

Tryoto oniversity research into matter repository	
Title	The Bosonic Vertex Operator Algebra on a Genus \$g\$ Riemann Surface (Research into Vertex Operator Algebras, Finite Groups and Combinatorics)
Author(s)	Tuite, Michael P.; Zuevsky, Alexander
Citation	数理解析研究所講究録 (2011), 1756: 81-93
Issue Date	2011-08
URL	http://hdl.handle.net/2433/171291
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

The Bosonic Vertex Operator Algebra on a Genus g Riemann Surface

Michael P. Tuite and Alexander Zuevsky*
School of Mathematics, Statistics and Applied Mathematics,
National University of Ireland Galway
University Road, Galway, Ireland.

Abstract

We discuss the partition function for the Heisenberg vertex operator algebra on a genus g Riemann surface formed by sewing g handles to a Riemann sphere. In particular, it is shown how the partition can be computed by means of the MacMahon Master Theorem from classical combinatorics.

1 Introduction

In this paper we briefly sketch recent progress in defining and computing the partition function for the Heisenberg Vertex Operator Algebra (VOA) on a genus g Riemann surface. The partition function and n-point correlation functions are familiar concepts at genus one and have recently been computed on genus two Riemann surfaces formed from sewing tori together [MT1],[MT2]. Here we discuss an alternative approach for computing these objects on a general genus g Riemann surface formed by sewing g handles onto a Riemann sphere. This approach includes the classical Schottky parameterisation and a related simpler canonical parameterisation for which we obtain the partition function for rank 2 Heisenberg VOA in terms of an explicit infinite determinant. This determinant is computed by means of the MacMahon Master Theorem in classical combinatorics [MM].

^{*}Supported by a Science Foundation Ireland Frontiers of Research Grant and by Max-Planck Institut für Mathematik, Bonn

2 A Generalized MacMahon Master Theorem

We begin with a review of the MacMahon Master Theorem and a recent generalization. We will provide a proof of this which gives some flavour of the combinatorial graph theory methods developed to compute higher genus partition functions [MT2], [TZ].

Let $A = (A_{ij})$ be an $n \times n$ matrix indexed by $i, j \in \{1, ..., n\}$. Consider the cycle decomposition of $\pi \in \Sigma_n$, the symmetric group on $\{1, ..., n\}$,

$$\pi = \sigma_1 \dots \sigma_{C(\pi)}. \tag{1}$$

The β -extended Permanent of the matrix A is defined by [FZ]

$$\operatorname{perm}_{\beta} A = \sum_{\pi \in \Sigma_n} \beta^{C(\pi)} \prod_i A_{i\pi(i)}. \tag{2}$$

The standard permanent and determinant are the particular cases:

perm
$$A = \text{perm}_{+1}A$$
, $\det A = (-1)^n \text{perm}_{-1}A$. (3)

Consider a multiset $\{k_1, \ldots, k_m\}$ with $1 \leq k_1 \leq \ldots \leq k_m \leq n$ i.e. index repetition is allowed. We notate the multiset as the unrestricted partition

$$\mathbf{k} = \{1^{r_1} 2^{r_2} \dots n^{r_n}\},\tag{4}$$

i.e. the index i occurs $r_i \geq 0$ times and where $m = \sum_{i=1}^n r_i$. Let $A(\mathbf{k})$ denote the $m \times m$ matrix indexed by \mathbf{k} for a given matrix A indexed by $\{1, \ldots, n\}$. We now describe a generalisation of the classic MacMahon Master Theorem (MMT) of combinatorics [MM]. Let A be an $n \times n$ matrix indexed by $\{1, \ldots, n\}$. Let $A(\mathbf{k})$ denote the $m \times m$ matrix indexed by a multiset \mathbf{k} (4).

