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On Convexity of Cooperative Games

Tetsuzo Tanino
Division of Electrical, Electronic and Information Engineering

Graduate School of Engineering, Osaka University

1 Introduction
A cooperative game (transferable utility game, TU-game) is a pair $(N, v)$ , where $N=$
$\{1,2, \ldots, n\}$ is a finite set of playerb, and $v$ : $2^{N}arrow R$ is a function satisfying $v(\emptyset)=0$ .
Since $N$ is $g_{C^{\lrcorner}}\iota 1\mathfrak{k}!r_{\dot{\zeta}}tlly$ fixed throughout this paper, we lllay simply regard $v$ as a TU-garne.
Any set $S\subseteq N$ is called a coalition and the value $v(S)$ is the worth of $S$ . We denote by
$\Gamma^{N}$ the set of all TU-ganles on $N$ .

A main $pro\dagger$ ) $leri$1 in $c\iota TU-g_{\dot{C}}t111(^{\lrcorner}$ is to fix allocation rules such that the players may
redistribute the utilities among themselves. Those rules are often referred to as solutions
of the game. Among $co(I)erative$ games (TU-games), convex games have several nice
properties. For example the Shapley value is contained in the core. Therefore in this
paper we review severaJ interesting results concerning convexity of TU-games.

This paper is organized as follows: In Section 2 we show some characterization of
convexity in TU-games. Section 3 is devoted to some variations of convexity. In section
4, we deal with convexity in restricted games. We discuss convexity of fuzzy cooperative
gameg in Section 5.

2 Characterization of convexity in TU-games
First we provide some characterizations of convexity in TU-games.

Definition 1 A game $v\in\Gamma^{N}$ is said to be superadditive if
$v(S\cup T)\geq v(S)+?)(T),$ $\forall S,$ $T\subseteq N,$ $S\cap T=\emptyset$ .

It is said to $bc$ conv $x$ if

$\uparrow)(S\cup T)+v(S\cap T)\geq\uparrow)(S)+\uparrow)(T),$ $\forall S,$ $T\subseteq N$ .

In other words, the game $(N, v)$ is convex if and only if the set function $v$ is super-
modulax (The terminology “supermodular” is used in discrete convex analysis).

Convexity has $c\backslash ^{\backslash }OI$lle equivalent characterization such as follows:

Proposition 1 A game $v\in\Gamma^{N}$ is convex if and only if one of the following equivalent
conditions is satisfied:

$?)(S\cup R)-\uparrow j(S)\leq v(T\cup R)-v(T)_{\dot{}}\forall S\subset T\subseteq N\backslash R$

$v(S\cup\{i,\})-\uparrow)(S)\leq\uparrow|(T\cup\{i\})-v(T),$ $\forall S\subset T\subseteq N,$ $i\not\in T$.
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Since we $c\cdot aIl$ define the sum of two games $v,$ $\uparrow l$ ) $\in\Gamma^{N}$ and the scalar multiplication of
$v\in\Gamma^{N}$ by or $\in R$ in the usual 1 $Y1_{(}’111$ ner, $\Gamma^{N}$ is a $(2^{n}-1)$-dimensional vector space. As a
basis of this vector space, we generally take the unanimity games $u_{T}\in\Gamma^{N}$ for $T\subseteq N$ ,
$T\neq\emptyset$ defined by

$?/\tau(S)=\{\begin{array}{l}1, if T\subseteq S0, otherwise\end{array}$

Then a game $1$ ) $\in\Gamma^{N}$ is represented as a linear combination of $u_{T}$ as $v= \sum_{T\subseteq N}d_{T}(v)u_{T}$

( $d_{\emptyset}(v)=0$ for convenience). Here the coefficient $d_{T}(?))= \sum_{s\subseteq T}(-1)^{|T|-|S|}v(S)$
is called the

Harsanyi dividend. It can be also obtained by the recursive formula

$d_{T}(s))=\{\begin{array}{ll}0, if T=\emptyset v(T)-\sum_{S\subset T}d_{S}(v), if T\neq\emptyset\end{array}$

Recently convexity has been characterized by the dividends as follows.

Theorem 1 (Kuipers et al. $[9J)$ A game $v\in\Gamma^{N}$ is convex if and only if $\sum_{T\subseteq S}d_{T\cup\{i,j\}}(v)\geq$

$0$ for all $i,$ $j\in N(i\neq j)$ and all $S\subseteq N\backslash \{i, j\}$ .

