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The arithmetic function in 3 complex variables
closely related to $L$-functions of global fields *

Yasutaka Ihara \dagger

1 Introduction

First, recall that the Riemann zeta function $\zeta(s)$ has the Euler product
expansion

$\zeta(s)=\prod_{p}\zeta_{p}(s)$
(1.1)

on ${\rm Re}(s)>1$ , where
$\zeta_{p}(s)=(1-p^{-s})^{-1}$ , (1.2)

and also the Riemann-Hadamard decomposition

$\zeta(s)=\epsilon(s)^{-1}\prod_{\rho}(\begin{array}{l}1-\underline{s}\rho\end{array})e^{\frac{s}{\rho}}$ , (1.3)

where $\epsilon(s)$ is of the form $s(s-1)e^{Bs}\Gamma(s/2)$ and $\rho$ runs over all non-trivial
zeros of $\zeta(s)$ . As is well-known, comparison of the two decompositions (1.1)

and (1.3) leads to various identities connecting $\{p\}$
” with $\{\rho\}$”.

The function in the title, called $\tilde{M}(s;z_{1}, z_{2})$ , in which complex powers of
$\zeta(2s)$ are comprised, also has two types of product decompositions, each of
which having some common features with both $(1.1)\sim$ and (1.3) (see \S 6). Let
us recall the definition. First, the local factor $M_{p}(s;z_{I}, z_{2})$ for each prime
$p$ . Consider the power series expansion in $p^{-s}$ of the complex x-th power of
$(_{p}(s)$ :

$\zeta_{p}(s)^{x}=(1-p^{-s})^{-x}=1+\sum_{n=1}^{\infty}a_{n}(x)p^{-ns}$ , (1.4)

$a_{n}(x)=(x)_{n}= \frac{x(x+1)\cdots(x+n-1)}{n!}$ . (1.5)

It is convenient to use the complex variables $z_{1},$ $z_{2}$ defined by

$x_{\nu}=iz_{\nu}/2$ $(\nu=1,2)$ , (1.6)

’For details, cf. [3] which is a continuation of [1] and of the joint articles [5, 6] with K.

Matsumoto (cf. also [2, 4, 7]).
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where $i=\sqrt{-1}$ . Then $\tilde{M}_{p}(s;z_{1}, z_{2})$ is defined by

$\tilde{M}_{p}(s;z_{1}, z_{2})=1+\sum_{n=1}^{\infty}a_{n}(x_{1})a_{n}(x_{2})p^{-2ns}=F(x_{1}, x_{2};1;p^{-2s})$ , (1.7)

where
$F(a, b;c;t)=1+ \frac{a.b}{1c}t+\frac{a(a+1)b(b+1)}{1.2c(c+1)}t^{2}+\cdots$ (1.8)

$(|t|<1)$ denotes the Gauss hypergeometric series. It is clear that $\tilde{M}_{p}(s;z_{1}, z_{2})$

is a holomorphic function of $s,$ $z_{1},$ $z_{2}$ on ${\rm Re}(s)>0$ , symmetric in $z_{1},$ $z_{2}$ . The
zero divisor of $\tilde{M}_{p}(s;z_{1}, z_{2})$ is non-trivial (see below \S 5). The global holomor-
phic function $\tilde{M}(s;z_{1}, z_{2})$ of $s,$ $z_{1},$ $z_{2}$ on the domain ${\rm Re}(s)>1/2$ is defined
by

