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Algebraic types and the number
of countable models

Institute of Mathematics
University of Tsukuba

Akito Tsuboi

1 Introduction
It is a long-standing conjecture that there is no stable theory with a finite
number $(>1)$ of countable models. Tanovi\v{c} [2] proved that if a countable
complete theory $T$ with $I(\omega, T)=3$ has infinitely many definable elements
then $T$ is unstable and has a dense definable ordering. In this note, we
weaken the assumption of the result.

Definition 1 Let $\mathcal{F}=\{\varphi_{i}(x) : i\in I\}$ be a family of consistent formulas over
$\emptyset$ . We say that $\mathcal{F}$ is a strongly orthogonal family if the following condition
is satisfied:

$(^{*})$ If each $\sigma_{i}(i\in I)$ is an elementary permutation of the domain $\varphi_{i}^{\mathcal{M}}$ .
Then $\bigcup_{i\in I}\sigma_{i}$ is an elementary mapping.

Example 2 For each $i\in I$ , let $c_{i}\in$ dcl $(\emptyset)$ . Then $\{tp(c_{i}) : i\in I\}$ is a
strongly orthogonal family.

Example 3 (A modification of Ehrenfeucht‘s example) Let $L=\{<, U_{n}\}_{n\in\omega}$ .
For each $n\in\omega$ , let $D_{n}$ be the convex set $($ -00, $n\sqrt{2})$ of $\mathbb{Q}$ . Let $T$ be the
theory of $(\mathbb{Q}, <, D_{n})_{n\in\omega}$ , where the interpretation of $U_{n}$ is $D_{n}$ .

In $T$ there is no definable element, since neither $U_{n}$ nor $\neg U_{n}$ has end
points. Even in a fixed sort of $T^{eq}$ , we don’t have infinitely many definable
elements. Let $\varphi_{n}(x)$ be the formula $U_{n+1}(x)\wedge\neg U_{n}(x)$ . Then the set $\mathcal{F}=$

$\{\varphi_{n}(x) : n\in\omega\}$ forms a strongly orthogonal family.
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Definition 4 Let $\mathcal{F}$ be a pairwise inconsistent family of L-formulas with
free variable $x$ . We say that $p(x)\in S(0)$ is an $\mathcal{F}$-limit type if whenever $\varphi(x)$

is a member of $p(x)$ then there are infinitely many formulas $\psi(x)\in \mathcal{F}$ with
$\varphi(x)\wedge\psi(x)$ consistent.

Remark 5 Let $\mathcal{F}=\{\varphi_{i}(x) : i\in\omega\}$ be a set of pairwise inconsistent L-
formulas.

1. An $\mathcal{F}$-limit type exists. An $\mathcal{F}$-limit type is a nonprincipal type.

2. Let $p(x)$ be an $\mathcal{F}$-limit type. Then there is an infinite subset $\mathcal{F}_{0}$ of $\mathcal{F}$

such that (1) $p(x)$ is an $\mathcal{F}_{0}$ -limit type and (2) for every $\varphi(x)\in p(x)$ ,
$\{q(x)\in \mathcal{F}_{0}:\varphi(x)\not\in q(x)\}$ is finite. Proof: Choose $\varphi_{n}(x)(n\in\omega)$ such
that $p(x)$ is equivalent to $\{\varphi_{n}(x) : n\in\omega\}$ and that for every $n\in\omega$

$T\vdash\forall x(\varphi_{n+1}(x)arrow\varphi_{n}(x))$ . Let $I$ be the set of all $n\in\omega$ such that
$\varphi_{n}(x)\wedge\neg\varphi_{n+1}(x)$ belongs to some $q\in \mathcal{F}$ . First we claim that $I$ is an
infinite set. Otherwise, there is $n^{*}\in\omega$ such that $I\subset\{0, \ldots, n^{*}-1\}$ . For
every $n\geq n^{*}$ and every $q\in \mathcal{F}$ , we have $q(x)\vdash\varphi_{n}(x)arrow\varphi_{n+1}(x)$ . By
the definition of $\mathcal{F}$-limit type, there are at least two types $q_{0},$ $q_{1}\in \mathcal{F}$

