R^{(n)}(t)|>0.9L_{mm}$ , while $\Delta t_{p}=\Delta t_{DNS}$ for $|R^{(n)}(t)|<0.9L_{R}$ .

Parallel computations were used to evaluate the convection and deformation of the
dispersed dumbbells. The total number of dumbbells $\tilde{N}_{t}$ was divided into $m$ groups, and
their temporal evolution was individually computed for each node. One node was assigned
to the DNS of the solvent fluid, so that we used $m+1$ processes for the parallel computation
of the fluid-particle system. $u(x, t)$ computed in the fluid node was transferred to the other
nodes for the polymer computations. The program code was parallelized by using MPI,
where the 256 processer elements were used for the parallel computations. The reaction
from the polymers was evaluated as follows. 1) The polymer stress field $T_{node}^{p}(x)$ was
computed according to Eq. (4) in each process. 2) These were gathered to the process for
fluid computation and summed. 3) The obtained $T^{p}(x)$ was incorporated into the DNS
scheme. In the step 1), because the center of mass vector $r_{g}^{(n)}$ for each dumbbells were not
on the grid points for DNS computation, we needed some approximate expression instead
of Eq. (4). The delta function in Eq. (4) was approximated by the weight function which
was the function of surrounded 8 grid points around $r_{g}^{(n)}$ and determined by the weights
used for linear interpolation scheme [42].

Elastic nature of dumbbells is controlled by changing $W_{i}$ , and the concentration of
polymer solution is determined by the value of $\eta$ . In this study we performed the series
of simulations as 1) $\eta$ dependence under fixed $W_{i},$ $2$ ) $W_{i}$ dependence under fixed $\eta$ , and
3$)$ $N_{t}$ dependence under fixed $W_{i},$

$\eta$ and $N_{t}$ . The parameters used for simurations are
summarized in Table 1.

4 Modification of decaying isotropic turbulence

4.1 Concentration effect
We examined the modification of the turbulent polymer solution flow by changing $\eta$ under
fixed $W_{i}(=5)$ . Figure 1 shows the temporal evolution of the kinetic energy $E(t)=\langle u_{i}^{2})/2$
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Figure 1: $\eta$ effect on the temporal evolution Figure 2: $\eta$ effect on the temporal evolution
of the kinetic energy $E(t)$ . of the energy dissipation rate $\epsilon(t)$ .
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Figure 3: Comparison of the behavior of the kinetic energy spectrum $E(k, t)$ obtained by
Runs $0$ , El and E2; (a) $t=1,$ $(b)t=2$ and (c) $t=4$ .

in the cases for $\eta=0$ (Run $0$), 0.1045 (Run El) and 0.2090 (Run E2). Kinetic energy
monotonically decayed with time, and the decay rate increased with increase of $\eta$ . Figure
2 indicates the temporal evolutions for the energy dissipation rate $\epsilon(t)$ . Peak positions
located around $t=1$ irrespective of $\eta$ , and $\epsilon(t)$ decayed with time for $t>1$ , where
the reduction rate of $\epsilon(t)$ became larger as $\eta$ increased. These observations suggest that
the extension of dumbbells affected to the scales of turbulent motions over the entire
wavenumber range, being qualitatively consistent with the DNS results using a FENE-P
model [27].

To see these modifications in more details, we investigated the behavior of the kinetic
energy spectrum $E(k, t)$ . Figure 3 indicates the comparison of $E(k, t)$ for Runs 0-2 in
the cases for (a) $t=1,$ $(b)t=2$ and (c) $t=4$. The spectral behavior was deformed
by the polymer additives within its tail part up to $t=1$ , and the deviation from the
one-way result became larger with increase of $\eta$ . At the final period of decay, the spec-
tral modffication was observed over the entire wavenumber range, suggesting the energy
transfer dynamics was affected even in the larger scales by the modification of dissipation
mechanism in the smaller ones.

