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Abstract. We propose a structural optimisation method, based on the level set method and using mathematical
programming such as the method of moving asymptotes (MMA), which we apply to the design of compliant
mechanisms. A compliant mechanism is a monolithic joint-free mechanism designed to be flexible to obtain a
specified motion. In the design of compliant mechanisms, several requirements such as the direction of the de-
formation and stress concentrations must be considered to obtain the specified mechanical function. Topology
optimisation, the most flexible type of structural optimisation, has been successfully used as a design optimi-
sation method for compliant mechanisms, but the utility of topology optimisation results is often spoiled by a
plethora of impractical designs such as structures containing grayscale areas. Level set-based topology optimi-
sation methods are immune to the problem of grayscales since the boundaries of the optimal configuration are
implicitly represented using the level set function. The proposed method updates the level set function using
mathematical programming to facilitate the treatment of constraint functionals. To verify its capability, we
apply our method to compliant mechanism design problems that include displacement constraints and stress
constraints.

1 Introduction

Compliant mechanisms are gaining increasing attention as
their application in myriad mechanical devices such as
MEMS broadens. A compliant mechanism is a monolithic
joint-free mechanism designed to be flexible to obtain a spec-
ified motion. The major advantages of compliant mecha-
nisms are simplified manufacturing and assembly, reduced
cost, lack of mechanical play, silent operation, and freedom
from lubrication requirements (Howell, 2001). The first ap-
proach to compliant mechanism design was a kinematic syn-
thesis approach in which rigid-body mechanisms were syn-
thesized into compliant mechanisms (e.g., Her and Midha,
1987). This approach, however, is limited to lumped com-
pliant mechanism designs. For the design of fully compliant
mechanisms, topology optimisation methods using the con-
tinuum synthesis approach are used. In such methods, Sig-
mund (1997) formulated the objective function as the ratio
between input and output forces, called the mechanical ad-
vantage. Nishiwaki et al. (1998) presented a structural topol-
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ogy optimisation method for compliant mechanisms, where
the concept of mutual energy was used in the formulation of
flexibility.

Topology optimisation, firstly proposed by Bendsøe and
Kikuchi (1988), has been successfully applied to many prob-
lems such as minimum mean compliance problems (Suzuki
and Kikuchi, 1991), eigen-frequency problems (Diaz and
Kikuchi, 1992), electromagnetic problems (Yoo et al., 2000)
and so on. The basic concepts of topology optimisation are
the extension of the design domain and replacement of the
optimisation problem with a material distribution problem
using the characteristic function (Murat and Tartar, 1985).
Such material distribution problems are known to be ill-
posed, so a relaxation technique is required, such as the ho-
mogenization design method or the SIMP method. Topology
optimisation methods are the most flexible of optimisation
methods since topological changes as well as shape changes
are allowed during the optimisation process. However, this
advantage is often offset in the optimal configurations by a
plethora of impractical designs such as structures containing
grayscales or excessive detail, which spoils the utility of the
optimal configurations from an engineering standpoint.
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Nomenclature

χ(x) characteristic function
χφ (x) characteristic function using the level set function
D fixed design domain
d ratio of the Young’s modulus of the void domains

to the solid domain
∂DD non-design boundaries
∂Ω solid domaim boundaries
E elasticity tensor
^
ε global stress constraint relaxation factor
ε strain tensor
F objective functional
FR regularized objective functional
G̃global global stress constraint
φ(x) level set function
f (x) density function of objective functional
G constraint functional
Gmax upper limit of constraint functional
g(x) density function of constraint functional
Γin imposed input force boundary
Γout output boundary
Γu prescribed displacement boundary
Ha(φ) approximated Heaviside function
Ω solid domain
µ aggregation parameter for global stress constraint
ψe stress relaxation coefficient
σmax upper limit of local stress
σVM Von Mises stress
t in input force
tout dummy vector applied at output boundary
t′out dummy vector orthogonal totout

τ regularization parameter
t fictitious time
∆t time increment
U Sobolev space of admissible displacement
u1 displacement when input forcet in is applied
Vmax upper limit of volume constraint
v admissible displacement
w transition width of the approximated Heaviside function
x position in fixed design domain

