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Abstract.  

Photoabsorption cross-sections of simple metals are formulated through a solid-state band 

theory based on the orthogonalized-plane-wave (OPW) method in Slater’s local-exchange 

approximation, where interband transitions of core and conduction electrons are evaluated up 

to soft x-ray regime by using large basis sets.  The photoabsorption cross-sections of a 

sodium crystal are computed for a wide photon energy range from 3 to 1800 eV.  It is found 

that numerical results reproduce the existing x-ray databases fairly well for energies above the 

L2,3-edge (31 eV), verifying a consistency between solid-state and atomic models for 

inner-shell photoabsorption; additional oscillatory structures in the present spectra manifest 

solid-state effects.  Our computed results in the vacuum ultraviolet regime (6-30 eV) are also 

in better agreement with experimental data compared to earlier theories, although some 

discrepancies remain in the range 20-30 eV.  The influence of the core eigenvalues on the 

absorption spectra is examined. 

 

PACS numbers: 78.70.Dm, 71.20.-b, 78.20.-e 
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1. Introduction 

 

Owing to the recent progress in x-ray free-electron lasers (FELs) [1-3], intense coherent 

x-rays with femtosecond pulse duration are becoming available. When a solid target is 

irradiated by an x-ray FEL pulse with sufficiently high intensity, many core electrons could be 

excited resonantly to the conduction band above the Fermi level.  A recent 

vacuum-ultraviolet (VUV) FEL experiment for Sn target [4] has demonstrated ultrafast 

saturable absorption associated with N-shell near-edge excitation.  Subsequent theoretical 

analysis, based on the rate equation combined with the cluster-model electronic-structure 

calculation, has predicted saturable absorption due to a blue shift of the photoabsorption edge 

in K-shell-excited metallic Li [5].  Broad-band observation of transient photo-response of 

solids excited by intense x-ray FEL is an outstanding issue in condensed-matter physics, even 

for the case of simple metals. 

 Attenuation and scattering of x-rays in cold solids have been studied intensively in 

the past, and have been compiled as databases for the elements throughout the periodic table 

[6-8].  These databases, however, interpolate various experimental data in separate energy 

regimes; they also adopt theoretical data for isolated atoms that ignore solid-state effects.  

Although an atomic model may be appropriate for localized phenomena such as core-electron 

transitions, its validity should be tested explicitly through solid-state theories.  We also note 

that measurements in the VUV regime may be influenced sensitively by experimental 

conditions and sample quality.   It is thus significant to develop solid-state models that can 

predict absolute photoabsorption cross-sections over a wide range of photon energies and to 

compare them with experiments. 

 A band-theoretic approach to core-level photoabsorption spectra in simple metals 

was reported earlier by Citrin et al [9] based on the empirical pseudopotential method.  They 

analyzed singularities in the spectra near the absorption edge by taking additional account of 

the many-electron response to the core hole through the Mahan-Nozières-de Dominicis 

(MND) theory [10].  The effects of electron-core hole interaction on the x-ray absorption 

near-edge spectra were recently investigated with the linear-response theory based on the 

time-dependent density-functional theory [11] and with the generalized time-dependent 
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local-density approximation incorporating dynamical screening [12]; these theories were 

applied to transition metals rather than to simple metals.  On the other hand, evaluation of 

the spectra far above the edge requires computational cost because the wavefunctions have to 

be computed up to energies much higher than the Fermi level.  Müller et al obtained x-ray 

absorption spectra of 3d and 4d transition metals [13] and palladium [14] for energies up to 

200 eV above the edge on the basis of the augmented plane-wave method.  More recently, 

Prange et al [15] developed a real-space Green’s function formalism that can avoid explicit 

computations of wave functions; optical constants of Au, Cu, C, etc., were thereby evaluated 

from optical to hard x-ray regimes. 