$\tilde{M}(s;z_{1}, z_{2})=\prod_{p}\tilde{M}_{p}(s;z_{1}, z_{2})$ (1.9)

which is absolutely convergent in the following sense. Fix any $\sigma_{0}>1/2$ and
$R>0$ . Then $|\tilde{M}_{p}(s;z_{1}, z_{2})-1|<1$ holds on ${\rm Re}(s)\geq\sigma_{0}$ and $|z_{1}|,$ $|z_{2}|\leq R$

for almost all $p$ (depending on $\sigma_{0},$ $R$ ), and the sum of $\log\tilde{M}_{p}(s;z_{1}, z_{2})$ (the
principal branch) over these $p$ is absolutely convergent; thus $\tilde{M}(s;z_{1}, z_{2})$ is
defined as the product of finitely many local factors and the exponential of
a holomorphic function on this domain. In particular, the zero divisor of
$\tilde{M}(s;z_{1}, z_{2})$ is the sum of those of local factors. Note that $\tilde{M}(s;-2i, -2ix)=$

$\zeta(2s)^{x}(x\in C)$ .
This function $\tilde{M}(s;z_{1}, z_{2})$ has a Dirichlet series expansion on ${\rm Re}(s)>1/2$

whose coefficients are polynomials of $z_{1},$ $z_{2}$ , formally arising from the Euler
product expansion (1.9). It is absolutely convergent also as Dirichlet series
on the same domain. We recall $[6]\S 4$ that (again for ${\rm Re}(s)>1/2$ ) it has an
everywhere absolutely convergent power series expansion in $z_{1},$ $z_{2}$ :

$\tilde{M}(s;z_{1}, z_{2})=1+\sum_{a,b\geq I}\mu^{(a,b)}(s)\frac{x_{1}^{a}x_{2}^{b}}{a!b!}=1-\frac{1}{4}\mu(s)z_{1}z_{2}+\cdots$ , (1.10)

where each $\mu^{(a,b)}(s)$ is a certain Dirichlet series and

$\mu(s)=\mu^{(1,1)}(s)=\sum_{p}(\sum_{n=1}^{\infty}\frac{1}{n^{2}p^{2ns}})$. (1.11)

2 Connection with the value-distribution of the logarithm of Dirich-
let L-functions (Review of joint work with K. Matsumoto)

We briefly recall the connection. For details, cf. [5, 6] and$/or$ the survey
article [7]. Our function $\tilde{M}(s;z_{1}, z_{2})$ is denoted there as $\tilde{M}_{s}(z_{1}, z_{2})$ , and is a
special case corresponding to “Case 2 over $Q$

” of [6]. A similar but different
function corresponding to “Case 1“ is related to the value-distribution of the
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logarithmic derivative of L-functions, which was defined and studied earlier
[1, 2]. While in [1, 6] the base field $K$ is any global field, here, we restrict
our attention to $K=$ Q.

The connection may be formulated in two ways. The first formulation
asserts that for each $x_{\nu}=iz_{\nu}/2\in C(\nu=1,2)$ ,

$Avg_{\chi}(\overline{L(s,\chi)}^{x1}L(s, \chi)^{x_{2}})=\tilde{M}(\sigma;z_{1}, z_{2})$ (2.1)

holds on $\sigma={\rm Re}(s)>1/2$ under some assumption, where $\chi$ runs over all
Dirichlet characters with prime conductors and $Avg_{\chi}$ denotes some average.
The assumption is that either (i) $z_{2}=z_{1}^{-}$ with the average in a weaker
sense [5], or (ii) under GRH (the Generalized Riemann Hypothesis) with
the average in a stronger sense [6]. Let $\sigma>1/2$ and

$M_{\sigma}(w)= \int_{C}\tilde{M}(\sigma;z,\overline{z})e^{-i{\rm Re}(\overline{z}w)}|dz|$ (2.2)

$(|dz|=dxdy/2\pi$ for $z=x+iy)$ denote the inverse Fourier transform of
$\tilde{M}(\sigma, z,\overline{z})$ . Then $M_{\sigma}(w)$ is a non-negative real valued continuous (in fact,
$C^{\infty}-)$ function on $C$ satisfying

$\int_{C}M_{\sigma}(w)|dw|=1$ ; (2.3)

hence it can be regarded as a density function on C. It also satisfies

$\int_{C}M_{\sigma}(w)w|dw|=0$ , (2.4)

that is, the center of gravity is the origin $0$ . Its variance $\mu_{\sigma}$ is

