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The Bosonic Vertex Operator Algebra on a
Genus g Riemann Surface
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School of Mathematics, Statistics and Applied Mathematics,
National University of Ireland Galway
University Road, Galway, Ireland.

Abstract
We discuss the partition function for the Heisenberg vertex opera-
tor algebra on a genus g Riemann surface formed by sewing g handles
to a Riemann sphere. In particular, it is shown how the partition
can be computed by means of the MacMahon Master Theorem from
classical combinatorics.

1 Introduction

In this paper we briefly sketch recent progress in defining and computing
the partition function for the Heisenberg Vertex Operator Algebra (VOA)
on a genus g Riemann surface. The partition function and n-point corre-
lation functions are familiar concepts at genus one and have recently been
computed on genus two Riemann surfaces formed from sewing tori together
[MT1],[MT2]. Here we discuss an alternative approach for computing these
objects on a general genus g Riemann surface formed by sewing g handles
onto a Riemann sphere. This approach includes the classical Schottky pa-
rameterisation and a related simpler canonical parameterisation for which
we obtain the partition function for rank 2 Heisenberg VOA in terms of an
explicit infinite determinant. This determinant is computed by means of the
MacMahon Master Theorem in classical combinatorics [MM].

*Supported by a Science Foundation Ireland Frontiers of Research Grant and by Max—
Planck Institut fiir Mathematik, Bonn
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2 A Generalized MacMahon Master Theo-
rem

We begin with a review of the MacMahon Master Theorem and a recent
generalization. We will provide a proof of this which gives some flavour of
the combinatorial graph theory methods developed to compute higher genus
partition functions [MT2}, [TZ].

Let A = (A;;) be an n x n matrix indexed by 4,5 € {1,...,n}. Consider
the cycle decomposition of © € £, the symmetric group on {1,...,n},

T=01...00(x) (1)

The fB-extended Permanent of the matrix A is defined by [FZ]
permgA = Z e H Air(i)- (2)
wETn

The standard permanent and determinant are the particular cases:
perm A = perm A, det A = (—1)"perm_, A. (3)

Consider a multiset {k1,...,kn} wWith 1 < k; < ... < kp < nie. index
repetition is allowed. We notate the multiset as the unrestricted partition

k= {172 .. .n"™}, (4)

i.e. the index ¢ occurs 7; > 0 times and where m = Zr, Let A(k) denote

the m x m matrix indexed by k for a given matrix A mdexed by {1,...,n}.
We now describe a generalisation of the classic MacMahon Master Theo-
rem (MMT) of combinatorics [MM]. Let A be an n x n matrix indexed by
{1,...,n}. Let A(K) denote the m x m matrix indexed by a multiset k (4).

Theorem 2.1 (Generalized MMT - Foata and Zeilberger [FZ])

rilrgl. .l det(Z — A)A’

k

where the (infinite) sum ranges over all multisets k = {1™.2 ... .n"™}.
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For B =1, Theorem 2.1 reduces to the classical MMT [MM]. For 8 = -1 we

use (3) to find that the sum is restricted to proper subsets of {1,2,. N}
resulting in the determinant identity
det(I+B)= Y detB(k),

lskl <... <kmsn

for B = —A.

Proof of Theorem 2.1. We use a graph theory method applied in
[MT2]. Define a set of oriented graphs I with elements -y, whose vertices are
labelled by multisets k = {1™...n"} and directed edges {e;;} determined
by permutations 7 € X(k) as follows

€;j =I:'——->koJ for k; = n(k;)

Define a ( dependent weight for each v,
wp(eig) = Ak wa(w) = B[, ., waless), (6)

where C(7) is the number of disjoint cycles in #. Then we may write

permy A(k) = Z wa(Yr )
weX(k)

Yr is invariant under permutations of the identical labels of k. Hence the left
hand side of (5) can be rewritten as

perm A(k ws(7)
>; 7'1'7”2ﬁ 2 < [Aut()]

where we sum over all inequivalent graphs in I". Each v € T can be decom-
posed into disjoint connected cycle graphs v, € T

Y= Yol e VoK

Each cycle o corresponds to a disjoint connected cycle graph 4, € I' with

weight
= H we(Ve;) ™.
i
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Furthermore
|Aut(yr)| = H |Aut(ys, )™ ma!

Let T', denote the set of inequivalent cycles. Then
_wplg)  _ 1Dy wp(e)™
2 auil ~ L 2 Kt
we(Vo)
= exp (7
('y €ls |Aut(vo)l ) )
For a cycle ¢ of order |o| = r then Aut(7,) = (¢°), a cyclic group of order
|Aut(y,)| = £. Using the trace identity

Y s wp(v,) = ATX(A),

Voslo|=r
we find
2 |:5t((’i§f>l - AL )
—BTx(log(I — A))
= —flogdet(I — A).
Thus

Ak
3 2ty AQ _ gesr — a)2.
” rilrgl. . 1!

