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Abstract

We discuss our current understanding on the phase transition phenomenon of the
graph Laplacian eigenfunctions constructed on a certain type of trees, which we pre-
viously observed through our numerical experiments. The eigenvalue distribution
for such a tree is a smooth bell-shaped curve starting from the eigenvalue $0$ up to 4.
Then, at the eigenvalue 4, there is a sudden jump. Interestingly, the eigenfunctions
corresponding to the eigenvalues below 4 are semi-global oscillations (like Fourier
modes) over the entire tree or one of the branches; on the other hand, those corre-
sponding to the eigenvalues above 4 are much more localized and concentmted (like
wavelets) around junctions/branching vertices. For a special class of trees called
starlike trees, we can now explain such phase transition phenomenon precisely. For
a more complicated class of trees representing neuronal dendrites, we have a conjec-
ture based on the numerical evidence that the number of the eigenvalues larger than
4 is bounded from above by the number of vellices whose degrees is strictly larger
than 2. We have also identified a special class of trees that are the only class of trees
that can have the exact eigenvalue 4.

1 Introduction
More and more data are collected in a distributed and irregular manner due to the advent
of sensor technology. Such data are not so organized as familiar digital signals and images
sampled on regular lattices. Examples include data measured on sensor networks, social
networks, webpages, biological networks, and so on. Such unorganized data can be con-
veniently represented as a graph where each vertex represents a sensor or measured data
by a sensor and each edge represents a relationship (e.g., a physical or wireless connec-
tivity or a certain measure of affinity, etc.) between two vertices connected by that edge.
Moreover, constmcting a graph from a usual signal or image and analyzing it can also
lead to a very powerful tool (e.g., the nonlocal mean denoising algorithm of Buades, Coll,
and Morel [1] $)$ . Hence, it is very important to transfer harmonic and wavelet analysis
techniques, which were originally developed on the usual Euclidean spaces and proven
to be useful for so many practical problems associated with usual signals and images,
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to graphs and networks. Examples of such effort includes spectral graph wavelet trans-
form of Hammond, Vandergheynst, and Gribonval [8] and the tensor-product Haar-like
basis for digital databases proposed by Coifman, Gavish, and Nadler [3, 5], to name just
a few. As sines, cosines, and complex exponentials play a fundamental role in harmonic
analysis on the Euclidean spaces, the graph Laplacian eigenfunctions play such a role on
graphs (note that the sines, cosines, and complex exponentials are the Laplacian eigen-
functions for an interval with the Dirichlet, Neumann, and periodic boundary conditions,
respectively). Hence, it is of crucial importance to understand the behavior of the graph
Laplacian eigenfunctions of a given graph. In this short note, we will describe our effort to
understand the surprising behavior of the graph Laplacian eigenfunctions on trees that we
discovered previously [9]: some of them are global oscillations like Fourier modes and the
others are localized wiggles like wavelets depending on the corresponding eigenvalues.

In our previous report [9], we proposed a method to characterize dendrites of neurons,
more specifically retinal ganglion cells (RGCs) of a mouse, and cluster them into different
cell types using their morphological features, which are derived from the eigenvalues of
the graph Laplacians when such dendrites are represented as graphs (in fact literally as
“trees”). For the details on the data acquisition and the conversion of dendrites to graphs,
see [9] and references therein. While analyzing the eigenvalues and eigenfunctions of
those graph Laplacians, we observed a very peculiar phase tmnsition phenomenon as
shown in Figure 1. In other words, the eigenvalue distribution for each dendritic tree is
a smooth bell-shaped curve starting from the eigenvalue $0$ up to 4. Then, at the eigen-
value 4, there is a sudden jump as shown in Figure 1 $(c, d)$ . Interestingly, the eigenfunc-
tions corresponding to the eigenvalues below 4 are semi-global oscillations (like Fourier
cosines/sines) over the entire dendrites or one of the dendrite arbors (or branches); on the
other hand, those corresponding to the eigenvalues above 4 are much more localized and
concentmted (like wavelets) around junctions/branching vertices, as shown in Figure 2.

We want to answer the following questions:

Ql Why does such a phase transition phenomenon occur?