$\mu_{\sigma}$ $=$ $\int_{C}M_{\sigma}(w)|w|^{2}|dw|$

$=$ $\mu(\sigma)>0$ , (2.5)

$\mu(s)$ being the Dirichlet series (1.11). Now the second formulation of the
connection reads as follows. The equality

$Avg_{\chi}\Phi(\log L(s, \chi))=\int_{C}M_{\sigma}(w)\Phi(w)|dw|$ (2.6)

holds on $\sigma={\rm Re}(s)>1/2$ under either the above assumption (i) with $\Phi$ any
continuous and bounded function on $C[5]$ , or (ii) with $\Phi$ any continuous
function on $C$ of at most exponential growth [6]. The case where $\Phi$ is the
characteristic function of a compact set can be included into each case. The
equality (2.1) is a special case of (2.6) where $\Phi(w)=e^{x_{1}\overline{w}+xw}2$ .

As for connection with the (more classical) value-distribution theory for
$\{\log\zeta(\sigma+it)\}_{t\in R}$ , cf. $[5]\S 1$ or [7].
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3 Limit behaviors at $s=1/2$ $(cf. [3]\S 1,\S 2)$

It is natural to pay attention to the ”variance-normalized” function

$M_{\sigma}^{\star}(w)=\mu_{\sigma}M_{\sigma}(\mu_{\sigma}^{1/2}w)$ (3.1)

which has the variance $=1$ and the Fourier transform
$\tilde{M}_{\sigma}^{\star}(z)=\tilde{M}(\sigma;\mu_{\sigma}^{-1/2}z, \mu_{\sigma}^{-1/2}\overline{z})$ . (3.2)

As in [2, 3], consider the Plancherel volume

$\nu_{\sigma}$ $:= \int_{C}M_{\sigma}(w)^{2}|dw|=\int_{C}|\tilde{M}(\sigma;z,\overline{z})|^{2}|dz|$ . (3.3)

The product $\mu_{\sigma}\nu_{\sigma}$ , which may be expressed as

$\mu_{\sigma}\nu_{\sigma}=\int_{C}M_{\sigma}^{\star}(w)^{2}|dw|=\int_{C}|\tilde{M}_{\sigma}^{\star}(z)|^{2}|dz|$, (3.4)

is an interesting object of study. By analytic reasons, we always have
$\mu_{\sigma}\nu_{\sigma}\geq 8/9cf$ . $[2,3]$ .

Theorem (09A) As $sarrow 1/2+0$ ,

$\mu(s)/\log\frac{1}{2s-1}$ $arrow$ 1, (3.5)

$\tilde{M}(s;\mu(s)^{-1/2}z_{1}, \mu(s)^{-1/2}z_{2})$ $arrow$ $\exp(-z_{1}z_{2}/4)$ ; (3.6)

in particular,
$M_{\sigma}^{\star}(z)arrow\exp(-|z|^{2}/4)$ . (3.7)

The convergences in (3.6)(3.7) are uniform in the wider sense. These follow
from the special case $N=1$ of Theorem $(09B‘)$ below. By combining (3.7)
with the following rapid decay property of $|\tilde{M}_{\sigma}(z)|$ : for any $0<\epsilon<1$ , if
$(2\sigma-1)^{-1}\gg_{\epsilon}1$ then the inequality

$| \tilde{M}(\sigma;z,\overline{z})|^{2}\leq\exp(-\frac{1-\epsilon}{2}\mu_{\sigma}|z|^{2(I-\epsilon)})$ (3.8)

holds for all $z\in C$ ([3]\S 4 Theorem $7C$ ), we obtain

Theorem (09A’) As $\sigmaarrow 1/2+0$ ,

$M_{\sigma}^{\star}(w)$ $arrow$ 2 $\exp(-|w|^{2})$ , (3.9)
$\mu_{\sigma}\nu_{\sigma}$