As shown in the aforementioned results, turbulence modification was originated $hom$

the reaction due to the dumbbell dynamics which was characterized by the statistical
nature of the ensemble of dumbbells. Next we investigate the temporal evolutions of the
probability density function (PDF) for the dumbbell end-to-end distance $|R^{(n)}|$ . These
were plotted in Fig. 4 for Runs 0-2 in the cases for (a) $t=1,$ $(b)t=2$ and (c) $t=4$ ,
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Figure 4: $\eta$ effect on the temporal evolution of the polymer extension PDF $P(r, t);(a)$
$t=1,$ $(b)t=2$ and (c) $t=4$.

$0$ 1 2 3 $\ovalbox{\tt\small REJECT}$ 5 6 7 8 $0$ 1 2 3 $\ovalbox{\tt\small REJECT}$ 5 6 7 8
$t$ $t$

Figure 5: Variation of the temporal evolution Figure 6: Variation of the temporal evolution
of mean extension $\langle|R|\rangle_{p}/r_{eq}$ against $\eta$ . of reduction rate of $\epsilon(t)$ against $\eta$ .

where $|R^{(n)}|$ was normalized by $L_{mw}$ . The curves in (a) were almost the same irrespective
of $\eta$ and the peak position located near zero, indicating the reaction to turbulence was
almost negligible when $t\leq 1$ . We could observe a lot of stretched dumbbells as the time
goes on, where they were more stretched as decreasing $\eta$ . The reduction of the number of
stretched dumbbells with increase of $\eta$ is explained by the fact that the velocity gradient
fluctuation is more suppressed as $\eta$ increases, as shown in Fig. 2. Figure 5 indicates the
time evolutions of the mean dumbbell extension normalized by $r_{eq}$ . The curve obtained by
Run $0$ represented that the passively advected dumbbells were more stretched than two-
way cases. This observation was almost consistent with the results by DNS of constitutive
equations [24, 27]. It is interesting to notice that the time $|R^{(n)}|$ approaches to their
maximum values is later than those for the energy dissipation rate $\epsilon(t)$ (Fig. 2).

We examined the percentage reduction rate of $\epsilon(t)$ . This is defined by $1-\epsilon_{2way}/\epsilon_{1way}$.
The resulting curves are shown in Fig. 6. More reductions were observed in the final period
of decay, irrespective of $\eta$ . The reduction rate increased with increase of $\eta$ , suggesting the
intensity of reaction by dumbbells became bigger as $\eta$ increased.

4.2 Weissenberg number effect
In this subsection, we examined the degree of turbulence modification by changing Weis-
senberg number $W_{l}$ under fixed $\eta(=0.1045)$ . Figure 7 shows the temporal evolutions
of $E(t)$ for the cases with $W_{i}=1$ (Run Wl), $5$ (Run El) and 15 (Run W2). The curves
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Figure 7: $W_{i}$ effect on the temporal evolution Figure 8: $W_{i}$ effect on the temporal evolution
of the kinetic energy $E(t)$ . of the energy dissipation rate $\epsilon(t)$ .
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Figure 9: Comparison of the behavior of the kinetic energy spectrum $E(k, t)$ obtained by
Runs Wl, El and W2; (a) $t=1,$ $(b)t=2$ and (c) $t=4$ .

almost collapsed on the same when $t<2$ . While for $t>2$ , the larger $W_{i}$ cases decayed
faster than the smaller ones. Comparison of the temporal evolutions of the energy dissi-
pation rate $\epsilon(t)$ is shown in Fig. 8. MOre energy dissipation reduction in the case for the
larger $W_{i}$ could be clearly seen for $t>2$ . These facts suggest that the dumbbells were
more stretched for larger $W_{i}$ , leading to the more significant reactions.

Weissenberg number effect on the spectral modification were examined by comparing
the behavior of kinetic energy spectrum $E(k, t)$ for various $W_{i}$ . Figure 9 shows the re-
sulting curves for the cases (a) $t=1,$ $(b)t=2$ and (c) $t=4$. As the time increased,
the collapsing region was shrinking in the high wavenumber range. It should be noted
that W-dependence at $t=4$ was very similar to the DNS results of FENE-P model
with isotropic steady turbulence [28]. The spectral behavior at $t=4$ for $W_{i}=1$ was
entirely different from that for $W_{i}=15$ which had the near power law decay in the whole
wavenumber range. Because the turbulence adequately decayed while the mean elonga-
tion of dumbbells had the maximum value around $t=4$ , we think the spectral dynamics
is dominated by the elastic nature of the ensemble of dumbbells rather than the nonlinear
term of NS equation. We may need more detailed analysis to draw the definite statement
by investigating the transfer properties in the wavenumber space.

