Kyoto University Research Info	rmation Repository
Title	THE RAPIDLY DECREASING FUNCTIONS OF THE MICROSCOPICALLY-DESCRIPTIVE HYDRODYNAMIC EQUATIONS (Study of the History of Mathematics)
Author(s)	Masuda, Shigeru
Citation	数理解析研究所講究録 (2011), 1739: 180-190
Issue Date	2011-04
URL	http://hdl.handle.net/2433/170875
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

THE RAPIDLY DECREASING FUNCTIONS OF THE MICROSCOPICALLY-DESCRIPTIVE HYDRODYNAMIC EQUATIONS. 微視的記述流体力学方程式における急減少関数

增田 茂 (首都大学東京 大学院理学研究科 博士後期課程 数学専攻)

ABSTRACT. The "two-constant" theory introduced first by Laplace in 1805 still forms the basis of current theory describing isotropic, linear elasticity, describing the capillarity. By using "two-constant" theory, the Navier-Stokes equations are formulated. These equations with the two coefficients in the ratio 1:3 originated from Poisson [16] in 1831. Moreover, these equations contained both a linear and a nonlinear term developed earlier in Navier's equations [20] in 1827.

We show the process of formulation of *calculus of variations* using the two functions characterized from the attraction and repulsion, and his criticism to Laplace imaging the *Gaussian function* as the rapidly decreasing function by Gauss in 1830. And we introduce a contribution to the hydromechanics, partly because he was a comtenporary of the epock of formulation of the Navier-Stokes equations, which are our main theme in our paper.

Particularly, from the viewpoint of mathematics, several important topics such as integral theory in $\S4.3$ which are his selling points. We show his unique *rapidly decreasing function* (we call it '*RDF*' below) and reduction of integral from sextuplex to quadruplex, in the sections $\S4.1$. In and after $\S4.2$, we show his calculus of variations in the capillarity against the *RDF* and calculation of it by Laplace.

1. INTRODUCTION

• At first, in section §2, we discuss the "two-constant" theory. In 1805, Laplace introduced the "two-constant" theory, so-called because of the prominence of two constants in his theory, in regard to capillary action with constants denoted by H and K. (cf. Table 1, 2). Thereafter, contributing investigators in formulating NS equations, i.e. equations describing equilibrium or capillary situations, have presented various pairs of constants. The original two-constant theory is commonly accepted as describing isotropic, linear elasticity. [3, p.121]. However, the persistence of just two constants in later developments is to be particularly noted.

• Next. another topic discussed in section §3 is the RDFs which were kerneled in the "two-constant" and which provided the common, mathematical interpretation of fluid properties among the then progenitors, in particular by Gauss, a contemporary of the progenitors of the NS equations, who contributed to the formulation of fluid mechanics in the development of Laplace's capillarity.

• Then, we uncover reasons for the practice in naming these fundamental equations of fluid motion "NS equations". In Table 2, we present a chronology outlining this practice. The last entry from 1934 by Prandtl [27] grouped the equations containing three terms: (1) the nonlinear term, (2) the Laplacian term multiplied by ν , (3) the gradient term of divergence multiplied by $\frac{\nu}{3}$, which takes its rise in the fluid equation by Poisson, and used the nomenclature "the Navier-Stokes equations" for this set of equations. These equations with the two coefficients in the ratio 1: 3 originated from Poisson [16] in 1831. Moreover, these equations contained both a linear and a nonlinear term developed earlier in Navier's equations [20] in 1827. Still earlier, the nonlinear term was introduced by Euler [7] in 1752-5. cf. Table 2.

• Finally, In section §4, we discuss Gauss' Latin paper² including the conceptions of microscopicallydescriptive (we call it 'MD' below) formulation and RDF, which was published following the paper of the theory on curved surface [5].

2. A UNIVERSAL METHOD FOR THE "TWO-CONSTANT" THEORY

In this section, we propose a universal method to describe the kinetic equations that arise in isotropic, linear elasticity. This method is outlined as follows:

Date: 2010/11/20.

¹Throughout this paper, in citation of bibliographical sources, by surrounding our own paragraph or sentences of commentaries between (\Downarrow) and (\Uparrow) $((\Uparrow)$ is used only when not following to next section,) and by =* or \Rightarrow *, we detail the statement by Gauss, because we would like to discriminate and to avoid confusion from the descriptions by original authors. The mark : \Rightarrow mean transformation of the statements in brevity by ours.

 $^{^{2}(\}Downarrow)$ This free translation from Latin to English is of ours.

- The partial differential equations describing waves in elastic solids or flows in elastic fluids are expressed by using one constant or a pair of constants C_1 and C_2 such that: for elastic solids: $\frac{\partial^2 \mathbf{u}}{\partial t^2} - (C_1T_1 + C_2T_2) = \mathbf{f}$, for elastic fluids : $\frac{\partial \mathbf{u}}{\partial t} - (C_1T_1 + C_2T_2) + \cdots = \mathbf{f}$, where T_1, T_2, \cdots are the terms depending on tensor quantities constituting our equations.
- The two coefficients C_1 and C_2 associated with the tensor terms are the two constants of the theory, definitions of which depend on the contributing author. For example, ε and E were introduced by Navier, R and G by Cauchy, k and K in elastic and $(K+k)\alpha$ and $\frac{(K+k)\alpha}{3}$ in fluid by Poisson, ε and $\frac{\varepsilon}{3}$ by Saint-Venant, and μ and $\frac{\mu}{3}$ by Stokes. Since Poisson, the ratio of two coefficient in fluid was fixed by 3. Moreover, C_1 and C_2 can be expressed in the following form:

$$\begin{cases} C_1 \equiv \mathcal{L}r_1g_1S_1. \\ C_2 \equiv \mathcal{L}r_2g_2S_2. \end{cases} \qquad \begin{cases} S_1 = \iint g_3 \to C_3, \\ S_2 = \iint g_4 \to C_4, \end{cases} \Rightarrow \qquad \begin{cases} C_1 = C_3\mathcal{L}r_1g_1 = \frac{2\pi}{15}\mathcal{L}r_1g_1. \\ C_2 = C_4\mathcal{L}r_2g_2 = \frac{2\pi}{3}\mathcal{L}r_2g_2. \end{cases}$$

Here \mathcal{L} corresponds to either \sum_{0}^{∞} as argued for by Poisson or \int_{0}^{∞} as argued for by Navier. A heated debate had developed between the two over this point. It is a matter of personnel preference as to how the two constants should be expressed.

3. The RDFs kerneled in the "two-constant"

In Table 1, we show the form of g_1 and g_2 , which are kernel functions and with which the progenitors of the fluid equation developed their formulae. Here we refer to these functions as rapidly decreasing functions (*RDFs*). ³ While formulating the equilibrium equations, we obtain the competing theories of "two-constant" in capillary action between Laplace and Gauss.

In 1830, after Laplace's death, Gauss [6] started publishing his studies on capillarity following his famous paper on curved surfaces [5]. In the paper, Gauss criticized Laplace's calculations of 1805-7 in which the "two-constant" in his calculation of capillary action were introduced. At about this time, Gauss had studied what became to be called *Gaussian function* or *Gaussian curve* and using this as his RDF Gauss criticised Laplace's example function e^{-if} as the equivalent function of $\varphi(f)$. Here, $\varphi(f)$ is the RDF, which depends on distance f. In that paper, Gauss [6] pointed out various deficiencies: • 1. Laplace had mentioned only attractive action without considering the repulsive action; • 2. Laplace could not identify the correct example function as the equivalent function of the RDF; and • 3. Laplace lacked any proof from say a geometrical point of view. The following are Gauss' criticisms to Laplace in the preface of [6].

• Judging from the second dissertation: \prec Supplément à la théorie de l'action capillaire \succ , Mr. Laplace investigated a little, not only the complete attraction, but also the partial one by $\varphi(f)$, and tacitly understood incompletely the general attraction; by the way, if we would refer the latter by him about our sensible modification, it is easy to see being conspicuous about it. ⁴

• He considers exponential e^{-if} as an example of equivalent function with $\varphi(f)$, denoting the large quantity by *i*, or $\frac{1}{i}$ becomes infinitesimal.

But it is not at all necessary to limit the generality by such a large quantity, the things are more clear than words, we would see easiest, only to investigate if these integrations would be extended, not only infinite but also to an arbitrary sensible distance, or if anything, occurring wider in the finitely measurable distance in experiment. [6, p.33]

³We show the then family of RDF by using our notation $f \in \mathcal{RFD}$, and f is a function kernelized in the two-constant belonging to the then rapidly decreasing function.

