
Title Bottom-Left安定点の効率的な列挙法とその応用 (最適化
モデルとアルゴリズムの新展開)

Author(s) Imahori, Shinji; Chien, Yuyao; Tanaka, Yuma; Yagiura,
Mutsunori

Citation 数理解析研究所講究録 (2011), 1726: 39-49

Issue Date 2011-02

URL http://hdl.handle.net/2433/170510

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

Bottom-Left安定点の効率的な列挙法とその応用

名古屋大学大学院工学研究科 今堀 慎治 (Shinji Imahori)
Graduate School of Engineering,

Nagoya University

名古屋大学大学院情報科学研究科 簡 干耀 (Yuyao Chien)
田中 勇真 (Yuma Tanaka)

柳浦 睦憲 (Mutsunori Yagiura)
Graduate School of Information Science,

Nagoya University

概要: 本稿では，既に配置された長方形の集合と 1つの未配置の長方形が与えられたとき，未配
置長方形の Bottom-Left 安定点を全て列挙する問題を考える．提案アルゴリズムは，配置された
長方形の数を n , 未配置の長方形の Bottom-Left 安定点の数を K とすると，$O((n+K)\log n)$ 時
間で全ての Bottom-Left 安定点を列挙する．提案アルゴリズムの特徴の一つに，既配置長方形が
Bottom-Left 安定でない場合や，既配置長方形間に重なりがある場合にも適用可能であることが
挙げられる．計算量の理論的な解析と，数値実験による評価を通して，提案アルゴリズムの有効
性を検証する．

1 Introduction

Rectangle packing is an important problem with applications in steel, wood, glass, paper and
many other industries. There are a number of variants of the problem with different objectives
and constraints, but the essential task is to place a given set of rectangles in a given larger
area without overlap so that the wasted space in the resulting layout is minimized. (See [14]
for a typology of cutting and packing problems.) Almost all variants of the problem are known
to be NP-hard, and many heuristic algorithms have been proposed in the literature. One of
the typical frameworks of existing heuristic algorithms is the bottom-left strategy, which places
rectangles one by one at bottom-left stable positions [1, 9, 12]. A fundamental problem to be
solved for executing these algorithms is to enumerate all bottom-left stable positions (or to find
a bottom-left stable position with some properties) for a set of already placed rectangles and
one new rectangle to be placed next.

Bottom-left stable positions are defined for a given area (in this paper, we assume the shape
of the given area is rectangular), a set of rectangles placed in the area, and one new rectangle. A
bottom-left stable position is a point in the area where the new rectangle can be placed without
overlap with already placed rectangles and the new rectangle cannot move to the bottom or to
the left. We note that there are many bottom-left stable positions in general and the lowest one
(if there are ties, the leftmost one among the lowest) is called the bottom-left position. We also
define bottom-left stability for a layout; if there is no overlap among rectangles and no rectangle
can move to the bottom or to the left, the layout satisfies bottom-left stability.

数理解析研究所講究録
第 1726巻 2011年 39-49 39

Some constructive heuristic algorithms for the rectangle packing problem place rectangles at a
bottom-left stable position [1, 3, 7, 9, 12], and hence any layouts constructed by these algorithms
(including intermediate layouts) satisfy bottom-left stability. For layouts with bottom-left sta-
bility, Chazelle [4] showed that the number of bottom-left stable positions for a new rectangle is
at most $n+1$ when the number of placed rectangles is n and proposed an algorithm to enumerate
all the bottom-left stable positions in linear time.

Another common framework of heuristic algorithms for the rectangle packing problem is im-
provement method, which places all the rectangles in the given area without overlap and itera-
tively improves the layout by some operations. This kind of algorithms often place a rectangle at
a bottom-left stable position, but in this case, they may need to solve the problem of finding such
a position in a layout without bottom-left stability. For this case, Healy et al. [6] showed that the
number of bottom-left stable positions for a new rectangle is $O(n)$ when n rectangles are placed
in the area without overlap, and they proposed an $O(n\log n)$ time algorithm to enumerate all
the bottom-left stable positions.