 In this paper, we formulate photoabsorption cross-sections of simple metals with the 

one-electron band theory by using fairly large orthogonalized-plane-wave (OPW) basis sets 

[16,17].  We thus compute the absolute cross-sections of metallic Na for a wide photon 

energy range from 3 eV to 1800 eV.  Sodium is a prototypical free-electron-like metal, 

whose photoabsorption cross-sections (or conductivities) were studied in detail from the 

infrared to the ultraviolet region near an onset of the interband transition (2 eV) [18,19].  On 

the other hand, there have been fewer investigations in the VUV regime and they are still 

controversial. Ching and Callaway [19] performed band-structure calculations of 

conductivities up to 20 eV, which agree well with the measurements by Sutherland et al [20] 

up to 11 eV but significantly overestimate the experimental data by Sato et al. [21] for 13-20 

eV.  Haensel et al [22] measured the shape of photoabsorption spectra from the L2,3-edge (31 

eV) to 140 eV, but they did not produce absolute cross-sections.  The current data on the 

cross-sections above 50 eV rely largely on atomic calculations [6-8].  In this paper, we shall 

compare our present calculations with these sets of experimental and theoretical data 

comprehensively, examining their mutual consistencies. 

 

 

2. The OPW method 

 

The OPW method, albeit a classic approach to calculate electronic structures of solids [16,17], 

is suitable for treating electronic transitions from an atomic-like core to plane-wave-like 
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conduction state in simple metals by keeping their mutual orthogonality.  The 

conduction-electron wave function with wave vector k and band index b is expanded in terms 

of NM OPW functions as 

  
M

OPW
, ( ) ( ) ( )

N

b ba k G k+G
G

r k r ,    (1) 

where G is a reciprocal lattice vector, and 

occ
OPW OPW

1

1
( ) exp( ) ( )

N

c
c

N i c 


  


 
   

  
k kr k r k r R .  (2) 

Here,  denotes the volume of the crystal, ( )c  r R  represents the wave function of 

occupied core orbital c (= 1s, 2s, 2px, etc.), R is the position ofth nucleus ( 1, , N   ), 

OPWNk is a normalization constant, and * 1/2( ) exp( )cc d i    k r r R k r . 

The core orbital ( )c r  is assumed to be strongly localized at an atomic site and can 

be approximated by the Hartree-Fock (H-F) wave function for an isolated atom computed by 

Clementi and Roetti [23]; it is written as a superposition of NSTO Slater-type orbitals with 

quantum numbers {ni, li, mi} as 

   
STO

1

( ) ( )
i i i i

N

c ci n l m
i

c  


 r r ,     (3) 

  

1/2 12 1

3/2
B BB

(2 ) 1
( ) exp ( , )

(2 )!

nn

nlm lm
r r

Y
n a aa


   

     
      

    
r .  (4) 

Here, aB refers to the Bohr radius, and ( , )lmY    represents the (real) spherical harmonics.  

We also assume throughout the paper that the core orbitals of neighboring atoms do not 

overlap; the normalization factor OPWNk is then calculated approximately as 

  
STO

1/2core
OPW

atom
, 1

1
2

N
ij

i j

P
N n i j





 
  

  
k k k ,   (5) 

with 
*1/2( ) exp( )

j j j jn l mj d i j   k r r k r k , 
occ

core 2ij ci cj
c

P c c  ; and atom ( / )n N   

represents the number density of atoms. 

 The Schrödinger equation that determines the expansion coefficients  ( )baG k  can 
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be expressed in the M MN N  matrix form [16], 

  ( ) ( ) ( ) ( ) ( )b b bH a S a  G G G G G G
G G

k k k k k ,   (6) 

where ( )b k  ( M1, ,b N  ) are the energy eigenvalues, and 

OPW* OPW( ) ( ) ( )S d     G G k G k Gk r r r   

STO
core

OPW OPW
atom

, 1 2

N
ij

i j

P
N N n i j  



 
    

  
k G k G G G k G k G   (7) 

is the overlap matrix.  The Hamiltonian matrix in equation (6) is evaluated as follows. 


22

OPW OPW
atom WS ex( ) ( ) ( )

2 e

H N N n v v
m

   

       


G G k G k G G G

k G
k G G G G


 

STO occ

, 1

N

c ci cj
i j c

c c i j


   


  k G k G .   (8) 

Here, me refers to the electron mass. The energy eigenvalue c  of core state c may be 

evaluated as bind
Fc c     , where bind ( 0)c   is the experimental binding energy of state 

c determined through photoelectron measurements of metals [24], and F( 0)   is the energy 

at the Fermi level. 

