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1 Introduction and notation

We consider a stochastic model X ~ f(:|0),0 € © with continu-
ous parameter space ©, a-priori density function 7(6), where X €
L'(£2, A, P) on some probability space (£2, A, P). In classical sta-
tistical methods, we usually use only one density function to apply
maximum likelihood estimation or Bayesian estimation. However,
Viertl and Hareter [9] pointed out that this setting is insufficient be-
cause precise a-priori distributions are questionable concerning their
justification. This is why they proposed non-precise a-priori densities
7(8) whose precise definition is given by Definition 1.

On the other hand, in recent years some risk measures have been
generated and analyzed by an economically motivated optimization
problem, for example, value at risk(V@R), conditional value-at-risk
(CVQR) [7], convex risk of measure [3] and so on. In particular
CV@R is a very useful and important criterion when dealing with
real problems, see [4, 5,8]. In this paper we propose a fuzzy condi-

tional value-at-risk CV@QR using a non-precise density 7 in order
to handle risk more flexibly. As far as we know, Yoshida [10] firstly
investigated risk measures under fuzzy environment. However prior
distributions were not considered in this paper. We believe that in-
troducing prior distributions for risk analysis is crucial in order to
analyze more practical problems.

In the reminder of this section we outline fundamental setting
of fuzzy theory and fuzzy integral. Let R, R™ and R™*" be the sets
of real numbers, real n-dimensional column vectors and real m x n



matrices, respectively. Let B(R) be all Borel sets on R. The sets
R” and R™*" are endowed with the norm | - ||, where for z =
(@(1),...,(n)) € R, Jal| = Y7, [a(j)| and for y = (yi;) € R™*",
lyll = maxicicm D5 |yi;]. For any set X, let F(X) be the set
of all fuzzy sets X — [0,1]. The a-cut of £ € F(X) is given by
To = {z € X|Z(z) > a}(a € (0,1]) and I := c{z € X|Z(z) > 0},
where cl is a closure of a set. Let R be the set of all fuzzy numbers,
i.e., 7 € R means that 7 € F (R) is normal, upper semi-continuous
and fuzzy convex and has a compact support. Let C be the set of
all bounded and closed intervals of R. Then, for # € F(R), it holds
that 7 € R if and only if 7 normal and 7, € C for a € [0,1]. So,
for 7 € R, we write 7, = [F,,71](a € [0,1]). We use the extension
principle [2] by Zadeh to define arithmetics with fuzzy numbers and
fuzzy functions f (x) € R for each z € R, respectively. Here, we will
give a partial order < on C by the definition:For [a, b], [c,d] € C,

[a,b] < [e,d] if a<c and b<d,
[a,b] < [c,d] if [a,b] < [c,d] and [a,b] # [c,d].

This partial order < on C is extended to that of R, called fuzzy max
order,

=g
A
(3]

if @, <0, forall ae€]l0,1],

v if u<v and u#0.

=g}
A

Also, as a further extension, the partial order for fuzzy functions (9]
can be defined similarly. The Hausdorff metric on C is denoted by 4,
le.,

§([a,b],[c,d]) =la—c|V|b—d| for [a,b],c,d]€C.
This metric can be extended to R by

6(,0) = sup 0((@)a, (0)a)

a€(0,1]

for 4,0 € R. Then, it is known that the metric space (R",é) is
complete [1]. Referring to [9], we define fuzzy integral § for the fuzzy
functions f, non-precise densities 7 and the fuzzy probability IS(A),
respectively.
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Definition 1. (/9]) Assume that f,(z) and fi(z) are integrable
functions on R. Then fuzzy integral is defined by

5= [ * fla)de

where §; = [* f7(¢)dz and §t = [° f+(z)dz for all a € (0,1] and

a condition for 7 is

(F)/Rfr(:c)d:rz 1.

Definition 2. ([9]) Let S, = {f : fis a probability density s.t.7_ (x) <

f(z) <75 (z) for allz € R}. The a—cut [P, P}] of the fuzzy prob-
ability P(A) is defined by

= sup / flz
fESa

_{ o ws@)de if [, (@)da [, s (@)de > 1,

Ji 7k (z)dx else,

7o (z)da if f,75 (@)de+ [, 78 (x)dz > 1,
1— [, 7t(z)de else
(1)
for A € B(R). )
We denote the calculation of fuzzy probability P(A) by
P(A) = (FP) / #(z)dz for A € B(R). (2)
A

Recall that X ~ f(:|0),0 € © with continuous parameter space O,
a-priori density function 7(6). Then, a distribution function of X for
a prior density 7(6) is given by

Fy (zr) = / / £(y16)dody. (3)
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In case of non-precise a-prior density 7(6),
F(alf) = (FP) / Flulm)dy. (@

where f(y|7) = F) [, 7(0)f(y|6)do

Theorem 1. (/6/) For any 7, we have the following.
()lime—oo Fix (2]7) = 1, lim,—._o0 Fx (z|#) = 0.
(it) Fx (z|7) = Fx(yl7) if z > y.