Define a cycle to be primitive (or rotationless) if |Aut(7,)| = 1. For a
general cycle o with |Aut(v,)| = s we have for 3 =1

w1 () = wi(7,)°)
for some primitive cycle p. Let ', denote the set of all primitive cycles. Then
w ("Ya)
Y s = ~wi(7,)°
3 ey~ XX

= - Z logdet(1 — w1(7p))-

o€l

Combining this with (7) implies [MT2]



Theorem 2.2
det(I — A) = [] (0 —wilwy))-

Y0€l 0

3 Riemann Surfaces from a Sewn Sphere

3.1 The Riemann torus

Consider the construction of a torus by sewing a handle to the Riemann
sphere C by identifying annular regions centred at As; € € via a sewing
condition with complex sewing parameter p

(2= AL — 4) = . (8)

We call p, A+ canonical parameters. The annuli do not intersect provided

1
ol < 7141 - Al (9)
Inequivalent tori depend only on
P
X (A_]_ _ A1)27 ( )

where (9) implies |x| < 3 [MT1].
Equivalently, we define g, a.+;, known as Schottky parameters, by
A +qA;
@G = —
1+4¢

q _
T X (11)

?
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for 1 = £1. Inequivalent tori depend only on g with |g| < 1. The canonical
sewing condition (8) is equivalent to:

(zz—— aa.ll) (;’: :_11) -0 (12)

Inverting (11) we find that ¢ = C(x) for Catalan series

_ _ 1/2
o= oL (M e )

2 n>1

3.2 Genus g Riemann Surfaces

We may similarly construct a general genus g Riemann surface by identifying
g pairs of annuli centred at Ax; € C for i = 1,..., g and sewing parameters

p;: satisfying
(2 = A2 = A) = pi, (14)

provided no two annuli intersect. Equivalently, for ¢ = 1,...,g we define
Schottky parameters a.;, ¢; by

g = Ay +qAy;
44 1+ % ’
qi pz
% _ : 15
G+al (- AP 19
where |g;| < 1 is again related to the Catalan series (13)

=C0a), xi= —(Az_'—%-)?

The canonical sewing condition can then be rewritten as a standard Schottky
sewing condition:
Z—a_; 2 —a
= g;. 16
(%) (7=2) -w (16)

The Schottky sewing condition (16) determines a Mébius map 2z’ = 7;(2)

where 0
Yi = :1(?; 1)0'2‘, ‘ (17)
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for Mobius map
(18)

We define the Schottky group I' = (v;) as the Kleinian group freely generated
by v, fori=1,...,g.

One can find explicit formulas for various objects defined on the Riemann
surface such as the bilinear form of the second kind, a basis of g holomorphic
I-forms and the genus g period matrix in terms of either the Canonical or
Schottky parametrizations [TZ]. In the Schottky case, these involve sums or
products over the Schottky group or subsets thereof.

4 Vertex Operator Algebras

Consider a simple VOA with Z-graded vector space V = @,V ™ and local
vertex operators Y (a, z) = Y., anz ™" fora € V e.g. [Ka},[FLM],[MN],[MT3].
We assume that V is of CFT type (i.e. Vo = C1) with a unique symmetric
invertible invariant bilinear form ( , ) with normalization (1,1) = 1 where
[FHL],[Li]

(Y (@, 2)8,) = (b, Y (1(~ )0, 2)e) (19)

For a V-basis {u®}, we let {@*} denote the dual basis. If a € V® is quasi-
primary (L;a = 0) then (19) implies

(anb, C) = (—1)k(b, azk_n_zc).
In particular:

{anb,c) = —(b,a_nc) fora € VI
(Lpb,c) = (b,L_nc) for w € Ve, (20)

so that b, ¢ with unequal weights are orthogonal.

4.1 Genus Zero Correlation Functions

For ui, ug, ..., u, € V define the n-point (correlation) function by

(1,Y (uy,21)Y (ug, 22) - .. Y(Un, 20)1). (21)



88

The locality property of vertex operators implies that this formal expres-
sion (21) coincides with the analytic expansion of a rational function of
21,22, - - -2, in the domain |2;| > |23 > ... > |2,|. Thus the n-point func-
tion can taken to be a rational function of 23,22,...,2, € C, the Riemann
sphere in the domain. For example [HT]

Theorem 4.1 For a VOA of central charge C, the Virasoro n-point function
is a B-extended permanent

(LY(w,21).. Y(w,2)1) = permg B,

fOT Bij = m,z 7é] and B,;,' = (.

