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We propose a structural optimisation method, based on the level set method and using mathematical
programming such as the method of moving asymptotes (MMA), which we apply to the design of compliant
mechanisms. A compliant mechanism is a monolithic joint-free mechanism designed to be flexible to obtain a
specified motion. In the design of compliant mechanisms, several requirements such as the direction of the de-
formation and stress concentrations must be considered to obtain the specified mechanical function. Topology
optimisation, the most flexible type of structural optimisation, has been successfully used as a design optimi-
sation method for compliant mechanisms, but the utility of topology optimisation results is often spoiled by a
plethora of impractical designs such as structures containing grayscale areas. Level set-based topology optimi-
sation methods are immune to the problem of grayscales since the boundaries of the optimal configuration are
implicitly represented using the level set function. The proposed method updates the level set function using
mathematical programming to facilitate the treatment of constraint functionals. To verify its capabil ty, we
apply our method to compliant mechanism design problems that include displacement constraints and stress
constraints.

ogy optimisation method for compliant mechanisms, where

the concept of mutual energy was used in the formulation of
Compliant mechanisms are gaining increasing attention afexibility.
their application in myriad mechanical devices such as Topology optimisation, firstly proposed by Bendsge and
MEMS broadens. A compliant mechanism is a monolithic Kikuchi (1988), has been successfully applied to many prob-
joint-free mechanism designed to be flexible to obtain a speclems such as minimum mean compliance problems (Suzuki
ified motion. The major advantages of compliant mecha-and Kikuchi, 1991), eigen-frequency problems (Diaz and
nisms are simplified manufacturing and assembly, reducedKikuchi, 1992), electromagnetic problems (Yoo et al., 2000)
cost, lack of mechanical play, silent operation, and freedomand so on. The basic concepts of topology optimisation are
from lubrication requirements (Howell, 2001). The first ap- the extension of the design domain and replacement of the
proach to compliant mechanism design was a kinematic syneptimisation problem with a material distribution problem
thesis approach in which rigid-body mechanisms were syn-using the characteristic function (Murat and Tartar, 1985).
thesized into compliant mechanisms (e.g., Her and MidhaSuch material distribution problems are known to be ill-
1987). This approach, however, is limited to lumped com-posed, so a relaxation technique is required, such as the ho-
pliant mechanism designs. For the design of fully compliantmogenization design method or the SIMP method. Topology
mechanisms, topology optimisation methods using the conoptimisation methods are the most flexible of optimisation
tinuum synthesis approach are used. In such methods, Signethods since topological changes as well as shape changes
mund (1997) formulated the objective function as the ratioare allowed during the optimisation process. However, this
between input and output forces, called the mechanical adadvantage is oftenffset in the optimal configurations by a
vantage. Nishiwaki et al. (1998) presented a structural topolplethora of impractical designs such as structures containing

grayscales or excessive detail, which spoils the utility of the
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optimal configurations from an engineering standpoint.
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Nomenclature

tion methods can be categorized as a type of shape optimisa-

¥(x)  characteristic function tion because the introduction of holes is not allowed, but the
xs(X)  characteristic function using the level set function number of holes can be decreased during optimisation. As
D fixed design domain a result, the obtained optimal configurations are greatly af-
d ratio of the Young’s modulus of the void domains fected by guesses concerning the initial configuration. To al-
to the solid domain leviate this problem, Allaire et al. (2005) proposed a level
dDp  non-design boundaries set-based structural optimisation method coupled with the
0 solid domaim boundaries topological gradient method (e.g.e& et al., 2000).
E elasticity tensor o
: global stress constraint relaxation factor Level set-based structural topplogy qpt|m|sat|on methods
£ strain tensor that do not use a level set function having the property of a
F objective functional signed distance function, resulting in that the introduction
Fr regularized objective functional of holes is allowed, have also been proposed, such as by
Gyopa  global stress constraint Wei and Wang (2009), in which a piecewise constant level
#(X) level set function set function is used. Their method formulates the objective
f(x)  density function of objective functional function as the sum of a primary objective functional and the
G constraint functional . perimeter of the structure, and a constraint is applied so that
Gmax  upper limit of constraint functional the level set function becomes piecewise constant. However,
9(x) Qen5|ty fu_nct|on of constraint functional the magnitude of the constraint parameter gredtlycts the
Tin imposed input force boundary . . . S . .
To output boundary qpnmal conflguratlpn SO that., again, initial configuration set-
I, prescribed displacement boundary tmgs often_ determme thel utility, or lack thereof, of the ob-
Ha(#) approximated Heaviside function tained optimal configurations. Luo and Tong (2008) pro-
Q solid domain posed a level set-based topology optimisation method incor-
U aggregation parameter for global stress constraint porating a radial basis function for the design of compliant
Ye stress relaxation cdigcient mechanisms. However, some experience is required when
omax  upper limit of local stress choosing appropriate values for the radial basis function pa-
TwMm Von Mises stress rameters. Yamada et al. (2010) proposed a level set-based
tin input force . topology optimisation method incorporating a fictitious in-
four  dummy vector applied at output boundary terface energy derived from the phase field concept. In this
Lour dummy_ vector orthogonal th: method, the objective functional is the sum of a primary ob-
T regularlzatlon parameter . . . . . :
¢ fictitious time jective functional and a fictitious interface energy. A piece-
At time increment wise constant level set function is used in this method and
U Sobolev space of admissible displacement the updating scheme uses a reactidfiudion equation.
Uz displacement when input fordg is applied The aim of this paper is to extend Yamada’s method to
Vmax  upper limit of volume constraint the design of compliant mechanisms so that displacement
v admissible displacement o ~and stress constraints can be easily included. In our pro-
W transition width of the approximated Heaviside function  ,,seq method, the level set function is updated using the
X position in fixed design domain