Q2 What is the significance of the eigenvalue 4?

Q3 Is there any tree that possesses the exact eigenvalue 4?

At this point of time, we have a complete answer to Q3, which will be described in
Section 5. As for Ql and Q2, we have a complete answer for a specific and simple class of
trees called starlike trees as described in Section 3, and a partial answer for more general
trees such as those representing neuronal dendrites, which we will discuss in Sections 4
and 6.

2 Definitions and Notation
Let $G$ be a graph representing dendrites of an RGC, and let $V(G)=\{\nu_{1}, \nu_{2},\ldots, \nu_{n}\}$ be a
set of vertices in $G$ where each $\nu_{k}\in \mathbb{R}^{3}$ represents a sampled point (in the $3D$ coordinate
system) along dendritic arbors of this RGC. Let $E(G)=\{e_{1},e_{2},\ldots,e_{m}\}$ be a set of edges
where $e_{k}$ connects two vertices $\nu_{i},$ $\nu_{j}$ for some $1\leq i,j\leq n$ , and we write $e_{k}=(v_{i}, \nu_{j})$ . Let
$d(\nu_{k})=d_{\nu_{k}}$ be the degree of the vertex $\nu_{k}$ . In fact, dendrites of each RGC in our dataset
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Figure 1: Typical dendrites of Retinal Ganglion Cells (RGC) of a mouse and the graph
Laplacian eigenvalue distributions. (a) $2D$ projection of dendrites of RGC of a mouse;
(b) that of another RGC revealing different morphology; (c) the eigenvalue distribution
of RGC shown in (a); (d) that of RGC shown in (b). Regardless of their morphological
features, a phase transition occurs at the eigenvalue 4.
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X $(\mu m)$

(a) RGC #100; $\lambda_{1141}=3.9994$

$X(\mu m)$

(b) RGC #100; $\lambda_{1142}=4.3829$

Figure 2: The graph Laplacian eigenfunctions of RGC #100. (a) The one corresponding to
the eigenvalue $\lambda_{1141}=3.9994$, immediately below the value 4; (b) the one corresponding
to the eigenvalue $\lambda_{1142}=4.3829$ , immediately above the value 4.

can be converted to a tree rather than a general graph since it is connected and contains
no cycles; see [9] for the details. We also note that we only deal with unweighted graphs
in this paper. In other words, we essentially examine the connectivities, topology, and
complexity of the dendritic trees, which may not reflect the physical lengths and widths
of the dendritic arbors; we are currently investigating weighted graphs where the weights
are related to the physical distances between vertices, and hope that we can report our
findings at a later date. Let $L(G);=D(G)-A(G)$ be the (combinatorial) Laplacian matrix
where $D(G);=$ diag$(d_{\nu_{1}},\ldots,d_{\nu_{n}})$ is called the degree matrix of $G$ , i.e., the diagonal matrix
of vertex degrees, and $A(G)=(a_{ij})$ is the adjacency matrix of $G$ , i.e., $a_{ij}=1$ if $\nu_{i}$ and
$\nu_{j}$ are adjacent; otherwise it is $0$ . Furthermore, let $0=\lambda_{0}(G)\leq\lambda_{1}(G)\leq\cdots\leq\lambda_{n-1}(G)$ be
the sorted eigenvalues of $L(G)$ . Let $m_{G}(\lambda)$ be the multiplicity of the eigenvalue $\lambda$ . More
generally, if $I\subset \mathbb{R}$ is an interval of the real line, then we define $m_{G}(I);=\#\{\lambda_{k}(G)\in I\}$ .

At this point we would like to give a simple yet important example of a tree and its
graph Laplacian: a path graph consisting of $n$ vertices shown in Figure 3. The graph

Figure 3: A path graph provides a simple yet important example.
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Laplacian of such a path graph can be easily obtained and is instructive.

$L(G)$ $=$ $D(G)-A(G)$

$\{\begin{array}{llllll}l -l -l 2 -l -l 2 -l \ddots \ddots \ddots -l 2 -l -l l\end{array}\}$ $=$ $\ovalbox{\tt\small REJECT}^{1}$

2
2 ...

