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Abstract

We consider the solution of generalized shifted linear systems with complex
symmetric matrices. We present a numerical method for solving the linear systems
based on the shifted COCG method with a suitable bilinear form. The method can
be attractive when the inner linear systems can efficiently be solved.

1 Introduction
We consider the solution of generalized shifted linear systems with complex symmetric
(non-Hermitian) matrices of the form:

$(A+\sigma_{\ell}B)x^{(t)}=b$ , $P=1,2,$ $\ldots,$ $m$ , (1.1)

where the coefficient matrices $L(\sigma_{l})$ $:=A+\sigma_{\ell}B$ are nonsingular $N\cross N$ complex symmetric
sparse matrices, i.e., $L(\sigma_{p})=L(\sigma_{\ell})^{T}\neq\overline{L}(\sigma_{1})^{T}$, with scalar shifts $\sigma_{l}\in C,$ $I$ is the
$N\cross N$ identity matrix, and $x^{(\ell)},$ $b$ are complex vectors of length $N$ . Matrices $A$ and $B$

are assumed to be nonsingular. The linear systems (1.1) arise in large scale electronic
structure theory, and there is a strong need for fast solution of the linear systems.

When the coefficient matrices $L(\sigma_{p})$ of the linear systems (1.1) are real symmetric
matrices, the linear systems are known as parametrized (real) symmetric linear systems.
An efficient numerical method for solving the linear systems has been proposed by Meer-
bergen [6]. For studies on other parametrized linear systems, see, e.g., an excellent survey
by Simoncini & Szyld [8].

When the matrix $B$ is the identity matrix, the linear systems (1.1) reduce to standard
shifted linear systems with complex symmetric matrices. Efficient numerical methods for
this class of shifted linear systems have been studied based on Krylov subspace methods
such as the shifted QMR method [3], the shifted WQMR method [9], and the shifted
COCG method [10].

In this paper, we extend the shifted COCG method in order to solve the generalized
shifted linear systems (1.1). The extension is based on (i) transforming the systems (1.1)
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into standard shifted linear systems and (ii) using a suitable bilinear form in order to
make use of properties of the matrices $L(\sigma_{l})$ .

This paper is organized as follows. The algorithm and a property of the shifted COCG
method for solving shifted linear systems with complex symmetric matrices are described
in the next section. Then, in Section 3, an extension of the shifted COCG method is
proposed for solving the generalized shifted linear systems. Results on some numerical
experiments are reported in Section 4. Finally, some concluding remarks are made in
Section 5.

2 The shifted COCG method
The shifted COCG method [10] is a powerful solver for shifted linear systems with complex
symmetric matrices of the form:

$(A+\sigma_{f}I)x^{(l)}=b$ , $P=1,2,$ $\ldots,$
$m$ . (2.1)

Let $x_{0}^{(\ell)}$ be the initial approximate solutions for the linear systems (2.1) so that the
corresponding initial residual vectors $r_{0}^{(\ell)}$ $:=b-(A+\sigma_{\ell}I)x_{0}^{(\ell)},$ $P=1,2,$ $\ldots,$

$m$ are collinear,
i.e., there exist $c_{2},$ $c_{3},$

$\ldots,$
$c_{m}\in C$ such that

$r_{0}^{(1)}=c_{2}r_{0}^{(2)}=$ . . . $=c_{m}r_{0}^{(m)}$ .