Theorem 2.1 (Generalized MMT - Foata and Zeilberger [FZ])

$$\sum_{\mathbf{k}} \frac{\operatorname{perm}_{\beta} A(\mathbf{k})}{r_1! r_2! \dots r_n!} = \frac{1}{\det(I - A)^{\beta}},\tag{5}$$

where the (infinite) sum ranges over all multisets $\mathbf{k} = \{1^{r_1}.2^{r_2}....n^{r_n}\}.$

For $\beta = 1$, Theorem 2.1 reduces to the classical MMT [MM]. For $\beta = -1$ we use (3) to find that the sum is restricted to proper subsets of $\{1, 2, \ldots, n\}$ resulting in the determinant identity

$$\det(I+B) = \sum_{1 \le k_1 < \dots < k_m \le n} \det B(\mathbf{k}),$$

for B = -A.

Proof of Theorem 2.1. We use a graph theory method applied in [MT2]. Define a set of oriented graphs Γ with elements γ_{π} whose vertices are labelled by multisets $\mathbf{k} = \{1^{r_1} \dots n^{r_n}\}$ and directed edges $\{e_{ij}\}$ determined by permutations $\pi \in \Sigma(\mathbf{k})$ as follows

$$e_{ij} = \stackrel{k_i}{\bullet} \longrightarrow \stackrel{k_j}{\bullet} \text{ for } k_j = \pi(k_i)$$

Define a β dependent weight for each γ_{π}

$$w_{\beta}(e_{ij}) = A_{k_i k_j}, \qquad w_{\beta}(\gamma_{\pi}) = \beta^{C(\pi)} \prod_{e_{ij} \in \gamma_{\pi}} w_{\beta}(e_{ij}),$$
 (6)

where $C(\pi)$ is the number of disjoint cycles in π . Then we may write

$$\operatorname{perm}_{eta} A(\mathbf{k}) = \sum_{\pi \in \Sigma(\mathbf{k})} w_{eta}(\gamma_{\pi}).$$

 γ_{π} is invariant under permutations of the identical labels of **k**. Hence the left hand side of (5) can be rewritten as

$$\sum_{\mathbf{k}} \frac{\operatorname{perm}_{\beta} A(\mathbf{k})}{r_1! r_2! \dots r_n!} = \sum_{\gamma \in \Gamma} \frac{w_{\beta}(\gamma)}{|\operatorname{Aut}(\gamma)|},$$

where we sum over all inequivalent graphs in Γ . Each $\gamma \in \Gamma$ can be decomposed into disjoint connected cycle graphs $\gamma_{\sigma} \in \Gamma$

$$\gamma = \gamma_{\sigma_1}^{m_1} \dots \gamma_{\sigma_K}^{m_K}.$$

Each cycle σ corresponds to a disjoint connected cycle graph $\gamma_{\sigma} \in \Gamma$ with weight

$$w_{eta}(\gamma_{\pi}) = \prod_i w_{eta}(\gamma_{\sigma_i})^{m_i}.$$

Furthermore

$$|\mathrm{Aut}(\gamma_\pi)| = \prod_i |\mathrm{Aut}(\gamma_{\sigma_i})|^{m_i} m_i!$$

Let Γ_{σ} denote the set of inequivalent cycles. Then

$$\sum_{g \in \Gamma} \frac{w_{\beta}(g)}{|\operatorname{Aut}(g)|} = \prod_{\gamma_{\sigma} \in \Gamma_{\sigma}} \sum_{m \geq 0} \frac{w_{\beta}(\gamma_{\sigma})^{m}}{|\operatorname{Aut}(\gamma_{\sigma})|^{m} m!}$$

$$= \exp \left(\sum_{\gamma_{\sigma} \in \Gamma_{\sigma}} \frac{w_{\beta}(\gamma_{\sigma})}{|\operatorname{Aut}(\gamma_{\sigma})|} \right). \tag{7}$$