 $^{^{4}(\}Downarrow)$ N.Bowditch, the editor of the complete works of Laplace, cites only the title of Gauss' paper : [6] but siding with Laplace with the following comments :

This theory of capillary attraction was first published by La Place in 1806, and in 1807 he gave a supplement. In neither of these works is the repulsive force of the heat of fluid taken into consideration, because he supposed it to be unnecessary. But in 1819, he observed that this action could be taken into account, by supposing the force $\varphi(f)$ to represent the difference between the attractive force of the particles of the fluid A(f), and the repulsive force of the heat R(f) so that the combined action would be expressed by, $\varphi(f) = A(f) - R(f)$; \cdots [9, p.685]

Maybe this was stated under the covering fire from Gauss' criticisms of Laplace. Gauss may not have read Laplace' works after 1819 in which he had changing his thoughts. As yet we have not been able to investigate this fact.

no	name	problem	C_1	C_2	C_3	C_4	\mathcal{L}^{-}	$ r_1 $	r_2	g_1	g_2	remark
1	Navier 1827 [12]	elastic solid	e,		$\frac{2\pi}{15}$		$\int_0^\infty d\mu$	ρ^4		fρ		$ ho: {f radius}$
2	Navier fluid 1827 [13]	motion of fluid	છ	E	$\frac{2\pi}{15}$	$\frac{2\pi}{3}$	$\int_0^\infty d\mu$ $\int_0^\infty d\mu$	ρ^4	ρ^2	f(ho)	F(ho)	ho : radius
3	Cauchy 1828 [2]	system of particles	R	G	$\frac{2\pi}{15}$	$\frac{2\pi}{2}$	$\int_0^\infty dr$ $\int_0^\infty dr$. r ³	r^3	f(r)	f(r)	$f(r) \equiv \pm [rf'(r) - f(r)]$ $f(r) \neq f(r)$
4	Poisson 1829 [21]	elastic solid	k	K	$\frac{2\pi}{15}$	$\frac{3}{2\pi}$	$\frac{\sum \frac{1}{\alpha^5}}{\sum \frac{1}{\alpha^5}}$	r^5	r^3	$\frac{d.\frac{1}{r}fr}{dr}$	fr	• (/ , ()
5	Poisson 1831 [22]	motion of fluid	k	K	$\frac{1}{30}$	$\frac{1}{6}$	$\frac{1}{\sum \frac{1}{\epsilon^3}}$ $\sum \frac{1}{\epsilon^3}$	r ³	r	$\frac{d.\frac{1}{r}fr}{dr}$	fr	$C_3 = \frac{1}{4\pi} \frac{2\pi}{15} = \frac{1}{30}$ $C_4 = \frac{1}{4\pi} \frac{2\pi}{3} = \frac{1}{6}$
6	Laplace 1806,7 [9]	capillary action	H		2π		$\int_0^\infty dz$	z		$\Psi(z)$		z : distance
6-2	Rewrited by Poisson 1831 [23]		H	K K	$\frac{\pi}{4}\rho^2$	2π $\frac{2\pi}{3}\rho^2$	$\int_0^\infty dz$ $\int_0^\infty dr$ $\int_0^\infty dr$	r^4	r^3	arphi r	$\Psi(z)$ $arphi r$	[23, pp.14-15]
7	Gauss 1830 [6]	capillary action					¥¥					attraction : $-fx.dx = d\varphi x,$ $\int fx.dx = -\varphi x,$ repulsion : $-Fx.dx = d\Phi x,$ $\int Fx.dx = -\Phi x$
8	Poisson 1831 [23]	capillary action	Η	K	$\frac{\pi}{4} ho^2$	$\frac{2\pi}{3}\rho^2$	$\int_0^\infty dr$ $\int_0^\infty dr$	r^4	r^3	arphi r	φr	[23, p.14] [23, p.12]
9	Saint-Venant 1843 [26]	fluid	ε	<u></u> 5			<u></u>					
10	Stokes 1849 [27]	fluid	μ	$\frac{\mu}{3}$								
11	Stokes 1849 [27]	elastic solid	A	B								A = 5B

TABLE 1. The expression of the total momentum of molecular actions by Laplace, Gauss, Navier, Cauchy, Poisson, Saint-Venant & Stokes. (Remark. 6-8 : capillarity, except for euiliblium)

Here, we can consider these arguments on the RDFs as simple examples of today's distributions and hypergeometric functions of Schwarz in 1945, but which were popular in the 1830s, during the time the NS equations were being discussed in their microscopically-descriptive formulation.

In his historical descriptions about the study of capillariy action, we would like to recognize that there is no counterattack to Gauss, but the correct valuation. Gauss [7] stated his conclusion about Laplace's paper "his calulations in the pages, p.44 and the followings it, have <u>non effect in vain.</u>"

4. The RDF of Gauss in the capillary action

4.1. Three basic forces and two RDFs: f derived from φ and F derived from Φ .

We consider the force reducing to three basic forces. • I. Gravity. • II. The attractive force, which itself corresponds to the points m, m', m'', \cdots . The intensity of attraction of function is proportional with the

TABLE 2. The kinetic equations of the hydrodynamics until the "Navier-Stokes equations" was fixed. (Rem. HD: hydro-dynamics, N under entry-no: non-linear, gr.dv: grad.div, $E:\frac{\Delta}{gr.dv}$ of elastic, $F:\frac{\Delta}{gr.dv}$ and the group of entry 6-13 show F = 3 in fluid.)