Then, the shifted COCG method finds approximate solutions of (2.1) over the following
affine space:

$x_{n}^{(l)}\in x_{0}^{(\ell)}+K_{n}(A+\sigma_{\ell}I, r_{0}^{(p)})$ (2.2)

so that the nth residual vector $r_{n}^{(\ell)}$ $:=b-(A+\sigma_{\ell}I)x_{n}^{(l)}$ satisfies

$r_{n}^{(\ell)}\in K_{n+1}(A+\sigma_{l}I, r_{0}^{(p)})\perp K_{n}(\overline{A+\sigma_{\ell}I}, \overline{r}_{0}^{(l)})$. (2.3)

Here $K_{n}(A, b)$ is n-dimensional Krylov subspace given by span$\{b, Ab, . . . , A^{n-1}b\}$ . Since
$r_{0}^{(l)\prime}s$ are collinear, it is widely known that shift-invariance property of Krylov subspaces
holds, i.e.,

$K_{n}(A+\sigma_{i}I, r_{0}^{(i)})$ $=$ $K_{n}(A+\sigma_{j}I, r_{0}^{(j)})$ ,
$K_{n}(\overline{A+\sigma_{i}I}, \overline{r}_{0}^{(i)})$ $=$ $K_{n}(\overline{A+\sigma_{j}I}, \overline{r}_{0}^{(j)})$

for all $i,j=1,2,$ $\ldots,$
$m$ . This means that it is enough to generate only one Krylov

$f\circ rsimp1icityx_{0^{p}}^{(\ovalbox{\tt\small REJECT}_{=0,isdescribedasfo11ows:}^{tocostefficienta1gorithm.T}}Subspace,1eadin$

he algorithm of the shifted COCG method,
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Algorithm 1: Shifted COCG

$x_{0}^{(\ell)}=p_{-1}^{(\ell)}=0,$ $r_{0}=b$ ,
$\beta_{-1}=0_{\dot{}}\pi_{0}^{(s,\ell)}=\pi_{-}^{(s}i^{l)}=\alpha_{-1}=1$ ,
for $n=0,1,$ $\ldots$ until $\Vert r_{n}\Vert_{2}\leq\epsilon\Vert b\Vert_{2}$ do:

$p_{n}=r_{n}+\beta_{n-1}p_{n-1}$ ,

$\alpha_{n}=\frac{(r_{n},r_{n})}{(p_{n},(A+\sigma_{s}I)p_{n})}$ ,

$x_{n+1}=x_{n}+\alpha_{n}p_{n}$ ,
(begin shifted system)
for $P(\neq s)=1,$

$\ldots,$ $m$

if $\Vert r_{n}^{(l)}\Vert_{2}>\epsilon\Vert b\Vert_{2}$ then,
$\pi_{n}^{(s}\dotplus_{1}^{\ell)}=R_{n+1}^{(s)}(\sigma_{s}-\sigma_{\ell})arrow(2.4)$

$\beta_{n-1}^{(\ell)}=(\frac{\pi_{n-1}^{(s,\ell)}}{\pi_{n}^{(s,\ell)}})^{2}\beta_{n-1}$ ,

$\alpha_{n}^{(l)}=\frac{\pi_{n}^{(s,l)}}{\pi_{n}^{(s}\dotplus_{1}^{\ell)}}\alpha_{n}$ ,

$p_{n}^{(l)}= \frac{1}{\pi_{n}^{(s,\ell)}}r_{n}+l^{i_{n-1}^{(p)}p_{n-1}^{(\ell)}}$ ,

$x_{n+1}^{(\ell)}=x_{n}^{(\ell)}+\alpha_{n}^{(\ell)}p_{n}^{(\ell)}$ ,
end if

end
(end shifted system)
$r_{n+1}=r_{n}-\alpha_{n}(A+\sigma_{s}I)p_{n}$ ,

$\beta_{n}=\frac{(r_{n+1},r_{n+1})}{(r_{n},r_{n})}$ .

end

Here the symbol $(x, y)$ be the bilinear form given by $x^{T}y$ , which is different from standard
dot product $x^{H}y$ . In Algorithm 1, the computational formula for $\pi_{n}^{(s}\dotplus^{p_{1}}$

) is given below.