For some packing problems including the two-dimensional irregular packing problem, algo-
rithms with compaction and sepamtion opemtions were proposed [2, 5, 8, 11, 13]. These algo-
rithms generate layouts with overlap during their execution. However, efficient algorithms to
enumerate bottom-left stable positions in layouts with overlap have not been proposed yet.

In this paper, we consider the problem of enumerating bottom-left stable positions for a new
rectangle within a given layout that may not satisfy bottom-left stability and may have overlap
between rectangles. We propose an enumeration algorithm that runs in $O((n+K)\log n)$ time,
where n is the number of placed rectangles and K is the number of bottom-left stable positions.
Our algorithm enumerates bottom-left stable positions from bottom to top (from left to right
for positions with same y-coordinates), and hence it outputs the bottom-left position first in
$O(n\log n)$ time.

The bottom-left strategy can naturally be generalized to the three-dimensional case. An
important consequence of the algorithm proposed in this paper is that it can be utilized to
design an efficient algorithm to execute such a bottom-left algorithm for the three-dimensional
packing problem. Kawashima et al. [10] showed that the time complexity was improved from
the previous best-known $O(n^{5})$ to $O(n^{3}\log n)$. In their proof, our algorithm is used as a core
part of the algorithm, and the applicability of our algorithm to the case with rectangles having
overlap is crucial, i.e., existing algorithms such as those proposed in [4, 6] cannot be used for
this purpose.

2 Problem description

We are given a set of n rectangles $I=\{1,2, \ldots, n\}$ and one large rectangular area, also called
the container. The container has its width and height (W, H) and its bottom left point is placed
at (0,0) in the plane. Each rectangle $i\in I$ has its width and height (w_{i}, h_{i}) , and is placed
orthogonally in the plane. Let (x_{i}, y_{i}) be the coordinate of the bottom left point of rectangle i .
We note that the given rectangles may protrude from the container and may have overlap each
other. We are also given one new rectangle $j\not\in I$ with size (w_{j}, h_{j}) that has not been placed yet.
The objective is to enumerate all the bottom-left stable positions in the container for rectangle j .

40

(0, 司 口 (W, H) $(0, H)$ 口 (W, H)

$(0,0)$ $(w, 0)$ $(0,0)$ $(w, 0)$

(a) (b)

Figure 1: Bottom-left stable positions.

See Figure 1 (a) for an example of bottom-left stable positions; black points in this figure denote
bottom-left stable positions for rectangle j . Let K be the number of bottom-left stable positions
for a given layout and one new rectangle. It is known that $K=O(n^{2})$ and K can be $\Theta(n^{2})$ for
some cases (see Figure 1(b) for an example).

3 Algorithms
In this section, we propose algorithms to enumerate bottom-left stable positions. We first

introduce no-fit polygon, which is often used in packing algorithms to check overlap efficiently.
In Section 3.2, we give a technique to compute for each point p in the plane the number of
no-fit polygons containing p by using sweep line. In Section 3.3, we propose an algorithm for
enumerating bottom-left stable positions. We estimate the computational complexity of our
algorithms in Section 3.4.

Instead of considering the constraint that requires a new rectangle to be placed in the con-
tainer, we use a set of four sufficiently large virtual rectangles $C=\{c_{1}, c_{r}, c_{t}, c_{b}\}$ that satisfies
the following condition: Rectangle j does not have overlap with rectangles $i’\in I\cup C$ if and
only if it is placed in the container without overlap with rectangles $i\in I$. We call these virtual
rectangles container rectangles; see Figure 2 for an example of container rectangles. We denote
$I’=I\cup C$; then $|I’|=|I|+4$ holds.