$arrow$ 1. (3.10)

A private discussion with S. Takanobu was very helpful in obtaining the
formula (3.9) in this general form. As for the proofs, and for the limits as
${\rm Re}(s)arrow+\infty$ , cf. [3].
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4 Analytic continuation $(cf. [3]\S 3)$

Put

$\mathcal{D}=\{{\rm Re}(s)>0;s\neq\frac{1}{2n},$ $\frac{\rho}{2n}$ ; $\rho$ : nontrivial zeros of $((s),$ $n\in N\}$ . (4.1)

Theorem (09B) $\tilde{M}(s;z_{1}, z_{2})$ extends to a multivalent analytic function
on $\mathcal{D}\cross C^{2}$ .

This means that it extends to an analytic function on $\tilde{\mathcal{D}}\cross C^{2}$ , where $\tilde{\mathcal{D}}$ is
the universal covering of $\mathcal{D}$ . Actually, $\tilde{\mathcal{D}}$ can be replaced by the maximal
unramified abelian covering of $\mathcal{D}$ . Let

$\ell(t)=-\log(1-t)=t+\frac{1}{2}t^{2}+\cdots$ , (4.2)

and $P_{n}(x_{1}, x_{2})(n=1,2, \cdots)$ be the polynomial of degree $\leq n$ in each variable
defined by the formal power series equality

$\log F(x_{I}, x_{2};1;t)=\sum_{n=1}^{\infty}P_{n}(x_{I}, x_{2})\ell(t^{n})$ . (4.3)

Then a more descriptive account of Theorem (09B) reads as follows.

Theorem (09B’)

$\tilde{M}(s;z_{1}, z_{2})=\prod_{n=1}^{\infty}\zeta(2ns)^{P_{n}(x,x2}1)$ (4.4)

holds in the following sense; (i) for any $N\geq 0$ , the quotient of $\tilde{M}(s;z_{I}, z_{2})$

by the partial product over $n\leq N$ on the right hand side extends to a
holomorphic function on ${\rm Re}(s)>1/(2N+2);(ii)$ the equality $(4\cdot 4)$ holds
on $|z_{1}|,$ $|z_{2}|\leq R$ and ${\rm Re}(s)\geq\sigma_{0}>1/2$ , provided that either $R$ is fixed and

$\sigma_{0}$ is sufficiently large, or $\sigma_{0}$ is fixed and $R$ is sufficiently small.

We have $P_{1}(x_{1}, x_{2})=x_{I}x_{2}$ and $P_{2}(x_{I}, x_{2})=-x_{1}x_{2}(x_{1}-1)(x_{2}-1)/4$ .
Note that (4.3) already gives the “formal local version”

$\log\tilde{M}_{p}(s;z_{1}, z_{2})=\sum_{n=1}^{\infty}P_{n}(x_{1}, x_{2})\log\zeta_{p}(2ns)$ (4.5)

of (4.4). To prove the global analytic equality (4.4), we need to justify
the commutativity of summations over $p$ and those over the exponents of
$p^{-2s},$ $x_{1},$ $x_{2}$ . This follows from suitable estimations of various summands.
If $z_{1},$ $z_{2}$ are fixed and $s$ encircles a punctured point $s_{0}\in\{{\rm Re}(s)>0\}\backslash \mathcal{D}$

in the positive direction, and if, say, $s_{0}$ can be expressed in just one way
as $s_{0}=\rho/2n$ with some $n\geq 1$ and with a simple zero $\rho$ of $\zeta(s)$ , then the
function $\tilde{M}(s;z_{1}, z_{2})$ is multiplied by

$\exp(2\pi iP_{n}(x_{1}, x_{2}))$ .