A type of structural optimisation method using level set
boundary expressions has been proposed in which the bound-
aries of the optimal configuration are implicitly represented
using the level set function. A level set-based structural opti-
misation method was firstly proposed by Sethian and Wieg-
mann (2000) where the level set function is updated based
on the Von Mises stress. Wang et al. (2003) and Allaire
et al. (2004) proposed a level set-based structural optimisa-
tion method where the level set function is updated using
the Hamilton-Jacobi equation, based on the shape sensitiv-
ities. Several level set-based structural optimisation methods
for the design of compliant mechanisms have been proposed
and applied to a multi-material problem (Wang et al., 2005),
and a stress minimization problem (Allaire and Jouve, 2008).
However, these particular level set-based structural optimisa-

tion methods can be categorized as a type of shape optimisa-
tion because the introduction of holes is not allowed, but the
number of holes can be decreased during optimisation. As
a result, the obtained optimal configurations are greatly af-
fected by guesses concerning the initial configuration. To al-
leviate this problem, Allaire et al. (2005) proposed a level
set-based structural optimisation method coupled with the
topological gradient method (e.g., Céa et al., 2000).

Level set-based structural topology optimisation methods
that do not use a level set function having the property of a
signed distance function, resulting in that the introduction
of holes is allowed, have also been proposed, such as by
Wei and Wang (2009), in which a piecewise constant level
set function is used. Their method formulates the objective
function as the sum of a primary objective functional and the
perimeter of the structure, and a constraint is applied so that
the level set function becomes piecewise constant. However,
the magnitude of the constraint parameter greatly affects the
optimal configuration so that, again, initial configuration set-
tings often determine the utility, or lack thereof, of the ob-
tained optimal configurations. Luo and Tong (2008) pro-
posed a level set-based topology optimisation method incor-
porating a radial basis function for the design of compliant
mechanisms. However, some experience is required when
choosing appropriate values for the radial basis function pa-
rameters. Yamada et al. (2010) proposed a level set-based
topology optimisation method incorporating a fictitious in-
terface energy derived from the phase field concept. In this
method, the objective functional is the sum of a primary ob-
jective functional and a fictitious interface energy. A piece-
wise constant level set function is used in this method and
the updating scheme uses a reaction-diffusion equation.

The aim of this paper is to extend Yamada’s method to
the design of compliant mechanisms so that displacement
and stress constraints can be easily included. In our pro-
posed method, the level set function is updated using the
MMA (Svanberg, 1987) here, to facilitate the treatment of
constraint functionals. In Sect. 2, the formulation of the level
set-based topology optimisation procedure and optimisation
problems are discussed. In Sect. 3, the numerical implemen-
tation is discussed, and numerical examples considering dis-
placement and stress constraints are presented in Sect. 4, to
confirm the validity and utility of the proposed method.

2 Formulation

2.1 Level set-based topology optimisation

Here, we briefly discuss the level set-based topology optimi-
sation incorporating a fictitious energy. Topology optimisa-
tion is formulated in a fixed design domainD that consists of
a domain filled with solid materialΩ and a domain filled with
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void material. Using the characteristic functionχ(x) defined
as

χ(x)=

{
1 if x ∈Ω
0 if x ∈D\Ω

(1)

the optimisation problem can be replaced by a material dis-
tribution problem. The optimisation problem is formulated
as

inf
χ

F (χ)=
∫

D
f (x)χdΩ

subject toG(χ)=
∫

D
g(x)χdΩ−Gmax≤0

(2)

whereF is the objective functional,G is a constraint func-
tional andGmax is the upper limit of the constraint functional.

The following level set functionφ(x) is used to represent
the boundaries of the structure, where positive values rep-
resent the solid domain, negative values represent the void
domain, and zero represents the boundary surfaces.

1≥ φ(x)>0 for x ∈Ω\∂Ω
φ(x)=0 for x ∈ ∂Ω
0>φ(x)≥−1 for x ∈D\Ω

(3)

As a result, the characteristic functionχ(x) is replaced by
following function,χφ (x).

χφ (x)=

{
1 if 1≥ φ(x)≥0
0 if 0>φ(x)≥−1

The above optimisation problem is an ill-posed problem
since the optimal configuration expressed by the level set
function is not required to be continuous. To regularize the
optimisation problem, Yamada et al. (2010) proposed a regu-
larization technique based on Tikhonov regularization. Thus,
the above optimisation problem is replaced with the follow-
ing:

inf
χ

FR

(
χφ (φ)

)
=

∫
D

f (x)χφdΩ+
∫

D
1
2τ|∇φ|

2dΩ

subject toG
(
χφ (φ)

)
=
∫

D
g(x)χφdΩ−Gmax≤0

(4)

The proposed method updates the level set functionφ(x) us-
ing mathematical programming, the MMA.

