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Differential equations satisfied by principal series
Whittaker functions on $SU$ (2,2)

G. Bayarmagnai

Abstract

In this talk, we discuss about a holonomic system of differential equa-
tions for Whittaker functions associated with the principal series repre-
sentation of $SU(2;2)$ with higher dimensional minimal K-type.

1 Introduction
Throughout, let $G$ be the simple real Lie group $SU(2,2)$ of rank two, and let

$K=S(U(2)\cross U(2))$ : the maximal compact subgroup of $G$

$\pi$ : an irreducible representation of $G$ which is K-admissible.

For the representation $\pi$ , there are two types of Whittaker model with respect
to a character $\eta$ of $N$ (a spherical subgroup of $G$). One is the smooth model, and
the other is the algebraic models induced by the space of algebraic Whittaker
vectors:

$W(\pi,\eta)$ $:=Hom_{(\mathfrak{g},K)}(\pi|_{K}, C^{\infty}-Ind_{N}^{G}(\eta))$ ,

Here, $\mathfrak{g}$ is the Lie algebra of $G,$ $\pi|_{K}$ is the subspace of K-finite vectors in $\pi$ and
$C^{\infty}-Ind_{N}^{G}(\eta)$ is the right G-module smoothly induced from $\eta$ .

Our aim is a characterization of the space $W(\pi, \eta)$ for the principal series
representation $\pi$ of $G$ associated with a minimal parabolic subgroup, which leads
to a description of the following challenging question associated to $\pi$ .
Question. For each intertwiner $\Phi$ in $W(\pi, \eta)$ , what is the image of $\Phi$ ? Equiva-
lently, for each K-type $\tau$ occurring in $\pi$ , one can ask the image of the $\tau$-isotypic
component in $\pi$ . The latter lmage is called the space of Whittaker functions of
$\pi$ with respect to $\tau$ .

The natural and classical approach. Let $\tau$ be a K-type belonging to $\pi$ ,
and $f_{1},$

$\ldots,$
$f_{n}$ be its a basis in $\pi$ . Denote by $\phi_{j}(g)$ the image of $f_{j}$ under a fixed

intertwiner $\Phi$ . Then, for each $j$ and $k$ in $K$ , the function $(k\phi_{j})(g)=\phi_{j}(gk)$

is a linear combination of the functions $\phi_{1}(g),$
$\ldots,$

$\phi_{n}(g)$ . Thus, it is enough to
consider the functions $\phi_{j}$ on $A$ for our purpose.
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Assume that $C$ is a square matrix of size $\dim(\tau)$ , with entries in the universal
enveloping algebra of $\mathfrak{g}$ , so that

$\pi(C)\circ(\begin{array}{l}f_{1}f_{2}|f_{n}\end{array})=\gamma\cdot(\begin{array}{l}f_{l}f_{2}|f_{n}\end{array})$ , (1)

for some constant $\gamma\in$ C.
By applying $\Phi$ to the identity (1) we get the following system of differential

equations (the A-radial part)

$\mathcal{R}(C)0(\begin{array}{l}\phi_{1}(a)\phi_{2}(a)|\phi_{n}(a)\end{array})=\gamma\cdot(\begin{array}{l}\phi_{1}(a)\phi_{2}(a)|\phi_{n}(a)\end{array}),$ $a\in A$

where $\mathcal{R}$ denotes the infinitesimal action of $G$ on $C^{\infty}-Ind_{N}^{G}(\eta)$ . Thus, one can
regard the space $W(\pi, \eta)$ as a subset of the solution space $Sol(\mathcal{R}(C))$ of the
system by sending $\Phi$ to the functions $\{\phi_{j}(a)\}$ .
Remark. Recall that Whittaker functions satisfy differential equations with
regular singularities at “ $0$”. The most important requirements for choosing a
basis for $\tau$ are the simplicity and symmetricity of the series expansion of these
functions $\phi_{j}(a)(a\in A)$ around $0$ and of the system of differential equations
arising from (1).