no	name/prob	the kinetic equations	$ \Delta $	gr.dv	Е	F
	Euler	$\int X - \frac{1}{b} \frac{dp}{dx} = \frac{du}{dt} + u \frac{du}{dx} + v \frac{du}{dy} + w \frac{du}{dy},$	T	T		Γ
	(1752-55)	$\left\{Y - \frac{1}{b}\frac{dp}{dv} = \frac{dv}{dt} + u\frac{dv}{dv} + v\frac{dv}{dv} + w\frac{dv}{dv}, \qquad \frac{du}{dv} + \frac{dv}{dv} = 0.\right\}$				
	fluid	$\begin{bmatrix} Z - \frac{1}{b} \frac{dp}{dz} = \frac{dw}{dt} + u \frac{dw}{dx} + v \frac{dw}{du} + w \frac{dw}{dz}, \end{bmatrix}$				
F		$\frac{\prod_{x \neq y} \frac{d^2 x}{dx} = \epsilon \left(3\frac{d^2 x}{dx^2} + \frac{d^2 x}{dx^2} + \frac{d^2 x}{dx^2} + 2\frac{d^2 y}{dx^2} + 2\frac{d^2 z}{dx^2} \right).$	1			T
	Navier	$\begin{bmatrix} g & dt^2 & da^2 & db^2 & dc^2 & dbda & dcda \end{bmatrix} \begin{pmatrix} g & dt^2 & da^2 & db^2 & dc^2 & dbda & dcda \end{pmatrix}$				
2	(1827)[12]	$\begin{bmatrix} (0^{-1})N^{e} \\ g \\ dt^{2} \\ dt^{2}$	ε	2ε	$\frac{1}{2}$	
ŀ	elastic solid	$\left(\frac{\frac{1}{g}}{dt^2} = \varepsilon \left(\frac{\frac{1}{da^2}}{da^2} + \frac{\frac{1}{db^2}}{db^2} + 3\frac{\frac{1}{dc^2}}{dc^2} + 2\frac{\frac{1}{d}}{dadc} + 2\frac{\frac{1}{db}}{dbdc}\right)$				
		where II is density of the solid, g is acceleration of gravity.	ļ			Ш
2	Navier	$\left \int_{\rho}^{1} \frac{dy}{dx} = X + \varepsilon \left(3\frac{d}{dx^2} + \frac{d}{dy^2} + \frac{d}{dz^2} + 2\frac{d}{dx^2} + 2\frac{d}{dx^2} + 2\frac{d}{dx^2} \right) - \frac{du}{dt} - \frac{du}{dx} \cdot u - \frac{du}{dy} \cdot v - \frac{du}{dz} \cdot w ;$				
N	(1827)[13]	$\left \left\{\frac{1}{\rho}\frac{dp}{dy}=Y+\varepsilon\left(\frac{d^2v}{dx^2}+3\frac{d^2v}{dy^2}+\frac{d^2v}{dz^2}+2\frac{d^2u}{dxdy}+2\frac{d^2w}{dydz}\right)-\frac{dv}{dt}-\frac{dv}{dx}\cdot u-\frac{dv}{dy}\cdot v-\frac{dv}{dz}\cdot w\right.\right\}$	ε	2ϵ		$\frac{1}{2}$
	fluid	$\left \left[\frac{1}{\rho} \frac{dp}{dz} = Z + \varepsilon \left(\frac{d^2w}{dx^2} + \frac{d^2w}{dy^2} + 3\frac{d^2w}{dz^2} + 2\frac{d^2w}{dxdz} + 2\frac{d^2v}{dydz} \right) - \frac{dw}{dt} - \frac{dw}{dx} \cdot u - \frac{dw}{dy} \cdot v - \frac{dw}{dz} \cdot w \right \right $		Í I		
	Cauchy	$\int ((I + C))^{\partial^2 \xi} + (P + H)^{\partial^2 \xi} + (Q + I)^{\partial^2 \xi} + 2P \partial^2 \eta + 2Q \partial^2 \zeta + V = \partial^2 \xi$				Π
	(1828)[2]	$ \begin{bmatrix} (L+G)\frac{\partial}{\partial x^2} + (R+H)\frac{\partial}{\partial y^2} + (Q+H)\frac{\partial}{\partial z^2} + 2R\frac{\partial}{\partial x\partial y} + 2Q\frac{\partial}{\partial z\partial x} + R = \frac{\partial}{\partial t^2}, \\ (R-G)\frac{\partial^2 R}{\partial x^2} + (R-H)\frac{\partial^2 R}{\partial x^2} + (Q+H)\frac{\partial^2 R}{\partial z^2} + 2R\frac{\partial^2 R}{\partial x\partial y} + 2Q\frac{\partial^2 R}{\partial z\partial x} + R = \frac{\partial^2 R}{\partial t^2}, $			if	
4	system	$\left\{ \begin{array}{l} (R+G)\frac{\partial}{\partial x^2} + (M+H)\frac{\partial}{\partial y^2} + (P+I)\frac{\partial}{\partial z^2} + 2P\frac{\partial}{\partial y\partial z} + 2R\frac{\partial}{\partial x\partial y} + Y = \frac{\partial}{\partial t^2}, \end{array} \right.$	R+	2R	G = 0	
	in elastic	$\left \left((Q+G)\frac{\partial^2 \zeta}{\partial x^2} + (P+H)\frac{\partial^2 \zeta}{\partial y^2} + (N+I)\frac{\partial^2 \zeta}{\partial z^2} + 2Q\frac{\partial^2 \xi}{\partial z\partial x} + 2P\frac{\partial^2 \eta}{\partial y\partial z} + Z = \frac{\partial^2 \zeta}{\partial t^2} \right) \right _{t=0}^{t=0}$	G		$\frac{1}{1}$	
	and fluid	G = H = I, $L = M = N$, $P = Q = R$, $L = 3R$			2	
	Poisson	$\left(X - \frac{d^2u}{dt} + a^2\left(\frac{d^2u}{dt} + \frac{2}{2}\frac{d^2v}{dt} + \frac{2}{2}\frac{d^2w}{dt} + \frac{1}{2}\frac{d^2u}{dt} + \frac{1}{2}\frac{d^2u}{dt}\right) - \frac{\Pi}{dt}\frac{d^2u}{dt}$				
5	(1831)[22]	$ \int_{\mathbf{V}}^{1^{2}} dt^{2} + \frac{1}{2} \left(dx^{2} + \frac{3}{3} dy dx + \frac{3}{3} dz dx + \frac{3}{3} dy^{2} + \frac{3}{3} dz^{2} \right)^{-1} \rho dx^{2} , $	a^2	$2a^2$	1	
	in general	$\int_{-\pi}^{\pi} \frac{1}{dt^2} + u^2 \left(\frac{1}{dy^2} + \frac{1}{3} \frac{1}{dxdy} + \frac{1}{3} \frac{1}{dzdy} + \frac{1}{3} \frac{1}{dx^2} + \frac{1}{3} \frac{1}{dz^2} \right) = \frac{1}{\rho} \frac{1}{dy^2},$	3	3	2	
	equations	$\left(Z - \frac{d}{dt^2} + a^2 \left(\frac{d}{dz^2} + \frac{d}{3}\frac{d}{dxdz} + \frac{d}{3}\frac{d}{dydz} + \frac{1}{3}\frac{d}{dx^2} + \frac{1}{3}\frac{d}{dx^2} + \frac{1}{3}\frac{d}{dy^2}\right) = \frac{1}{\rho}\frac{d}{dz^2},$				
Γ	Poisson	$\left(\frac{Du}{d^2u} - \frac{V}{d^2u} + \frac{d^2u}{d^2u} $				Ē
	(1831)[22]	$\left(\frac{p(Dt-T)+dt}{Dt}-\frac{dt}{dx}+u(T+t)\left(\frac{dt}{dx^2}+\frac{dt}{dy^2}+\frac{dt}{dz^2}\right)+\frac{1}{3}(T+t)\frac{dt}{dx}\left(\frac{dt}{dx}+\frac{dt}{dy}+\frac{dt}{dz}\right)=0,$		B		
0	fuid in	$\left\{ \rho(\frac{\partial u}{\partial t} - Y) + \frac{\partial v}{dy} + \alpha(K+k) \left(\frac{d}{dx^2} + \frac{d}{dy^2} + \frac{d}{dz^2} \right) + \frac{d}{3}(K+k) \frac{d}{dy} \left(\frac{du}{dx} + \frac{dv}{dy} + \frac{dw}{dz} \right) = 0, \right\}$	B	$\frac{3}{3}$		3
	equations	$\left(\rho(\frac{Dw}{Dt}-Z)+\frac{dp}{dz}+\alpha(K+k)\left(\frac{d^2w}{dx^2}+\frac{d^2w}{dy^2}+\frac{d^2w}{dz^2}\right)+\frac{\alpha}{3}(K+k)\frac{d}{dz}\left(\frac{du}{dx}+\frac{dv}{dy}+\frac{dw}{dz}\right)=0,$				ΙÍ
	Saint-Venant					П
7	(1843)[26]	His equations are not in his paper [26], however we are available for it by his tensor.	ε	$\frac{\varepsilon}{3}$		3
	nuia	$\begin{pmatrix} -(Du & v) & dp & (d^2u + d^2u + d^2u) & \mu & d(du + dv + dw) \end{pmatrix}$				Н
	Stokes	$\rho(\frac{1}{Dt} - X) + \frac{1}{dx} - \mu(\frac{1}{dx^2} + \frac{1}{dy^2} + \frac{1}{dz^2}) - \frac{1}{2}\frac{1}{dx}\left(\frac{1}{dx} + \frac{1}{dy} + \frac{1}{dz}\right) = 0,$				
8	(1849)[27]	$(12)_S \left\{ \rho(\frac{Dv}{Dt} - Y) + \frac{d\mu}{dy} - \mu \left(\frac{dv}{dx^2} + \frac{dv}{dy^2} + \frac{dv}{dz^2} \right) - \frac{\mu}{3} \frac{d}{dy} \left(\frac{du}{dx} + \frac{dv}{dy} + \frac{dw}{dz} \right) = 0, $	μ	$\frac{\mu}{3}$		3
	nuid	$\left(\rho(\frac{Dw}{Dt}-Z)+\frac{dp}{dz}-\mu\left(\frac{d^2w}{dx^2}+\frac{d^2w}{dy^2}+\frac{d^2w}{dz^2}\right)-\frac{\mu}{3}\frac{d}{dz}\left(\frac{du}{dx}+\frac{dv}{dy}+\frac{dw}{dz}\right)=0.$				
	Maxwell	$\left(\rho\frac{\partial u}{\partial t} + \frac{dp}{dx} - C_M \left[\frac{d^2u}{dx^2} + \frac{d^2u}{dy^2} + \frac{d^2u}{dz^2} + \frac{1}{3}\frac{d}{dx}\left(\frac{du}{dx} + \frac{dv}{dy} + \frac{dw}{dz}\right)\right] = \rho X,$				
9	(1865-66)	$\left\{ \rho \frac{\partial v}{\partial u} + \frac{dp}{dt} - C_M \left[\frac{d^2 v}{2} + \frac{d^2 v}{2} + \frac{d^2 v}{2} + \frac{1}{2} \frac{d}{dt} \left(\frac{du}{dt} + \frac{dv}{dt} + \frac{dw}{dt} \right) \right] = \rho Y, \text{where, } C_M \equiv \frac{pM}{dt}$	См	<u>C</u>		3
		$\left[a^{\frac{\partial w}{\partial x}} + \frac{dp}{\partial x} - C_{M}\left[\frac{d^{2}w}{dx} + \frac{d^{2}w}{dx} + \frac{d^{2}w}{dx} + \frac{1}{2}\frac{d}{dt}\left(\frac{du}{dt} + \frac{dv}{dt} + \frac{dw}{dt}\right)\right] - a^{2}$		3		
		$\begin{bmatrix} r & \partial t & dz & -M \\ u & du & b & 0 \end{bmatrix} \begin{bmatrix} dx^2 & dy^2 & dz^2 & 3 & dx & dx & dy & dz \end{bmatrix} = \frac{p^2}{p^2}$				\neg
	Kirchhoff	$\begin{bmatrix} \mu \frac{\partial u}{\partial t} + \frac{\partial v}{\partial x} - O_K \begin{bmatrix} \Delta u + \frac{\partial}{3} \frac{\partial v}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \end{bmatrix} = \mu \Lambda, \\ \frac{\partial u}{\partial t} = \frac{\partial v}{\partial t} + \frac{\partial v}{\partial t} + \frac{\partial v}{\partial t} + \frac{\partial v}{\partial t} = 0, $				
10	(1876)[?] HD	$\left\{ \mu \frac{dv}{dt} + \frac{\partial p}{\partial y} - C_K \left[\Delta v + \frac{1}{3} \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \right] = \mu Y, \left\{ \mu \frac{dv}{dt} - \delta x - \delta y - \delta z \right\}$ where, $C_K \equiv \frac{1}{2} \frac{p}{2}$	C_K	$\frac{\Delta}{3}$		3
	пD	$\left[\mu\frac{dw}{dt} + \frac{\partial p}{\partial z} - C_K \left[\Delta z + \frac{1}{3}\frac{\partial}{\partial z} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}\right)\right] = \mu Z,$				
11	Rayleigh	$\int \frac{1}{2} \frac{dp}{dx} = -\frac{du}{dt} + \nu \nabla^2 u - u \frac{du}{dx} - v \frac{du}{dy}, \qquad du = du$				
Ν	(1883)[25] HD	$\begin{cases} \frac{1}{\rho} \frac{dp}{dy} = -\frac{dv}{dt} + \nu \nabla^2 v - u \frac{dv}{dx} - v \frac{dv}{dy} & \frac{uy}{dx} + \frac{uv}{dy} = 0 \end{cases}$	ν			
		$\left(\rho\frac{\partial u}{\partial t} + \frac{\partial p}{\partial t} - \mathcal{R}\left[\Delta u + \frac{1}{2}\frac{\partial}{\partial t}\left(\frac{\partial u}{\partial t} + \frac{\partial v}{\partial t} + \frac{\partial w}{\partial t}\right)\right] = \rho X$				-
10	Boltzmann (1805)[1]	$(221)_{-} \int_{-\partial v}^{r} \frac{\partial t}{\partial z} + \frac{\partial v}{\partial p} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z} \int_{-\partial v}^{r} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial z$		\mathcal{R}		,
14	HD	$ \begin{array}{c} (221)B \\ \partial w \\ \partial w \\ \partial w \\ \partial v \\ \partial$	ĸ	3		3
		$\left[\rho\frac{\partial w}{\partial t} + \frac{\partial p}{\partial z} - \mathcal{R}\left[\Delta w + \frac{1}{3}\frac{\partial}{\partial z}\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}\right)\right] = \rho Z$				
13	Prandtl (1034)[24]	$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = X - \frac{1}{\rho} \frac{\partial p}{\partial x} + \frac{\nu}{3} \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) + \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} \right), \qquad \qquad$		ν		2
Ν	HD	FOR INCOMPRESSIBLE, IT IS SIMPLIFIED DIV $\mathbf{w} = 0$, $\frac{D}{dt} = g - \frac{1}{\rho} \text{GRAD } p + \nu \Delta \mathbf{w}$	v	3		3