In equation (8), WS( )v q  corresponds to the Fourier transform of the electrostatic 

interaction between a conduction electron and a Wigner-Seitz (WS) sphere, 

  
2

core
WS , ,2

,

4
( ) ( ) (0)ij is js is js

i j

e
v q P F q F Z

q

       

  

     3

3
sin( ) cos( )

( )

Z
qa qa qa

qa


  


,   (9) 

with , 00 00( ) ( ) ( )exp( )
i i j jis js n nF q d i    r r r q r .  The WS sphere, with radius 

1/3
e(3 / 4 )a Z n , consists of an ion core of net charge Ze at the center and uniform 

conduction electrons of average number density ne.  The potential produced by core 

electrons inside an ion core is accounted for by the term proportional to core
ijP  in equation 

(9).  

Exchange interactions among electrons are incorporated through the local potential 
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ex ( )v q  by Slater [16].  Within the WS approximation, it can be expressed as 

1/3
2 tot

ex e
3

( ) 3 ( ) exp( )
8r a

v q e d n i


      r r q r ,   (10) 

where the local electron density may be given as 

  
STO

tot core
e 00 00 e

, 1

( ) ( ) ( )
i i j j

N

ij n n
i j

n P n  


 r r r .    (11) 

 The one-electron potential so constructed assumes uniform distribution of conduction 

electrons and hence it is not self-consistent.  Nevertheless, the resultant band structure can 

reproduce existing data on sodium fairly well, as we shall show later in section 4.2. 

 

 

3. Photoabsorption cross-sections 

 

The frequency () dependent photoabsorption cross-section per atom in a solid associated 

with core-conduction (i.e., bound-free) excitation may be calculated as [5,25] 

   
occ

abs abs
bf ( ) ( )c

c

    ,     (12a) 

M
2

2 2BZ
,abs

2
1 e

( )4
( ) 2 (1 )

3

N
b c b c

c b
b

e
f

c m


   



   

 
 k

k
k

p k


,  (12b) 

where *
, ( )( / ) ( )b c b cd i  k kp r r r  is a dipole transition matrix element, and an average 

has been taken over the directions of polarization; bfk  is the population of state {kb} in the 

conduction band, which satisfies 0bf k  for F( )b k  and 1bf k  for F( )b k .  The 

sum over k is taken in the first Brillouin zone (BZ).  With the aid of equations (1) and (3), 

,b ckp can be expressed as 

 
STO STOM

core
* OPW

,
1 , 1

( )
2

N NN
jl

b c b ci
i j l

P
a N c i l j i

 

 
     

  
  k G k G
G

p k k G k G k G p , (13) 

where ( )( / ) ( )
j j j j i i i in l m n l mj i d i   p r r r . 

 The free-free absorption cross-section due to interband transitions of conduction 

electrons may likewise be written as [25] 
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M

2
2 2BZ

,abs
ff 2

, 1 e

( ) ( )2 4
( ) ( )

3

N
b b b b

b b
b b

e
f f

N c m


   


 





   
 

  k k
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k
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, (14) 

where 

 
M 2* OPW

, ( ) ( )
N

b b b ba a N   k k G G k G
G

p k k k G  

M
* OPW* OPW

atom
,

( ) ( )
N

b bn a a N N   


  G G k G k G
G G

k k  

 2 ( ) ( )A        G G G Gk G G k B k    (15)

 is the matrix element of a vertical transition between two bands b  and b , with
 

  
STO

core

, 1

( )
2

N
ji

i j

P
A i j



  G G k k G k G ,    (16a) 

  
STO STO

core core

, 1 , 1

( )
2 2

N N
ji j i

i j i j

P P
i j i j

 


  

     G GB k k G p k G .  (16b) 

An advantage of the OPW method is that all the transition matrix elements that enter 

equations (13) and (15) are expressed in terms of the plane waves and Slater-type orbitals so 

that they can be evaluated analytically.  