97



5 Zeros of $\tilde{M}(s;z_{1}, z_{2})([3]\S 0.4)$

One can prove that the zero divisor of the analytic continuation of $\tilde{M}(s;z_{1}, z_{2})$

on $\tilde{\mathcal{D}}\cross C^{2}$ is well-defined as a divisor on $\mathcal{D}\cross C^{2}$ , and that it is simply the (10-
cally finite) sum over $p$ of the zero divisor of $\tilde{M}_{p}(s;z_{1}, z_{2})$ . The zero divisor
of the local factor

$\tilde{M}_{p}(s;z_{1}, z_{2})=F(x_{1}, x_{2};1;t^{2})$ (5.1)

$(z_{\nu}=ix_{\nu}/2, t=t_{p}=p^{-s})$ is smooth because of the Gauss differential
equation. Its property has not been analyzed systematically. But the in-
tersection with the hyperplane defined by $x_{1}+x_{2}=0$ can be analyzed as
follows. For $|t|<1$ , consider the “locally normalized“ function

$f_{t}(x)=F$ ($x/(2$ arcsin(t)), $-x/(2$ arcsin(t)); 1; $t^{2}$ ). (5.2)

Then $f_{0}(x)=J_{0}(x)$ , the Bessel function of order $0$ . Let $\pm\{\gamma_{\nu}\}_{\nu=1}^{\infty}$ with
$0<\gamma_{1}<\gamma_{2}<\cdots$ denote all the zeros of $J_{0}(x)$ , so that $\gamma_{\nu}\in((\nu-1/2)\pi, \nu\pi)$ .
Then we can prove that there exists $0<t_{0}<1$ such that for $|t|\leq t_{0},$ $(i)$ each
$\gamma_{\nu}$ extends uniquely and holomorphically to a zero $\gamma_{\nu}(t)$ of $f_{t}(x)$ satisfying
${\rm Re}(\gamma_{\nu}(t))\in((\nu-1/2)\pi, \nu\pi)$ and $|{\rm Im}(\gamma_{\nu}(t))|<1$ , and (ii) there are no other
zeros of $f_{t}(x)$ . These lead directly to the Weierstrass decomposition

$f_{t}(x)= \prod_{\nu=1}^{\infty}(1-\frac{x^{2}}{\gamma_{\nu}(t)^{2}})$ (5.3)

of $f_{t}(x)$ ; hence we obtain the second infinite product decomposition

$\tilde{M}(s;z, -z)=\prod_{p}\prod_{\nu=1}^{\infty}(1+(\frac{\arcsin(p^{-s})}{\gamma_{\nu}(p^{-s})})^{2}z^{2})=\prod_{\mu=1}^{\infty}(1+\theta_{\mu}(s)^{2}z^{2})(5.4)$

of $\tilde{M}(s;z, -z),$ $\{\theta_{\mu}(s)\}_{\mu}$ being a reordering of $\{$arcsin $(p^{-s})/\gamma_{\nu}(p^{-s})\}_{p,\nu}$ ac-
cording to the absolute values. (Here, in order to assure that each $\gamma_{\nu}(p^{-s})$

makes clear sense, we need to assume that ${\rm Re}(s)$ is sufficiently large. On
the other hand, (5.3) itself holds for each fixed $t$ if we simply let $\pm\gamma_{\nu}(t)$

denote all the zeros of $f_{t}(x)$ . So, (5.4) remains valid for each fixed $s$ with
${\rm Re}(s)>1/2$ after suitable modifications of local factors for small $p’ s$ . We
might add here that $\lim_{tarrow 1}f_{t}(x)=\sin x/x.)$

We shall indicate here the main ingredients for the proofs of the above
statements on the zeros of $f_{t}(x)$ , in order to supplement $[3]\S 0.4$ and explain
why arcsin(t) should appear. First we need:

Key lemma A The function $f_{t}(x)$ admits a Neumann series expansion

$\sum_{n=0}^{\infty}a_{2n}(t)J_{2n}(x)$ , (5.5)
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where $J_{2n}(x)$ is the Bessel function of order $2n$ , and $a_{2n}(t)$ is a holomorphic

function of $t^{2}$ on $|t|<1$ divisible by $t^{2n}$ , with $a_{0}(t)=1$ and $a_{2n}(t)\ll|t|^{2n}$ ,
$with\ll independent$ of $n$ (depending only on the compact subdomain $of|t|<$

$1$ considered).