3.1 No-fit polygon

No-fit polygon (NFP) is a geometric technique to check overlap of two polygons in two-
dimensional space. It is defined for an ordered pair of two polygons i and j , where the position
of polygon i is fixed and polygon j can be moved. $NFP(i,j)$ denotes positions of polygon j

having intersection with polygon i . In this paper, we treat only the situation that both of two
polygons i and j are rectangles, and hence it is easy to compute $NFP(i, j)$. Let rectangle i be
placed at (x_{i}, y_{i}) and rectangle j be the new rectangle. Then $NFP(i, j)$ is defined as follows:

$NFP(i, j)=\{(x, y)|x_{i}-w_{j}<x<x_{i}+w_{i}, y_{i}-h_{j}<y<y_{i}+h_{i}\}$.

41

$(0, H)$ (W, H)

$(0,0)$ W $(W, 0)$

(a) (b)

Figure 2: (a) The given area, (b) Container rectangles to represent the area.

We also define the overlap number $B(x, y)$ of no-fit polygons at point (x, y) as follows:

$B(x, y)=|\{i\in I’|(x, y)\in NFP(i,j)\}|$.

By using this overlap number, we can characterize bottom-left stable positions as follows:

(x, y) is a bottom-left stable position \Leftrightarrow

$B(x, y)=0$ A $B(x-\epsilon, y)>0\wedge B(x, y-\epsilon)>0$,

where ϵ is any sufficiently small positive number. In the next section, we will describe how to
compute overlap number of no-fit polygons.

3.2 Compute overlap numbers

The algorithm first computes all no-fit polygons $NFP(i,j)$ of rectangle j relative to placed
and container rectangles $i\in I’$. In order to compute overlap numbers (of no-fit polygons) in the
given area efficiently, the algorithm uses a sweep line parallel to the x-axis and moves it from
bottom to top.

Let N_{t} (resp., N_{b}) be the set of all the top (resp., bottom) edges of no-fit polygons and
$N_{tb}=N_{t}\cup N_{b}$. The overlap numbers on the sweep line will be changed only when the sweep
line encounters a member of N_{tb} , and changes occur only in the interval between the left edge
and right edge of the no-fit polygon encountered by the sweep line.

Let N_{1} (resp., N_{r}) be the set of all the left (resp., right) edges of no-fit polygons and $N_{1r}=$

$N_{1}\cup N_{r}$. Because there are n placed rectangles and four container rectangles, $|N_{t}|=|N_{b}|=$

$|N_{1}|=|N_{r}|=n+4$ and $|N_{tb}|=|N_{1r}|=2n+8$ hold. The elements in N_{1r} are sorted in
nondecreasing order of the x-coordinates of the elements, where ties are broken by putting more
priority to elements in N_{r} . This tie-breaking rule is important, because if two no-fit polygons
have their left and right boundaries at the same x-coordinate, the new rectangle j can be placed
without overlap at the intersection point of boundaries of the two no-fit polygons. Let $x_{1r}^{(k)}$ be
the x-coordinate of the kth element in the sorted list of N_{1r} , and define intervals

$S_{k}=[x_{1r}^{(k)}, x_{1r}^{(k+1)}]$, $k=1,2,$ $\ldots,$ $2n+7$

42

on the sweep line.
The algorithm maintains the overlap number for each interval S_{k} during the computation.

Initially, the sweep line is at a sufficiently low position, and it overlaps with no NFP. At this
moment, the overlap number of every interval S_{k} is zero.

We now consider the moment when the sweep line encounters a member in N_{tb} . Let $NFP(i, j)$

be the rectangle whose top or bottom edge is encountered by the sweep line, and assume that the
left (resp., right) edge of $NFP(i, j)$ is the lth (resp., $(r+1)$ st) element in the sorted list of N_{1r} . In
this situation, we should change the overlap numbers for intervals $S_{l},$ $S_{l+1},$

$\ldots,$
S_{r} . To be more

precise, we should increase (resp., decrease) their overlap numbers by one if the encountered
edge is a member of N_{b} (resp., N_{t}). To update overlap numbers on the sweep line efficiently,
we use a complete binary tree whose leaves represent intervals $S_{1},$ $S_{2},$

$\ldots,$
S_{2n+7} . Here, the kth

leaf from the left corresponds to the interval S_{k} , and the name of this leaf is k . We note that
$2n+7$ is not a power of two for any n , and there are remaining leaves on the right side of the
leaf corresponding to interval S_{2n+7} . Such remaining leaves are called dummy leaves. We use a
complete binary tree with the minimum number of dummy leaves. Then the number of dummy
leaves is less than $2n+7$ and the height of this tree is $O(\log n)$. Every node of this tree stores
values Pself, Pmin and Pmax, whose role will be explained later.