<u> </u>	1	1		9	4	E
		1	2	<u></u>	4	5
	Name/Problem/				f(r)	J(r)
no	Bibl. (Year read)	Laplace	Poisson	Navie	at	at
	- Year published/		· · · · · · · · · · · · · · · · · · ·		r=0	$r = \infty$
	Laplace	$L_1:K,H$				
1	capillary action : [9]	L_2 :force attractive only and			0	0
	1806-07	$f\simeq c^{-if},\;f\in \mathcal{RDF}$				
2	Poisson elastic : [18],(1828)-28; [21],1829;[22],(1829)-31 fluid : [22],(1829)-31 disputing origin: [18],1828 (with Navier : [19],1828;[20],1828)	Refer to Laplace's $f \in \mathcal{RFD}$	k. K	$P_1 \rightarrow N_1:$ $f \simeq ab^{-\left(\frac{r}{n\alpha}\right)^m}$ $P_2 \rightarrow N_2: \text{ not by integral but by sum because}$ k = -K = 0 at once. $P_3 \rightarrow N_3: k = \varepsilon$ of Navier $P_4 \rightarrow N_4: f \in \mathcal{RFD}$	0	0
3	Navier elastic:[12],(1821)-27 fluid:[13],(1822)-27 (with Poisson : [14],1828; [15],1829; [16],1829; [17],1829 with Arago[17],1829)	Refer to Laplace's integral	$\begin{split} N_1 &\to P_1 : f \simeq e^{-k\rho} \\ N_2 &\to P_2 : \text{ not by sum but} \\ \text{by integral as Laplace does} \\ N_3 &\to P_3 : [r^4 f(r)]_0^\infty \neq 0, \\ \varepsilon \neq k \\ N_4 &\to P_4 : r^4 f(r) \text{ for } r = 0, \\ f \in \mathcal{RFD} \\ \text{but only in } r = \infty, \\ f(r) \neq 0 \text{ as } r \to 0 \end{split}$	ε in elastic ε, E in fluid	≠0	0
4	Cauchy elastic & fluid :[2]				0	0
	Gauss	$G_1 \rightarrow L_1$: Laplace's deduction is				
	capillary action : [6]	conspicuous.				
5	(to Laplace [6],1830	$G_2 \rightarrow L_2$:no necessary to limit <i>i</i> of			-	
1	to Bessel[7],1830)	c^{-if} to be very large.				
	Poisson					
6	capillary action : [23].1831.	Same K and H with Laplace			0	0
	(to Gauss[23])					ļ

TABLE 3.	Cross-indexed	differences on the	RDFs.	$f\in\mathcal{RFD}$ (Remark.	1,5,6:	on capillarity)
----------	---------------	--------------------	-------	-----------------------	---------	--------	----------------	---

distance if this function, the \prec characteristic \succ denoted by f in mass and supposed that the attraction is uniformly concentrated in the point. • III. The forces, m, m', m'', \cdots are attractive to the infinitesimal fixed points. For these forces, with the similar way, we will designate the \prec characteristic $F \succ$ such that the inverse-directional distance is used, and with M, M', M'', \cdots , which are treated as a fixed point in one case, or a mass in the other case, which are supposed in these concentrate. For brevity, we express :

$$\Omega = -gc \int zds + \frac{1}{2}c^2 \iint ds.ds'.\varphi(ds,ds') + cC \iint ds.dS.\Phi(ds,dS)$$
(1)

where, s, s' are specially denoted spaces (satisfied with the mobile material), however we must integrate twice with the element to resolve it, because φ and Φ are defined as the functions such that $: -fx.dx = d\varphi x$, $\int fx.dx = -\varphi x$, and $-Fx.dx = d\Phi x$. $\int Fx.dx \equiv -\Phi x$. Then the integral (1) contains sextuplex integral. (\Downarrow) Here the integral (1) contains sextuplex integral.(\Uparrow)

We would like to show that the spacial elements, depending on the three variables, which imply that the sextuplex integral are to be reduced to the quadruplex integral. ⁵ Our integral (I) neglecting the insensible factors : $= -\int \pi \theta' \rho d\tau + \int \pi \theta' \rho d\tau'$. Clearly this is not important, either the parts τ and τ' or to the surface T to t is rather important. The value of the sextuplex integral in the left hand-side of the following expression becomes

$$\iint ds.dS.\varphi(ds,dS) = 4\pi\sigma\psi 0 - \pi T\theta 0 + \pi T'\theta 0 - \pi \int d\tau.\theta'\rho + \pi \int d\tau'.\theta'\rho$$
(2)

⁵(\Downarrow) Poisson recognizes this Gauss' achievement in [23].

4.2. Variation problem to be solved by geometric method.

In the application of previous survey to the evolution the second term of the expression Ω in the art. 3, in the art. 6 denote by S in the art. 16 σ, T, T' will be use as s, t, 0, if t is the total surface of the space s, in which the fluid is filled. Therefore whenever this space extensional sensible part however insensible concentration is kept, this sort of gap (crevice), the part of the second part of the expression Ω of (1) becomes $=\frac{1}{2}\pi c^2(s\phi 0 - t\theta 0)$. In static equilibrium it is due to the maximum value, this turns into $-gc\int zds + \frac{1}{2}c^2\tilde{s}\psi_0 - \frac{1}{2}\pi c^2t\theta_0 + \pi cCT\Theta_0$. In an arbitrary fluid, of which the figure is yield oneself to the space s meaning invariant, of which the expression becomes as follows: $\int z ds + \frac{\pi c \theta_0}{2g} dt - \frac{\pi C T \Theta_0}{g} T$, and in an equilibrium state which is due to *minimum*. Here, we denote $\frac{\pi c \theta_0}{2g} \equiv \alpha^2$, $\frac{\pi C T \Theta_0}{2g} \equiv \beta^2$, $t \equiv T + U$, and by W, then

$$W \equiv \int z ds + (\alpha^2 - 2\beta^2)T + \alpha^2 U$$
(3)

Here, we consider : the surface, denoted by s, a part U, on which all the points is determined by the coordinate x, y, z, these three values are the distances to an arbitrary horizontal plane. It is capable to recognize z is, for example, as the indeterminated function by x, y, for these secondary partial differential with our conventional method, by omitting a bracket, we show it by $\frac{dz}{dx} dx$, $\frac{dz}{dy} dy$. The structure we are considering is as follows :

(1) We define the points consisted of an arbitrary and every points on the surface, denoting s with respect to the rectanglar surface, normal to the exterior direction of s, and in addition, we set an angle by cosine between this normal direction to the axis of rectanglar coordinate x, y and z with parallel, which we denote by ξ, η and ζ . Thereby it will be :

$$\xi^{2} + \eta^{2} + \zeta^{2} = 1, \quad \frac{dz}{dx} = -\frac{\xi}{\zeta}, \quad \frac{dz}{dy} = -\frac{\eta}{\zeta}, \quad \Rightarrow^{*} \quad 1 + \left(\frac{dz}{dx}\right)^{2} + \left(\frac{dz}{dy}\right)^{2} = \frac{1}{\zeta^{2}} \tag{4}$$

- (2) The boundary of surface U become linear in itself, as the same as denoted by P, and while the motion is supposed necessarily, this element dP (as the same way of dU as the surface) is treated as positive only.
- (3) The angle by cosine, that directions of the element dP are expressed with the axis of coordinate of x, y, z, denoted by X. Y, Z : since we would avoid giving ambiguous sense about the direction, we define these angles as follows :

• at first, we assume that the normal direction in the element dP to the surface U, and draw a tangent • next, looking this line innerward, we draw the second side. • finally, in the normal direction with respect to the surface, we put the third side in the space s to the exterior, and constituting similarly the next system of three rectangles and the coordinate axis x, y, z.