MMA (Svanberg, 1987) here, to facilitate the treatment of
constraint functionals. In Sect. 2, the formulation of the level
set-based topology optimisation procedure and optimisation
problems are discussed. In Sect. 3, the numerical implemen-

A type of structural optimisation method using level set
boundary expressions has been proposed in which the boun
aries of the optimal configuration are implicitly represented
using the level set function. A level set-based structural opti-
misation method was firstly proposed by Sethian and Wieg-
mann (2000) where the level set function is updated based
on the Von Mises stress. Wang et al. (2003) and Allaire
et al. (2004) proposed a level set-based structural optimisa-
tion method where the level set function is updated using
the Hamilton-Jacobi equation, based on the shape sensitivz
ities. Several level set-based structural optimisation methods
for the design of compliant mechanisms have been proposeHere, we briefly discuss the level set-based topology optimi-
and applied to a multi-material problem (Wang et al., 2005), sation incorporating a fictitious energy. Topology optimisa-
and a stress minimization problem (Allaire and Jouve, 2008)tion is formulated in a fixed design domdnthat consists of
However, these particular level set-based structural optimisaa domain filled with solid materig and a domain filled with

aqtion is discussed, and numerical examples considering dis-
placement and stress constraints are presented in Sect. 4, to
confirm the validity and utility of the proposed method.



void material. Using the characteristic functip(x) defined  vectort,, when an input force is applied. The mutual mean

as compliance betweenh, andl',y is used in this paper to for-
. mulate the flexibility of the target structure. By maximiz-
lif xeQ . . . .
x(xX)= 0if xeD\Q Q) ing the mutual mean compliance, the output displacement is

maximized along the direction of the dummy vectgg. The
the optimisation problem can be replaced by a material dissecond requirement is for Sicient stifness to maintain the
tribution problem. The optimisation problem is formulated integrity of structural shapes when workpiece reaction forces
as and the input force are applied. Dummy springs are imposed
i at the input and output ports to represent the input and reac-
”;f F () = Jp f(x)xde tion forces. The optimisation problem under a volume con-

subject toG(,\/)—f 9O dQ—Gax < 0 ) straint is then formulated as follows.
—JD max =

whereF is the objective functionalG is a constraint func- IQf F(X¢) =2(u)

tional andGnay is the upper limit of the constraint functional.  subject toa(uy,v)=l1(v) forVve U, Yu; e U (5)
The following level set functio(x) is used to represent

the boundaries of the structure, where positive values rep- G(Xqﬁ):deQ_VmaxSO

resent the solid domain, negative values represent the voigvhereu is the displacement whem is applied af.. V.
domain, and zero represents the boundary surfaces. ; L e disp e IS app in, 7 max
is the upper limit of the volume constraint, and the other no-

1>¢(x)>0  for xeQ\0Q tations are defined as follows.
o(x)=0 for xedQ 3)
0>¢(x)>-1 for xeD\Q a(U,V’qu):fl;s(U):EZS(V)Xq)dQ (6)
As a result, the characteristic functigi{x) is replaced by
following function, y4(x). 11(v) =fr‘_ tin - vl (7)
[ 1if 1>¢(x)=0
X)=1 g if 0 >¢(x)>-1 lo(V)= [ tourvdl (8)

l—‘OUK
The above optimisation problem is an ill-posed problem
since the optimal configuration expressed by the level se%J -
function is not required to be continuous. To regularize thethe sensitivity of the objective functional is simply obtained

optimisation problem, Yamada et al. (2010) proposed a reguxs follows using the adjoint variable method.
larization technique based on Tikhonov regularization. Thus,

the above optimisation problem is replaced with the follow- <dF(X¢) > <a|2(ul) 5 ><au1 >+<6a(u1,v,)(¢) su >
. N =—\—F—,0u1 - a. oW1