For two nodes u and v of the tree, let PATH (u, v) be the set of nodes in the path from
u to v including u and v themselves. Let $g(k)$ be the overlap number for interval S_{k} of the
sweep line. (To be more precise, $g(k)$ is the overlap number of all points in S_{k} except the
left (resp., right) boundary of S_{k} if it corresponds to the left (resp., right) boundary of an
NFP. Thus we need to treat the boundaries carefully considering that each NFP is an open
set. When the value of y is fixed to the height of the current sweep line, the function $B(x, y)$

is a lower semicontinuous piecewise linear function consisting of horizontal line segments with
heights $g(1),$ $g(2),$

$\ldots,$ $g(2n+7)$ aligned in this order from left to right.) For every dummy leaf u ,
we set $g(u)=1$.

The algorithm maintains the values of Pself for all nodes of the tree so that

$\sum_{u\in PATH(k,root)}$ Pself $(u)=g(k)$

is satisfied for each leaf k , where root is the root node of the binary tree. Then it is possible
to compute the overlap number of an interval in $O(\log n)$ time by using the values of Pself in
the path from the corresponding leaf to the root node. We also define the values of Pmin (v) and
Pmax (v) for each node v of the complete binary tree as follows:

Pmin $($v $)$ $=$ \min \sum Pself (u) , (1)
$k\in Q(v)$

$u\in PATH(k,v)$

Pmax $(v)=$ \max \sum Pself (u) , (2)
$k\in Q(v)$

$u\in PATH(k,v)$

where $Q(v)$ is the set of all leaf nodes in the subtree rooted at the node v . By using the value
of $p_{\min}(v)$ (resp., $p_{\max}(v)$) and the values of $p_{self}(u)$ for nodes u in the path from the parent
node of v to the root node, it is possible to check whether leaf nodes whose overlap numbers are

43

equal to zero (resp., positive) exist in $Q(v)$. Let u and $u’$ be the children of node v and assume
that the values of Pmin (u) and Pmin $(u’)$ are known. In this situation, the value of Pmin (v) can be
computed in constant time by

Pmin $(v)=p_{self}(v)+ \min${$p_{\min}(u)$, Pmin $(u’)$ }. (3)

The value of Pmax (v) can be computed similarly.
We now explain the algorithm to keep the values ofPself, p_{\min} and Pmax appropriately. Consider

the moment when the sweep line encounters a member in N_{tb} . Let $NFP(i, j)$ be the rectangle
whose top or bottom edge is encountered by the sweep line, and let the left (resp., right) edge
of $NFP(i,j)$ be the lth (resp., $(r+1)$st) element in the sorted list of N_{1r} . Here we assume for
simplicity that the encountered edge is a bottom edge of the NFP. The case when a top edge is
encountered is similar; instead of increasing the values by one, the algorithm decreases the values
by one. The algorithm first finds the leaves l and r that correspond to the lth and rth intervals
and increases the values of Pself, Pmin and Pmax of these leaf nodes by one. It then traverses nodes
in the paths from the leaf nodes l and r to their least common ancestor v . During this traversal,
whenever a node in the path from l (resp., r) to v is reached from its left (resp., right) child,
the algorithm increases the values of p_{self} , Pmin and Pmax of the right (resp., left) child by one.
It also updates p_{\min} (by using (3)) and Pmax for nodes in the paths from l and r to v so that the
conditions (1) and (2) are satisfied. Finally, the algorithm updates the values of Pmin and Pmax
for all nodes in the path from v to the root node of the tree. The details of this procedure is
summarized as Algorithm UPDATEVALUES (λ, l, r) .