For a cycle σ of order $|\sigma| = r$ then $\operatorname{Aut}(\gamma_{\sigma}) = \langle \sigma^s \rangle$, a cyclic group of order $|\operatorname{Aut}(\gamma_{\sigma})| = \frac{r}{s}$. Using the trace identity

$$\sum_{\gamma_{\sigma}, |\sigma| = r} s \ w_{eta}(\gamma_{\sigma}) = eta \mathrm{Tr}(A^r),$$

we find

$$\sum_{\gamma_{\sigma} \in \Gamma_{\sigma}} \frac{w_{\beta}(\gamma_{\sigma})}{|\operatorname{Aut}(\gamma_{\sigma})|} = \beta \sum_{r \geq 1} \frac{1}{r} \operatorname{Tr}(A^{r})$$

$$= -\beta \operatorname{Tr}(\log(I - A))$$

$$= -\beta \log \det(I - A).$$

Thus

$$\sum_{\mathbf{k}} \frac{\operatorname{perm}_{\beta} A(\mathbf{k})}{r_1! r_2! \dots r_n!} = \det(I - A)^{-\beta}. \quad \Box$$

Define a cycle to be primitive (or rotationless) if $|\operatorname{Aut}(\gamma_{\sigma})| = 1$. For a general cycle σ with $|\operatorname{Aut}(\gamma_{\sigma})| = s$ we have for $\beta = 1$

$$w_1(\gamma_{\sigma})=w_1(\gamma_{\rho})^s,$$

for some primitive cycle ρ . Let Γ_{ρ} denote the set of all primitive cycles. Then

$$\sum_{\gamma_{\sigma} \in \Gamma_{\sigma}} \frac{w_{1}(\gamma_{\sigma})}{|\operatorname{Aut}(\gamma_{\sigma})|} = \sum_{\gamma_{\rho} \in \Gamma_{\rho}} \sum_{s \geq 1} \frac{1}{s} w_{1}(\gamma_{\rho})^{s}$$
$$= -\sum_{\gamma_{\rho} \in \Gamma_{\rho}} \log \det(1 - w_{1}(\gamma_{\rho})).$$

Combining this with (7) implies [MT2]

Theorem 2.2

$$\det(I-A) = \prod_{\gamma_{\rho} \in \Gamma_{\rho}} (1-w_1(\gamma_{\rho})).$$

3 Riemann Surfaces from a Sewn Sphere

3.1 The Riemann torus

Consider the construction of a torus by sewing a handle to the Riemann sphere $\hat{\mathbb{C}}$ by identifying annular regions centred at $A_{\pm 1} \in \hat{\mathbb{C}}$ via a sewing condition with complex sewing parameter ρ

$$(z - A_{-1})(z' - A_1) = \rho. (8)$$

We call ρ, A_{\pm} canonical parameters. The annuli do not intersect provided

$$|\rho| < \frac{1}{4}|A_{-1} - A_1|^2. \tag{9}$$

Inequivalent tori depend only on

$$\chi = -\frac{\rho}{(A_{-1} - A_1)^2},\tag{10}$$

where (9) implies $|\chi| < \frac{1}{4}$ [MT1].

Equivalently, we define $q, a_{\pm 1}$, known as Schottky parameters, by

$$a_{i} = \frac{A_{i} + qA_{-i}}{1 + q},$$

$$\frac{q}{(1+q)^{2}} = \chi,$$
(11)

for $i = \pm 1$. Inequivalent tori depend only on q with |q| < 1. The canonical sewing condition (8) is equivalent to:

$$\left(\frac{z - a_{-1}}{z - a_1}\right) \left(\frac{z' - a_1}{z' - a_{-1}}\right) = q. \tag{12}$$

Inverting (11) we find that $q = C(\chi)$ for Catalan series

$$C(\chi) = \frac{1 - (1 - 4\chi)^{1/2}}{2\chi} - 1 = \sum_{n \ge 1} \frac{1}{n} \binom{2n}{n+1} \chi^n.$$
 (13)