Principal series $\pi_{s,\chi}$ . Let

$a=\{a(t_{1}, t_{2})=(\begin{array}{llll}0 0 t_{1} 00 0 0 t_{2}t_{l} 0 0 00 t_{2} 0 0\end{array})|t_{1}, t_{2}\in \mathbb{R}\}\subset \mathfrak{g}$ ,

$M=\{$diag $(e^{i\theta},$ $e^{-i\theta},$ $e^{i\theta},$ $e^{-i\theta})\}\oplus\{1_{4}$ , diag(1, $-1,1,$ $-1)\}$ .

Define linear functions $\lambda_{1}$ and $\lambda_{2}$ on $a$ by $\lambda_{1}(a(t_{1}, t_{2}))=t_{1}$ and $\lambda_{2}(a(t_{1}, t_{2}))=t_{2}$ .
Then the set $\{\pm\lambda_{1}\pm\lambda_{2}, \pm 2\lambda_{1}, \pm 2\lambda_{2}\}$ forms the restricted root system of type $C_{2}$

for the pair $(g, a)$ . Define $\lambda_{1}\pm\lambda_{2},2\lambda_{1}$ and $2\lambda_{2}$ to be positive. Let $P_{\min}$ be the
minimal parabolic subgroup of $G$ with Langlands decomposition $P_{\min}=MAN$ ,
where $N$ is the unipotent subgroup defined by the root spaces corresponding to
positive roots. For the character $s\otimes\chi$ of $M,$ $s\in Z$ , and the C-valued real linear
form $\mu=\mu_{1}\lambda+\mu_{2}\lambda_{2}$ , one has the principal series representation

$\pi_{s,\chi}:=Ind_{P}^{G}((s\otimes\chi)_{M}\otimes e^{\mu+\rho}\otimes 1_{N})$ ,

where $1_{N}$ is the trivial character of $N$ .
The main object in the paper is the 8-dimensional space $W(\pi_{s,\chi}, \eta)$ of alge-

braic Whittaker vectors (see Kostant [2]) for non-degenerate character $\eta$ (uni-
tary) of $N$ . Note that it is sufficient for our purpose to assume that $s\geq 0$ .
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1.1 Some previous results
Let us recall some known identities as in (1) and previous results for the space
$W(\pi, \eta)$ . The first example is the classical Casimir equation: let S) be the
Casimir operator of $G$ . Then we have the following identity

$\pi_{\epsilon,\chi}(\Omega)v=\chi_{r_{I_{d,\chi}}}(\Omega)v$ ,

where $\chi_{\pi_{\epsilon,\chi}}$ is the infinitesimal character and $v$ is a differential vector. This
identity gives us an injection of $W(\pi_{s,\chi}, \eta)$ into the solution space $Sol(\mathcal{R}(\Omega))$ of
the above equation. Note that the space $Sol(\mathcal{R}(\Omega))$ is of infinite dimension.

Let $\pi$ be a discrete series representation of $G$ and $\tau$ be its minimal K-type.
Then Yamashita [10] defined an operator $D_{\pi,\tau}$ on $\tau$ under $\pi$ :

$\pi(D_{\pi,\tau})\tau=0$ .
This gives us an injection of $W(\pi, \eta)$ into the solution space $Sol(\mathcal{R}(D_{\pi,\tau}))$ of
the operator $\mathcal{R}(D_{\pi,\tau})$ . Moreover, under certain conditions, he showed that

$W(\pi, \eta)\cong Sol(\mathcal{R}(D_{\pi,\tau}))$

as vector spaces. This result is not just for the group $G$ (see [10] and [11]).
Let $\pi$ be the principal series representation of $G=Sp(2, \mathbb{R})$ as in [6], and

$\tau$ be the minimal K-type of $\pi$ . In [6], the authors obtained a matrix, of size
$\dim(\tau)$ , formula of the form $\pi(\mathcal{D})v=\gamma v$ which implies

$W(\pi, \eta)\cong Sol(\mathcal{R}(\Omega),\mathcal{R}(\mathcal{D}))$ ,

where $\Omega$ stands for the Casimir operator of $Sp(2, \mathbb{R})$ . Note that $t$he possible
value of $\dim(\tau)$ is 1 or 2. The degree of $D$ is 4 if $\dim(\tau)=1$ , and 2 for the case
of dimension 2.
Remark. In the case $s=0$ and $s=1$ , the corresponding spaces $W(\pi_{s,\chi}, \eta)$

behave quite similar to the above mentioned cases for $G=Sp(2,\mathbb{R})$ , and are
studied in [4], .