{v=vie. :vi e HY(Q) with v=0 on Fu} (9)

ing: do auy %’&b auy
: odafu,V. da(uy,V.
inf Fr(xs(®)) = [ f ()xsdQ+ [ 17|Ve[2dQ 9uy (u2.v.x0) - (u2.v.10)
n _R(¢ )= Jo fCOxs0+ 3 @ agoe) =g T (10)
subject td;(x¢(¢)):ng(x)X¢dQ—Gmaxg 0 where the adjoint field is defined as follows.
The proposed method updates the level set funetiof us- a(v,us) =l»(us) for Yu;eU,veU (11)

ing mathematical programming, the MMA.

Here, the optimum design of compliant mechanisms isThe formulation of the optimum design problem is now ex-
briefly discussed. The main goal of the present optimumtended to a problem with a constraint so that the displacement

design process is to maximize the output displacement in an the direction orthogonal to the desired output direction will
desired direction. Consider the design domimhere the  pe constrained.

displacement is fixed at bounddry, an input forcetj, is ap- .

plied at boundaryi,, and a dummy vectal,; is introduced 'Qf F(X¢) = ~l2(u1)

at the output port, boundary,,;, along the desired output subject toa(us,v)=l1(v) for Yve U, Yu; e U

direction. (12)
Two functions are required for the design of compliant Gl(X¢)=deQ—VmaxS0

mechanisms. One is to providefBcdient flexibility for de-

formation along a desired direction specified by a dummy Gz()(¢)=|3(u1)=0



where I3(uy) is the mutual mean compliance when the — ion 90)
dummy loadt’ o Which is orthogonal tde is applied, as ('”'“a"ze level set function ¢ X)

follows. L
—»{ Solve equilibrium equation using FEM |

l3(v)= | oy vdl (13)

Tout

Compute objective functional and
The sensitivity 0fGx(x,) is also simply obtained using the constraints functional(s)

adjoint variable method.
YES
Convergence?

NO
Here, an optimum design problem with a stress constraint ‘ Compute sensitivities ‘
is discussed. Since the utility of compliant mechanisms de-
pends on their structural flexibility, stress concentrations eas-
ily occur at thin locations that are subject to repeated flexing.
Therefore, the implementation of a stress constraint in the
optimisation method can be advantageous for the design of
reliable compliant mechanisms that avoid structural failures
over their projected lifetime.

Several diferent stress constraint formulations have been

—| Update level set function ¢(x) using MMA l

Optimization flowchart.

wheree is a parameter called the “relaxation factor” which

studied, such as local stress constraints (e.g. Duysinx an?drj]lézgsnt?:ama?;'(ti:fndaet:xgl?ﬁﬂ%&ﬂ%ﬁ?ﬁig??ﬁfﬁ;“
Bendsge, 1998), global stress constraints (e.g. Martins anéJ bp q '

Poon, 2005; Pas et al., 2009) and the block aggregated ap- € descrlbeq_lp Sect. 3.3. L

proach (e.g. Pas et al., 2010a) which is a hybrid approach The sensitivity of the global stress constraints is formu-
combining local and global stress constraints. These formulated as follows.

lations are compared in the literature (Raat al., 2009; Pé&s Cgona(us.¢) , \ _ 3Ggiobai(ovm ) s dorm o\ ¢

et al., 2010b). The implementation of local stress constraints< ¢ ’ ¢>_< ’ VM>< duy >< d¢’ ¢>

uses a straightforward approach, with stress constraints im- |8Ggspa(ovm.4) da(ur,V,e) auy da(u,v,¢)

posed at predefined points such as the centre of finite ele+< a¢ 0 > < g ou >< ag’ 0 >_< a¢ ’5¢>
ments, however this often increases computational demands /6Gypa(ovm, ¢) da(uy,v,¢)

to the point of intractability. On the other hand, global stress ~ < ) > < a¢ 0 >
constraints impose a single global constraint that aggregates

the dfect of all local stress constraints. Although local stressVNere the adjoint variable is obtained by solving the follow-

constraints may not be strictly satisfied, the use of a globafng equation.

