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Abstract

Randomness extraction involves the processing of purely classical information and is
therefore usually studied in the framework of classical probability theory. However, such a
classical treatment is generally too restrictive for applications, where side information about
the values taken by classical random variables may be represented by the state of a quantum
system. This is particularly relevant in the context of cryptography, where an adversary may
make use of quantum devices. Here, we show that the well known construction paradigm for
extractors proposed by hevisan is sound in the presence of quantum side information.

We exploit the modularity of this paradigm to give several concrete extractor construc-
tions, which. e.g, extract all the conditional (smooth) min-entropy of the source using a seed
of length poly-logarithmic in the input, or only require the seed to be weakly random.

1 Introduction

Randomness extraction is the art of generating (almost) uniform randomness from any weakly
random source $X$ . More precisely, a randomness extmctor (or, simply extractor) is a function
$Ext$ that takes as input $X$ together with a uniformly distributed (and usually short) string $Y$ ,
called the seed, and outputs a string $Z$ . One then requires $Z$ to be almost uniformly distributed
whenever the min-entropy of $X$ is larger than some threshold $k$ , i.e.,

$H_{\min}(X)\geq k\Rightarrow$ $Z:=Ext(X, Y)$ statistically close to uniform. (1)

The min-entropy of a random variable $X$ is directly related to the probability of correctly
guessing the value of $X$ using an optimal strategy: $2^{-H_{\min}(X)}= \max_{x}P_{X}(x)$ . Hence Criterion (1)
can be interpreted operationally: if the maximum probability of successfully guessing the input
of the extractor, $X$ , is sufficiently low then its output is statistically close to uniform.

In most applications, such as privacy amplification [1], or simply when applying two extrac-
tors in successionl to the same input $X$ , there is a notion of side information, which describes
the information about the input which is contained in the environment, or accessible to an ad-
versary. Notions of randomness such as the guessing probability, min-entropy or the uniformity
of a random variable naturally always depend on the side information relative to which they are

lWhen applying two extractors in succession to the same input, with the goal that the two outputs are jointly
uniform, the output of the first extractor needs to be considered as side information when analyzing the second
extractor.
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defined, and in particular one would like the output of the extractor to be uniform with respect
to the side infomation. Hence we may make this requirement explicit in our formulation of
Criterion (1) by denoting by $E$ all side information with respect to which the extractor $s$ output
should be uniform:

$H_{\min}(X|E)\geq k\Rightarrow Z:=Ext(X, Y)$ statistically close to uniform conditioned on $E$ , (2)

where $H_{\min}(X|E)$ is the conditional min-entropy. This conditioning naturally extends the op-
erational interpretation of the min-entropy to scenarios with side information, i.e., $2^{-H_{\min}(X|E)}$

is the maximum probability of correctly guessing $X$ , given access to side information $E[2]$ .
Interestingly, the relationship between the two Criteria (1) and (2) depends on the physical

nature of the side information $E$ , i.e., whether $E$ is represented by the state of a classical or
a quantum system. In the case of purely classical side information, $E$ may be modeled as a
random variable and it is known that the two criteria are essentially equivalent. But in the
general case where $E$ is a quantum system, Criterion (2) is $st_{7}\cdot\iota ctly$ stmnger than (1): it was
shown in [3] that there exist extractors that fulfill (1) but for which (2) fails (see also [4] for a
discussion).

Since our world is inherently non-classical, it is of particular importance that (2) rather than
the weaker Criterion (1) be taken as the relevant criterion for the definition of extractors. For
example, in the context of cryptography, one typically uses extractors to generate secret keys,
i.e., randomness that is uniform from an adversary‘s point of view. Even if the extractor itself is
classical, nothing can prevent an adversary from storing information $E$ in a quantum system, so
Criterion (1) does not imply security. Randomness recycling is another simple example involving
quantum side information. If we run a (simulation of) a quantum system $E$ using randomness
$X$ , approximately $H_{\min}(X|E)$ bits of $X$ can be reused. Applying a function $Ext$ which has been
shown to fulfill (1) but not (2) could result in an output $Z$ which is still correlated to the system
$E$ .

Moreover, since it is known that the smooth conditional min-entropy precisely characterizes
the optimal amount of uniform randomness that can be extracted from $X$ while being indepen-
dent from $E[5]$ , one may argue that Criterion (2) is indeed the correct definition for randomness
extraction.

In particular, we would like to point out that the popular bounded storage model –in
which the entropy of the source $H_{\min}(X|E)$ is lower-bounded by $H_{\min}(X)-H_{0}(E)$ and $H_{0}(E)$

denotes the number of qubits needed to store $E$ –is strictly weaker: there are sources $X$

and nontrivial side information $E$ such that $H_{\min}(X)-H_{0}(E)\ll H_{\min}(X|E)^{2}$ and extractors
which are sound for any input with $H_{\min}(X)-H_{0}(E)\geq k$ , but cannot be applied to all sources
with $H_{\min}(X|E)\geq k$ . An extractor which has only been proven sound in the bounded storage
model can thus only extract $H_{\min}(X)-H_{0}(E)$ bits of uniform randomness instead of the optimal
$H_{\min}^{\epsilon}(X|E)$ bits. For the same reason in the purely classical case, no recent work defines classical
extractors for randomness sources with side information stored in bounded classical memories.3

be
$Xwitheachbitflippedwithconstantprobability\epsilon<l/2.ThenH_{\min}(X|E)=\Theta(n),butH_{\min}(X)-H_{0}(E)=02Thiscaneaeilybeseenbyconsideringthefollowingexample.LetXbeuniform1ydistributedon\{0, 1\}^{n}andE$

3Restricting the class of randomness sources further than by bounding their min-entropy can have advantages,
e.g., if we consider only bit-fixing sources, or sources generated by a random walk on a Markov chain, then
the extractor can be deterministic. (See [6] for a brief overview of restricted families of sources studied in the
literature.) There is however no known advantage (e.g., in terms of seed length) in considering only input sources
with side information stored in memory of bounded size, whether it is classical or quantum memory.
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Furthermore, in applications where extractors are used, the increased generality of the con-
ditional min-entropy over the bounded storage model is often what is needed. For example in
quantum key distribution, where extractors are used for privacy amplification [5], it is generally
impossible to bound the adversary‘s memory size.