3.2 Genus q Riemann Surfaces

We may similarly construct a general genus g Riemann surface by identifying g pairs of annuli centred at $A_{\pm i} \in \hat{\mathbb{C}}$ for $i = 1, \ldots, g$ and sewing parameters ρ_i satisfying

$$(z - A_{-i})(z' - A_i) = \rho_i, \tag{14}$$

provided no two annuli intersect. Equivalently, for i = 1, ..., g we define Schottky parameters $a_{\pm i}, q_i$ by

$$a_{\pm i} = \frac{A_{\pm i} + qA_{\mp i}}{1 + q_i},$$

$$\frac{q_i}{(1 + q_i)^2} = -\frac{\rho_i}{(A_{-i} - A_i)^2},$$
(15)

where $|q_i| < 1$ is again related to the Catalan series (13)

$$q_i = C(\chi_i), \quad \chi_i = -\frac{\rho_i}{(A_i - A_{-i})^2}.$$

The canonical sewing condition can then be rewritten as a standard Schottky sewing condition:

$$\left(\frac{z-a_{-i}}{z-a_i}\right)\left(\frac{z'-a_i}{z'-a_{-i}}\right)=q_i. \tag{16}$$

The Schottky sewing condition (16) determines a Möbius map $z' = \gamma_i(z)$ where

$$\gamma_i = \sigma_i^{-1} \begin{pmatrix} q_i & 0 \\ 0 & 1 \end{pmatrix} \sigma_i, \tag{17}$$

for Möbius map

$$\sigma_i(z) = \frac{z - a_i}{z - a_{-i}}. (18)$$

We define the Schottky group $\Gamma = \langle \gamma_i \rangle$ as the Kleinian group freely generated by γ_i for $i = 1, \ldots, g$.

One can find explicit formulas for various objects defined on the Riemann surface such as the bilinear form of the second kind, a basis of g holomorphic 1-forms and the genus g period matrix in terms of either the Canonical or Schottky parametrizations [TZ]. In the Schottky case, these involve sums or products over the Schottky group or subsets thereof.

4 Vertex Operator Algebras

Consider a simple VOA with \mathbb{Z} -graded vector space $V = \bigoplus_{n \geq 0} V^{(n)}$ and local vertex operators $Y(a,z) = \sum_{n \in \mathbb{Z}} a_n z^{-n-1}$ for $a \in V$ e.g. [Ka],[FLM],[MN],[MT3]. We assume that V is of CFT type (i.e. $V_0 = \mathbb{C}1$) with a unique symmetric invertible invariant bilinear form $\langle \ , \ \rangle$ with normalization $\langle 1, 1 \rangle = 1$ where [FHL],[Li]

$$\langle Y(a,z)b,c\rangle = \langle b, Y(e^{zL_1}(-\frac{1}{z^2})^{L_0}a, \frac{1}{z})c\rangle \tag{19}$$

For a V-basis $\{u^{\alpha}\}$, we let $\{\overline{u}^{\alpha}\}$ denote the dual basis. If $a \in V^{(k)}$ is quasi-primary $(L_1 a = 0)$ then (19) implies

$$\langle a_n b, c \rangle = (-1)^k \langle b, a_{2k-n-2} c \rangle.$$

In particular:

$$\langle a_n b, c \rangle = -\langle b, a_{-n} c \rangle \text{ for } a \in V^{(1)}$$

 $\langle L_n b, c \rangle = \langle b, L_{-n} c \rangle \text{ for } \omega \in V^{(2)},$ (20)

so that b, c with unequal weights are orthogonal.