Theorem 2 (Driessen [6]) The set of all convex games on $N,$ $C^{N}$ , is a polyhedml cone
in the linear space $\Gamma^{N}$ and $dimC^{N}=2^{n}-1$ .

Now we consider a permutation or ordering $\pi$ on $N$ , where player ? is in the $\pi(i)th$

position in this ordering. Let

$P(\pi, \uparrow)=\{)\in N|\pi(.i)<\pi(i)\}$

The the marginal vector $m^{\pi}(v)$ for $v$ with respect to $\pi$ is defined by

$m_{i}^{\pi}(\tau))=v(P(\pi, i)\cup\{i\})-v(P(\pi, i)),$ $\forall i\in N$

Definition 2 The minimarq opemtor lI $Ii$ assigns to each game $v\in\Gamma^{N}$ the game $Mi(v)$

given by
ILIi $( \uparrow;)(S)=\min_{\pi\in\Pi(N)}\sum_{i\in S}m_{i}^{\pi}(\uparrow)),$

$\forall S\subseteq N$

where $\pi(N)$ is the set of all permutations on $N$ .

Characterization of convexity by minimarg operator is given as follows.

Theorem 3 (Curiel and Tijs $[4J)$ A game $v\in\Gamma^{N}$ is convex if and only if $Mi(v)=v$ ,
i. e., $v$ is a fixed point of the minimarg operator.

Definition 3 For a game $v\in\Gamma^{N}$ , the upper vector $\Lambda I$ “ of $v$ is defined by

$hI_{i}^{v}=v(N)-v(N\backslash \{i\}),$ $\forall i\in N$

and the gap function $g^{\tau}$

‘ : $2^{N}arrow R$ of $vl.\backslash (l(’ h\prime mdb’/$

$g^{1\prime}(S)= \sum_{i\in S}M_{i}^{v}-v(S),$
$\forall S\subseteq N$ .
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Theorem 4 A game $v\in\Gamma^{N}$ is $(,07’\uparrow)C_{J}X$ if and $07|ly$ if one of the following equivalent
conditions $i_{6}$ so $t\uparrow sfied$ :

$g^{v}(S\cup\{i\})-g^{fl}(S)\geq g^{?f}(T\cup\{i\})-q^{\iota}$
‘ $(T),$ $\forall t\in N,$ $\forall S,$ $T\subseteq N$ : $S\subset T\subseteq N\backslash \{i\}$ .

$g^{v}(S\cup R)-g^{1)}(S)\geq g^{1)}(T\cup R)-g^{l^{1}}(T),$ $\forall R,$ $S,$ $T\subseteq N$ : $S\subset T\subseteq N\backslash R$ .

Proposition 2 If a game $v\in\Gamma^{N}$ is convex, then $g^{v}(S)\leq g^{\tau}$
‘ $(S\cup\{i\})$ for all $i\in N$ and

all $S\subseteq N\backslash \{i\}$ .

Now we consider solution concepts for TU-games and provide characterization of con-
vexity by discussing some relationships between those solution concepts.

The most fundamental set-valued solution concept core is $defi_{11}ed$ by

$C(v)= \{\prime c\in R^{7l}|\sum_{i\in N}x_{i}=v(N), \sum_{i\in S}x_{i}\geq v(S)\forall S\subset N\}$

Another important point-valued solution concept, the Shapley value is defined by

$\varphi_{i}(v)=\frac{1}{7\iota!}\sum_{\pi\in\Pi(N)}m_{i}^{\pi}(v)=\sum_{s\subseteq N,S\ni i}\frac{1}{|S|}d_{S}(v)$

Moreover, the Weber set is defined by

$W(?))=COllV\{?’\iota^{\pi}(v)|\pi\in\Pi(N)\}$

Each elenient of the Weber bet $W(v)$ is called a mndom order value for $v$ .
The followirlg theorem is very famous.

Theorem 5 (Shapley [14]. Ichiishi $[7J)$ A game $v\in\Gamma^{N}$ is convex if and only if $m^{\pi}(v)\in$

$C(v)$ for each $pe$rmutation $\pi\in\Pi(N)$ .