2

$1\ovalbox{\tt\small REJECT}-\ovalbox{\tt\small REJECT}^{0}1$

$011$

$01$

. $11$ .
$01^{\cdot}$

$01\ovalbox{\tt\small REJECT}$ .

The eigenvectorsl of this matrix are nothing but the $DCT$ Type II basis vectors used for
the JPEG image compression standard; see e.g., [10]. In fact, we have

$\lambda_{k}=2-2\cos(\pi k/n)=4\sin^{2}(\pi k/2n),$ $k=0,1,\ldots,$ $n-1$ ;

$( \rho_{k}=(\cos(\pi k(j+\frac{1}{2})/n))_{0\leq j<n}^{T},$ $k=0,1,\ldots,$ $n-1$ .

Note that for any finite $n\in \mathbb{N},$ $\lambda_{\max}=\lambda_{n-1}<4\neq$ , and no localization/concentration occurs
in the eigenvector $\phi_{n-1}$ , which is simply a global oscillation with the highest possible
(i.e., the Nyquist) frequency, i.e., $\phi_{n-1}=((-1)^{j}\sin(\pi(j+\frac{1}{2})/n))_{0\leq j<n}^{T}$ .

3 Analysis of Starlike Trees
As one can imagine, analyzing this phase transition phenomenon for complicated den-
dritic trees tums out to be rather difficult. Hence, we start our analysis on a simpler class
of trees called starlike trees. A starlike tree is a tree that has exactly one vertex of degree
greater than 2. Examples are shown in Figure 4. We use the following notation. Let

(a) $S(2,2,1,1,1,1)$ (b) $S(n_{1},1,1,1,1,1,1,1)$ a.k.a. comet

Figure 4: Typical examples of a starlike tree.

$S(n_{1}, n_{2},\ldots, n_{k})$ be a starlike tree that has $k(\geq 3)$ paths (i.e., branches) emanating from the
central vertex $\nu_{1}$ . Let the $i$ th branch have $n_{i}$ vertices excluding $\nu_{1}$ . Let $n_{1}\geq n_{2}\geq\cdots\geq n_{k}$ .
Hence, the total number of vertices is $n=1+ \sum_{i=1}^{k}n_{i}$ .

lIn this paper, we use the terms eigenvectors and eigenfunctions interchangeably.
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Soon after we proved in 2010 the largest eigenvalue for a comet (a special class of
starlike trees as shown in Figure 4 $(b))$ is always larger than 4, we noticed the following
more general results for any starlike tree obtained by Das in 2007 [4]:

$\lambda_{\max}=\lambda_{n-1}<k+1+\frac{1}{k-1}$ ; (1)

$2+2 \cos(\frac{2\pi}{2n_{k}+1})\leq\lambda_{n-2}\leq 2+2\cos(\frac{2\pi}{2n_{1}+1})$ . (2)

On the other hand, Grone and Merris [6] proved the following lower bound for a general
graph $G$ with at least one edge:

$\lambda_{\max}\geq\max_{1\leq j\leq n}d(\nu_{j})+1$ . (3)

Hence we have the following

Corollary 3.1. A starlike tree has exactly one gmph Laplacian eigenvalue greater than
or equal to 4. The equality holds $\iota f$and only if the starlike tree is $K_{1},3=S(1,1,1)$ , which is
also known as $a$ claw.

Pmof. The first statement is easy to show. The lower bound in (3) is larger than or equal
to 4 for any starlike tree since $\max_{1\leq j\leq nj}d(\iota/)=d(\nu_{1})\geq 3$ . On the other hand, the second
largest eigenvalue $\lambda_{n-2}$ clearly cannot exceed 4 due to (2). The second statement about
the necessary and sufficient condition on the equality requires the argument in Section 5,
in particular, Corollary 5.2. From this, we can easily see that the only starlike tree having
the exact eigenvalue 4 is $K_{1}$ ,3.