Algorithm UPDATEVALUES (λ, l, r)

Input: An index $\lambda(\lambda=1$ when the sweep line encounters a bottom edge of NFP; $\lambda=-1$

when the sweep line encounters a top edge of NFP), two leaves l and r corresponding to
the leftmost and rightmost intervals and current values of p_{self} , Pmin and p_{\max} .

Task: Update the values of p_{self} , Pmin and p_{\max} .

Step 1: Increase the values of Pself (l) , Pmin (l) , Pmax $(l),$ $p_{self}(r)$, Pmin $(r),p_{\max}(r)$ by λ (this means
that if $\lambda=-1$, these values are actually decreased by one).

Step 2: Let l_{prev} $:=l$ and r_{prev} $:=r$, and then let l be the parent of l and r be the parent of r .
If $l\neq r$, proceed to Step 3; otherwise go to Step 4.

Step 3: If the right (resp., left) child u of l (resp., r) is different from l_{prev} (resp., r_{prev}), increase
the values ofPself (u) , Pmin (u) and $p_{\max}(u)$ by λ . Let Pmin (l) $:=p_{self}(l)+ \min${$p_{\min}(u)$, Pmin $(u’)$ },
where u and $u’$ are the children of node l . Update the values of $p_{\max}(l)$, Pmin $(r),p_{\max}(r)$

similarly. Return to Step 2,

Step 4: For each node v in the path from $l(=r)$ to the root and the children u and $u’$ of v , let
Pmin (v) $:=p_{self}(v)+ \min\{p_{\min}(u),p_{\min}(u’)\}$ and update $p_{\max}(v)$ similarly. Then stop.

44

Figure 3: No-fit polygons whose top edges have the same y-coordinate.

3.3 Enumerate bottom-left stable positions
We explain our algorithm that enumerates bottom-left stable positions. Observe that, while

the sweep line parallel to the x-axis is moved from bottom to top, the overlap numbers of no-
fit polygons for intervals in the sweep line decrease only if the top edge of a no-fit polygon
is encountered. This means that bottom-left stable positions can be found only in this case,
because a point (x, y) can be a bottom-left stable position only if $B(x, y)=0$ and $B(x, y-\epsilon)>0$

for any sufficiently small positive ϵ . For this reason, when the sweep line encounters the bottom
edge of a no-fit polygon, the algorithm just updates the overlap numbers according to the rule
described in Section 3.2. On the other hand, when the sweep line encounters the top edge of
a no-fit polygon, the algorithm updates the overlap numbers and outputs bottom-left stable
positions on the sweep line if such positions exist. To manage these events, the elements in N_{tb}

are sorted in nondecreasing order of the y-coordinates of the elements, where ties are broken by
putting more priority to elements in N_{t} . If the top edges of some no-fit polygons have the same
y-coordinate, we put more priority to those elements that correspond to no-fit polygons whose
left edge have smaller x-coordinates.

At any point (x, y) such that the overlap number $B(x, y)$ is equal to zero, we can place
rectangle j without overlap. Moreover, if the overlap number becomes zero when the top edge
of a no-fit polygon is encountered by the sweep line, then $B(x, y-\epsilon)>0$ for any sufficiently
small $\epsilon>0$, i.e., rectangle j cannot move downward from the point. Furthermore, if the point
(x, y) is at the left boundary of an interval S_{k} and its left adjacent interval S_{k-1} has a positive
overlap number, then $B(x-\epsilon, y)>0$ for any sufficiently small $\epsilon>0$, i.e., rectangle j cannot
move to the left, provided that all the top edges of no-fit polygons whose y-coordinates are y

have already been encountered by the sweep line. Such a point (x, y) is a bottom-left stable
position, and our algorithm enumerates all such points. We note that, if there are some no-fit
polygons whose top edges have the same y-coordinate, all such top edges should leave the sweep
line together. Otherwise, the algorithm may output positions from which rectangle j can move
to the left as depicted in Figure 3; when rectangle i

’ leaves the sweep line, black and white
points may be output as bottom-left stable positions. The details of our algorithm to enumerate
bottom-left stable positions is summarized as Algorithm ENUMERATEBL (j, I) .