Corollary 1 If a game $v\in\Gamma^{N}$ is convex. then $\varphi_{i}(v)\in C(v)$ .

Theorem 6 (Kuipers $[9J)$ A game $v\in\Gamma^{N}$ satisfies
$v(S\cup\{i_{j}\})-v(S\cup\{j\})\geq v(S\cup\{i\})-v(S)$

for all $\ell,$ $j\in N(i\neq\gamma)$ and all $S\subseteq N\backslash \{i,j\}$ if and only if all marginal vectors are
elements of $C(v)$ .

Theorem 7 (Derks $[i^{r}$)$J$) For each game $v\in\Gamma^{N}$ and a convex game $v’\in C^{n}$ with $v’\leq v$ ,
the intersection $C(v’)\cap I(v)$ is either ernpty or externally stable.

Definition 4 Let $v\in\Gamma^{N}.$ A scheme $a=(a_{iS})_{i\in S,S\in 2^{N}\backslash \{\emptyset\}}$ of real numbers is a population
monotonic allocation scheme (pmas) of $v$ if

1. $\sum_{i\in S}a_{iS}=v(S)$ for all $S\subseteq N,$ $S\neq\emptyset$ ,

2. $a_{iS}\leq a_{iT}$ for all $S,$ $T\subseteq N,$ $\emptyset\neq S\subset T$ and $i\in S$ .

Definition 5 Let $v\in\Gamma^{N}$ and $\pi\in\Pi(N)$ . The extended vector of marginal contributions
associated $u\prime ith\pi$ is the vector $a^{\pi}=(a_{iS}^{\pi})_{i\in S,S\in 2^{N}\backslash \{(f\}\}}$ defined component-wise by

$a_{i_{\backslash }9}^{\pi}=v((P(\pi, i)\cap S)\cup\{i\})-v(P(\pi, i)\cap S)$ .

Theorem 8 $(Spr\cdot umont 1990)$ If $v$ is a convex game, then every extend vector of marginal
contributions is a pmas for $v$ .
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3 Variations of convex games
In this se$(.\cdot$ tion we explain so$11\epsilon^{\tau}$ variations of convex games briefly.

Definition 6 A game $v\in\Gamma^{N}$ is called semiconvex if it is superadditive and $g^{v}(\{i\})\leq$

$g^{\eta\prime}(S)$ for all $i\in N$ and $S\subseteq N$ with $i\in S$ .

Proposition 3 Every convex game is semiconvex.

Definition 7 A $game\uparrow$)
$\in\Gamma^{N}$ is called l-convex if

$0\leq g^{\prime)}(N)\leq g^{v}(S)\forall S\subset N,$ $S\neq\emptyset$

Definition 8 A garne $v\in\Gamma^{N}$ is called positive if $d_{T}(v)\geq 0$ for all $T\subseteq N$ .

Proposition 4 If a game $v\in\Gamma^{N}$ is positive, then it is convex.

Definition 9 ($Iza\iota va$ and Takahashi $[8J$) A game $?$ ) $\in\Gamma^{N}$ is said to be totally convex if
for any $T\subseteq N$ ,

$\sum_{s\subseteq N}\sum_{i\in_{\backslash }g\cap T}\frac{(s-1)!(n-s)!}{n!}[v^{i}(S)-v^{i}(S\cap T)]\geq 0$

where $v^{i}(S)=v(S)-\uparrow)(S\backslash \{i\})$ .

Theorem 9 $([8J)Let\prime t)\in\Gamma^{N}$ . The Shapley value $\varphi(v)$ lies in the core $C(v)$ if and only
if 1) is totally $co$nvex.

4 Convexity in restricted games
In practical $situat$ions of TU-games, some coalitions may not be formed because of sev-
eral reasons. Thus we consider restrictions on feasibility of coalitions. It is realized by
introducing the concept of set systems over $N$ ,which is a pair $(N, \mathcal{F})$ with $\mathcal{F}\subseteq 2^{N}$ . We
often irnpose appropriate combinatorial structures on $\mathcal{F}$ .

Definition 10 A partition system is a set system $(N, \mathcal{F})$ with the following properties
$(Pl)\emptyset\in \mathcal{F}$ and $\{i\}\in \mathcal{F}$ for all $i\in N$ ,
$(P2)S\cup T\in \mathcal{F}$ for any $S,$ $T\in \mathcal{F}$ utith $S\cap T\neq\emptyset$ .