2 Related results

In the standard literature on randomness extraction, constructions of extractors are usually
shown to fulfill Criterion (1), for certain values of the threshold $k$ (see [7] as well as [6] for
an overview). However, only a few constructions have been shown to fulfill Criterion (2) with
arbitrary quantum side information $E$ . Among them is two-universal hashing [5, 8] as well as
constructions based on the sample-and-hash approach [4].

Recently, Ta-Shma [9] studied Trevisan $s$ extractor construction [10] in the bounded quantum
storage model. Although his proof requires the output length to be much smaller than the min-
entropy of the original data, the result was a breakthrough because it, for the first time, implied
the existence of “quantum-proof“ extractors requiring only short seeds (logarithmic in the input
length). More recently, two of the present authors [11] were able to improve the output length
that Trevisan’s extractor could provably extract in the presence of a quantum bounded-storage
adversary, bringing it close to what is known for the case of classical adversaries. However, both
these results are proved in the bounded quantum storage model, which, as discussed previously,
only allows the extractor to output at most $H_{\min}(X)-H_{0}(E)$ bits. This expression can in general
be arbitrarily smaller than $H_{\min}(X|E)$ , and in some cases may even become $0$ (or negative) for
n-bit sources for which it is possible to extract $\Omega(n)$ bits of randomness.2

Subsequent to this work, Ben-Aroya and Ta-Shma [12] showed how two versions of Trevisan $s$

extractor, shown quantum-proof in this paper, can be combined to extract a constant fraction
of the min-entropy of an n-bit source with a seed of length $O(\log n)$ , when $H_{\min}(X|E)>n/2$ .
This is better than the straightforward application of Trevisan‘s extractor analyzed here, which
requires $O(\log^{2}n)$ bits of seed for the same output size (but works for any $H_{\min}(X|E)$ ).

3 Our results

In this work, we show that the performance of Trevisan‘s extractor does not suffer in the presence
of quantum side information. More precisely, we show that the output length of the extractor can
be close to the optimal conditional min-entropy $H_{\min}(X|E)$ . This is the first proof of security
of an extractor with poly-logarithmic seed meeting Criterion (2) in the presence of arbitrary
quantum side information.

More generally, we prove security of a whole class of extractors. It has been observed, by,
e.g., Lu and Vadhan [13, 14], that Trevisan’s extractor [10] (and variations of it, such as [15])
is a concatenation of the outputs of a one-bit extractor with different pseudo-random seeds.
Since the proof of the extractor property is independent of the type of the underlying one-bit
extractor (and to some extent the construction of the pseudo-random seeds), our result is valid
for a generic scheme. We find that the performance of this generic scheme in the context of
quantum side information is roughly equivalent to the (known) case of purely classical side
information.
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Table 1: Plugging various weak designs and l-bit extractors in Trevisan $s$ construction, we
obtain these concrete extractors. Here $n$ is the input length, $\epsilon=$ poly$(1/n)$ the error, $\alpha$ and $\gamma$

are arbitrary constants such that $0<\gamma<\alpha\leq 1$ , and $\frac{1}{2}<\beta<1$ is a specific constant. The
corollary numbers refer to the full version [17].

Our argument follows in spirit the work of De and Vidick [11]. Technically, the proof is
essentially a concatenation of the two following ideas.

$\bullet$ In the first part of the original proof of Trevisan [10], it is shown that the ability to distin-
guish the extractor $s$ output from uniform implies the ability to distinguish the output of
the underlying one-bit extractor from uniform (a list-decodable code in Trevisan $s$ original
scheme). Ta-Shma has argued that this claim is still true in the context of quantum side
information [9], by treating the adversary as an oracle and measuring its memory size by
counting the queries to the oracle. We extend this result to the case of arbitrary quantum
side information, where the entropy of the source is measured with the conditional min-
entropy, and show that it still holds even if the seed of the underlying one-bit extractor is
not fully uniform.

$\bullet$ This reduces the problem to proving that the one-bit extractor used in the construction is
quantum-proof. However, because for one-bit extractors, the more general Criterion (2) is
essentially equivalent to the usual Criterion (1), as shown by K\"onig and Terhal [16], the
claim follows from known classical results on one-bit extractors with only a small loss in
the error parameter.

This proof structure results in a very modular extractor construction paradigm, which allows
arbitrary one-bit extractors and pseudo-random seeds to be “plugged in,” producing different
final constructions, optimized for different needs, e.g., maximizing the output length, minimizing
the seed, or even using a non-uniform seed if the underlying one-bit extractor also uses a non-
uniform seed. In Table 1 we give a brief overview of the final constructions proposed.

For proofs and details, we refer to the complete version of this paper [17].
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