2.2 Optimal synthesis of compliant mechanisms

Here, the optimum design of compliant mechanisms is
briefly discussed. The main goal of the present optimum
design process is to maximize the output displacement in a
desired direction. Consider the design domainD where the
displacement is fixed at boundaryΓu, an input forcet in is ap-
plied at boundaryΓin, and a dummy vectortout is introduced
at the output port, boundaryΓout, along the desired output
direction.

Two functions are required for the design of compliant
mechanisms. One is to provide sufficient flexibility for de-
formation along a desired direction specified by a dummy

vector tout when an input force is applied. The mutual mean
compliance betweenΓin andΓout is used in this paper to for-
mulate the flexibility of the target structure. By maximiz-
ing the mutual mean compliance, the output displacement is
maximized along the direction of the dummy vectortout. The
second requirement is for sufficient stiffness to maintain the
integrity of structural shapes when workpiece reaction forces
and the input force are applied. Dummy springs are imposed
at the input and output ports to represent the input and reac-
tion forces. The optimisation problem under a volume con-
straint is then formulated as follows.

inf
χ

F
(
χφ

)
=−l2(u1)

subject toa(u1,v)=l1(v) for∀v∈U, ∀u1 ∈U

G
(
χφ

)
=

∫
Ω

dΩ−Vmax≤0

(5)

whereu1 is the displacement whent in is applied atΓin, Vmax

is the upper limit of the volume constraint, and the other no-
tations are defined as follows.

a
(
u,v,χφ

)
=

∫
D
ε(u) : E : ε(v)χφdΩ (6)

l1(v)=
∫
Γin

t in ·vdΓ (7)

l2(v)=
∫
Γout

tout ·vdΓ (8)

U =
{
v= viei : vi ∈H1(Ω) with v=0 on Γu

}
(9)

The sensitivity of the objective functional is simply obtained
as follows using the adjoint variable method.〈dF

(
χφ

)
dφ

,δφ

〉
=−

〈
∂l2(u1)
∂u1

,δu1

〉〈
∂u1

∂φ
,δφ

〉
+

〈
∂a

(
u1,v,χφ

)
∂u1

,δu1

〉
〈
∂u1

∂φ
,δφ

〉
+

〈
∂a

(
u1,v,χφ

)
∂φ

,δφ

〉
=

〈
∂a

(
u1,v,χφ

)
∂φ

,δφ

〉
(10)

where the adjoint field is defined as follows.

a(v,u1)= l2(u1) for ∀u1 ∈U, v∈U (11)

2.3 Optimum design problem with mutual mean compli-
ance constraint

The formulation of the optimum design problem is now ex-
tended to a problem with a constraint so that the displacement
in the direction orthogonal to the desired output direction will
be constrained.

inf
χ

F
(
χφ

)
=−l2(u1)

subject toa(u1,v)=l1(v) for ∀v∈U, ∀u1 ∈U

G1

(
χφ

)
=

∫
Ω

dΩ−Vmax≤0

G2

(
χφ

)
= l3(u1)=0

(12)
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where l3(u1) is the mutual mean compliance when the
dummy loadt′out which is orthogonal totout is applied, as
follows.

l3(v)=
∫
Γout

t′out ·vdΓ (13)

The sensitivity ofG2

(
χφ

)
is also simply obtained using the

adjoint variable method.

2.4 Optimum design problem with stress constraint

Here, an optimum design problem with a stress constraint
is discussed. Since the utility of compliant mechanisms de-
pends on their structural flexibility, stress concentrations eas-
ily occur at thin locations that are subject to repeated flexing.
Therefore, the implementation of a stress constraint in the
optimisation method can be advantageous for the design of
reliable compliant mechanisms that avoid structural failures
over their projected lifetime.

Several different stress constraint formulations have been
studied, such as local stress constraints (e.g. Duysinx and
Bendsøe, 1998), global stress constraints (e.g. Martins and
Poon, 2005; Parı́s et al., 2009) and the block aggregated ap-
proach (e.g. Parı́s et al., 2010a) which is a hybrid approach
combining local and global stress constraints. These formu-
lations are compared in the literature (Parı́s et al., 2009; Parı́s
et al., 2010b). The implementation of local stress constraints
uses a straightforward approach, with stress constraints im-
posed at predefined points such as the centre of finite ele-
ments, however this often increases computational demands
to the point of intractability. On the other hand, global stress
constraints impose a single global constraint that aggregates
the effect of all local stress constraints. Although local stress
constraints may not be strictly satisfied, the use of a global
stress constraint greatly reduces computational demands, and
we use a global constraint in this research.