Straightforward calculations of equations (12) and (14) yield photoabsorption spectra 

that oscillate rapidly with energy because of a discontinuous change in one-electron energies 

and wavefunctions at the Brillouin-zone edge [13,14].  In reality, each excited energy level 

has a width due to its finite lifetime.  The width coll ( )E of a state with kinetic energy E in 

the conduction band may be estimated [13] from the collision mean-free path ( )E  

according to coll e( ) 2 / / ( )E E m E   .  For core-level excitation, we additionally take 

into account the Auger width c  of core state c.  These energy widths are incorporated into 

the bound-free cross-section (12b) through the Lorentzian broadening [13,14], yielding a 

smoothed cross-section, 

 
abs abs

22

1 ( ) / 2
( ) ( )

( ) ( ) / 2
c cd

    
   





 
   





,   (17) 

with coll 0( ) ( )c c          k  , and 0 k  represents the energy at the bottom of 

the conduction band.  The free-free cross-section (14) may likewise be smoothed as 



8 
 

 
abs abscoll
ff ff22

coll

( ) / 21
( ) ( )

( ) ( ) / 2
d

    
   





 
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



.  (18) 

The total photoabsorption cross-section is given finally as  

occ
abs abs

abs ff( ) ( ) ( )c
c

       .     (19) 

 

 

4. Numerical calculations for sodium 

 

4.1. Computational details 

 

We apply the formalism described in sections 2 and 3 to metallic Na with the 

body-centered-cubic structure.  We adopt Z=1 and natom = ne = 22 32.54 10 cm , 

corresponding to a lattice constant of 8.1 a.u.  The double-zeta functions [23] (NSTO = 12) are 

employed for the core-electron wavefunctions.  The exchange potential (10) is evaluated 

numerically; the result can be reproduced by the fitting formula, 

   cv vv
ex ex ex( ) ( ) ( )v q v q v q  ,     (20) 

  
2

B 1

3/2
( ) /4cv 2

ex 1 2 2 2 2
1 B 2

8
( )

[( ) ]
qa a a

v q C e C
a qa a

  
   

 
,   (21a) 

   
2

vv F
ex 3

6
( ) sin( ) cos( )

e k
v q qa qa qa

q
   ,    (21b) 

with a1 = 0.933, a2 = 10.84, C1 = 2.3, and C2 = 11.06; 2 1/3
F e(3 )k n  refers to the Fermi 

wavenumber. 

 In x-ray absorption, the excited electron can enter a conduction band far above the 

Fermi level, so that the basis set size in equation (1) should be taken sufficiently large 

compared to the case of VUV absorption.  We thus make analyses with two different sets of 

parameters: NM = 429 is adopted and 1330 k-points are sampled within the 1/48 of the first 

Brillouin zone for photon energies up to about 50 eV (hereafter referred to as scheme A), 

whereas NM = 5089 and 165 k-points are sampled for energies beyond about 50 eV (scheme 

B).  The maximum values of G in scheme A and B are 2 2
e/ 2G m = 0.28 keV and 1.47 keV, 
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respectively.  In both cases, the tetrahedral method [26] is used for the k-point sampling. 

To solve the secular equation (6), we first orthogonalize the basis sets by 

diagonalizing the matrix ( )S G G k , rewriting the equation in the form of an eigenvalue 

equation [27].  When the basis-set size is large, however, the smallest eigenvalue of 

( )S G G k may become close to zero (or even negative) due to the linear dependence of OPWs 

[28], causing numerical errors.  To circumvent this problem, we use the canonical 

orthogonalization scheme [27] and remove one basis function that gives rise to a negative 

eigenvalue of ( )S G G k . 

The interpolation scheme by Lehmann and Taut [29] has been adopted to carry out 

the k-integration over the first Brillouin zone in equations (12b) and (14).  The collisional 

width coll ( )E  has been estimated through the analytic formula for ( )E by Ziaja et al [30], 

1.8
F

0.17
( )

4.85ln 8.60.02( )

E E
E

EE E
 

 


,  for E > EF.  (22) 

Here, (E) and E are measured in angstrom and eV, respectively; and 2 2
F F e/ 2E k m   = 

3.15 eV is the Fermi energy.  The fitting parameters in equation (22) have been determined 

so as to reproduce the numerical data presented in figure 1 of Ref. [30].  For FE E , we set 

coll ( )E =0.  We adopt the K-shell Auger width of 1s = 0.29 eV estimated by Walters and 

Bhalla [31] for an isolated Na atom with the Hartree-Fock-Slater approach, and the L2,3 Auger 

width of 2p = 0.0015 eV obtained by Almbladh et al [32] for metallic Na based on the 

Green’s function method.  The L1-edge is not clearly visible in our computed spectra and 

hence 2s has been neglected. 