Comparison of the PDF behavior for the dumbbell elongation are shown in Fig. 10
for (a) $t=1,$ $(b)t=2$ and (c) $t=4$. Extension of dumbbells became larger as $W_{i}$

increased. For $W_{i}=15$ , it was seen that there were a lot of dumbbells having more
stretched configurations. In the decay regime of $\epsilon(t)(t>2)$ , the fully stretched dumbbells
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Figure 10: $W_{1}$ effect on the temporal evolution $oi$ the polymer extension PDF $P(r, t);(a)$

$t=1,$ $(b)t=2$ and (c) $t=4$ .
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Figure 11: Variation of the temporal evolu- Figure 12: Variation of the temporal evolu-
tion of mean extension $\langle|R|)_{p}/r_{eq}$ against $W_{i}$ . tion of reduction rate of $\epsilon(t)$ against $W_{i}$ .

shrunk toward equilibrium state. This was clearly seen in Fig. 11 where the temporal
evolutions of the mean end-to-end distance of dumbbell normalized by $r_{eq}$ were plotted.
The mean extension for $W_{i}=1$ was near $r_{eq}$ in the whole time region, while for $W_{i}=15$

it sharply increased until $t=4$ and gradually decayed for $t>4$ . Because the larger
extensions of dumbbells can lead to the larger effects on turbulence, it was plausible that
the more energy dissipation reduction was observed for larger $W_{i}$ . The percentage of
energy dissipation reduction rate was plotted in Fig. 12 as the function of $t$ for various
$W_{i}$ . The reduction rate became larger as $W_{i}$ was increased for $t>2$ . Thus we concluded
that the larger $W_{1}$ solution flow was more efficient reducer of the intensity of turbulent
velocity gradient fluctuations, being consistent with the results in [28].

5 Comparison of coherent structures
The intuitive way to examine the impact of polymer additives on turbulence is to see
the modification of coherent stmctures appeared in the turbulent field. In this section we
investigate the $\eta$ and $W_{i}$ effects on the vortical structures. Moreover the specffic character
of field structure in the polymer stress tensor is discussed.

Figure 13 shows the comparison of vortical structures obtained by Run $0$ and Run El
at $t=3.5$ , where they were visualized by using the second invariant $Q$ of the velocity
gradient tensor $\nabla u$ . Figure indicated that although the whole view of structures were
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Figure 13: Comparison of the iso-surface of $Q$ for $\eta=0$ (left: Run $0$ ) and $\eta=0.1045$

(right: Run El) at $t=3.5$ . Iso-surface level is chosen by $Q/Q_{rms}=3$ .

Figure 14: Iso-surface of the trace of polymer stress tensor $X=T_{ii}^{p}$ obtained by Run E2
at $t=3.5$. Iso-surface level is chosen by $X/X_{rms}=1.5$ (left) and $X/X_{rms}=6$ (right).

indistinguishable each other, the generation of intense structures for Run El was sup-
pressed more than the case for Run $0$ . This fact was consistent with the observation for
the reduction of energy dissipation in Fig. 2. Also the similar results were obtained in the
DNS studies of FENE-P equation [27, 29]

Figure 14 illustrates the iso-surface of the trace of the polymer stress tensor $T_{ii}^{p}$ ob-
tained by Run E2 at $t=3.5$ . It was recognized that the region for the intermediate
intensity of $T_{ii}^{p}$ had the peculiar sheet-like structures which nearly located among intense
regions of $Q(>0)$ . While for the region of larger value of $T_{ii}^{p}$ the filament-like structures
were observed. Thus the characteristic structure of $T_{ii}^{p}$ is dependent on the intensity
of fluctuation. Sheet-like stmctures could be clearly seen in Fig. 15 where the two di-
mensional slice of Fig. 14 were visualized. This observation reminds us the sheet-like
structures observed in the scalar gradient field of the passive scalar turbulence. In fact,
the amplffication mechanism of scalar gradient vector is similar for that of the end-to-end
vector of dumbbell. We need further analysis to clarify this observation by investigating
the relationship between the velocity gradient and the end-to-end vector of dumbbell.
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Figure 15: Comparison of the $2D$ slice between $Q$ (left) and $T_{*i}^{p}$ (right) obtained by Run
E2 at $t=3.5$ .
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Figure 16: Comparison of the time evolution Figure 17: Behavior of the dissipation
of $\epsilon(t)$ for Runs $L$ , E2 and H. spectra $k^{2}E(k,t)$ obtained by Runs $L$ , E2

and H.