$\square$

As for the concentration/localization of the eigenfunction $\phi_{n-1}$ corresponding to the
largest eigenvalue $\lambda_{n-1}$ , very recently we have proved the following

Theorem 3.2. Let $\phi_{n-1}=$ $(\phi_{1,n-1}, \cdots ,\psi_{n,n-1})^{T}$ , where $\phi_{j,n-1}$ is the value of the eigen-
function corresponding to the largest eigenvalue $\lambda_{n-1}$ at the vertex $\nu_{j},$ $j=1,\ldots,$ $n$ . Then,

the absolute value of this eigenfunction at the centml vertex $\nu_{1}$ cannot be exceeded by
those at the other vertices, i. e.,

$|\phi_{1,n-1}|>|\phi_{j,n-1}|$ , $j=2,\ldots,$ $n$ .

The details of the proof will appear elsewhere. We note that Das proved this theorem
for a homogeneous starlike tree, $S(m, m,\cdots , m)$ in [4], and our theorem is for a general
starlike tree.

Remark 3.3. Let $\phi=(\phi_{1},\phi_{2},\ldots,\phi_{n})^{T}$ be an eigenvector of a starlike tree $S(n_{1},\ldots, n_{k})$

corresponding to the eigenvalue $\lambda$ . Let $\nu_{2},\ldots,$ $\nu_{n_{1}+1}$ be the $n_{1}$ vertices along a branch
emanating from the central vertex $\nu_{1}$ with $\nu_{n_{1}+1}$ being the leaf vertex. Then, along this
branch, the eigenvector components satisfy the following equations:

$\lambda\phi_{n_{1+1}}$ $=$ $\phi_{n_{1}+1}-\phi_{n_{1}}$ (4)

$\lambda\phi_{j}$ $=$ $2\phi_{j}-\phi_{j-1}-\phi_{j+1}$ $2\leq j\leq n_{1}$ . (5)
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From Eq. (5), we have the following recursion relation:

$\psi_{j+1}+(\lambda-2)\phi_{j}+\phi_{j-1}=0$ , $j=2,\ldots,$ $n_{1}$ . (6)

This recursion can be explicitly solved using the roots of the characteristic equation

$r^{2}+(\lambda-2)r+1=0$ , (7)

and the general solution can be written as

$\phi_{j}=Ar_{1}^{i-2}+Br_{2}^{i-2}$ , $j=2,\ldots,$ $n_{1}+1$ , (8)

where $r_{1},$ $r_{2}$ are the roots of (7), and $A,B$ are appropriate constants derived from the
boundary condition (4). Now, let us consider these roots of (7) in details. The deter-
minant of (7) is

$\prime D(\lambda);=(\lambda-2)^{2}-4=\lambda(\lambda-4)$ . (9)

Since we know that $\lambda\geq 0$ , this determinant changes its sign depending on $\lambda<4$ or $\lambda>4$ .
(Note that $\lambda=4$ occurs only for the claw $K_{1,3}$ on which we explicitly know everything;
hence we will not discuss this case further in this remark.) If $\lambda<4$ , then $\prime D(\lambda)<0$ and it
is easy to show that the roots are complex valued with magnitude 1. This implies that (6)
becomes

$\phi_{j}=A’\cos(\omega(j-2))+B’\sin(\omega(j-2))$ , $j=2,\ldots,$ $n_{1}+1$ , (10)

where $\omega$ satisfies $\tan\omega=\sqrt{\lambda(4-\lambda)}/(2-\lambda)$ , and $A’,B’$ are appropriate constants. In other
words, if $\lambda<4$ , the eigenfunction along this branch is of oscillatory nature. On the other
hand, if $\lambda>4$ , then $D(\lambda)>0$ and it is easy to show that both $r_{1}$ and $r_{2}$ are real valued

that the dominating part is the term $Br_{2}^{i-2}$ in (8). The siuation is the same for the other
branches. This observation has lead us to the proof of Theorem 3.2, which we defer to
our forthcoming paper. In summary, for a starlike tree, the phase transition phenomenon
with the eigenvalue 4 is hence essentially explained and well understood.