Thus, we see easily the following expressions (cf. Disquisitiones generales circa superficies curvas), using the angle by cosine with the direction to the axis of the coordinates x, y, z are respectively

$$\eta^0 Z - \zeta^0 Y, \quad \zeta^0 X - \xi^0 Z, \quad \xi^0 Y - \zeta^0 X. \tag{5}$$

Here, we suppose that ξ^0 , η^0 , ζ^0 are the values of ξ . η , ζ for the points of the element dP. (cf. (20))

Now, we assume a triangle consisted of three points : P_1 , P_2 , P_3 .⁶ We put the element of U by a triangle dU consisted of these points, of which the coordinates are : P_1 : (x, y, z), P_2 : (x + dx, y + dy, z + dy) $\frac{dz}{dx}.dx + \frac{dz}{dy}.dy). \quad P_3:(x + d'x, \ y + d'y, \ z + \frac{dz}{dx}.d'x + \frac{dz}{dy}.d'y).$ If we assume dx.d'y - dy.d'x > 0, then the twice area of this triangle is gained by our principle as

follows :

$$(dx.d'y - dy.d'x)\sqrt{\left[1 + \left(\frac{dz}{dx}\right)^2 + \left(\frac{dz}{dy}\right)^2\right]}$$
(6)

 $𝔅(6) becomes \frac{(dx.d'y-dy.d'x)}{ζ} from (4). (↑)$ • location value by perturbation of P_1 : $(x + \delta x, y + \delta y, z + \delta z)$.

 $^{^{6}(\}Downarrow)$ The symbols : P_1 , P_2 , P_3 are of ours insted of "the first point", etc.

• Location value by perturbation of P_2 :

$$\begin{bmatrix} x + dx \\ y + dy \\ z + \frac{dz}{dx}.dx + \frac{dz}{dy}.dy \end{bmatrix} \cdot \begin{bmatrix} \delta x + \frac{d\delta x}{dx}.dx + \frac{d\delta x}{dy}.dy \\ \delta y + \frac{d\delta y}{dx}.dx + \frac{d\delta y}{dy}.dy \\ \delta z + \frac{d\delta z}{dx}.dx + \frac{d\delta z}{dy}.dy \end{bmatrix}, \begin{bmatrix} (x + \delta x) + (1 + \frac{d\delta x}{dx}).dx + \frac{d\delta x}{dy}.dy \\ (y + \delta y) + \frac{d\delta y}{dx}.dx + (1 + \frac{d\delta y}{dy}).dy \\ (z + \delta z) + (\frac{dz}{dx} + \frac{d\delta z}{dx}).dx + (\frac{dz}{dy} + \frac{d\delta z}{dy}).dy \end{bmatrix}$$

• Location value by perturbation of P_3 , by the same way : (omitted.)

 (\Downarrow) We can also show the matrix with only variation as follows :

$$\begin{bmatrix} \delta x & \delta y & \delta z \\ (1 + \frac{d\delta x}{dx}).dx + \frac{d\delta x}{dy}.dy & \frac{d\delta y}{dx}.dx + (1 + \frac{d\delta y}{dy}).dy & E.dx + D.dy \\ (1 + \frac{d\delta x}{dx}).d'x + \frac{d\delta x}{dy}.d'y & \frac{d\delta y}{dx}.d'x + (1 + \frac{d\delta y}{dy}).d'y & E.d'x + D.d'y \end{bmatrix}$$
 where,
$$\begin{cases} E \equiv \frac{dz}{dx} + \frac{d\delta z}{dx}, \\ D \equiv \frac{dz}{dy} + \frac{d\delta z}{dy}, \end{cases}$$
(7)

By the way, these principle comes from Lagrange [8, pp.189-236], ⁷ in which Lagrange states his *méthode* des variations ⁸ in hydrostatics. (\uparrow) The duplex triangles ⁹ including these points, by the same method, for brevity, by denoting the sum by N, (6) is expressed as follows : $(dx.d'y - dy.d'x)\sqrt{N}$.

(\Downarrow) These values : dxd'y - dyd'x. dzd'x - dxd'z and dyd'z - dzd'y are calculated in permutation by Jacobian |J| of the three determinants extracted from (7) :

$$(x,y): \begin{vmatrix} 1+\frac{d\delta x}{dx} & \frac{d\delta x}{dy} \\ \frac{d\delta y}{dx} & 1+\frac{d\delta y}{dy} \end{vmatrix} , \quad (x,z): \begin{vmatrix} 1+\frac{d\delta x}{dx} & \frac{d\delta x}{dy} \\ E & D \end{vmatrix} , \quad (y,z): \begin{vmatrix} 1+\frac{d\delta y}{dy} & \frac{d\delta y}{dx} \\ D & E \end{vmatrix}$$
(ft)

We denote temporarily the following sum by N, then

$$N = \left[\left(1 + \frac{d\delta x}{dx} \right) \left(1 + \frac{d\delta y}{dy} \right) - \frac{d\delta x}{dy} \cdot \frac{d\delta y}{dx} \right]^2 + \left[\left(1 + \frac{d\delta x}{dx} \right) \left(\frac{dz}{dy} + \frac{d\delta z}{dy} \right) - \frac{d\delta x}{dy} \left(\frac{dz}{dx} + \frac{d\delta z}{dx} \right) \right]^2 + \left[\left(1 + \frac{d\delta y}{dy} \right) \left(\frac{dz}{dx} + \frac{d\delta z}{dx} \right) - \frac{d\delta y}{dx} \left(\frac{dz}{dy} + \frac{d\delta z}{dy} \right) \right]^2 = C^2 + \left[D_1^2 + D_2^2 \right] D^2 + \left[E_1^2 + E_2^2 \right] E^2 - 2 \left[D_1 E_2 + E_1 D_2 \right],$$
where, $C \equiv \left(1 + \frac{d\delta x}{dx} \right) \left(1 + \frac{d\delta y}{dy} \right) - \frac{d\delta x}{dy} \cdot \frac{d\delta y}{dx} = 1 + \frac{d\delta x}{dx} + \frac{d\delta y}{dy}, D \equiv \frac{dz}{dy} + \frac{d\delta z}{dy}, E \equiv \frac{dz}{dx} + \frac{d\delta z}{dx}$ (8)

and D_1, D_2, E_1, E_2 are the two terms consisting of D and E respectively, and these coefficients are correspond to the variables of the equation on the theory of curved surface by Gauss [5]. Extending (8) with neglecting the second order of δ , for example, $\frac{d\delta x}{dy} \cdot \frac{d\delta y}{dx}$ or $(\frac{d\delta y}{dy})^2$, etc., and for brevity, denoting the sum by L, then

$$\sqrt{N} = \left(\left[1 + \left(\frac{dz}{dx}\right)^2 + \left(\frac{dz}{dy}\right)^2 \right] \cdot \left[1 + \frac{L}{1 + \left(\frac{dz}{dx}\right)^2 + \left(\frac{dz}{dy}\right)^2} \right] \right)^{\frac{1}{2}} = \left(L + 1 + \left(\frac{dz}{dx}\right)^2 + \left(\frac{dz}{dy}\right)^2 \right)^{\frac{1}{2}}$$

where, L is gained by extracting only one order terms in the expanded terms from (8): (4) Here, we see the coefficient 2 included in L in (9) come from two triangles, mentioned in the footnote (9). 10

$$N = {}^{\bullet} C^{2} + (\bullet)D^{2} + (\bullet)E^{2} + (\bullet)DE$$

= $2\left[\frac{d\delta x}{dx}\left\{\left[1 + \left(\frac{dz}{dy}\right)^{2}\right\} - \frac{dz}{dx}\frac{dz}{dy}\left(\frac{d\delta x}{dy} + \frac{d\delta y}{dx}\right) + \frac{d\delta y}{dy}\left\{\left[1 + \left(\frac{dz}{dx}\right)^{2}\right\} + \left(\frac{dz}{dy}\frac{d\delta z}{dy} + \frac{dz}{dx}\frac{d\delta z}{dx}\right)\right]$
+ $\left[1 + \left(\frac{dz}{dx}\right)^{2} + \left(\frac{dz}{dy}\right)^{2}\right] = {}^{\bullet} 2L + \left[1 + \left(\frac{dz}{dx}\right)^{2} + \left(\frac{dz}{dy}\right)^{2}\right]$ (9)

 $^{7}(\downarrow)$ Section 7. De l'equilibre des fluids incompressibles, §2. Où l'on déduit les dois générales de l'équibre des fluides incompressibles de la nature des particules qui les composent. [8, pp.204-236]

⁸(\Downarrow) Lagrange[8, p.201]. Today's mathematical nomenclature is calculus of variations or calcul des variations by The mathematical dictionary (4th edition in 2007) edited by MSJ, 1954, p.432, (Japanese).