dor VM

(18)

stress constraint greatly reduces computational demands, angs o P P
NS , a(uy,V,
we use a global constraint in this research. w vm>< gJM ,0 >—<%,6ul>=0
The global stress constraint is formulated as follows. M ! !
Gylobal(U1,8) =Ggloval(ovm (U1),¢) <0 (14) for YupeU, veU (19)

where

| v
Gglobal(ovm ,¢) ”In[LeXpl dQ #m LdQ (15)

wherey is a parameter called the “aggregation parameter”. o ) o )

defined as follows. is solved using the Finite Element Method (FEM) and the
. Ooum objective functional and constraint functionals are then cal-
o= Tmae (16) culated, also using the FEM. If the objective functional has

converged, the optimisation procedure is terminated. If not,
the sensitivities of objective and constraint functionals, de-
rived as a continuous expression in the previous section, are
computed at Gaussian points of the finite elements. The sen-
sitivities are mapped to the nodes of the finite elements, the
2 level set function is then updated using the MMA, and the
(17) process returns to the second step.

whereoyy represents the Von Mises stress,ax IS an ap-
plied stress constraint ad is a parameter called the “stress
relaxation cofficient” which is introduced to avoid singular-
ity phenomena and is formulated as follows.

lﬂez 1—8+m



Note that the method cited earlier (Yamada et al., 2010), t!
the level set function is updated using a reactidffiadion out
equation that is derived based on the Lagrange multiplier
method. In the case of multi-constraint problems, the deriva- 3 iS tout i@

tion of the Lagrange multiplier used in reactiorffdsion
equations becomes complicated, so the proposed method
uses the MMA to update the level set function, which fa-
cilitates the treatment of constraints. The objective and con-
straint functionals are approximated using a convex function,
and the approximated subproblem is solved at each iteration.

ES Fixed design domain D 80

t, =

8
]
A,

In the proposed methoc%,T|V¢|2 is used as a regularization

term. Therefore~tV%¢ must be calculated to compute the
sensitivity, and we use the following approximation tech-
nique. Note that the variation of the regularization term is
formulated in Gurtin (1996). Here, a Dirichlet boundary con- model A.
dition is applied on the non-design boundaries, and Neumann
boundary condition is applied on the other boundaries to rep-

resent the level set function independently of the outside ofW

80

Fixed desigh domain and boundary conditions of

hereH,(¢) is the Heaviside function defined as follows.

the fixed design domain (Yamada et al., 2010). First, we in- d (¢ <-W)
troduce the following time evolutionary equation. Ha(@) = (%+%(%—%§(g—%$)))u—d)+d (Cw<s<w) (25)
‘Z—‘f = —1V%p in D 1 (W< ¢)
2]
G =0 on dD\dDp (20)  \hered is the ratio of the Young's modulus of the void do-
o =1 on dDp mains to the solid domain amdis the transition width of the

0Dp represents non-design boundaries where the Dirichleﬁea‘vISIde function.

boundary condition is applied. Next, the above equation is
discretized in the time domain using the FiniteffBience

Method, which leads to the following equation. ) ) ) )
In this section, two numerical examples are illustrated to ver-

A0 — _7v% in D ify the utility and validity of our method. In the follow-
% -0 on dD\éDp (21)  ing examples, the Young's modulus of the elastic material
¢" 1 on 9D is 210 GPa, Poisson’s ratio is 0.33, and the upper limit of the

volume constraint is set to 30% of the design domain. The
The above equation is then expressed in weak form as folinitial configuration is filled with material in the fixed design
lows. domain.

{

(25D + [ VT (t+AD)TVGAD= [ LD GdD

¢=1 on dDp

(22)

The above equation can be solved using the FERf is
approximately computed using following equation.

g+ AN - g (1)

V2p=
¢ TAt

(23)

In this paper, the equilibrium equation is approximated usingig get to 70% 10°5.

the ersatz material approach, following the literature (e.g. Al-
laire et al., 2004; Yamada et al., 2010). The equilibrium
equation, Eq. (6), is approximated using following equation.

fs(u):E:s(v)Ha(¢)dQ=f tin -vdl'
D

Tin

(24)

Figure 2 shows the fixed design domain and boundary condi-
tions for model A. The load is applied at the centre of the left
edge, with fixed segments at the top of the left edge and ex-
treme left of the bottom edge. A dummy vectgy; is applied
at the top right of the domain in the horizontal direction. The
fixed design domain is descretized using ax80 mesh of
quadrilateral finite elements. The regularization parameter
The transition width of the Heaviside
functionw is set to 0.2 to stabilize the optimisation proce-
dure.