2 Differential equations
We begin by providing some formulas for the multiplicity one K-types $\tau_{[0,\epsilon;l]}$ in
the principal series $\pi_{s,\chi}$ . These formulas come from the explicit $(g, K)$ -module
structure of $\pi_{s,\chi}$ which originally discussed by Oda $[7J$ .

Note that the space of the adjoint K-representation $(Ad, \mathfrak{p}_{\mathbb{C}})$ is generated by
the matrix units $E_{ij+2}$ and $E_{i+2j}(1\leq i,j\leq 2)$ and denote by $\mathcal{E}_{ij+2}$ and $\mathcal{E}_{i+2j}$

their infinitesimal actions with respect to $\pi_{s}$ . Let denote $F_{[s;l]}$ the transpose of
the vector $(f_{0}, f_{1}, \ldots, f_{s})$ , where $\{f_{j} : 0\leq j\leq s\}$ is the “nice” basis of $\eta_{0,s;l]}$

introduced in [1] and $c_{q}$ $:=q/s$ for $0\leq q\leq s$ .
Formula 1. (Casimir equation) Let $\Omega$ be the Casimir operator. Then we have

$\pi_{s,\chi}(\Omega)\cdot F_{1si^{l]}}=(\mu_{1}^{2}+\mu_{2}^{2}+\frac{1}{2}s^{2}-10)F_{[s;l]}$ .
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Formula 2. (Shift equations) Set $\nu_{1}=\frac{1}{2}(s+l)$ and $\nu_{2}=\frac{1}{2}(s-l)$ . Then we
have

$\pi_{\epsilon,\chi}(\overline{Q})\cdot F_{[s;l]}=\frac{1}{4}(\mu_{1}^{2}-(\nu_{1}+1)^{2})F_{[s;l]}$ ,

and

$\pi_{s,\chi}(\mathcal{Q})\cdot F_{[s;l]}=\frac{1}{4}(\mu_{2}^{2}-(\nu_{2}-1)^{2})F_{[s;l]}$ ,

where $\overline{Q}=\{\overline{Q}_{\iota j}\}_{0\leq\iota,j\leq s}$ and $2=\{Q_{ij}\}_{0\leq i,j\leq s}$ are square matrices given by

$\overline{Q}_{qq-1}=-c_{q}(\mathcal{E}_{24}\mathcal{E}_{32}+\mathcal{E}_{14}\mathcal{E}_{31})$

$\overline{Q}_{qq+1}=-(1-c_{q})(\mathcal{E}_{23}\mathcal{E}_{42}+\mathcal{E}_{13}\mathcal{E}_{41})$

$\overline{Q}_{qq}$ $=(1-c_{q})(\mathcal{E}_{23}\mathcal{E}_{32}+\mathcal{E}_{13}\mathcal{E}_{31})+c_{q}(\mathcal{E}_{14}\mathcal{E}_{41}+\mathcal{E}_{24}\epsilon_{42})$

and

$Q_{qq-1}=c_{q}(\mathcal{E}_{32}\mathcal{E}_{24}+\epsilon_{31}\epsilon_{14})$

$Q_{qq+1}=(1-c_{q})(\mathcal{E}_{42}\mathcal{E}_{23}+\mathcal{E}_{41}\epsilon_{13})$

$Q_{qq}$ $=c_{q}(\mathcal{E}_{32}\mathcal{E}_{23}+\mathcal{E}_{31}\mathcal{E}_{13})+(1-c_{q})(\mathcal{E}_{41}\mathcal{E}_{14}+\mathcal{E}_{42}\mathcal{E}_{24})$

for $0\leq q\leq s$ , but all other entries are $0$.
Formula 3. (Annihilation equations) We have