 $^{9}(\Downarrow)$ The duplex triangles mean a rectangle made of two adjoining triangles.

10(1) We show the four terms in N (9) as follows :

•
$$C^2 = \left(1 + \frac{d\delta x}{dx} + \frac{d\delta y}{dy}\right)^2 \cong 1 + 2\left(\frac{d\delta x}{dx} + \frac{d\delta y}{dy}\right), \quad \bullet \left[\left(1 + \frac{d\delta x}{dx}\right)^2 + \left(\frac{d\delta y}{dx}\right)^2\right] D^2 \cong \left(\frac{dz}{dy}\right)^2 + 2\frac{d\delta x}{dx}\left(\frac{dz}{dy}\right)^2 + 2\frac{d\delta x}{dy}\left(\frac{dz}{dy}\right)^2 + 2\frac{d\delta x}{dx}\left(\frac{dz}{dy}\right)^2 + 2\frac{d\delta x}{dx}\left(\frac{dz}{dy}\right)^2 + 2\frac{d\delta x}{dx}\left(\frac{dz}{dy}\right)^2 + 2\frac{d\delta x}{dx}\left(\frac{dz}{dy}\right)^2 + 2\frac{d\delta x}{dx}\left(\frac{dz}{dx}\right)^2 + 2\frac{d\delta x}{dx}\left(\frac{d\delta x}{dx}\right)^2 + 2\frac{d\delta x}{dx}\left($$

增田 茂 (首都大学東京 大学院理学研究科 博士後期課程 数学専攻)

(↑) From (9)

$$L = \left[\frac{d\delta x}{dx}\left\{\left[1 + \left(\frac{dz}{dy}\right)^{2}\right\} - \frac{dz}{dx}\frac{dz}{dy}\left(\frac{d\delta x}{dy} + \frac{d\delta y}{dx}\right) + \frac{d\delta y}{dy}\left\{\left[1 + \left(\frac{dz}{dx}\right)^{2}\right\} + \left(\frac{dz}{dy}\frac{d\delta z}{dy} + \frac{dz}{dx}\frac{d\delta z}{dx}\right)\right]\right]$$
$$=^{*} \frac{1}{2}\left[N - \left\{1 + \left(\frac{dz}{dx}\right)^{2} + \left(\frac{dz}{dy}\right)^{2}\right\}\right]$$
(10)

¹¹ Here we may recall (4), then the followings hold : the ratio of the first triangle to the second and plus 1 becomes, $1 + \frac{L}{1 + (\frac{dz}{dx})^2 + (\frac{dz}{dy})^2} =^* 1 + \frac{1 \text{st triangle}}{2 \text{nd triangle}} =^* 1 + \zeta^2 L$. ¹² Moreover, this is independent of the figure of a triangle dU, then, it turns out,

$$\delta dU = \frac{LdU}{1 + (\frac{dz}{dx})^2 + (\frac{dz}{dy})^2} =^* \zeta^2 L dU$$
(11)

Expanding L in (11) using (4) and (10), then

$$\delta dU = dU \Big[\frac{d\delta x}{dx} \Big(\eta^2 + \zeta^2 \Big) - \Big(\frac{d\delta x}{dy} + \frac{d\delta y}{dx} \Big) \xi \eta + \frac{d\delta y}{dy} \Big(\xi^2 + \zeta^2 \Big) - \frac{d\delta z}{dx} \xi \zeta - \frac{d\delta z}{dy} \eta \zeta \Big], \tag{12}$$

4.3. Integral expression by decomposing dU into dQ and dU.

From (12), all variation of the surface U is obtained by the following two integrals :

$$\int dU \Big[\Big(\eta^2 + \zeta^2 \Big) \frac{d\delta x}{dx} - \xi \eta \Big(\frac{d\delta y}{dx} \Big) - \xi \zeta \frac{d\delta z}{dx} \Big] \equiv A, \int dU \Big[-\xi \eta \frac{d\delta x}{dy} + \Big(\xi^2 + \zeta^2 \Big) \frac{d\delta y}{dy} - \eta \zeta \frac{d\delta z}{dy} \Big] \equiv B,$$
(13)

and these are separately treated. We consider as follows: • at first, we take the plane, rectangle to the coordinate axis y, and such as, the value determinated by itself, suitable it, it is between peripheral, the last value, which y has in the surface U. • next, for this plane, on the peripheral P, we cut in two part, or four, or six, etc., the points, of which the first coordinate will be followed by x^0, x', x'', \dots ; • then, as if the other quantities, we put suitably the indices for these points; by the same way, we cut the surface with other plane, this infinite neighbourhood and parallel, which encounters with the second coordinate at the point of y + dy; • finally, between these planes, we could get the elements of peripheral dP^0, dP', dP'', \dots , then we could see easily the left-hand side being expressed as follows:

$$dy = -Y^{0}dP^{0} = +Y'dP' = -Y''dP'' = +Y'''dP''' \text{ etc.}$$
(14)

If, in addition to, we consider the infinitely many planes, rectangles to the coordinate axis x, of which the element dx between x^0 and x', or between x'' and x''', or etc., it corresponds to the element : ¹³

$$dU = \frac{dx.dy}{\zeta},\tag{15}$$

$$\int \delta dU = \int \left[dU \left(\eta^2 + \zeta^2 \right) \frac{d\delta x}{dx} - \frac{d\delta y}{dx} \xi \eta - \frac{d\delta z}{dx} \xi \zeta \right] + \int dU \left[\left(\xi^2 + \zeta^2 \right) \frac{d\delta y}{dy} - \frac{d\delta x}{dy} \xi \eta - \frac{d\delta z}{dy} \eta \zeta \right]$$
$$= dy \int dx \frac{1}{\zeta} \left[\left(\eta^2 + \zeta^2 \right) \frac{d\delta x}{dx} - \frac{d\delta y}{dx} \xi \eta - \frac{d\delta z}{dx} \xi \zeta \right] + dx \int dy \frac{1}{\zeta} \left[\left(\xi^2 + \zeta^2 \right) \frac{d\delta y}{dy} - \frac{d\delta x}{dy} \xi \eta - \frac{d\delta z}{dy} \eta \zeta \right]$$

(↑)

Therefore, from here, it is clear for a part of integration by parts : A, that corresponds to the part of the surface depending on between the interval : y, y + dy, to have by the following integral, i.e., substituting the right hand-side of (15) into A of (13), then $A = dy \int dx \left(\frac{\eta^2 + \zeta^2}{\zeta}, \frac{d\delta x}{dx} - \frac{\xi\eta}{\zeta}, \frac{d\delta y}{dx} - \xi d\delta z\right)$, by extending from $x = x^0$ to x = x', next, from x = x'' to x = x''' etc. In fact, considering the limit of this integration by parts, we express A and B by (14) and (15), as follows :

$$A = \int \left(\frac{\eta^2 + \zeta^2}{\zeta}\delta x - \frac{\xi\eta}{\zeta}\delta y - \xi\delta z\right)YdP - \int \zeta dU \left(\delta x - \frac{\eta^2 + \zeta^2}{\zeta} - \delta y \frac{d\xi\eta}{dx} - \delta z \frac{d\xi}{dx}\right)$$
(16)

$$\underline{B} = \int \left(\frac{\xi\eta}{\zeta}\delta x - \frac{\xi^2 + \zeta^2}{\zeta}\delta y - \eta\delta z\right) X dP + \int \zeta dU \left(\delta x \frac{\xi\eta}{\zeta} - \delta y \frac{d\frac{\xi^2 + \zeta^2}{\zeta}}{dy} + \delta z \frac{d\eta}{dy}\right)$$
(17)

¹²(\Downarrow) The two triangles of first and second are contiguous and construct a quadrilateral by two dU.

¹¹(\Downarrow) According to Gauss' notation, L denotes a first triangle, of which N is consisted.

¹³(\Downarrow) In fact, compareing the two expressions : (13) with (16) and (13) with (17) respectively, then this correspondence is deduced.