45

Algorithm ENUMERATEBL (j, I)

Input: Placed rectangles $i\in I$ in the given area and one new rectangle $j\not\in I$.

Output: All bottom-left stable positions for rectangle j .

Step 1: Compute all no-fit polygons of rectangle j relative to all placed and container rectangles
$i\in I’$. Sort left and right edges N_{1r} $:=N_{1}\cup N_{r}$ of no-fit polygons with the rule described in
Section 3.2. Create the minimum complete binary tree with at least $2n+7$ leaves. Initialize
the values $p_{self}(u)$ $:=0$, Pmin (u) $:=0$ and Pmax (u) $:=0$ for all leaf nodes u corresponding to
intervals S_{1} to S_{2n+7} , and initialize the values $p_{self}(u)$ $:=1$, Pmin (u) $:=1$ and $p_{\max}(u)$ $:=1$

for all dummy leaves u . For all internal nodes u , set $p_{self}(u)$ $:=0$ and compute the values
of Pmin (u) and $p_{\max}(u)$. Sort top and bottom edges N_{tb} $:=N_{t}\cup N_{b}$ of no-fit polygons with
the rule described in Section 3.3.

Step 2: Choose the first element $e\in N_{tb}$ and let N_{tb} $:=N_{tb}\backslash \{e\}$. If the y-coordinate of
element e is greater than H–hj, then stop.

Step 3: Let $i\in I’$ be the no-fit polygon having the element e as its top or bottom edge, and
assume that its left (resp., right) edge is the lth (resp., $(r+1)$st) element in N_{1r} . If $e\in N_{t}$

(resp., N_{b}), then set λ $:=-1$ (resp., λ $:=1$). Call algorithm UPDATEVALUES (λ, l, r) .

Step 4: If $e\in N_{b}$, return to Step 2; otherwise $(i.e., e\in N_{t})$, set α $:=l$ and β $:=r$.

Step 5: Let e
‘ be the first element in N_{tb} . If e and e

‘ have the same y-coordinate and $e’\in N_{t}$,
go to Step 6; otherwise go to Step 7.

Step 6: Let $i’\in I’$ be the no-fit polygon having the element $e’$ as its top edge, and assume that
its left (resp., right) edge is the l’th (resp., $(r’+1)$st) element in N_{1r} . If $l’>\beta$ holds, go
to Step 7; otherwise let $N_{tb}:=N_{tb}\backslash \{e’\}$ and call algorithm UPDATEVALUES $(-1, l^{f}, r’)$. If
$r’>\beta$ holds, set β $:=r’$. Return to Step 5.

Step 7: If the overlap number of interval S_{α} is positive, go to Step 8. If the overlap number of
interval S_{α} is equal to 0 and that of interval $S_{\alpha-1}$ is positive, then output a bottom-left
stable position (x, y) , where $x=x_{1r}^{(\alpha)}$ and y is the y-coordinate of the current sweep line.
Go to Step 9.

Step 8: By using the values of Pmin, find the leftmost interval S_{γ} that satisfies $\gamma>\alpha$ and whose
overlap number is equal to 0 . If $\gamma>\beta$ or such a γ is not found, return to Step 2; otherwise,
output a bottom-left stable position (x, y) , where $x=x_{1r}^{(\gamma)}$ and y is the y-coordinate of the
current sweep line. Let α $:=\gamma$ and go to Step 9.

Step 9: By using the values of Pmax, find the leftmost interval S_{γ} that satisfies $\gamma>\alpha$ and whose
overlap number is positive. If $\gamma\geq\beta$ or such a γ is not found, return to Step 2; otherwise,
let α $:=\gamma$ and go to Step 8.