4.2 Rank Two Heisenberg VOA M,

Consider the VOA generated by two Heisenberg vectors a* € V() whose
modes satisfy non-trivial commutator

[am, az] = Mm,—n. (22)
V has a Fock basis spanned by
okl =07, ...a%, a7, ...a 1, (23)

labelled by a multisets k = {k,...,kn} = {1™.27 .. }and 1 = {ly,...,ln} =
{1%1.2°2 .. .}. The Fock vectors are orthogonal with respect to to the invariant
bilinear form with dual basis

- 1 1

i

The basic Heisenberg 2-point function is

(1,Y(a*,2)Y(a",y)1) = ( : (25)

z —y)?

This function provides all the necessary data for computing the Heisen-
berg partition and correlation functions on a genus g surface! Thus the
general rank 2 Heisenberg 2n-point function is

(1,Y(a*,21)...Y(a%,2,)Y (a7, 91) ... Y(a",y5)1) = perm ((:UT-]iy_,)_z) :
(26)



This is a generating function for all rank two Heisenberg correlation functions
by associativity of the VOA.

Let z_; = z—A_; and y; = y— A, be local coordinates in the neighborhood
of canonical sewing parameters A_;, A; for 1,5 € {£1,... £ g} with ¢ # —j.
The 2-point function has expansion

1)! ’izlyé '

(k41—
- S R T A

Define the canonical moment matrix R®*", an infinite matrix indexed by
k,l=1,2,...and 4,5 € {%1,... £ g} where

(—1%6¥20%  (h41-1) 1 - -
R (k1) = { VA G- A b7 (27)
0, t=-J

(I — R®)~! plays a central role in computing the genus g period matrix and
other structures.
We similarly have expansions in the Schottky parameters. Let

r—a—;
= o_y(z) = 28
R O — (28)
o gip) = L 29
y; = 0;(x) v —a_; (29)

fori,j € {1,..., g} be local coordinates in the neighborhood of the Schottky
points a_; and a; for ¢ # —j. The 2-point function expansion leads to the
Schottky moment matrix with

¢ ** Dk, (0107, i #
Sch - 05 "), J
R = { & i (30)
where for v € SL(2,C)
DG = +fEd () e (3
D is an SL(2, C) representation [Mo]. Then it follows
> REM(r o) Bi(s,t) = 0" D(r, 1) (oo ), (32)

s>1

for Schottky generator (17).

89
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4.3 The Genus ¢ Partition Function - Canonical Pa-
rameters

We now define the genus g pé.rtition function for a VOA V in the canonical
sewing scheme in terms of genus zero 2g-point correlation functions as follows:

ZP(on Axs) = (L[ Do o Y Y(wi, A)Y(@, A1), (33)

i=1n; >0 veVn)

where 7; is dual to v;.
For genus one this reverts to the standard definition:

Theorem 4.2 (Mason and T.)
Z‘(})(Pa Asr) = Trv(g™)

where ¢ = C(x), the Catalan series for x = _(A__f;LAl)_f’

4.4 Z}f}g(pi,Aﬂ) for Heisenberg VOA M;

The genus g partition function can be computed for the rank 2 Heisenberg
VOA by means of the MacMahon Master Theorem where, schematically, we
have:

Sum over g Fock bases Sum over multisets
2g-point function
Dual vector factorials

p; and other dual vector factors

Permanent of matrix
Multiset factorials
Absorbed into matrix definition

LLL

We then find that [TZ]

Theorem 4.3 1

(0is Aus) = det(I — RCan)’

%

where RC®® is the canonical moment matriz. Furthermore, det(I — R*®) is
holomorphic and non-vanishing. In general, the genus g Heisenberg generai-
ing function is expressed in terms of a permanent of genus g bilinear forms
of the second kind.
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We may repeat this by using an alternative definition of the genus g partition
function in terms of in Schottky parameters account must be taken of the
Mobius maps o; of (18). We then find [TZ]

Theorem 4.4 The genus g partition function is

1
det(] — RSh)’

Zj(\g'g (Q'H ai%)

where RS s the Schottky moment matriz. Furthermore, det(I — R5) is
holomorphic and non-vanishing and the genus g Heisenberg generating func-
tion is expressed in terms of a permanent of genus g bilinear forms of the
second kind.

Conjecture: det(] — R®") = det(I — R%"). This is true for g = 1
IMT2].

4.5 The Montonen-Zograf Product Formula

det(I — R%") can be also re-expressed in terms of an infinite product formula
originally calculated in physics by Montonen in 1974 [Mo]. A similar product
formula was subsequently found by Zograf [Z]. This has been recently related
by Mclntyre and Takhtajan [McT| to Mumford’s theorem concerning the
absence of a global section on moduli space for the canonical line bundle
[Mu].

Recall that R;i"(k, 1) is expressed in terms of an SL(2, C) representation
D. This leads to

det(I— R =[] [[(1 -4 (34)

m21y*el

where the inner product ranges over the primitive elements v* of the Schottky
group I i.e. ¥* # ~* for any v € T for k¥ > 1. Each such element has a

multiplier g, where
o % 0
¥ ( 0 1 ) (35)
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