Figure 3a shows the optimal configuration without an ap-
plied constraint, with Fig. 3c showing its deformed shape.
Figure 3b shows the optimal configuration with a constraint
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Fixed design domain D

ﬂTs

80

Fixed design domain and boundary conditions of
model B.

of the left side. Since the design domain is symmetric, only

© %) the top half is analyzed in the optimisation process. The ap-
plied stress constraintyayis 5.0x 10%. The design domain is
cOmp"ant mechanism Optima| Configuratio[ﬁa) with- discretized Using an 8080 meSh Of quadrilateral f|n|te ele'
out displacement constraintés) deformed shape of); (b) with ments and regularization parametés set to 10x 104, The
displacement constraintl) deformed shape db). transition width of the Heaviside functiomis set to 0.8 and

the global stress constraint relaxation factds set to 0.1.
set so that the structure only deforms in the desired hori- Figure 5a shows the optimal configuration without an ap-

zontal direction, and Fig. 3d shows its deformed shape. A%:Is(?[(rjibsljrt?osns g??;gaég;%nﬂrzgagc T:?Oritgg \S/(r)]r(;vl\v/lslstises(t)re_ss
can be seen in the Fig. 3d illustration, the constraifee 9 - 9 P

. T L timal configuration with the stress constraint applied, and
tively prevents deformation in the orthogonal direction at the _. ) . o

; Fig. 5d shows the corresponding Von Mises stress distribu-
output port. The mutual mean compliance represented b

, 9. ; Yion. The Von Mises stresses at the centre of finite elements
dummy vectort’; is —2.43x 1072 without a constraint and . . .
10, ; R ; are considered. The maximum value of the Von Mises stress
-1.42x 10" with a constraint, indicating that displacement . . ; ;
. . ST T is 7.18x 10° without the stress constraint and@3x 10° with
in the vertical direction is significantly reduced. The mutual . .
. the stress constraint. Although the local stress constraints are
mean compliance represented by dummy vetggy how- ; - . .
; ; . . not strictly satisfied, the maximum value of the Von Mises
ever, shows little dferece in value without and with a con- . : i
. 9 9 ! stress is reduced and the obtained mutual mean compliance
straint, 365x 107" and 360x 1077, respectively. . 10,
: . . . o values show little dterence, namely,.82x10~° without the
Since the transition width of the Heaviside functians

et 16 0.2. the optimal confiquration contains aravscale arstress constraint andIZx 10-1° with the stress constraint.
- P g gray Figure 6 shows the density distribution before and after

eas to some extent. The grayscale areas in the optimal CON., - oving aravscale areas of optimal confiquration. by set-
figuration are removed by setting=1.0x 10~3. The mu- g gray P 9 » DY

. ting w=1.0x10"3. The maximum value of the Von Mises
tual mean compliance values represented by dummy vector

4t and tou are then-1.42x 10-10 and 360x 10°, respec- stress after removing grayscale areas&% 10°, while the

. . : . obtained mutual mean compliance i29x 1071°. Although
tively, which are essentially the same as before removing thefhe maximum value of the Von Mises stress is slightly in-
grayscale areas.

. , creased after removing grayscale areas, itfs@antly small
From the numerical results, we can confirm that the pro d gray y

: . “compared with the value obtained without an applied stress
posed method successfully imposed a displacement con-: P PP

. . . . i constraint. Thus, useful optimal configurations can be quali-
straint for the design of compliant mechanisms, which the P g9 q

- . ivel in ing the pr method.
existing method, where the level set function is updated us—tat ely obtained using the proposed method

ing a reaction dfusion equation, cannot easily accomplish.

This paper proposed a level set-based topology optimisation

using mathematical programming. In the proposed method,
Figure 4 shows the fixed design domain and boundary conthe level set function is updated using mathematical pro-
ditions for model B. Small segments at the top and bottomgramming, the MMA, to facilitate the treatment of the con-
of the left side are fixed, and a load is applied at the centrestraint functional. This is more fiicult with the existing



ure, and notch hinges, tend to be locations where stress is
high. The proposed method was applied to compliant mech-
anism design problems considering a mutual mean compli-
ance constraint and a stress constraint. A global stress con-
straint is applied but because it does not require that the stress
constraint at every point in design domain be satisfied, the
optimal configuration does not strictly satisfy all local stress
constraints, even though the global stress constraint is satis-
fied. We confirmed that the maximum stress wiisaively
reduced in the obtained optimal configuration. Although the
optimal configurations contained grayscale areas to some ex-
tent, it was confirmed that useful optimal configurations can
be qualitatively obtained using the proposed method.

The authors would like to gratefully
] acknowledge Krister Svanberg’s help in providing MMA code.
(c) (d) The first author is partially supported by AISIN AW CO., LTD.,
and sincerely appreciates this assistance.
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