$R_{n}^{(s)}( \lambda)=(1-\alpha_{n-1}^{(s)}\lambda)R_{n-1}^{(s)}(\lambda)+\frac{\beta_{n-2}^{(s)}}{\alpha_{n-2}^{(s)}}\alpha_{n-1}^{(s)}(R_{n-1}^{(s)}(\lambda)-R_{n-2}^{(s)}(\lambda)),$ $n=2,3,$ $\ldots$ , (2.4)

where $R_{0}^{(s)}(\lambda)=1,$ $R_{1}^{(s)}(\lambda)=(1-\alpha_{0}\lambda)R_{0}^{(s)}(\lambda)$ .
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3 An extension of the shifted COCG method to the
generalized shifted linear systems

In this section, we extend the shifted COCG method for solving the generalized shifted
linear systems (1.1). We first transform the generalized shifted linear systems (1.1) into
the following form:

$(B^{-1}A+\sigma_{l}I)x^{(\ell)}=B^{-1}b$ , $\ell=1,2,$
$\ldots,$

$m$ . (3.1)

The above linear systems are well-known (standard) shifted linear systems. It is therefore
natural to use Krylov subspace methods for non-Hermitian shifted linear systems such as
the shifted GMRES method by Datta & Saad [1] and the shifted BiCGStab $(\ell)$ method by
Frommer [4]. For other methods to solve non-Hermitian shifted linear systems, see, e.g.,
[8]. These methods however does not use the property of $L(\sigma_{\ell})$ , i,e, complex symmetric
matrices. This motivates us to find algorithm that makes use of the property, and we
will show that the algorithm has nice properties: short-term recurrence relation and no
requirement of restarting.

We now extend the shifted COCG method to the generalized shifted linear systems
(1.1). We consider finding approximate solutions over the following affine space:

$x_{n}^{(l)}\in x_{0}^{(l)}+K_{n}(B^{-1}A+\sigma_{\ell}I, B^{-1}r_{0}^{(\ell)})$ (3.2)

so that the nth residual vector $r_{n}^{(\ell)}$ $:=b-(B^{-1}A+\sigma_{\ell}I)x_{n}^{(p)}$ satisfies

$r_{n}^{(\ell)}\in K_{n+1}(B^{-1}A+\sigma_{l}I, B^{-1}r_{0}^{(\ell)})\perp\overline{B}K_{n}(\overline{B^{-1}A+\sigma_{\ell}I},\overline{B}\overline{r}_{0}^{(l)})1$ . (3.3)

It is easy to see that the strategy $(3.2)-(3.3)$ is equivalent to the strategy $(2.2)-(2.3)$ of
the shifted COCG method when the matrix $B$ is the identity matrix.

This strategy corresponds to applying the shifted COCG method with the following
bilinear form:

$(x, y)_{B}:=x^{T}By$ . (3.4)

to the shifted linear systems (3.1). The resulting algorithm, referred to as the generalized
shifted COCG method, is given next.

$x_{0}^{(l)}=p_{-1}^{(\ell)}=0,$ $r_{0}=b$ ,

$\beta_{-1}=0,$ $\pi_{0}^{(s,\ell)}=\pi_{-}^{(s}i^{l)}=\alpha_{-1}=1$ ,
for $n=0,1,$ $\ldots$ until $\Vert r_{n}\Vert_{2}\leq\epsilon\Vert b\Vert_{2}$ do:

$p_{n}=B^{-1}r_{n}+\beta_{n-1}p_{n-1}$ ,

$\alpha_{n}=\frac{r_{n}^{T}B^{-1}r_{n}}{p_{n}^{T}(A+\sigma_{s}B)p_{n}}$ ,
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$x_{n+1}.arrow-\backslash x_{n}\cdot+\alpha_{n}p_{n}$ ,
(begin shifted system)
For $\ell(\neq s)=1,$

$\ldots,$
$m$

if $\Vert r_{n}^{(\ell)}\Vert_{2}>\epsilon\Vert b\Vert_{2}$ then,
$\pi_{n+1}^{(s,\ell)}=R_{n+1}^{(s)}(\sigma_{s}-\sigma_{\ell})arrow(2.4)$