4.1 Genus Zero Correlation Functions

For $u_1, u_2, \ldots, u_n \in V$ define the *n*-point (correlation) function by

$$\langle \mathbf{1}, Y(u_1, z_1) Y(u_2, z_2) \dots Y(u_n, z_n) \mathbf{1} \rangle. \tag{21}$$

The locality property of vertex operators implies that this formal expression (21) coincides with the analytic expansion of a rational function of z_1, z_2, \ldots, z_n in the domain $|z_1| > |z_2| > \ldots > |z_n|$. Thus the *n*-point function can taken to be a rational function of $z_1, z_2, \ldots, z_n \in \hat{\mathbb{C}}$, the Riemann sphere in the domain. For example [HT]

Theorem 4.1 For a VOA of central charge C, the Virasoro n-point function is a β -extended permanent

$$\langle \mathbf{1}, Y(\omega, z_1) \dots Y(\omega, z_n) \mathbf{1} \rangle = \operatorname{perm}_{\underline{c}} B,$$

for $B_{ij} = \frac{1}{(z_i - z_j)^2}, i \neq j \text{ and } B_{ii} = 0.$

4.2 Rank Two Heisenberg VOA M_2

Consider the VOA generated by two Heisenberg vectors $a^{\pm} \in V^{(1)}$ whose modes satisfy non-trivial commutator

$$[a_m^+, a_n^-] = m\delta_{m,-n}. (22)$$

V has a Fock basis spanned by

$$a_{\mathbf{k},\mathbf{l}} = a_{-k_1}^+ \dots a_{-k_m}^+ a_{-l_1}^- \dots a_{-l_n}^- 1,$$
 (23)

labelled by a multisets $\mathbf{k} = \{k_1, \dots, k_m\} = \{1^{r_1}.2^{r_2}...\}$ and $\mathbf{l} = \{l_1, \dots, l_n\} = \{1^{s_1}.2^{s_2}...\}$. The Fock vectors are orthogonal with respect to to the invariant bilinear form with dual basis

$$\overline{a}_{\mathbf{k},\mathbf{l}} = \prod_{i} \frac{1}{i^{r_i} r_i!} \prod_{j} \frac{1}{j^{s_j} s_j!} a_{\mathbf{l},\mathbf{k}}.$$
 (24)

The basic Heisenberg 2-point function is

$$\langle \mathbf{1}, Y(a^+, x)Y(a^-, y)\mathbf{1} \rangle = \frac{1}{(x - y)^2}.$$
 (25)

This function provides all the necessary data for computing the Heisenberg partition and correlation functions on a genus g surface! Thus the general rank 2 Heisenberg 2n-point function is

$$\langle \mathbf{1}, Y(a^+, x_1) \dots Y(a^+, x_n) Y(a^-, y_1) \dots Y(a^-, y_n) \mathbf{1} \rangle = \operatorname{perm} \left(\frac{1}{(x_i - y_j)^2} \right).$$
(26)

This is a generating function for all rank two Heisenberg correlation functions by associativity of the VOA.

Let $x_{-i} = x - A_{-i}$ and $y_j = y - A_j$ be local coordinates in the neighborhood of canonical sewing parameters A_{-i} , A_j for $i, j \in \{\pm 1, \ldots \pm g\}$ with $i \neq -j$. The 2-point function has expansion

$$\frac{1}{(x-y)^2} = \sum_{k,l>1} (-1)^{k+1} \frac{(k+l-1)!}{(k-1)!(l-1)!} \frac{x_{-i}^{k-1} y_j^{l-1}}{(A_{-i} - A_j)^{k+l}}.$$

Define the canonical moment matrix R^{Can} , an infinite matrix indexed by $k, l = 1, 2, \ldots$ and $i, j \in \{\pm 1, \ldots \pm g\}$ where

$$R_{ij}^{\text{Can}}(k,l) = \begin{cases} \frac{(-1)^k \rho_i^{k/2} \rho_j^{l/2}}{\sqrt{kl}} \frac{(k+l-1)!}{(k-1)!(l-1)!} \frac{1}{(A_{-i}-A_j)^{k+l}}, & i \neq -j \\ 0, & i = -j \end{cases}$$
(27)

 $(I-R^{\operatorname{Can}})^{-1}$ plays a central role in computing the genus g period matrix and other structures.