The overlap number of every dummy leaf is initialized to one and is not changed during the
execution of the algorithm, and hence the dummy leaf nodes have no influence on the output of

46

this algorithm. By executing this algorithm, all the bottom-left stable positions are enumerated
from bottom to top (from left to right for positions with same y-coordinates).

In Step 8, γ is found as follows. The algorithm first climbs the binary tree from the leaf α ,
and whenever a node v is reached from its left child, it checks whether the subtree rooted at
the right child u of v has a leaf whose overlap number is zero. When the first node u having
such a leaf is found, the algorithm goes down the tree from the u , choosing the left-most child
including such a leaf. In Step 9, the leaf γ is found similarly.

3.4 Computational complexity
We estimate the time complexity of our algorithms described in Sections 3.2 and 3.3. Al-

gorithm UPDATEVALUES (λ, l, r) runs in $O(\log n)$ time since the height of the complete binary
tree is $O(\log n)$. Algorithm ENUMERATEBL (j, I) calls algorithm UPDATEVALUES (λ, l, r) as a
subroutine at most $2n+8$ times in Steps 3 and 6; then the total time for this part is $O(n\log n)$.
The time complexity of Step 7 is $O(\log n)$ and it is called at most $n+4$ times. The time com-
plexity of Step 8 is $O(\log n)$ because $O(\log n)$ nodes are visited during the traversal from α to
γ , and it is possible for each node u to check whether the subtree rooted at the node u has a
leaf node whose overlap number is equal to zero in constant time (this is not hard to see from
the property explained in Section 3.2 just after equation (2) $)$. The time complexity of Step 9 is
also $O(\log n)$ for a similar reason. Steps 8 and 9 are called at most $n+4+K$ times, where K is
the number of bottom-left stable positions enumerated. In summary, the total time complexity
of algorithm ENUMERATEBL (j, I) is $O((n+K)\log n)$. Furthermore, if our algorithms are uti-
lized for finding the bottom-left position (i.e., the lowest (if there are ties, the leftmost among
ties) bottom-left stable position), algorithm ENUMERATEBL (j, I) can be stopped immediately
when it finds the first bottom-left stable position. In this case, the time complexity to find the
bottom-left position is $O(n\log n)$.

4 Computational results

In this section, we evaluate the proposed algorithms via computational experiments. All the
algorithms were coded in C and experiments were conducted on a PC (Intel Xeon $3GHz,$ $2MB$

cache, lGB memory). As a set of placed rectangles, we used test instances for the rectangle
packing problem with 16, 32, 64, . . . , 1048576 rectangles (these instances are obtained electron-
ically from http://www.na.cse.nagoya-u.ac.jp$/\sim$ imahori/packing/instance.html). The size of a
new rectangle to be placed next is similar to the placed rectangles.

Table 1 shows the computational results. Column $(n$“ shows the number of rectangles placed
in a rectangular area. The number of bottom-left stable positions enumerated is shown in
column ”BLpts,” and computation time in seconds is reported in column “time(sec.).” We
note that layouts were randomly generated many times (at least 10 times; it depends on the
number of placed rectangles) and the average number of bottom-left stable positions and average
computation time were reported. From the table, we can observe that the proposed algorithm
enumerates bottom-left stable positions in a short time. It can enumerate all the bottom-left
stable positions among hundreds of rectangles within 0.001 seconds, it spends less than 0.1

47

Table 1: Performance of our algorithm.

$\frac{nBLptst.ime(sec.)}{167661\cross 10^{-6}}$

32 9 1.71 $\cross 10^{-5}$

64 15 4.55 $\cross 10^{-5}$

128 39 1.18 $\cross 10^{-4}$

256 76 2.63 $\cross 10^{-4}$

512 138 5.84 $\cross 10^{-4}$

1024 266 1.25 $\cross 10^{-3}$

2048 504 2.66 $\cross 10^{-3}$

4096 636 5.72 $\cross 10^{-3}$

8192 1248 1.26 $\cross 10^{-2}$

16,384 2375 2.80 $\cross 10^{-2}$

32,768 2931 6.97 $\cross 10^{-2}$

65,536 6044 2.15 $\cross 10^{-1}$

131,072 6446 6.54 $\cross 10^{-1}$

262,144 12,901 1.73 $\cross 10^{0}$

524,288 16,036 4.29 $\cross 10^{0}$

1,048,576 33,483 1.04 $\cross 10^{1}$

seconds for instances with up to 32,768 rectangles, and it takes 10.4 seconds to enumerate all
the bottom-left stable positions in layouts with about one million rectangles.