$\beta_{n-1}^{(\ell)}=(\frac{\pi_{n-1}^{(s,\ell)}}{\pi_{n}^{(s,\ell)}})^{2}\beta_{n-1}$ ,

$\alpha_{n}^{(p)}=\frac{\pi_{n}^{(,p)}s}{(s,p)}\alpha_{n}$ ,
$\pi_{n+1}$

$p_{n}^{(\ell)}= \frac{1}{\pi_{n}^{(s,\ell)}}B^{-1}r_{n}+\beta_{n-1}^{(\ell)}p_{n-1}^{(\ell)}$ ,

$x_{n+1}^{(\ell)}=x_{n}^{(\ell)}+\alpha_{n}^{(\ell)}p_{n}^{(\ell)}$,
end if

end
(end shifted system)
$r_{n+1}=r_{n}-\alpha_{n}(A+\sigma_{\delta}B)p_{n}$ ,

$\beta_{n}=\frac{r_{n+1}^{T}B^{-1}r_{n+1}}{r_{n}^{T}B^{-1}r_{n}}$ .

end

It is worth mentioning that Algorithm 2 generates original residual vectors, i.e., $r_{n}=$

$b-(A+\sigma_{s}B)x_{n}$ . In Algorithm 2, the computational formula for $\pi_{n}^{(s}\dotplus^{\ell_{1}}$

) is given below.

$R_{n}^{(s)}( \lambda):=(1-\alpha_{n-1}^{(s)}\lambda)R_{n-1}^{(s)}(\lambda)+\frac{\beta_{n-2}^{(s)}}{\alpha_{n-2}^{(s)}}\alpha_{n-1}^{(s)}(R_{n-1}^{(s)}(\lambda)-R_{n-2}^{(s)}(\lambda))$, (3.5)

where $R_{t}^{(s)}(\lambda)=1,$ $R_{1}^{(s)}(\lambda)=(1-\alpha_{0}\lambda)R_{0}^{(s)}(\lambda)$ . Here we note that in Algorithm 2, we
need to compute $B^{-1}r_{n}$ that is equivalent to finding the solution $y_{n}$ of the linear systems
of the form:

$By_{n}=r_{n}$ (3.6)

at each iteration step. Since the matrix $B$ is real symmetric positive definite, the systems
could be solved by the CG method with a suitable preconditioner.

In what follows, the linear systems (3.6) and the solutions are referred to as inner linear
systems and inner solutions, respectively. The linear systems (1.1) and the solutions $x_{n}$

are referred to as outer linear systems and outer solutions, respectively.

On a derivation of the generalized shifted COCG method
It is shown that the generalized shifted COCG method can be derived form the shifted
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Bi-CG method [4]. Applying the shifted Bi-CG method to the linear systems (3.1) yields

$x_{n}^{(1)}\in x_{0}^{(\ell)}+K_{n}(B^{-1}A+\sigma_{l}I, B^{-1}r_{0}^{(l)})$ , (3.7)
$r_{n}^{(\ell)}\in K_{n+1}(B^{-1}A+\sigma_{\ell}I, B^{-1}r_{0}^{(\ell)})\perp K_{n}((B^{-1}A+\sigma_{\ell}I)^{H}, r_{0}^{*(\ell)})$ , (3.8)

where $r_{0}^{*(\ell)}$ are so-called shadow vectors. If we choose $r_{0}^{*(l)}=\overline{r}_{0}^{(l)}$ , then it follows that

$K_{n}((B^{-1}A+\sigma_{p}I)^{H}, r_{0}^{*(l)})$ $=$ $K_{n}((B^{-1}A+\sigma_{\ell}I)^{H}, (\overline{B})(\overline{B})^{-1}\overline{r}_{0}^{(\ell)})$

$=$ $K_{n}((\overline{AB^{-1}+\sigma_{l}I}), (\overline{B})(\overline{B})^{-1}\overline{r}_{0}^{(\ell)})$

$=$ $K_{n}(\overline{AB}1, (\overline{B})(\overline{B})^{-1}\overline{r}_{0}^{(p)})$

$=\overline{B}K_{n}(\overline{B}\overline{A},\overline{B}\overline{r}_{0}^{(1)})$

$=\overline{B}K_{n}(\overline{B^{-1}A+\sigma_{l}I}, \overline{B}\overline{r}_{0}^{(l)})1$ .