Definition 11 Let $(N, \mathcal{F})$ be a set system and $S\subseteq N.$ The $m\alpha cimal$ nonempty feasible
subsets of $S$ arc called componenfs of S. $W\epsilon$ denote by $C_{\mathcal{F}}(S)$ the set of all componets of
$S$ .

Proposition 5 (Bilbao $[2J)$ Let $(N, \mathcal{F})$ be a partition system. Then for each $S\subseteq N$ ,
$C_{\mathcal{F}}(S)$ is a partition of $S$ .
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Definition 12 Let $v\in\Gamma^{N}$ and $(N, \mathcal{F})$ be a partition system. The $\mathcal{F}$-restricted game $v^{\mathcal{F}}$

is defined by

$\iota)^{f}(S)=\sum_{T\in C_{F}(S)}\uparrow)(T)$
.

Definition 13 $A$ intersecting system is a set system $(N, \mathcal{F})$ with the following properties
$(Pl)\emptyset\in \mathcal{F}$ and $\{i\}\in \mathcal{F}$ for all $i\in N$ ,
$(P2)S\cup T\in \mathcal{F}$ for any $S,$ $T\in \mathcal{F}$ with $S\cap T\neq\emptyset$ .
$(P3)S\cap T\in \mathcal{F}$ for any $S,$ $T\in \mathcal{F}$ with $S\cap T\neq\emptyset$ .

Theorem 10 $Let\uparrow$ ) $\in\Gamma^{N}$ be convex and $(N, \mathcal{F})$ be an intersecting system. Then the
$\mathcal{F}$-restricted game $v^{\mathcal{F}}$ is also convex.

5 Convexity in fuzzy games
An ordinary TU-game is a function $t1$ : $2^{N}arrow$ R. This function is defined for each coalition
$S\subseteq N$ , which can be identified with the vector $e^{S}\in\{0,1\}^{n}$ through the following
correspondence

$c_{i}^{S}=\{\begin{array}{l}1, if i\in S0, otherwise.\end{array}$

Thus we nlav extend $t1_{1}e$ domain $\{0,1\}^{71}$ of cooperative games to $[0,1]^{n}$ , and consider a
new game $\xi$ : $[0,1]^{n}arrow R$ , wliich is called a cooperative fuzzy game.

We simply denote $e^{\{i\}}$ by $e^{i}$ . For $s,$ $t\in[0,1]^{r\iota}$

$(s\vee t)_{j}=nldX\{s_{i}, t_{t}\},$ $(s \wedge t)_{i}=\min\{s_{r}, t_{i}\},$ $i=1,2,$ $\ldots,$
$n$ ,

and the support of a vector $6\in[0,1]^{7}$’ si given by $supps=\{i\in N s_{i}>0\}$ . We denote
by $\triangle^{N}$ the set of cooperative fuzzy games on $N$ .

Definition 14 A coopemtive fuzzy game $\zeta\in\triangle^{N}$ is said to be weakly supemdditive if
$\xi(s)+\xi(t)\leq\xi(s\vee t),$ $\forall s,$ $t\in[0,1]^{n},$ $s\wedge t=0$ .

It is said to $bc$ strongly supemdditive if
$\xi(s)+\xi(t)\leq\xi(s+t),$ $\forall s,$ $t\in[0,1]^{n},$ $s+t\in[0,1]^{n}$ .

It is said to be convex if
$\xi(s)+\xi(t)\leq\xi(s\vee t)+\xi(s\wedge t),$ $\forall s,$ $t\in[0,1]^{n}$ .

It is clear that a strongly superadditive fuzzy game is weakly superadditive, and a
convex game is weakly superadditive,

Another slig’btly $\grave{1}^{\backslash }f_{lO11}b^{r}t^{i}\iota$
. definition of $\langle.(11V(^{\backslash }xityw_{C}\iota\wedge^{\backslash }b^{riv(^{\backslash }I1}$ by $B_{Ic\lambda I1’}/_{J}()i(^{\tau\uparrow}$, al.