6 Validation of assumption for polymer stress field
We assumed that there were many “replica” dumbbells to construct the polymer stress
field from dumbbell configurations because we need much larger computational resources
to realize the reactions from the enormous number of dumbbells dispersed in the flow
domain. It is indispensable to know how many dumbbells are needed to realize the
adequate results in the statistical sense. For this issue, in this section, we examined the
effects of the variation of $b$ and $\tilde{N}_{t}$ under fixed $N_{t}$ .

The comparison of the curves for temporal evolutions of $\epsilon(t)$ for Runs $L$ , E2 and $H$ is
shown in Fig. 16. It was seen that they were almost the same. Curves for the dissipation
spectra $k^{2}E(k, t)$ are also shown in Fig. 17. The spectral behavior was indistinguishable
except for the spectral tails. The deviation in the high wavenumber range may be at-
tributed to an insufficient number of dumbbells to obtain smooth variations of $T^{p}$ on the
grid scale. Figure 18 compares coherent vortices visualized using the iso-surface of the
second invariant $Q$ of the velocity grad\’ient tensor. Remarkable zig-zag structures were
observed in the vortices for Run $L$ compared to Run $H$ , although the entire trends of the
structures were quite similar.
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Figure 18: Comparison of iso-surface visualizations of vortical structures using $Q$ with
the level $Q/Q_{rms}=2.5$ (left: Run $L$ , right: Run H) at $t=3.5$ .

These results suggest that the “replica assumption” introduced for the evaluation of
$T^{p}$ works very well as far as the large-scale nature of turbulence is concerned. However,
many more dumbbells are required for better prediction of the turbulence modffication
around the Kolmogorov scale.

7 Conclusions
The parallel computations for turbulent polymer solution flow were performed by using
the hybrid approach; Brownian dynamics simulation of polymer model (dumbbells) cou-
pled with the DNS of the NS equation. We examined the turbulence modification by
the enormous number of dumbbells $(O(10^{9}))$ dispersed in decaying isotropic turbulence.
As a result, we observed a significant energy dissipation reduction and energy spectrum
modification in the later stages of decay when the concentration of polymers or the Weis-
senberg number was increased. These were entirely consistent with the results of DNS
using a constitutive equation [27, 29].

Visualization of coherent vortices using the second invariant $Q$ of $\nabla u$ clarified that the
generation of intense vortices were suppressed by polymer additives. This was consistent
with the observation for the reduction of energy dissipation rate. We also showed that
the region having longer dumbbell extension had the sheet-like or filament-like structures
located among intense vortices. This implies that the stretching polymers almost locate
in the $Q<0$ region which was dominated by the strain. This was consistent with the
results of our previous study in which the conditional mean distance of polymer chain on
$Q$ and $R$ had a large value in the region $Q<0,$ $R>0[22]$ .

We found that the spectral tails were most affected by polymer additives in which the
degree of modification was dependent on the parameters $b$ and $\tilde{N}_{t}$ , even though $N_{t}=b\tilde{N}_{t}$

was fixed. This nature was clearly confirmed by the visualization of vortical structures,
where the smaller $\tilde{N}_{t}$ results had a rough surface on the vortices due to the insufficient
evaluation of $T^{p}$ on grid scales.

The results obtained in this study represent that the hybrid approach with the parallel
computation is very effective for investigating the dilute polymer solution flows. Although
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we used the dumbbell model for the long chain polymer, it is interesting to introduce more
realistic polymer chain model having the hydrodynamic interaction or excluded volume
forces among beads [32]. Hybrid approach has a great advantage for examining the effect
of these extra forces on turbulence modification whose issue cannot be touched by the
constitutive equation. This would be the subject of future work.
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