From which, we see that the strategy $(3.7)-(3.8)$ of the shifted Bi-CG method with the
choice $r_{0}^{*(l)}=\overline{r}_{0}^{(\ell)}$ is equivalent to the strategy $(3.2)-(3.3)$ of the generalized shifted COCG
method. This result means that the generalized shifted COCG method is a simplification
of the shifted Bi-CG method applied to the linear systems (3.1).

This relation essentially goes back to the relation between the Bi-CG method and the
COCG method that has elegantly been shown by Freund [2].

A seed switching technique for the generalized shifted COCG method
From the property $r_{n}^{(s)}=\pi_{n}^{(s,\ell)}r_{n}^{(\ell)}$ it follows that $\Vert r_{n}^{(l)}\Vert\leq\Vert r_{n}^{(s)}\Vert$ if $|\pi_{n}^{(s,\ell)}|=|R_{n}^{(s)}(\sigma_{s}-$

$\sigma_{l})|\geq 1$ . Hence, if one could find a seed system such that $|R_{n}^{(s)}(\sigma_{s}-\sigma_{\ell})|\geq 1$ for all
$\ell$ , then all shifted systems could be solved. In practice, it is generally hard to find
such linear system in advance because it means to find the system with the slowest
convergence behavior. For the generalized shifted COCG method, we have developed
the seed switching technique in order to avoid the problem [7]. See also [11] for one of
the applications. This technique can also be applied to the generalized shifted COCG
method, and the resulting technique is summarized as follows:

1. Choose a seed system, and then start Algorithm 2;

2. If the seed system was solved at nth iteration, then find the new one;

3. Start Algorithm 2 from $(n+1)$ th iteration using the new seed system.

In II, as one of criteria for choosing the new seed system $\overline{s}$ , we adopt $\tilde{s}=\arg\max_{i\in S}\{\Vert r_{n}^{(\ell)}\Vert\}$ ,
where $S$ denotes an index set of unsolved systems. In III, we need two steps to switch
the old seed system to the new one. First, compute

$\pi_{n}^{(s}\dotplus^{\overline{s}_{1})}=R_{n+1}^{(s)}(\sigma_{s}-\sigma_{\tilde{s}})$, $\beta_{n}^{(\tilde{s})}=(\pi_{n}^{(s,\tilde{s})}/\pi_{n}^{(s}\dotplus^{\tilde{s}_{1})})^{2}\beta_{n}$

for obtaining $r_{n+1}^{(\tilde{s})}$ and $\beta_{n}^{(\tilde{s})}p_{n}^{(\tilde{s})}$ , and then we have $p_{n+1}^{(\tilde{s})}(=B^{-1}r_{n+1}^{(\tilde{s})}+\beta_{n}^{(\tilde{s})}p_{n}^{(\tilde{s})})$. Now,
we are ready to start the COCG with the blinear form (3.4) for solving the system
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$(B^{-1}A+\sigma_{\tilde{s}}I)x^{(\tilde{s})}=B^{-1}b$ from $(n+1)$th iteration step. Second, to solve the rest of
systems by using the new seed $\tilde{s}$ , it requires generating $\alpha_{n+1}^{(\ell)},$ $\beta_{n}^{(\ell)}$ from the new seed.
They can be readily generated by the following polynomial:

$\pi_{n}^{(\tilde{s}}\dotplus_{1}^{\ell)}=R_{n+1}^{(\tilde{s})}(\sigma_{\tilde{S}}-\sigma_{\ell})$ for all $p\in S$ .