 

4.2. Electronic structures 

 

Figure 1 displays the energy band structure computed in scheme A, which is compared with 

the earlier quantum-defect calculation by Ham [33].  The energy at the conduction-band 

bottom in the present OPW calculation turns out to be 0 k = 0.246 a.u., while the 

corresponding value by Ham’s calculation [33] is 0.302 a.u.  Apart from this constant 

energy offset, the overall shape of the low-lying energy bands in the present theory turns out 

to be in good agreement with Ham’s result, even though our theory neglects electron 
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correlation.  We remark that our calculation in scheme B gives 0 k = 0.248 a.u., which 

does not differ appreciably from the value in scheme A. 

The OPW calculations were also carried out previously by Muda [34].  His 

one-electron potential takes into account realistic conduction-electron wavefunctions as well 

as a non-spherical correction to the crystal potential.  He thus found that, when the band 

structure was computed in the local-exchange approximation based on the Xmethod, the 

closest agreement with Ham’s result was achieved by choosing the -parameter as unity, 

which corresponds to Slater’s approximation adopted in the present work.  The value 

of 0 k in his calculation is 0.256 a.u, which agrees fairly well with the present result. 

In figure 2, we compare our computed band structure (measured from the Fermi 

level) with the recent first-principles many-body theory by van Schilfgaarde et al [35] based 

on the quasiparticle self-consistent GW (QSGW) scheme.  An agreement between the two 

theories is excellent despite of a considerable difference in the underlying approximations.  

The present theory also agrees well with the angle-resolved photoemission data by Lyo and 

Plummer [36], as shown in figure 2. 

The density of states (DOS)  
MBZ

1

( )( ) (2 / ) b

N

b

N    


 
k

k  for the conduction 

band obtained in scheme A is plotted in figure 3.  The Fermi level F  determined through 

the condition, F ( )d Z


 


 , amounts to F =3.61 eV.  The computed DOS fluctuates 

around the free-electron value  1/2 3/2
0 F( ) 3 / 2E      k , exhibiting nonsmooth structures 

above F .  We find in figure 3 that the DOS in this work agrees fairly well with that 

obtained recently by Huotari et al [37] with the density-functional theory in the local-density 

approximation (LDA).  In figure 4, logarithmic plot of the DOS is shown for energies up to 1 

keV.  Here, numerical results in scheme A for  < 50 eV and those in scheme B for  > 50 eV 

are matched at  = 50 eV.  We observe that the DOS eventually merges into the free-electron 

result for high energies.  This does not mean, however, that the free-electron approximation 

applies for photoabsorption cross-sections, as we shall demonstrate in section 4.3. 
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4.3. Photoabsorption cross-sections 

 

The photoabsorption cross-section obtained through equation (19) is indicated in figure 5 and 

compared with various theories and experiments.  We first remark that experimental papers 

often publish the values of the real part of the conductivity Re ( )  , the imaginary part of 

the dielectric constant Im ( )  , or the absorption coefficient abs ( )  , instead of the 

photoabsorption cross-section; these quantities are related to each other via the relation,  

abs abs
atom atom atom

4 ( )
( ) Re ( ) Im ( ) ( )

n

n c n c n

            , 

where ( )n   is a real part of the refractive index, which is close to unity for energies greater 

than about 20 eV in the case of Na [8,21]. 

Inagaki et al [18] measured the conductivities of evaporated Na films at room 

temperature for   0.6-3.8 eV by means of ellipsometry.  It can be seen that the present 

work underestimates the photoabsorption especially near an onset of interband transition at 2 

eV.  Validity of the present theory may not be ensured for energies below approximately 3 eV, 

because the electron-phonon scattering [25] neglected in this paper plays an important role at 

such low energies [19]. 