The global stress constraint is formulated as follows.

Gglobal(u1,φ)=G̃global(σVM (u1),φ)≤0 (14)

where

G̃global(σVM ,φ)=
1
µ

ln

[∫
Ω

expµ(σ∗−1)dΩ

]
−

1
µ

ln

(∫
Ω

dΩ

)
(15)

whereµ is a parameter called the “aggregation parameter”.
Higher magnitudes of parameterµ impose higher penalties
for violated local constraints.σ∗ in the above equation is
defined as follows.

σ∗ =
σVM

σmaxψe
(16)

whereσVM represents the Von Mises stress,σmax is an ap-
plied stress constraint andψe is a parameter called the “stress
relaxation coefficient” which is introduced to avoid singular-
ity phenomena and is formulated as follows.

ψe=1−^
ε+

^
ε

Ha(φ)
(17)

Compute sensitivities

Update level set function using MMA

Convergence?

Solve equilibrium equation using FEM

Initialize level set function 

End

( )xφ

YES

NO

Compute objective functional and 
constraints functional(s)

( )xφ

Figure 1. Optimization flowchart.

where^
ε is a parameter called the “relaxation factor” which

adjusts the magnitude of relaxation andHa(φ) is a Heaviside
function to approximate the equilibrium function, which will
be described in Sect. 3.3.

The sensitivity of the global stress constraints is formu-
lated as follows.〈
∂Gglobal(u1,φ)

∂φ
,δφ

〉
=

〈
∂G̃global(σVM ,φ)

∂σVM
,δσVM

〉〈
∂σVM

∂u1
,δu1

〉〈
∂u1

∂φ
,δφ

〉
+

〈
∂G̃global(σVM ,φ)

∂φ
,δφ

〉
−

〈
∂a(u1,v,φ)

∂u1
,δu1

〉〈
∂u1

∂φ
,δφ

〉
−

〈
∂a(u1,v,φ)

∂φ
,δφ

〉
=

〈
∂G̃global(σVM ,φ)

∂φ
,δφ

〉
+

〈
∂a(u1,v,φ)

∂φ
,δφ

〉
(18)

where the adjoint variable is obtained by solving the follow-
ing equation.〈
∂G̃global(σVM ,φ)

∂σVM
,δσVM

〉〈
∂σVM

∂u1
,δu1

〉
−

〈
∂a(u1,v,φ)

∂u1
,δu1

〉
=0

for ∀u1 ∈U, v∈U (19)

3 Numerical implementation

3.1 Optimisation algorithm

The optimisation flowchart is shown in Fig. 1. First, the level
set function is initialized. Second, the equilibrium equation
is solved using the Finite Element Method (FEM) and the
objective functional and constraint functionals are then cal-
culated, also using the FEM. If the objective functional has
converged, the optimisation procedure is terminated. If not,
the sensitivities of objective and constraint functionals, de-
rived as a continuous expression in the previous section, are
computed at Gaussian points of the finite elements. The sen-
sitivities are mapped to the nodes of the finite elements, the
level set function is then updated using the MMA, and the
process returns to the second step.

Mech. Sci., 2, 91–98, 2011 www.mech-sci.net/2/91/2011/
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Note that the method cited earlier (Yamada et al., 2010),
the level set function is updated using a reaction-diffusion
equation that is derived based on the Lagrange multiplier
method. In the case of multi-constraint problems, the deriva-
tion of the Lagrange multiplier used in reaction-diffusion
equations becomes complicated, so the proposed method
uses the MMA to update the level set function, which fa-
cilitates the treatment of constraints. The objective and con-
straint functionals are approximated using a convex function,
and the approximated subproblem is solved at each iteration.

3.2 Approximated ∇2φ

In the proposed method,1
2τ|∇φ|

2 is used as a regularization
term. Therefore,−τ∇2φ must be calculated to compute the
sensitivity, and we use the following approximation tech-
nique. Note that the variation of the regularization term is
formulated in Gurtin (1996). Here, a Dirichlet boundary con-
dition is applied on the non-design boundaries, and Neumann
boundary condition is applied on the other boundaries to rep-
resent the level set function independently of the outside of
the fixed design domain (Yamada et al., 2010). First, we in-
troduce the following time evolutionary equation.