To obtain the above polynomial, we need to compute

$\alpha_{i}^{(\tilde{s})}=(\pi_{i}^{(s,\tilde{s})}/\pi_{i+1}^{(s,\tilde{s})})\alpha_{\ell_{arrow}}$. $\beta_{j}^{(\tilde{\epsilon})}=(\pi_{j}^{(\epsilon,\tilde{s})}/\pi_{j+1}^{(s,\tilde{s})})^{2}\beta_{j}$

for $i=0,$ $\ldots,$ $n,$ $j=0,$ $\ldots,$ $n-1$ . Hence, the switching strategy requires only scalar
operations, and moreover we see that if breakdown does not occur, iterating the process
from (II) to (III) enables us to keep solving the systems without losing the dimension of
the Krylov subspace that has been generated until the last switching.

The results of some numerical experiments will be reported in order to show the
practical efficiency of the generalized shifted COCG method.

4 Numerical examples
In this section, we report on some numerical examples concerning the generalized shifted
COCG method (Algorithm 2). All tests were performed on a workstation with a 2. $6GHz$

AMD Opteron(tm) processor 252 using double precision arithmetic. Codes were written
in Fortran 77 and compiled with g77-O3. In all cases the stopping criteria were set
as $\epsilon=10^{-12}$ . The inner linear systems (3.6) was solved by the CG method without
preconditioner that is more efficient than IC(0) in our problems. The CG method was
stopped when its relative residua12-norm becomes less than or equal to the given value
$\epsilon_{CG}$ , and in our numerical example we used $\epsilon_{CG}=10^{-6},10^{-8},10^{-10},10^{-12}$ .

4.1 Example 1
The first problem comes from the electronic structure computation of Au with 256 atoms,
which is written.as follows:

$(\sigma_{f}S-H)x^{(l)}=e_{1}$ , $P=1,2,$ $\ldots$ , 1001,

where $\sigma_{p}=0.400+(P-1+i)/1000,$ $S,$ $H\in R^{2304\cross 2304}$ are a symmetric positive definite
matrix and a symmetric matrix with 1,059,584 entries, $e_{1}=(1,0, \ldots, 0)^{T}$ . Since the
generalized shifted COCG method requires the choice of a seed system, we have chosen
the optimal seed $(\ell=174)$ in this problem; otherwise some linear systems would remain
unsolved unless we use the seed switching technique.
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$\frac{\simeq=\Phiarrow\varpi 0\subset\omega}{\tilde{\vec{\supseteqq\in}\Phi}\circ}$

$O$ $2OO$ $4OO$ $6OO$ SOO $100O$

Index of the shifted linear systems (1)

Figure 1: Number of iterations for the generalized shifted COCG method versus the index
of the shifted linear systems for example 1.

$O$ $2OO$ $4OO$ $6O0$ SOO $1OOO$

lndex of the shifted linear systemS (1)

Figure 2: The dependence of the true relative residua12-norm on the accuracy of the
inner solutions for example 1.
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Figure 1 shows the dependency of required number of iterations for the generalized
shifted COCG method on the accuracy of inner solutions (3.6). From Fig.1, the more
accurate we solve the inner linear systems, the less number of iterations were required.
Since the inner linear systems are solved roughly, we need to check the loss of accuracy
of the outer solutions. So, we next show the dependency of the accuracy for the outer
solutions of (1.1) on the accuracy of inner solutions of (3.6) in Fig.2. We see in Fig. 2
that the accuracy is almost the same order as that of the inner solutions. This example
implies how robust the present algorithm is even if we solve the inner solutions roughly.

The CPU time of the generalized shifted COCG method is given in Table 1. From
Table 1, we see that roughly solving inner linear systems does not always lead to time-
efficient, this is because total number of iterations for tlie seed systeln tended to increase,
see Fig. 1.