In the energy range from 6 to 11 eV, where the photoabsorption occurs through 

interband transitions within the conduction band, the prediction of our OPW calculation is in 

good agreement with the measurements by Sutherland et al [20] (filled circles) for evaporated 

Na films.  At higher energies, our computed photoabsorption cross-sections decrease 

gradually toward the L2,3-edge, while the measurements of Sato et al [21] (crosses) exhibit a 

gradual increase from 15 to 26 eV.  Thus, a relatively large discrepancy between these two 

sets of results can be seen in the range 20-30 eV. 

Theoretical calculation of conductivities in this energy range was performed 

previously by Ching and Callaway [19] on the basis of the self-consistent 

linear-combination-of-atomic-orbitals (LCAO) band calculations using Gaussian-type orbitals.  

Their conductivities are in good accord with the measurements by Sutherland et al [18] below 

11 eV, whereas they increase drastically above 13 eV, showing prominent peaks at about 16 

eV and 19 eV; Sato et al [21] did not detect such peaks, and their measured conductivities 
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were smaller by more than one order of magnitude.  Sato et al’s data [21] are thus in closer 

agreement with the present work than with Ching-Callaway theory [19]. 

At still higher energies, the absorption spectra are dominated by inner-shell 

excitations, characterized by the L2,3-edge at 31 eV,  L1-edge at 63 eV, and K-edge at 1071 

eV [6-8].  As indicated in figure 5, our cross-sections below 50 eV obtained in scheme A can 

be joined smoothly into those above 50 eV obtained in scheme B, indicating an internal 

consistency.  It is remarkable that the present theory exhibits overall agreement with the 

NIST database by Chantler [6] (chain line) and the database by Henke et al [7] (triangles) 

over a wide energy range up to 1800 eV, although these databases are based on atomic 

theories.  

 For comparison, we plot in figure 5 the numerical results of the 1-OPW 

approximation, in which equation (1) is approximated by a single OPW, OPW( ) ( ) k kr r , 

with the one-electron energy 2 2
e/ 2k m k   in the free-electron approximation.  The 

bound-free photoabsorption cross-section is calculated with equation (12b) where the 

summation over b is omitted and the summation over k runs over the entire k-space (i.e., 

extended-zone scheme).  It can be clearly seen that such a 1-OPW calculation fails to 

reproduce the existing databases even for energies away from the absorption edges. 

 Figure 6 exhibits magnified spectra in the energy range from 20 to 150 eV.  The 

NIST cross-section varies smoothly with energy, whereas the present spectrum exhibits 

oscillatory structures stemming from solid-state effects.  We also plot in figure 6 the 

absorption spectrum measured by Haensel et al [22] in arbitrary units, which exhibits three 

broad peaks at 48.5 eV, 65.5 eV and about 90 eV.  It is notable that the present theory also 

predicts these peaks, although our central peak is considerably higher than the other two in 

contrast to the experimental data [22].  The sharp peaks at the onset of the L2- and L3-edges 

were previously attributed [9,10,22] to the spin-orbit splitting and the threshold singularities 

of MND type, which are both neglected in the present theory.  The absorption by 

2s-electrons sets in at 63 eV, but their contribution to the total cross-section is small and hence 

the L1-edge is not prominent. 

 The absorption spectra above the K-edge are indicated in figure 7.  The present 

OPW cross-section exhibits oscillations arising from solid-state effects, while its overall 
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behavior agrees fairly well with the x-ray databases [6,7]. The 1-OPW approximation, 

however, deviates considerably from these databases, predicting a spurious local minimum at 

about 1.3 keV.  Such a failure of the 1-OPW approximation was pointed out by Williams and 

Shirley [38] in connection with the K-shell photoionization of a neon atom.  They showed 

that the spurious minimum disappears when the final-state wavefunction is calculated 

accurately through numerical integrations of the Schrödinger equation.  Similarly, we 

observe in figure 7 that the full band theory significantly improves the 1-OPW result, which 

implies that a superposition of a sufficiently large number of OPW functions leads to an 

accurate description of final-state wavefunctions in solids. 