Here we determine for all the circumference P, we get ζQ from the first terms of both (16) and (17), $\left[X\xi\eta + Y\left(\eta^2 + \zeta^2\right)\right]\delta x - \left[X\left(\xi^2 + \zeta^2\right) + Y\xi\eta\right]\delta y + (X\eta\zeta - Y\xi\zeta)\delta z = \zeta Q$. Moreover, for every point of the surface U, we get V from the second terms of both (16) and (17),

$$\left(\frac{d\frac{\xi\eta}{\zeta}}{dy} - \frac{d\frac{\eta^2 + \zeta^2}{\zeta}}{dx}\right)\zeta\delta x + \left(\frac{d\frac{\xi\eta}{\zeta}}{dx} - \frac{d\frac{\xi^2 + \zeta^2}{\zeta}}{dy}\right)\zeta\delta y + \left(\frac{d\xi}{dx} + \frac{d\eta}{dy}\right)\zeta\delta z \equiv V$$
(18)

That is, we can put

$$\delta U = \int Q dP + \int V dU \tag{19}$$

The first integral is to be extended along all the circumference P, and the second is on all surface U.¹⁴ Formulae for Q and V notably contradict $X\xi + Y\eta + Z\zeta = 0$,¹⁵ Q has always the symmetric form as follows :

$$Q = (Y\zeta - Z\eta)\delta x + (Z\xi - X\zeta)\delta y + (X\eta - Y\xi)\delta z \implies^* Q = \begin{vmatrix} \delta x & \delta y & \delta z \\ X & Y & Z \\ \xi & \eta & \zeta \end{vmatrix}$$
(20)

When we see the form of V, we can reduce from the formulae (4), and moreover, from $\xi^2 + \eta^2 + \zeta^2 = 1$, we can deduce $\xi \frac{d\xi}{dx} + \eta \frac{d\eta}{dx} + \zeta \frac{d\zeta}{dx} = 0$, then by dividing this expression with ζ from the both side of hand, then

$$\Rightarrow \quad \frac{\xi}{\zeta}\frac{d\xi}{dx} = -\left(\frac{\eta}{\zeta}\frac{d\eta}{dx} + \frac{d\zeta}{dx}\right) \quad \Rightarrow \quad \frac{d\frac{\eta^2 + \zeta^2}{\zeta}}{dx} = \eta\frac{d\frac{\eta}{\zeta}}{dx} + \left(\frac{\eta}{\zeta}\cdot\frac{d\eta}{dx} + \frac{d\zeta}{dx}\right) = \eta\frac{d\frac{\eta}{\zeta}}{dx} - \frac{\xi}{\zeta}\cdot\frac{d\xi}{dx} \tag{21}$$

We may replace the coefficient of $\zeta \delta x$ in V of (18), using (4) and (21),

$$\frac{d\frac{\xi\eta}{\zeta}}{dy} - \frac{d\frac{\eta^2 + \zeta^2}{\zeta}}{dx} = \frac{d\frac{\xi\eta}{\zeta}}{dy} - \eta\frac{d\frac{\eta}{\zeta}}{dx} + \frac{\xi}{\zeta} \cdot \frac{d\xi}{dx} = \left(\frac{\xi}{\zeta}\frac{d\eta}{dy} + \eta\frac{d\xi}{dy}\right) - \eta\frac{d\xi}{dy} + \frac{\xi}{\zeta} \cdot \frac{d\xi}{dx} = \frac{\xi}{\zeta}\left(\frac{d\xi}{dx} + \frac{d\eta}{dy}\right)$$

Similarly for $\zeta \delta y$, $\frac{d\xi_{\mu}}{dx} - \frac{d\xi_{\mu}^{2}+\xi^{2}}{dy} = \frac{\eta}{\zeta} \left(\frac{d\xi}{dx} + \frac{d\eta}{dy} \right)$. Then V of (18) is reduced as follows : $V = (\xi \delta x + \eta \delta y + \zeta \delta z) \left(\frac{d\xi}{dx} + \frac{d\eta}{dy} \right)$. Before going forward, we must illustrate conveniently the important geometrical expression. Here we restrict the various direction, we would like to present the following its intuitionally facile method, which we introduced in *Disquisitiones generales circa superficies curvas*. We consider the following geometric structure. • At first, we put the sphere, of which the radius = 1 at the center of an arbitrary surface, we denote the axis of the coordinates x, y and z by the points (1), (2) and (3), • next, taking exterior domain denoted by s, we number a point denoting by the point (4) toward the normal direction on surface ; • then, at an arbitrary point on surface, drawing various rectangle direction toward point of itself, which we denote by the point (5), • finally, for the variation of itself, we suppose that the quantity $\sqrt{\delta x^{2} + \delta y^{2} + \delta z^{2}}$ is always positive, and we denote the quantity by δe for brevity, then ¹⁶ $\delta x = \delta e. \cos(1, 5)$.

Here, we consider the every point on the surface. In this boundary, if we call the periphery P, we can consider the two directions. (\Downarrow) (Remark. About the expression of cos, when (\bullet) is a unique point naming, (\bullet , \bullet) means the angle between two points taking an intermidiate of the origin.) (\Uparrow) \bullet At first, we denote the corresponding point to dP by the point (6), \bullet next, we draw the rectangle direction to the surface, which is the inner normally-directed tangential to the surface, then we denote the point by (7), \bullet then, by the hypothesis, these points (6), (7) and (4) look toward the same direction, ¹⁷ \bullet finally, using above-mentionhed (1), (2) and (3) then (4.6), (4.7) and (6,7) make a cube, ¹⁸ when we consider the angles as the rectangles. Thus, the above-mentioned equations (5) are transformed into

¹⁴(\Downarrow) This is what is called the *Gaussian integral formula* in two dimensions.

¹⁵(\Downarrow) This means $X\xi + Y\eta + Z\zeta \neq 0$.

 $^{^{16}(\}downarrow)$ By the way, for understanding Gauss' method of description of angle, we can see the same method by Lagrange in 1788.

 $^{1^{7}(\}downarrow)$ This image is considered that there are three directions emitting from a common point and making a certain angle with two directions (i.e. points.)

¹⁸(\Downarrow) (4,6), (4,7) and (6,7) make a plane consisting of a cube respectively.

TABLE 4. Comparison of Q and V in $\delta U = \int Q dP + \int V dU$ between two methods

nc	value	analytic method	geometric method
1	Q	$Q = \left(\frac{\xi \eta}{\zeta} \delta x - \frac{\xi^2 + \zeta^2}{\zeta} \delta y - \eta \delta z\right) X + \left(\frac{\eta^2 + \zeta^2}{\zeta} \delta x - \frac{\xi \eta}{\zeta} \delta y - \xi \delta z\right) Y$	$Q = -\delta e.\cos(5,7)$
2	V	$V = \left(\frac{d\frac{\xi\eta}{\zeta}}{dy} - \frac{d\frac{\eta^2 + \zeta^2}{\zeta}}{dx}\right)\zeta\delta x + \left(\frac{d\frac{\xi\eta}{\zeta}}{dx} - \frac{d\frac{\xi^2 + \zeta^2}{\zeta}}{dy}\right)\zeta\delta y + \left(\frac{d\xi}{dx} + \frac{d\eta}{dy}\right)\zeta\delta z$	$V = \delta e. \cos(4, 5). \left(\frac{d\xi}{dx} + \frac{d\eta}{dy}\right)$ $= \delta e. \cos(4, 5). \left(\frac{1}{R} + \frac{1}{R'}\right)$

 $\eta Z - \zeta Y = \cos(1,7), \quad \zeta X - \xi Z = \cos(2,7), \quad \xi Y - \eta X = \cos(3,7).$ In the previous article, these forms are as follows :

$$Q = -\delta e.\cos(5,7), \quad V = \delta e.\cos(4,5).\left(\frac{d\xi}{dx} + \frac{d\eta}{dy}\right)$$
(22)

 $\cos(4,5)$ clearly indicates, the translation of Finally, we get the value of the right-hand side in V.¹⁹

$$\frac{d\xi}{dx} + \frac{d\eta}{dy} = \frac{1}{R} + \frac{1}{R'} = -\zeta^{3} \Big[\frac{d^{2}z}{dx^{2}} \Big\{ 1 + \Big(\frac{dz}{dy} \Big)^{2} \Big\} - \frac{2d^{2}z}{dx \cdot dy} \cdot \frac{dz}{dx} \cdot \frac{dz}{dy} + \frac{d^{2}z}{dy^{2}} \Big\{ 1 + \Big(\frac{dz}{dx} \Big)^{2} \Big\} \Big],$$

where, $\zeta^{3} = \Big[1 + \Big(\frac{dz}{dx} \Big)^{2} + \Big(\frac{dz}{dy} \Big)^{2} \Big]^{-\frac{3}{2}},$ (23)

where, R and R' are the radii of curvature respectively. From (19), (22) and (23), we get the five expressions. (I) $\delta U = \int Q dP + \int V dU = -\int \delta e. \cos(5,7).dP + \int \delta e. \cos(4,5).(\frac{1}{R} + \frac{1}{R'}) dU$. Evolving further the variation, for the expression W is explained by the variation of figure of the space s, we would like to start to argue at first, from the variation of the space s. Recalling that we consider that the prism with the equal sides and oriented to the solid body, then, on this point, we can see that this prism has the following relations : (II) $\delta s = \int dU.\delta e. \cos(4, 5)$. (III) $\delta \int z ds = \int z dU.\delta e. \cos(4, 5)$. (IV) $\delta T = \int dP.\delta e. \cos(5, 8)$, If we introduce here the angle (7, 8) $\equiv i$ as the boundary angle, we can formulate (V) as follows : (V) $\cos(5,7) = \cos(5,8)$. $\cos i$, where $\delta e = \sqrt{\delta x^2 + \delta y^2 + \delta z^2}$.