$\pi_{s,\chi}(\mathcal{A})\cdot F_{[s;l]}=0$ ,

and

$\pi_{s,\chi}(\overline{\mathcal{A}})\cdot F_{[s;l]}=0$ ,

where $\mathcal{A}=\{A_{ij}\}$ and $\overline{\mathcal{A}}=\{\overline{A}_{ij}\}$ are square matrix whose non-zero entries are
given by

$A_{jj-1}=-\mathcal{E}_{31}\mathcal{E}_{14}-\mathcal{E}_{32}\mathcal{E}_{24}$ ,
$A_{jj}$ $=\mathcal{E}_{41}\mathcal{E}_{14}+\mathcal{E}_{42}\mathcal{E}_{24}-\mathcal{E}_{31}\mathcal{E}_{13}-\mathcal{E}_{32}\mathcal{E}_{23}$ ,

$A_{jj+1}=\mathcal{E}_{41}\mathcal{E}_{13}+\mathcal{E}_{42}\mathcal{E}_{23}$ ,

and

$\overline{A}_{jj-1}=-\mathcal{E}_{14}\mathcal{E}_{31}-\mathcal{E}_{24}\epsilon_{32}$ ,
$\overline{A}_{jj}$ $=\mathcal{E}_{14}\mathcal{E}_{41}+\mathcal{E}_{24}\mathcal{E}_{42}-\mathcal{E}_{13}\mathcal{E}_{31}-\mathcal{E}_{23}\mathcal{E}_{32}$ ,

$\overline{A}_{jj+1}=\mathcal{E}_{13}\mathcal{E}_{41}+\mathcal{E}_{23}\mathcal{E}_{42}$ ,

for $1\leq j\leq s-1$ .

Proposition 2.1. On the K-type $\tau_{[0,s;l]}$ with respect to the action $\pi_{s,\chi}$ we have

$Q+\overline{Q}=\Omega/4$ .
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2.1 A holonomic system of rank 8

$Co$ordinate system. Since the $\mathbb{R}$-split torus $A$ for our case is two dimensional,
one may choose the coordinate system $(y_{1},y_{2})$ . Denote the Euler operators
$y_{1} \frac{\partial}{\partial y_{1}}$ and $y_{2} \frac{\partial}{\partial y_{2}}$ with respect to this system by $\partial_{1}$ and $\partial_{2}$ , respectively.

We now define the matrix differential operator $\overline{D}$ by

$[\overline{d}_{00}00000$
$\frac{d^{\overline}}{d}00000111$

$\frac{\overline{d}}{d}00002212$

$\ldots$

$\overline{d}_{s-28-2}00^{\cdot}$

$\frac{\overline{d}}{d}\overline{d}_{ss-1}s-1s-1$

$\overline{d}_{s-1s}0000)$

where

$d_{qq}= \frac{1}{4}((\partial_{1}-q)^{2}-\mu_{1}^{2})-\xi\overline{\xi}y_{1}^{2}$,

for $q=0,$ $\ldots,$ $s-1$ and

$d_{qq+1}= \overline{\xi}y_{1}(\partial_{2}+\frac{1}{2}s-q)+\overline{\xi}y_{1}y_{2}$

$d_{S8}= \frac{1}{4}((\partial_{1}-2\partial_{2})^{2}-\mu_{1}^{2})-\xi\overline{\xi}y_{1}^{2}-y_{2}^{2}-\nu_{1}y_{2}$

$d_{ss-1}=- \xi y_{1}(\partial_{2}+\frac{1}{2}s)+\xi y_{1}y_{2}$ .

We also define the matrix differential operator $D$ by

$(^{d}d_{00}000^{10}0$
$a_{0}d_{11}d_{01}0032$ $d_{33}00000$

. . .