4 Our Conjecture
Unfortunately, actual dendritic trees are not exactly starlike. However, our numerical
computations and data analysis indicate that:

$0 \leq\frac{\#\{j\in(1,n)|d(\nu)>2\}-m_{G}([4,\infty))}{n}\leq 0.047$ (11)

for each RGC we examined. Hence, we can define starlikeliness $S\ell(T)$ of a given tree $T$

as
$S \ell(T):=1-\frac{\#\{j\in(1,n)|d(\iota_{j\neq}/)>2\}-m_{T}([4,\infty))}{n}$ (12)

We note that $SP(T)\equiv 1$ for a certain class of RGCs whose dendrites are widely and
sparsely spread (see [9] for the characterization). This means that dendrites in that class
are all close to a starlike tree or a concatenation of several starlike trees. We show some
examples of dendritic trees with $Sl(T)\equiv 1$ and those with $Sl(T)_{\neq}<1$ in Figures 5, 6, and
7.

Based on our intensive numerical experiments, we have the following
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Cell $\#$ $99$ Cell $\#$ $100$

$-50$ $0$ 50

Cell $\# 101$

$-100$ $-50$ $0$ 50 100 150
Cell $\# 196$

$-200$ -loo 0100 200

Cell $\# 210$

$-50$ $0$ 50

$-100$ $0$ 100

Cell $\# 102$

$-150$ $-100$ $-50$ $0$ 50
Cell $\# 201$

$-200$ $0$ 200 $400$

Cell $\# 174$

$-200$ $0$ 200

Figure 5: Examples of dendritic trees with $S\ell(T)\equiv 1$ .
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Cell $\#$ $155$ Cell $\#$ $165$

$-40$ $-20$ $0$ 20 40

Cell $\# 166$

$-40$ $-20$ $0$ 20 40 60
Cell $\# 238$

$-40$ $-20$ $0$ 20 40

Cell $\# 215$

$-60$ $-40$ $-20$ $0$ 20 40

$-40$ $-20$ $0$ 20

Cell $\# 80$

$-50$ $0$ 50
Cell $\# 169$

$-60$ $-40$ $-20$ $0$ 20

Cell $\# 55$

$-100$ $-50$ $0$ 50 100

Figure 6: Examples of dendritic trees with $S\ell(T)_{\neq}<1$ .
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X $(\mu m)$

(a) RGC #100; $S\ell(T)\equiv 1$

$X(\mu m)$

(b) RGC #155; $Sl(T)=0.953\lessgtr 1$

Figure 7: Zoomed-up versions of some dendritic trees.

Conjecture 4.1. For any tree $T$ offinite volume, we have

$0\leq m_{T}([4,\infty))\leq\#\{j\in(1, n)|d(\nu_{l^{)}\neq}>2\}$

and each eigenfunction corresponding to $\lambda\geq 4$ has its largest component (in the absolute
value) on the vertices whose degree are larger than 2.

5 A Class of Trees Having the Eigenvalue 4

As raised in Introduction, we are interested in answering Q3: Is there any tree that pos-
sesses the exact eigenvalue 4? To answer this question, we have recently found that the
following results of Guo [7] (written in our own notation):

Theorem 5.1 (Guo 2006). Let $T$ be a tree with $n$ vertices. Then,

$\lambda_{j}(T)\leq\lceil\frac{n}{n-j}\rceil$ , $j=0,\ldots,$ $n-1$ ,

and the equality holds iff $a$) $j\neq 0;b)n-j$ divides $n$ ; and c) $T$ is spanned by $n-j$ vertex
disjoint copies of $K_{1.\frac{j}{n-i}}$

.

This implies the following

Corollary 5.2. A tree that has an eigenvalue exactly equal to 4 necessarily consists of $m$

copies of $K_{1},3\equiv S(1,1,1)$ connected via their centml vertices as shown in Figure 8 where
$m\in \mathbb{N}$.

Pmof. Set $n=4m$ in Guo’s theorem. Then, there is an eigenvalue exactly equal to 4 at
$j=3m$, i.e., $\lambda_{3m}=4$ , and this tree necessarily consists of $m$ copies of $K_{1}$ ,3 connected
via their central vertices, which is guaranteed because of the necessary and sufficient
conditions in Guo’s theorem. $\square$
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Figure 8: A tree consisting of multiple copies of $K_{1,3}$ connected via their central vertices.
This tree has the exact eigenvalue 4 with multiplicity 1.