5 Conclusions
In this paper, the problem of enumerating bottom-left stable positions for a given layout of

rectangles was studied. We proposed an algorithm that enumerates all the bottom-left stable
positions in $O((n+K)\log n)$ time, where n is the number of placed rectangles and K is the
number of bottom-left stable positions (i.e., size of the output). Our algorithm works for layouts
without bottom-left stability and with overlaps. We also evaluated the proposed algorithm via
computational experiments. Even for instances with more than one million placed rectangles,
the proposed algorithm works in a short computation time.

A direction of future work is to propose faster algorithms: Our algorithm runs in $O((n+$

$K)\log n)$ time, but the existence of algorithms that run in $O(n\log n+K)$ is open.

References

[1] Baker, B. S., Coffman, E. G., Rivest, R. L., Orthogonal packings in two dimensions. SIAM
Journal on Computing. 9 (1980) 846-855.

[2] Bennell, J. A., Dowsland, K.A., Hybridising tabu search with optimisation techniques for
irregular stock cutting. Management Science. 47 (2001) 1160-1172.

48

[3] Burke, E. K., Kendall, G., Whitwell, G., A new placement heuristic for the orthogonal
stock-cutting problem. Operations Research. 52 (2004) 655-671.

[4] Chazelle, B., The bottom-left bin packing heuristic: an efficient implementation. IEEE
Tkansactions on Computers. 32 (1983) 697-707.

[5] Gomes, A. M., Oliveira, J. F., Solving irregular strip packing problems by hybridising
simulated annealing and linear programming. European Journal of Operational Research.
171 (2006) 811-829.

[6] Healy, P., Creavin, M., Kuusik, A., An optimal algorithm for rectangle placement. Opera-
tions Research Letters. 24 (1999) 73-80.

[7] Imahori, S., Yagiura, M., The best-fit heuristic for the rectangular strip packing prob-
lem: an efficient implementation and the worst-case approximation ratio. Computers and
Operations Research. 37 (2010) 325-333.

[8] Imamichi, T., Yagiura, M., Nagamochi, H., An iterated local search algorithm based on
nonlinear programming for the irregular strip packing problem. Discrete optimization. 6
(2009) 345-361.

[9] Jakobs, S., On genetic algorithms for the packing of polygons. European Journal of Oper-
ational Research. 88 (1996) I65-181.

[10] Kawashima, H., Tanaka, Y., Imahori, S., Yagiura, M., An efficient implementation of a con-
structive algorithm for the three-dimensional packing problem (in Japanese). Proceedings
of the 9th Forum on Information Technology 2010 (FIT2010), Issue 1, pp. 31-38.

[11] Li, Z., Milenkovic, V., Compaction and separation algorithms for non-convex polygons and
their applications. European Journal of Operational Research. 84 (1995) 539-561.

[12] Liu, D., Teng, H., An improved BL-algorithm for genetic algorithm of the orthogonal
packing of rectangles. European Journal of Operational Research. 112 (1999) 413-420.

[13] Umetani, S., Yagiura, M., Imahori, S., Imamichi, T., Nonobe, K., Ibaraki, T., Solving the
irregular strip packing problem via guided local search for overlap minimization. Interna-
tional Transactions in Operational Research. 16 (2009) 661-683.

[14] W\"ascher, G., Haussner, H., Schumann, H., An improved typology of cutting and packing
problems. European Journal of Operational Research. 183 (2007) 1109-1130.

49