∂φ
∂t = −τ∇

2φ in D
∂φ
∂n = 0 on ∂D\∂DD

φ = 1 on ∂DD

(20)

∂DD represents non-design boundaries where the Dirichlet
boundary condition is applied. Next, the above equation is
discretized in the time domain using the Finite Difference
Method, which leads to the following equation.

φ(t+∆t)−φ(t)
∆t = −τ∇2φ in D

∂φ
∂n = 0 on ∂D\∂DD

φ = 1 on ∂D

(21)

The above equation is then expressed in weak form as fol-
lows.

∫
D
φ(t+∆t)
∆t φ̃dD+

∫
D
∇Tφ(t+∆t)τ∇φ̃dD=

∫
D
φ(t)
∆t φ̃dD

φ=1 on ∂DD

(22)

The above equation can be solved using the FEM.∇2φ is
approximately computed using following equation.

∇2φ�−
φ(t+∆t)−φ(t)

τ∆t
(23)

3.3 Approximated equilibrium equation

In this paper, the equilibrium equation is approximated using
the ersatz material approach, following the literature (e.g. Al-
laire et al., 2004; Yamada et al., 2010). The equilibrium
equation, Eq. (6), is approximated using following equation.∫

D
ε(u) : E : ε(v)Ha(φ)dΩ=

∫
Γin

t in ·vdΓ (24)

80

Fixed design domain 80

outt
outt′

int D

8

8

8

8

Figure 2. Fixed design domain and boundary conditions of
model A.

whereHa(φ) is the Heaviside function defined as follows.

Ha(φ)=


d (φ<−w)(

1
2 +

φ
w

(
15
16−

φ2

w2

(
5
8 −

3
16

φ2

w2

)))
(1−d)+d (−w<φ<w)

1 (w<φ)

(25)

whered is the ratio of the Young’s modulus of the void do-
mains to the solid domain andw is the transition width of the
Heaviside function.

4 Numerical examples

In this section, two numerical examples are illustrated to ver-
ify the utility and validity of our method. In the follow-
ing examples, the Young’s modulus of the elastic material
is 210 GPa, Poisson’s ratio is 0.33, and the upper limit of the
volume constraint is set to 30% of the design domain. The
initial configuration is filled with material in the fixed design
domain.

4.1 Compliant mechanism design problem with mutual
mean compliance constraint

Figure 2 shows the fixed design domain and boundary condi-
tions for model A. The load is applied at the centre of the left
edge, with fixed segments at the top of the left edge and ex-
treme left of the bottom edge. A dummy vectortout is applied
at the top right of the domain in the horizontal direction. The
fixed design domain is descretized using an 80×80 mesh of
quadrilateral finite elements. The regularization parameterτ
is set to 7.0×10−5. The transition width of the Heaviside
function w is set to 0.2 to stabilize the optimisation proce-
dure.

Figure 3a shows the optimal configuration without an ap-
plied constraint, with Fig. 3c showing its deformed shape.
Figure 3b shows the optimal configuration with a constraint

www.mech-sci.net/2/91/2011/ Mech. Sci., 2, 91–98, 2011
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(a) (b)

(c) (d)

Figure 3. Compliant mechanism optimal configurations:(a) with-
out displacement constraints;(c) deformed shape of(a); (b) with
displacement constraint;(d) deformed shape of(b).

set so that the structure only deforms in the desired hori-
zontal direction, and Fig. 3d shows its deformed shape. As
can be seen in the Fig. 3d illustration, the constraint effec-
tively prevents deformation in the orthogonal direction at the
output port. The mutual mean compliance represented by
dummy vectort′out is −2.43×10−9 without a constraint and
−1.42×10−10 with a constraint, indicating that displacement
in the vertical direction is significantly reduced. The mutual
mean compliance represented by dummy vectortout, how-
ever, shows little differece in value without and with a con-
straint, 3.65×10−9 and 3.60×10−9, respectively.

Since the transition width of the Heaviside functionw is
set to 0.2, the optimal configuration contains grayscale ar-
eas to some extent. The grayscale areas in the optimal con-
figuration are removed by settingw= 1.0×10−3. The mu-
tual mean compliance values represented by dummy vector
t′out and tout are then−1.42×10−10 and 3.60×10−9, respec-
tively, which are essentially the same as before removing the
grayscale areas.