Definition 15 (Branzei et al. $[3f)$ A cooperative fuzzy game $\xi\in\triangle^{N}$ is said to be B-
convcx if

$\xi(s)+\xi(f)\leq\xi(s\vee t)+\xi(s\wedge t),$ $\forall s,$ $t\in[0,1]^{n}$ .
and if for each $i\in N$ and each $s_{-i}$ , the function $g_{-i}$ : $[0,1]arrow R$ with $g_{-i}(t)=\xi(s_{-i}, t)$

for $t\in[0,1]$ is a convex function.
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In practical situations, we may consider a cooperative fuzzy game $\xi_{\tau)}\in\triangle^{N}$ by extend-
ing a crisp cooperative $gaJnev\in\Gamma^{N}$ . It should satisfy the relation $\xi_{\tau},(e^{S})=v(S)$ for all
$S\subseteq N$ .

Some extensions of cooperative garnes have been already considered, though they
have not been necessarily regarded as cooperative fuzzy games. Typical examples are the
multilinear extensioll, and the Lov\’asz extension.

Let $a_{T}\in\triangle^{N}$ be an extension of the unanimity game $u_{T}\in\Gamma^{N}$ , i.e.,

$a_{T}(\epsilon:^{8})=\{\begin{array}{l}1, if S\supseteq T (i.e., if e^{S}\geq e^{T})0, otherwise\end{array}$

If the way (operation) of extension $\xi_{11}^{a}\in\triangle^{N}$ of $v\in\Gamma^{N}$ depending on $a$ is assumed to be
linear with respect to $v$ , we have

$\xi_{?}^{a}(s)=\sum_{\tau\subseteq N}d_{T}(v)a_{T}(s),$
$\forall s\in[0,1]^{n}$ .

Now we explain two representative examples in the above class.

Definition 16 (Owen [1 $3J)$ The multilinear extension $m_{t)}\in\triangle^{N}$ of $v\in\Gamma^{N}$ is defined by

$rn_{\iota},(s)= \sum_{T\subseteq N}d_{T}(\iota))\prod_{i\in T}s_{i}$
.

Definition $I7(L_{ol^{1(}}\acute{\iota}.\backslash z/10J)$ Th $r$ . $L_{0)\acute{/,},4Z(’l},f(’7\},.\backslash \cdot ior/m_{1},$
$\in\triangle^{N}$ of $v\in\Gamma^{N}’,,\backslash (l(fi_{7t(^{}}d$ by

$l_{v}(s)= \sum_{T\subseteq N}d_{T}(v)\min_{i\in T}s_{i}$
.

Theorem 11 (Tanino $f15J$) If a game $v$ is positive, then the multilinear extension $m_{v}$ is
a convex coopemtive fuzzy game.

Theorem 12 (Tanino $[1_{d}^{\Gamma}J)$ If a coopemtive game $v\in\Gamma^{N}$ is supemdditive, then its Lovasz
extension $l_{\uparrow},$

$\in\triangle^{N}$ is weakly supemdditive.

Theorem 13 (Tanino $/15J$) If a coopemtive game $v\in\Gamma^{N}$ is convex, then its Lovasz
extension $l_{s}\in\triangle^{N}$ is a convex coopemtive fuzzy game.

Proposition 6 (Bilbao $[2J)$ Let $v\in\Gamma^{N}$ and $l_{1\rangle}\in\triangle^{N}$ be its Lovasz extension. The game
$v$ is convex if and only if the function $l_{?}$ , is concave (on $R_{+}^{n}$).

Theorem 14 (Tanino $[15J)$ A game $v\in\Gamma^{N}$ is convex $\iota f$ and only if its Lovasz extension
$l_{s}$ is a strongly superadditive cooperative fuzzy game.

Now we consider solution concepts in fuzzy games. For a cooperative fuzzy game
$\xi\in\triangle^{N}$ , in Aubin [1]. the core of $\xi$ is defined by

$C( \xi)=\{x\in R^{7l}|\sum_{i\in N}x_{i}=\xi(e^{N}), \sum_{i\in N}s_{i}x_{i}\geq\xi(s), \forall s\in[0,1]^{n}\}$
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We induce a crisp game $v^{\xi}$ from a fuzzy game $\xi\in\triangle^{N}$ by $v^{\xi}(S)=\xi(e^{S})$ for all $S\subseteq N$ .
Then the Shapley value of $\xi$ can be defined by

$\varphi(\xi)=\frac{1}{n!}\sum_{\pi\in 1I(N)}m^{\pi}(v^{\xi})$ .