Figure 9 shows the eigenvalue distribution of a tree consisting of $m=5$ copies of $K_{1}$ ,3.

Regardless of $m$ , the number of copies of $K_{1,3}$ , the eigenfunction corresponding to the
eigenvalue 4 has only two values: one constant value at the central vertices, and the other
constant value of the opposite sign at the leaves whereas that corresponding to the largest
eigenvalue is again concentrated around the central vertex, as shown in Figure 10.

6 Discussion
In this paper, we obtained precise understanding of the phase transition phenomenon of
the graph Laplacian eigenvalues and eigenfunctions for starlike trees. For a more com-
plicated class of trees representing dendrites of RGCs, we obtained a conjecture based on
the numerical evidence that the number of the eigenvalues larger than 4 is bounded from
above by the number of vertices whose degrees is strictly larger than 2. We also identified
a special class of trees consisting of copies of the claw $K_{1}$ ,3, which is the only class of
trees that can have the exact eigenvalue 4.

Our next step toward understanding the phase transition phenomenon for real dendritic
trees is to analyze a slightly more complicated class of trees, i.e., trees generated by
concatenating several starlike trees. Since we now know the eigenvalue/eigenfunction
behavior of starlike trees precisely, we expect that we can also shed light on that class of
trees. We plan to proceed such analysis by starting with two concatenated starlike trees.

Another quite interesting question is the following. Can a simple (i.e., no multiple
edges and no self-loops) and connected graph–not necessarily a tree–have the exact
eigenvalue 4? The answer is clear “Yes.” For example, a regular finite lattice graph in $\mathbb{R}^{d}$ ,
$d>1$ has repeated eigenvalue 4. More precisely, each eigenvalue and the corresponding
eigenfunction of a graph representing the regular finite lattice of size $n\cross n\cross\cdots\cross n=n^{d}$

can be written as

$\lambda_{j_{1\cdots\prime}j_{d}}$ $=$

$\phi_{j_{1},\ldots,j_{d}}(x_{1},\ldots,x_{d})$ $=$

4 $\sum_{i=1}^{d}\sin^{2}(\frac{j_{i}\pi}{2n}1$ (13)

$\prod_{i=1}^{d}\cos(\frac{j_{i}\pi(x_{i}+\frac{1}{2})}{n}1’$ (14)
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Figure 9: The eigenvalue distribution of a tree consisting of 5 copies of $K_{1.3}$ . We note that
$Sl(T)=1$ for this tree.
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(a) $\psi_{15}$

(b) $\psi_{19}$

Figure 10: (a) The eigenfunction $\phi_{15}$ corresponding to $\lambda_{15}=4$ of the tree 5$K_{1,3}$ in the $3D$

perspective view. (b) The eigenfunction $\phi_{19}$ corresponding to the maximum eigenvalue
$\lambda_{19}=7.1091$ , which shows a bit more concentration around the central vertex.
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where $j_{i},x_{i}\in Z/nZ$ for each $i$ , as shown by Burden and Hedstrom [2]. Hence, determin-
ing $m_{G}(4)$ , i.e., the multiplicity of the eigenvalue 4 of this lattice graph, is equivalent to
finding the integer solution $(j_{1},\ldots,j_{d})\in(Z/nZ)^{d}$ to the following equation:

$\sum_{i=1}^{d}\sin^{2}(\frac{j_{i}\pi}{2n})=1$ . (15)

For $d=2$ , it is easy to show that $m_{G}(4)=n-1$ by direct examination of (15) with $d=2$ .
For $d=3,$ $m_{G}(4)$ behaves in a much more complicated manner, which is deeply related
to number theory. We expect that more complicated situations occur for $d>3$ . We are
currently investigating this interesting problem on regular finite lattices with Yuji Nakat-
sukasa of UC Davis, and we plan to report our findings at a later date. On the other hand,
it is clear from (14) that the eigenfunctions corresponding to the eigenvalues greater than
or equal to 4 on such lattice graphs cannot be localized or concentrated on those vertices
whose degree is larger than 2 unlike the tree case.
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