From the numerical results, we can confirm that the pro-
posed method successfully imposed a displacement con-
straint for the design of compliant mechanisms, which the
existing method, where the level set function is updated us-
ing a reaction diffusion equation, cannot easily accomplish.

4.2 Compliant mechanism design problem with a
stress constraint

Figure 4 shows the fixed design domain and boundary con-
ditions for model B. Small segments at the top and bottom
of the left side are fixed, and a load is applied at the centre

80

Fixed design domain

80outtint

D

16

8

16

8

Figure 4. Fixed design domain and boundary conditions of
model B.

of the left side. Since the design domain is symmetric, only
the top half is analyzed in the optimisation process. The ap-
plied stress constraintσmax is 5.0×103. The design domain is
discretized using an 80×80 mesh of quadrilateral finite ele-
ments and regularization parameterτ is set to 1.0×10−4. The
transition width of the Heaviside functionw is set to 0.8 and
the global stress constraint relaxation factor^

ε is set to 0.1.
Figure 5a shows the optimal configuration without an ap-

plied stress constraint and Fig. 5c shows the Von Mises stress
distribution of this configuration. Figure 5b shows the op-
timal configuration with the stress constraint applied, and
Fig. 5d shows the corresponding Von Mises stress distribu-
tion. The Von Mises stresses at the centre of finite elements
are considered. The maximum value of the Von Mises stress
is 7.18×103 without the stress constraint and 5.83×103 with
the stress constraint. Although the local stress constraints are
not strictly satisfied, the maximum value of the Von Mises
stress is reduced and the obtained mutual mean compliance
values show little difference, namely, 7.62×10−10 without the
stress constraint and 7.14×10−10 with the stress constraint.

Figure 6 shows the density distribution before and after
removing grayscale areas of optimal configuration, by set-
ting w= 1.0×10−3. The maximum value of the Von Mises
stress after removing grayscale areas is 5.86×103, while the
obtained mutual mean compliance is 7.25×10−10. Although
the maximum value of the Von Mises stress is slightly in-
creased after removing grayscale areas, it is sufficiently small
compared with the value obtained without an applied stress
constraint. Thus, useful optimal configurations can be quali-
tatively obtained using the proposed method.

5 Conclusions

This paper proposed a level set-based topology optimisation
using mathematical programming. In the proposed method,
the level set function is updated using mathematical pro-
gramming, the MMA, to facilitate the treatment of the con-
straint functional. This is more difficult with the existing

Mech. Sci., 2, 91–98, 2011 www.mech-sci.net/2/91/2011/
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(a) (b)

(c) (d)

310

0.7

0.0

0.2

0.3

0.4

0.5

0.6

0.1

Figure 5. Optimal configurations:(a) without stress constraint;(c)
Von Mises stress distribution of(a); (b) with stress constraint;(d)
Von Mises stress distribution of(b).

(a) (b)

(c) (d)

310×

0.7

0.0

0.2
0.3
0.4
0.5
0.6

0.1

Figure 6. (a) Optimal configuration density distribution;(b) Von
Mises stress distribution of(a); (b) Configuration after removing
grayscale areas;(d) Von Mises stress distribution of(b).

method, in which the level set function is updated using
a reaction diffusion equation, where the derivation of the
Lagrange multiplier becomes complicated in problems with
multiple constraints. A topology optimisation method for
compliant mechanisms considering a mutual mean compli-
ance constraint and a stress constraint was presented and
optimisation problems were formulated. Although the pro-
posed approach can not explicitly prevent the creation of
lumped compliant mechanisms, applying the stress con-
straint strongly inhibits this, since small areas subject to flex-

ure, and notch hinges, tend to be locations where stress is
high. The proposed method was applied to compliant mech-
anism design problems considering a mutual mean compli-
ance constraint and a stress constraint. A global stress con-
straint is applied but because it does not require that the stress
constraint at every point in design domain be satisfied, the
optimal configuration does not strictly satisfy all local stress
constraints, even though the global stress constraint is satis-
fied. We confirmed that the maximum stress was effectively
reduced in the obtained optimal configuration. Although the
optimal configurations contained grayscale areas to some ex-
tent, it was confirmed that useful optimal configurations can
be qualitatively obtained using the proposed method.
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