(iii) limgyy0 Fix(z]7) = Fx(y|7).

According to Zadeh’s extension principle [2], we define the fuzzy
value at risk VQR.(X|7)(y € (0,1)) and conditional value at risk
CVGR,(X[7)(y € (0,1). Let VOR,(F) = inf{y|F(y) > 1}(y €

(0,1)),CV@QR,(F) = ﬁ—wfwl V@QR,(F)dp(y € (0,1)), respectively,
where F' are distribution functions.

Definition 3. ([6/) For a give & and a density function f(x|0) we
define the fuzzy value at risk VQR,(X|7) and conditional value at
risk CVQR,(X|7)(vy € (0,1)) as follows:

VQR,(X|7)(z) = sup inf Fx(y|7)(F(y)),
V@R, (F)=zx Y

CV@R,(X|7)(@) = sup  inf Fx(yl#)(F(y)).

CV@R,(F)=z Y

(5)

Lemma 1. ([6/) The a—cut of the fuzzy value at risk \7@7%7(X|7~r)
and conditional value at risk CVQR.(X|7)(y € (0,1)) are given by

—~— + - . ~ B
V@R%Q(X|7r) = 1nf{:c|FX7a(a:|7r) > v},
V@R, (X|7) = inf{a:lﬁ‘;,a(:clfr) > v},

N 1 —_

CVBR. ,(X|7) = —— [ VAR, (X|7)dp. (6)
, 1—7 ) ,

—~— — ]_ 1 —~—— —

CVGR, (X|7) = —— [ VAR, (X|7)dp.

11—~/
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2 Properties of C/V\@/R

Proposition 1. (/6/) For any random variables X,Y and 7, %7
has the following (i)-(iv):

(i) (Monotonicity) If X <Y, CV@R, (X|7) < CV@R,(Y|7).

(ii) (Translation imvariance) For X and c € R, C/V\@/RV(X +c|7) =

CV@R.(X|7) + .

(iii) (Homogeneity) For X and A > 0, CV@R (/\Xl~) ~ \CV@R L X7).

(iv) (Conve:mty) For X,Y and 0 < /\ < 1, CV@R SAX + (1 -
ANY|7) < ACV@R (X7 + (1 A)CV@R (Y|7).

Definition 4. ([6]) For any 7, the acceptance set of CT\—/\_@/R7 is de-
fined by

Usvan, = {X{CV@R (X|7) < 0}. (7)

Proposition 2. (/6]) Let A := QlCV@R Then,

(i) For X € &, if it holds that Y < X, Yedt
(ii) A is convex cone.

3 A Numerical Example

Recall the example by Viertl [9]. Let 7?1" (6) = 7 () be the density
of a classical gamma distribution (2, 1), i.e.

fl’;(@) = frf(@) = 42 X 6 X 6~46 X I[O’oo)(e)
and we consider triangle fuzzy numbers for each 6 € ©, that is,

(a+1)7;(0) (3— )7 (0
2 bl

7a(0) = [ )] for each 6 € ©.

Also, f(z|0) is the density of the exponential distribution, i.e.

f(z]|0) = 6" x>0, zeR



From (1), we can get the following for each .

8(1+a) .
Fi () = 1 - G if y > 4v2 - 4,
: B-a)3 - ﬁ) else, )
B (ylf) = 1+e)(5 ~ gop) H0<y<4v2-4,
X,a\YIT) = | _ 83-=a) 1
i) else.
Here, let v = 0.99, then we have 17@7%;99,0(X17~r) = —i—s\/% — 4,
= . 8(a+1) Tt - 44/2(3—a)(1-0.99
V@Ro.gg,a(X|7T) = )\/1:—7@—4’ CV@Ro.gg,a(X|7r) = 1-0.99 )
4 and C'/V\@/R;_E,Q,Q(Xﬁr) =D 2(1;:(:)).;*0'99) — 4 from Lemma 1. Fig.1

and 2 show \7@7%0_99 and C/V\@/Ro_gg, respectively.
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Fig.1. Representation of 17@7{0.99
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