The results using the seed switching technique are described in Table 2. In Table 2,
470 linear systems remained unsolved after the generalized shifted COCG method with
the initial seed $0.400+0.001i$ was solved, which can be a practical issue. Using the seed
switching technique, it automatically chose the second seed $0.573+0.001i$ , and as a result
all linear systems were solved. Next, we chose the initial seed $1.400+0.001i$ . Then, the
switch required three times. In two cases, the last seed values were same. We have checked
that when we used the last seed value, no switch occured during the iterations for solving
all linear systems. In our numerical experiments, the number of switching actions was, at
most, three. In terms of CPU time, the generalized shifted COCG using seed switching
technique required 33.70 sec. with the initial seed $0.400+0.001i$ and 34.30 sec. with
the initial seed $1.400+0.001i$ , where $\epsilon_{CG}=10^{-12}$ . Finally, the CPU time of the COCG
method applied to all shifted linear systems was 1217.3 sec. We also used the COCG
method with IC(0)-type preconditioner, but it did not improve the performance due to
large number of incomplete factorizations.

Table 1. CPU time required for solving generalized shifted linear systems for example 1.

Table 2. Results on the generalized shifted COCG method
using seed switching technique for example 1.
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4.2 Example 2
The second problem is larger than the first problem, which comes from the electronic
structure computation of Au with 864 atoms:

$(\sigma_{\ell}S-H)x^{(\ell)}=e_{1\dot{)}}$ $\ell=1,2,$ $\ldots$ , 1001,

where $\sigma_{\ell}=0.400+(P-1+i)/1000,$ $S,$ $H\in R^{7776\cross 7776}$ are a symmetric positive definite
matrix and a symmetric matrix with 3,619,104 entries. Other conditions are the same as
in example 1. From Figs. 3 and 4, we see similar tendency to that shown in example 1.

$\frac{rightarrow\overline{\approx\varpi\supset}}{arrow\infty\omega}\Subset\subset 0$

’

$\underline{\frac{\Leftrightarrow}{rightarrow 0}\frac{=\varpi}{arrow\sim\omega}\Phi\circ>}$

Figure 3: Number of iterations for the generalized shifted COCG method versus the index
of the shifted linear systems for example 2.

Figure 4: The dependence of the true relative residua12-norm on the accuracy of the
inner solutions for example 2.
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The CPU time of the generalized shifted COCG method is given in Table 3. From
Table 3, the most time-consuming part was to solve the seed system. So, it is worth
reducing the CG iterations by a sophisticated preconditioner. In the case, it also found to
be better to use more accurate criterion for the inner solutions. The number of switching
actions was, at most, two. In terms of CPU time in Table 4, The generalized shifted COCG
using seed switching technique required 522.0 sec. with the initial seed $0.400+0.001i$ and
525.7 sec. with the initial seed $1.400+0.001i$ , where $\epsilon_{CG}=10^{-12}$ .

Finally, we note that the CPU time of the COCG method without preconditioning,
which was better than IC(0)-type preconditioning, applied to all shifted linear systems
was 16867.8 sec.

Table 3. CPU time required for solving generalized shifted linear systems for example 2.

Table 4. Results on the generalized shifted COCG method
using seed switching technique for example 2.

5 Conclusion
In this paper, the shifted COCG method was extended to solving generalized shifted
linear systems with complex symmetric matrices. The resulting algorithm, the generalized
shifted COCG method, was derived from two different ways: (1) the shifted COCG
method with a bilinear form and (2) a simplification of the shifted Bi-CG method. We
have learned that in our numerical examples, we can use iterative methods for solving the
inner linear systems, and the accuracy of the solutions depends linearly on the accuracy of
the solutions for the inner linear systems. From numerical examples, the algorithm found
to be highly attractive when the inner linear systems can efficiently be solved. Since the
present strategy can also be applied to the shifted QMR method and the shifted WQMR
method, the comparison among them will be our future work.

The generalized shifted COCG method has already been implemented in the quantum
mechanical nanomaterial simulation code ‘ELSES’ $($http:$//www.elses.jp)$ and will be ap-
plied to various nanomaterials as interdisciplinary research between applied mathematics
and nanomaterial science. See a recent paper [5] and references therein.
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