Moreover the Weber set of $\xi$ is defined by

$W(\xi)=co7lv\{m^{\pi}(v^{\xi})|\pi\in\Pi(N)\}$ .

Theorem 15 (Branzei et al. [3]) Let く be a B-convex fuzzy game. Then $m^{\pi}(v^{\xi})\in C(\xi)$

for each $\pi\in\Pi(N)$ . Moreover, $C(\xi)=W(\xi)$ , and $C(\xi)=C(v^{\xi})$ .

Definition 18 Let $\xi\in\Delta^{N}.$ A scheme $(a_{it})_{i\in N,t\in[0,1]^{n},t\neq 0}$ is called a participation mono-
tonic allocation scheme (pmas) if

1. $(a_{it})_{i\in N}\in C(\xi_{t})$ for each $t\in[0,1]^{\tau)}$ . $t\neq 0$ ,

2. $t_{i}^{-1}a_{it}\geq s_{i}^{-1}a_{is}$ for each $s,$ $f\in[0,1]^{n}$ and each $i\in supps$ .

Theorem 16 (Branzei et al. $[3J)$ Let $\xi\in\triangle^{N}$ be B-convex. Then for each $x\in C(\xi)$ ,
there errists a pmas $(a_{it})$ such thut $a_{?e^{N}}=x_{i}$ for each $i\in N$ .

Now we deal with some restrictions on feasible coalitions in cooperative fuzzy games.

Definition 19 A set $F\subseteq[0,1]^{n}$ is said to be a feasible coalition set $(FCS)$ if it satisfies
the following $tu$) $0$ conditions; $F$ is a closed set in $[0,1]^{n}$ and $\alpha e^{i}\in F$ , for all $\alpha\in[0,1]$ .

For a fuzzy coalitions $\in[0,1]$ “ and $l\in R,$ $\{s^{1}, \ldots, s^{l}\}$ such that $\sum_{j=1}^{l}s^{j}=s$ is said
to be a partition of $s$ . Especially for an FCS $F$ , a partition of $s,$ $\{s^{1}, \ldots, s^{l}\}$ such that
$s^{j}\in F$ for all $j=1,$ $\ldots,$

$l$ is said to be an F-partition of $s$ . $P^{F}(s)$ denotes the set of all
F-partiions of $s$ .

For a fuzzy coalition $s\in[0,1]^{n}$ and an FCS $F$ , a fuzzy coalition $t\in[0,1]^{n}$ is said to
be and F-vector of $s$ if it satisfies $t\leq s,$ $t\in F$ , and $t’=t$ for $t\leq t’\leq s$ such that $t’\in F$ .
$C^{F}(s)$ denote the set of all F-vectors of $s$ . If $s\in F,$ $C^{F}(s)=\{s\}$ .

Definition 20 An $FCSF$ is said to be a partirion fuzzy coalition system (PFCS) if $C^{F}(s)$

is a partition of $s$ for any $s\in[0,1]^{n}$ .

Proposition 7 $Ar,$ $FCSF$ is a PFCS if and only if one of the following conditions is
satisfied:

1.
$Forany,s\in[0,1]^{r}\{s_{|I_{1}},s_{|I},\},’$

, there exists a partition
$\{I_{1}, \ldots, I_{l}\}$

of $N$ such that $C^{F}(s)=$

2. $s,$ $t\in F$ . $s\wedge t\neq 0,$ $\Rightarrow s\vee t\in F$ .

Definition 21 Let $\xi\in\triangle^{N}$ be a strongly supemdditive fuzzy coopemtive game and $F$ be
a PFCS. Then the F-restricted game of $\xi$ is defined by $\xi^{F}(s)=\sum_{t\in C^{F}(s)}\xi(t)$ .

Definition 22 An $FCSF$ is said to be an intersecting set if it satisfies
$s,$ $t\in F,$ $s$ A $t\neq 0\Rightarrow s\vee t\in F,$ $s\wedge t\in F$.

Theorem 17 (Moritani et al. [1 $1J)$ Let $\xi$ be a strongly supemdditive and convex cooper-
ative fuzzy game $anaF$ be an intersecting system. Then the F-restricted game $\xi^{F}$ is also
convex.
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