By the combination of above formulae I, \cdots , IV, we get the variational expression of W, where, W is the value of (3).

$$\delta W = \int dU.\delta e.\cos(4,5).\left[z + \alpha^2 \left(\frac{1}{R} + \frac{1}{R'}\right)\right] - \int dP.\delta e.\cos(5,8).(\alpha^2\cos i - \alpha^2 + 2\beta^2),\tag{24}$$

where, $z + \alpha^2 \left(\frac{1}{R} + \frac{1}{R'}\right) = \text{Const.}$ If we set Const = 0, then $z = -\alpha^2 \left(\frac{1}{R} + \frac{1}{R'}\right)$, and, z is the height of capillary action, α and β are the values defined in (3). From (24)

$$\delta W = -\int dP.\delta e.\cos(5,8).(\alpha^2\cos i - \alpha^2 + 2\beta^2) = \alpha^2 \int dP.\delta e.\cos(5,8).\left(1 - 2\left(\frac{\beta}{\alpha}\right)^2 - \cos i\right)$$

Here, we assume A such that $\cos A = 1 - 2\sin^2(\frac{A}{2}) = 1 - 2\frac{\beta^2}{\alpha^2}$. If $\sin \frac{A}{2} = \frac{\beta}{\alpha}$, then, $\delta W = \alpha^2 \int dP \cdot \delta e \cdot \cos(5.8) \cdot (\cos A - \cos i)$, where, the integral is to be extended along the total line P.

5. Conclusions

The "two-constant" were defined in terms of kernel functions of RDFs, describing the characteristics of dissipation or diffusion within isotropic and homogeneous fluids that were necessary for the interpretation of the nature of fluid or the formulation of the equations of the fluid mechanics including kinetics, equilibrium and capillarity. With their origin perhaps arising in the work of Laplace in 1805, these sorts of functions are simple examples of today's distributions and hypergeometric function of Schwarz proposed in 1945. Gauss [6] also contributed to develop fundamental conception of RDF or MDNS equations for fluid mechanics including capillary action, because he formulated the equations with two-function instead of two-constant and these were the the superior method from other contemporaries with the progenitors of NS equations.

¹⁹(\$) cf. Laplace [9, 10] had deduced his same expression with Gauss' (23). cf. Poisson [22], p.105.

THE RAPIDLY DECREASING FUNCTIONS OF THE MICROSCOPICALLY-DESCRIPTIVE FLUID EQUATIONS.

References

- [1] Ludwig Boltzmann, Lectures on gas theory, 1895, translated by Stephen G.Brush, Dover, 1964.
- [2] A.L.Cauchy, Sur l'équilibre et le mouvement d'un système de points matériels sollicités par des forces d'attraction ou de répulsion mutuelle, Exercises de Mathématique, 3(1828); Œuvres complètes D'Augustin Cauchy (Ser. 2) 8(1890), 227-252
- [3] O.Darrigol, Worlds of flow: a history of hydrodynamics from the Bernoullis to Prandtl, Oxford Univ. Press, 2005.
- [4] L.Euler, Sectio secunda de principiia motus fluidorum, E.396. (1752-1755), Acta Academiae Imperialis Scientiarum Petropolitensis. 6(1756-1757), 271-311(1761). Leonhardi Euleri Opera Omnia. Edited by C.Truesdell III : Commentationes Mechanicae. Volumen posterius, 2-13(1955) 1-72, 73-153. (Latin)
- [5] C.F.Gauss, Disquisitiones generales circa superficies curvas, Gottingae. 1828, Carl Friedrich Gauss Werke VI, Göttingen, 1867. (We can see today in : "Carl Friedrich Gauss Werke VI", Georg Olms Verlag, Hildesheim, New York, 1973, 219-258. Also, Anzeigen eigner Abhandlungen. Götingische gelehrt Anzeigen, 1927, "Werke VI", 341-347.) (Latin)
- [6] C.F.Gauss, Principia generalia theoriae Jigurae fluidrum in statu aequilibrii, Gottingae, 1830, Carl Friedrich Gauss Werke V, Göttingen, 1867. (Similarly: "Carl Friedrich Gauss Werke V", Georg Olms Verlag, Hildesheim, New York, 1973, 29-77. Also, Anzeigen eigner Abhandlungen, Götingische gelehrt Anzeigen, 1829, as above in "Werke V", 287-293.)
- [7] C.F.Gauss, Carl Friedrich Gauss Werke. Briefwechsel mit F.W.Bessel. Gauss an Bessel (Göttingen den 27. Januar 1829), Bessel an Gauss (Königsberg 10. Februar 1829), Gottingae, 1830, Göttingen, 1880. Georg Olms Verlag, Hildesheim, New York, 1975.
- [8] J.L.Lagrange, Méchanique analitique, Paris, 1788. (Quatrième édition d'après la Troisième édition de 1833 publièe par M. Bertrand, Joseph Louis de Lagrange, Oeuvres, publièes par les soins de J.-A. Serret et Gaston Darboux, 11/12, Georg Olms Verlag, Hildesheim New York, 1973.) (J.Bertarnd remarks the differences between the editions.)
- [9] P.S.Laplace, On capillary attraction, Supplement to the tenth book of the Méchanique céleste, translated by N. Bowditch, same as above Vol. IV 685-1018, 1806,1807.
- [10] P.S.Laplace, Supplément à la théorie de l'action capillaire, translated by N. Bowditch, Vol. I §4 90-95.
- J. C. Maxwell, Drafts of 'On the dynamical theory of gases', The scientific letters and papers of James Clerk Maxwell edited by P.L.Herman, I(1846-62), II(1862-73). Cambridge University Press. (This paper is included in II, (259), 1995, 254-266.)
- [12] C.L.M.H.Navier, Mémoire sur les lois de l'équilibre et du mouvement des corps solides élastiques, Mémoires de l'Academie des Sience de l'Institute de France, 7(1827), 375-393. (Lu : 14/mai/1821.) → http://gallica.bnf.fr/ark:/12148/bpt6k32227, 375-393.
- [13] C.L.M.H.Navier, Mémoire sur les lois du mouvement des fluides, Mémoires de l'Academie des Sience de l'Institute de France, 6(1827), 389-440. (Lu: 18/mar/1822.) → http://gallica.bnf.fr/ark:/12148/bpt6k3221x, 389-440.
- [14] C.L.M.H.Navier, Note relative à l'article intitulé : Mémoire sur les équilibre et le mouvement des Corps élastiques, page 337 du tome précédent, Annales de chimie et de physique, 38(1828), 304-314.
- [15] C.L.M.H.Navier, Remarques sur l'Article de M.Poisson, insére dans le Cahier d'août, page 435, Annales de chimie et de physique, 39(1829), 145-151.
- [16] C.L.M.H.Navier, Lettre de M.Navier à M.Arago, Annales de chimie et de physique, 39(1829), 99-107. (This is followed by) Note du Rédacteur, 107-110.
- [17] C.L.M.H.Navier, Note relative à la question de l'équilibre et du mouvement des corps solides élastiques, Bulletin des sciences mathématiques, astromatiques, physiques et chimiques, 11(1829), 249-253. (The title number : No.142.)
- [18] S.D.Poisson, Mémoire sur l'équilibre et le Mouvement des Corps élastiques, Annales de chimie et de physique, 37(1828). 337-355.
- [19] S.D.Poisson, Résponse à une Note de M.Navier insérée dans le dernier Cahier de ce Journal, Annales de chimie et de physique, 38(1828), 435-440.
- [20] S.D.Poisson, Lettre de M.Poisson à M.Arago, Annales de chimie et de physique, 39(1828), 204-211.
- [21] S.D.Poisson, Mémoire sur l'Équilibre et le Mouvement des Corps élastiques. Mémoires de l'Academie royale des Siences, 8(1829), 357-570, 623-27. (Lu: 14/apr/1828.) → http://gallica.bnf.fr/ark:/12148/bpt6k3223j
- [22] S.D.Poisson, Mémoire sur les équations générales de l'équiblibre et du mouvement des corps solides élastiques et des fluides, J. École Polytech., 13(1831), 1-174. (Lu: 12/oct/1829.)
- [23] S.D.Poisson, Nouvelle théorie de l'action capillaire, Bachelier Pére et Fils, Paris, 1831.
 - \rightarrow http://gallica.bnf.fr/ark:/12148/bpt6k1103201
- [24] L.Prandtl, Fundamentals of hydro-and aeromechanics, McGrawhill, 1934. (Based on lectures of L.Prandtl (1929) by O.G.Tietjens, translated to English by L.Rosenhead. 1934.)
- [25] Lord Rayleigh (William Strutt), On the circulation of air observed in Kundt's tubes, and on the some allied acustical problems, Royal Society of London, Philosophical transactions, also in Lord Rayleigh, Scientific papers, 1883, 2, no.108, 239-257.
- [26] A.J.C.B.de Saint-Venant, Note à joindre au Mémoire sur la dynamique des fluides. (Extrait.), Académie des Sciences, Comptes-rendus hebdomadaires des séances, 17(1843), 1240-1243. (Lu: 14/apr/1834.)
- [27] G.G.Stokes, On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids, 1849, (read 1845), (From the Transactions of the Cambridge Philosophical Society Vol. VIII. p.287), Johnson Reprint Corporation, New York and London, 1966, Mathematical and physical papers 1, 1966, 75-129, Cambridge.