$d_{s_{0}}d_{s-2s-2}-18-2:$

.
$d_{\epsilon-1s-1 ,d_{ss-1}}0$ $d_{ss}00000)$

where

$d_{00}= \frac{1}{4}((\partial_{1}-2\partial_{2})^{2}-\mu_{2}^{2})-\xi\overline{\xi}y_{1}^{2}-y_{2}^{2}-\nu_{2}y_{2}$

$d_{01}=- \overline{\xi}y_{1}(\partial_{2}-\frac{1}{2}s)-\overline{\xi}y_{1}y_{2}$

and

$d_{qq}= \frac{1}{4}((\partial_{1}-s+q)^{2}-\mu_{2}^{2})-\xi\overline{\xi}y_{1}^{2}$ , $d_{qq-1}= \xi y_{1}(\partial_{2}+q-\frac{1}{2}s)-\xi y_{1}y_{2}$

for $q=1,$ $\ldots,$
$s$ . Here, the parameters $\xi$ and $\overline{\xi}$ are associated to the character $\eta$ .
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By using Formulas 2 and 3, one can see that the Whittaker functions of
$\pi_{s,\chi}$ with respect to $\tau_{[0,s;l]}$ satisfy the system of differential equations $\mathcal{D}=0$

and $\overline{D}=0$ . Moreover, we have the following result which characterizes the
Whittaker functions of $\pi_{s,\chi}$ with respect to $\tau_{[0,s;l]}$ .
Theorem 2.2. For $s\geq 2$ , the natural map from $W(\pi_{s,\chi}, \eta)$ into $Ker(\overline{\mathcal{D}}, \mathcal{D})$ is
bijection if $\pi_{s,x}$ is irreducible and $\eta$ is a nondegenerate unitary chamcter of $N$ .

Here, we also have the following formula in the case $s=0$ , which is analogue
to the class one case for $Sp(2, \mathbb{R})$ in [5]. Write $W$ for the little Weyl group for
$(g, a)$ , and $(\rho_{1}, \rho_{2})$ for the pair (3, 2) related to the half sum.

Theorem 2.3. Let $\pi_{0,\chi}$ be an irreducible principal series with pammeter $\mu=$

$(\mu_{1}.\mu_{2})\in a_{\mathbb{C}}^{*}$ , and set $\epsilon=\frac{1-\chi(-1)}{2}$ . Then the function $\phi_{\mu}$ on A defined by

$\phi_{\mu}(y_{1}, y_{2})=y_{1}^{\rho_{1}}y_{2}^{\rho_{2}}\sum_{m,n\geq 0}\frac{U_{m,n}^{0}}{2^{2n}(\frac{\mu_{1}-\epsilon}{2}+1)_{m}(\frac{\mu_{2}-\epsilon}{2}+1)_{n}}\cross y_{1}^{\mu_{1}+2m}y^{\frac{\mu_{1+2}\mu}{22}+2n}$

$+ \frac{\epsilon U_{m,n}^{1}}{2^{2n+1}(\frac{\mu_{1}-\epsilon}{2}+1)_{m}(\frac{\mu_{2}-\epsilon}{2}+1)_{n+1}}\cross y_{1}^{\mu_{1}+2m^{\mu}}y_{2}^{\Delta_{F^{\mu}}^{+z+2n+1}}$ ,

is a Whittaker function, on $A$ , of $\pi_{0,\chi}$ with the K-type $\tau[0,0;2\epsilon]$ . Moreover, the
intertwiners $\Phi_{\omega(\mu)}$ attached to the function $\phi_{\omega(\mu)}(y_{1}, y_{2})$ form a basis of the
8-dimensional space $W(\pi_{0,\chi}, \eta)$ . Here,

$U_{m,n}^{t}:=\sum_{j=0}^{\min(m,n)}\frac{(\frac{\mu_{1}-\epsilon}{2}+n+1+t)_{m-j}}{(m-j)!(n-j)!j!(^{\ovalbox{\tt\small REJECT}_{2}^{+}L^{2}}1+1)_{j}(\frac{\mu_{1}-\mu_{2}}{2}+1)_{m-j}}$

for $t=0,1$ .
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