 Finally, we mention how the assessments of the core energy eigenvalues affect the 

resultant photoabsorption cross-sections.  The parameter values of 1s, 2s and 2p employed 

in this work are 1075, 67 and 35.2 eV, respectively, which are based on photoelectron 

measurements [24].  The corresponding values in the atomic H-F theory [23] are 1101, 76 

and 41.2 eV, respectively.  Figure 8 compares the photoabsorption cross-sections obtained 

by using these two sets of core energies.  We find that, in the H-F case, the L2,3-edge energy 

is overestimated by about 6 eV, and that the use of the experimental core levels [24] can 

achieve closer agreement with experimental cross-sections as a whole [7,21].  We remark 

that c not only controls the absorption cross-section directly through equation (12b) but 

enters the Hamiltonian matrix element (8), which in turn modifies the cross-sections indirectly.  

In passing, the corresponding core eigenvalues in LDA, which are available through the 

Atomic Reference Data for Electronic Structure Calculations produced by NIST database [39], 

are 1026, 56.1 and 28.9 eV, respectively.  Hence, the core eigenvalues employed in the 

present work lie between the H-F and LDA values. 

 

 

5. Concluding remarks 

 

We have formulated the photoabsorption cross-sections of simple metals through the 

one-electron band theory by combining large OPW basis sets for conduction electrons, H-F 

atomic wavefunctions for core electrons, and experimental binding energies for core 
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eigenvalues.  Broad-range photobsorption cross-sections of Na metal for photon energies of 

3-1800 eV have been computed for the first time, and they have been compared with earlier 

theories, experiments, and x-ray databases.  We have thus confirmed that the inner-shell 

photoabsorption cross-sections computed by the present theory are consistent with the x-ray 

databases based on atomic theories.  Our absorption cross-sections in the VUV regime 

associated with interband excitation of conduction electrons also reproduce the available 

experimental data fairly well.  The present theory cannot account for the gradual increase of 

absorption from 15 to 26 eV measured by Sato et al [21], but significantly improves an earlier 

theory in this energy range. 

In the present OPW approach, the matrix elements of radiative transitions can be 

evaluated analytically since they are expressed in terms of the plane waves and Slater-type 

functions. Similarly, analytical calculations of two-electron Coulomb repulsion integrals [5] 

would enable one to incorporate screening of the laser field, electron-hole and 

electron-electron correlations.  Thus, the simplicity of the OPW formalism may be 

advantageous for developing advanced theoretical tools to analyze complicated interactions 

between metallic electrons and intense x-ray FELs. 
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Figure captions 

 

Figure 1.  Conduction-band structures for solid Na.  The filled circles depict numerical 

solutions to equation (6), with F indicating the Fermi level; the dotted curves with crosses are 

the results of Ham [33]. 

 

Figure 2.  Comparison of the conduction-band structures for solid Na obtained by the 

present work (solid curves), QSGW theory [35] (squares), and photoemission data [36] 

(empty circles). 

 

Figure 3.  The density of states for solid Na near the Fermi level.  The solid curve is the 

present result; the dashed curve corresponds to the free-electron approximation; the dotted 

curve represents the LDA calculation [37] where the position of the conduction-band bottom 

has been adjusted to the present data. 

 

Figure 4.  The density of states for solid Na on a logarithmic scale. 

 

Figure 5.  Photoabsorption cross-sections for solid Na. 

 

Figure 6.  Photoabsorption cross-sections for solid Na near and above the L2,3-edge.  The 

dashed curve depicts the contribution of abs
2 ( )s  .  The experimental data by Haensel et al 

[22] are plotted in arbitrary units and scaled by the right axis. 

 

Figure 7.  Photoabsorption cross-sections for solid Na near and above the K-edge.  The 

solid curve is the result from equation (19); the dotted curve is the corresponding result 

without Lorentzian broadening. 

 

Figure 8.  Photoabsorption cross-sections for solid Na obtained through two different 

assessments of c.  The solid and dashed curves adopt experimental core levels of Na metal 
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[24] and H-F energy levels of an isolated Na atom [23], respectively. 
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