We similarly have expansions in the Schottky parameters. Let

$$x_{-i} = \sigma_{-i}(x) = \frac{x - a_{-i}}{x - a_i} \tag{28}$$

$$y_j = \sigma_j(x) = \frac{y - a_j}{y - a_{-j}} \tag{29}$$

for $i, j \in \{1, ..., g\}$ be local coordinates in the neighborhood of the Schottky points a_{-i} and a_j for $i \neq -j$. The 2-point function expansion leads to the Schottky moment matrix with

$$R_{ij}^{\text{Sch}}(k,l) = \begin{cases} q_i^{k/2} q_j^{l/2} D(k,l) (\sigma_i \sigma_j^{-1}), & i \neq -j \\ 0, & i = -j \end{cases}$$
(30)

where for $\gamma \in SL(2, \mathbb{C})$

$$D(k,l)(\gamma) = \frac{1}{l!} \sqrt{\frac{l}{k}} \partial_z^l \left(\gamma(z)^k \right) |_{z=0}. \tag{31}$$

D is an $SL(2,\mathbb{C})$ representation [Mo]. Then it follows

$$\sum_{s\geq 1} R_{ij}^{\text{Sch}}(r,s) R_{jk}^{\text{Sch}}(s,t) = q_i^{r/2} q_k^{t/2} D(r,t) (\sigma_i \gamma_j \sigma_k^{-1}), \tag{32}$$

for Schottky generator (17).

4.3 The Genus g Partition Function - Canonical Parameters

We now define the genus g partition function for a VOA V in the canonical sewing scheme in terms of genus zero 2g-point correlation functions as follows:

$$Z_{V}^{(g)}(\rho_{i}, A_{\pm i}) = \langle \mathbf{1}, \prod_{i=1}^{g} \sum_{n_{i} \geq 0} \rho_{i}^{n_{i}} \sum_{v_{i} \in V^{(n)}} Y(v_{i}, A_{-i}) Y(\overline{v}_{i}, A_{i}) \mathbf{1} \rangle,$$
(33)

where \overline{v}_i is dual to v_i .

For genus one this reverts to the standard definition:

Theorem 4.2 (Mason and T.)

$$Z_V^{(1)}(\rho, A_{\pm 1}) = \text{Tr}_V(q^{L_0})$$

where $q = C(\chi)$, the Catalan series for $\chi = -\frac{\rho}{(A_{-1}-A_1)^2}$.

4.4 $Z_{M_2}^{(g)}(\rho_i, A_{\pm i})$ for Heisenberg VOA M_2

The genus g partition function can be computed for the rank 2 Heisenberg VOA by means of the MacMahon Master Theorem where, schematically, we have:

Sum over g Fock bases \longrightarrow Sum over multisets

2g-point function \longrightarrow Permanent of matrix

Dual vector factorials —— Multiset factorials

 ρ_i and other dual vector factors \longrightarrow Absorbed into matrix definition

We then find that [TZ]

Theorem 4.3

$$Z_{M_2}^{(g)}(\rho_i, A_{\pm i}) = \frac{1}{\det(I - R^{\operatorname{Can}})},$$

where R^{Can} is the canonical moment matrix. Furthermore, $\det(I - R^{\operatorname{Can}})$ is holomorphic and non-vanishing. In general, the genus g Heisenberg generating function is expressed in terms of a permanent of genus g bilinear forms of the second kind.

We may repeat this by using an alternative definition of the genus g partition function in terms of in Schottky parameters account must be taken of the Möbius maps σ_i of (18). We then find [TZ]

Theorem 4.4 The genus g partition function is

$$Z_{M_2}^{(g)}(q_i, a_{\pm i}) = \frac{1}{\det(I - R^{\mathrm{Sch}})},$$

where R^{Sch} is the Schottky moment matrix. Furthermore, $\det(I - R^{\operatorname{Sch}})$ is holomorphic and non-vanishing and the genus g Heisenberg generating function is expressed in terms of a permanent of genus g bilinear forms of the second kind.

Conjecture: $det(I - R^{Can}) = det(I - R^{Sch})$. This is true for g = 1 [MT2].