To prove this lemma, we may assume that $t$ is positive real. Then the
key parameter arcsin(t) appears as the maximal value of $|Arg(1-te^{-i\theta})|$ for
$\theta\in R/2\pi$ . By using the new argument $\theta’$ defined via

$Arg(1-te^{-i\theta})/$ arcsin $(t)=\sin\theta’$ , (5.6)

we may express $f_{t}(x)$ as

$f_{t}(x)$ $=$ $\frac{1}{2\pi}\int_{0}^{2\pi}e^{ix\sin\theta’}(d\theta/d\theta’)d\theta^{f}$

$=$ $\frac{2}{\pi}\int_{0}^{\pi/2}K_{\tau}(\theta’)\cos(x\sin\theta’)\cos(\tau\sin\theta’)d\theta’$ , (5.7)

where $\tau=$ arcsin $(t)$ and

$K_{\tau}(\theta’)$ $=$
$\frac{\tau\cos\theta’}{\sqrt{\sin^{2}\tau-\sin^{2}(\tau\sin\theta’)}}$

$=$ $\sum_{\mu=0}^{\infty}\alpha_{2\mu}(\tau)\cos(2\mu\theta’)$ , (5.8)

with $\alpha_{2\mu}(\tau)$ given explicitly and divisible by $\tau^{2\mu}$ . We thus obtain

$f_{t}(x)= \frac{1}{2}\sum_{\mu=0}^{\infty}\alpha_{2\mu}(\tau)(J_{2\mu}(x+\tau)+J_{2\mu}(x-\tau))$, (5.9)

from which follows the lemma by the addition formula for Bessel functions.
By this lemma, $f_{t}(x)$ and $df_{t}(x)/dx$ are “close to” $J_{0}(x)$ and $-J_{1}(x)$

(respectively) of which the asymptotic behaviors away from zeros are well-
understood ([8]\S 7.21). A quantitative closeness is guaranteed by:

Key lemma $B$

$|J_{n}(x)|\ll_{abs}$ . $(n+1)^{1/2}|x|^{-1/2}e^{|{\rm Im}(x)|}$ $(n=0,1,2, \cdots;x\in C)$ . (5.10)

This proof is parallel to that of Lemma 3.3.4 of [1] which was for $x\in R$ ;
just replace $J_{n}(x)$ there by $e^{-|{\rm Im}(x)|}J_{n}(x)$ .

6 Comparisons

We thus have two decompositions related to $\tilde{M}(s;z_{1}, z_{2})$ : The first one

$\tilde{M}(s;z_{1}, z_{2})=\prod_{n=1}^{\infty}((2ns)^{P_{n}(x_{1},x)}2$ (6.1)
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is similar to the Riemann-Hadamard decomposition (1.3) of $\zeta(s)$ in the sense
that it is related to analytic continuation with respect to $s$ , but is similar
to the Euler product decomposition (1.1) of $\zeta(s)$ in the sense that it tells us
nothing about the zeros. The second,

$\tilde{M}(s;z,-z)=\prod_{p\nu}\prod_{=I}^{\infty}(1+(\frac{\arcsin(p^{-s})}{\gamma_{\nu}(p-s)}$

ノ

$2z^{2})= \prod_{\mu=1}^{\infty}(1+\theta_{\mu}(s)^{2}z^{2}),$ $(6.2)$

is similar to (1.1) in the sense that it is firstly the product over $p$ , but in
the sense that it is the Weierstrass decomposition according to its zeros, it
is similar to (1.3). It is still mysterious, but we hope that the comparison
of these two decompositions will bring us some new insight.
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