4.5 The Montonen-Zograf Product Formula

 $\det(I-R^{\operatorname{Sch}})$ can be also re-expressed in terms of an infinite product formula originally calculated in physics by Montonen in 1974 [Mo]. A similar product formula was subsequently found by Zograf [Z]. This has been recently related by McIntyre and Takhtajan [McT] to Mumford's theorem concerning the absence of a global section on moduli space for the canonical line bundle [Mu].

Recall that $R_{ij}^{\text{Sch}}(k,l)$ is expressed in terms of an $SL(2,\mathbb{C})$ representation D. This leads to

$$\det(I - R^{\text{Sch}}) = \prod_{m \ge 1} \prod_{\gamma^{\alpha} \in \Gamma} (1 - q_{\alpha}^{m}), \tag{34}$$

where the inner product ranges over the primitive elements γ^{α} of the Schottky group Γ i.e. $\gamma^{\alpha} \neq \gamma^{k}$ for any $\gamma \in \Gamma$ for k > 1. Each such element has a multiplier q_{α} where

$$\gamma^{\alpha} \sim \left(\begin{array}{cc} q_{\alpha} & 0\\ 0 & 1 \end{array}\right). \tag{35}$$

References

- [FZ] Foata, D. and Zeilberger, D.: Laguerre polynomials, weighted derangements and positivity, SIAM J. Discrete Math. 1 (1988), 425–433.
- [FHL] Frenkel, I., Huang, Y. and Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules, Mem.Amer.Math.Soc. 104, (1993).
- [FLM] Frenkel, I., Lepowsky, J. and Meurman, A.: Vertex operator algebras and the Monster, (Academic Press, New York, 1988).
- [HT] Hurley, D. and Tuite, M.P.: Virasoro correlation functions, to appear.
- [Ka] Kac, V.: Vertex Operator Algebras for Beginners, University Lecture Series, Vol. 10, (AMS 1998).
- [Li] Li, H.: Symmetric invariant bilinear forms on vertex operator algebras, J.Pure.Appl.Alg. 96 (1994), 279–297.
- [McT] McIntyre, A. and Takhtajan, L.A.: Holomorphic factorization of determinants of Laplacians on Riemann surfaces and higher genus generalization of Kronecker's first limit formula, GAFA, Geom. funct. anal. 16 (2006), 1291–1323.
- [MM] MacMahon, P.A.: Combinatory Analysis, Vol. 1, Cambridge University Press, (Cambridge 1915); reprinted by Chelsea (New York, 1955).
- [MN] Matsuo, A. and Nagatomo, K,: Axioms for a vertex algebra and the locality of quantum fields, Math.Soc.Jap.Mem., 4 (1999).
- [Mo] Montonen, C.: Multiloop amplitudes in additive dual-resonance models, Nuovo Cimento 19 (1974), 69–89.
- [MT1] Mason, G. and Tuite, M.P.: On genus two Riemann surfaces formed from sewn tori, Commun.Math.Phys. 270 (2007), 587–634.
- [MT2] Mason, G. and Tuite, M.P.: Free bosonic vertex operator algebras on genus two Riemann surfaces I, Commun.Math.Phys. **300** (2010) 673–713.
- [MT3] Mason, G. and Tuite, M.P.: Vertex operators and modular forms, A Window into Zeta and Modular Physics eds. K. Kirsten and F. Williams, MSRI Publications 57 183–278, Cambridge University Press, (Cambridge, 2010).

- [Mu] Mumford, D.: Stability of Projective Varieties, L.Ens.Math. 23 (1977), 39–110.
- [TZ] Tuite, M.P. and Zuevsky, A.: The Heisenberg vertex operator algebra on a genus g Riemann surface, to appear.
- [Z] Zograf, P.G.: Liouville action on moduli spaces and uniformization of degenerate Riemann surfaces, (Russian) Algebra i Analiz 1 (1989) 136–160; translation in Leningrad Math. J. 1 (1990), 941–965.