such that $\varphi_{n^{*}}(x)\in q_{k}(x)(k=0,1)$ . Then we have $q_{0}(x)\vdash p$ and
$q_{1}(x)\vdash p$ . A contradiction Thus $I$ is an infinite set and $p(x)$ is
equivalent to $\{\varphi_{n}(x) : n\in I\}$ . For each $n\in I$ , choose $q_{n}\in \mathcal{F}$ such that
$\varphi_{n}(x)\wedge\neg\varphi_{n+1}(x)\in q_{n}(x)$ . Then $\mathcal{F}_{0}=\{q_{n}:n\in\omega\}$ has the required
properties.

In this paper, $T$ is a countable complete theory formulated in the language $L$ .
Since we are interested in theories with a finite number of countable models,
throughout we assume that $T$ is a small theory (i.e. $S(\emptyset)$ is countable). In
section 1, we discuss the case where $T$ has a strongly orthogonal infinite
family. We show that if $T$ has three countable models then $T$ must be
unstable. In section 2, we discuss the case where $T$ has a strongly orthogonal
infinite family of algebraic formulas, and show that if $T$ has three countable
models then $T$ has the strict order property (and in fact it has a dense tree).
Lemmas 9 and 10 can be proved in a similar way as corresponding lemmas
in [2].
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2 Strongly Orthogonal Family of Isolated
Types

In this section, we show the following:

Proposition 6 Let $T$ be a theory with three countable models. Suppose that
there is a strongly $0$ rthogonal infinite family of $L-formi\iota las$ . Then $T$ is un-
stable.

$T$ is a stable theory with $I(\omega, T)=3$ . We fix a strongly orthogonal
infinite family $\mathcal{F}=\{\varphi_{i}(x) : i\in\omega\}$ . Using the fact that $T$ is small, we may
assume that each $\varphi_{i}(x)$ generates a principal type $p_{i}(x)$ . We fix an $\mathcal{F}$-limit
type $p^{*}(x)$ . Our aim is to derive a contradiction from these assumptions.

Lemma 7 Let $q(x)$ be a principal type. Then there are only finitely many
types $p_{i}(y)\in \mathcal{F}$ such that $q$ and $p_{i}$ are not weakly orthogonal.

Proof: Suppose otherwise and for simplicity we assume that no $p_{i}(x)$ is
weakly orthogonal to $q$ . For each $i$ choose a formula $\theta_{i}(x, y)$ witnessing that
$q(x)$ and $p_{i}(y)$ are not weakly orthogonal. Then, by the assumption that $q_{i}$ is
an isolated type, $E_{i}(u, v)=\forall y[p_{i}(y)arrow(\theta_{i}(u, y)rightarrow\theta_{i}(v, y))]$ is a 0-definable
equivalence relation on $q^{\mathcal{M}}$ . Moreover $E_{i}$ has at least two equivalence classes.

Claim A Let $a\models q$ . For any $i$ , the class $a_{E_{i}}$ is $p_{i}^{\Lambda 4}$ -definable.

Let $r=$ tp$\theta_{i}(a/p_{i^{\vee 1}}^{J})$ . By the stability, $r$ is a definable type. So there is a
finite tuple $d$ from $p_{i^{}}^{J}$ and a formula $\delta(y, z)$ such that for any $b\models p_{i}^{\mathcal{M}}$ ,

$\theta_{i}(x, b)\in r\Leftrightarrow\delta(b, d)$ holds.

Let $\varphi(x, d)$ be the $L(d)$ -formula

$\forall y(p_{i}(y)arrow(\delta(y, d)rightarrow\theta_{i}(x, y)))$ .

Clearly $\varphi(x, d)$ defines the set $E_{i}(x, a)$ . (End of Proof of Claim A)

Let $\{a_{i} : i\in\omega\}$ be a set of realizations of $q$ .

Claim $B\{E_{i}(x, a_{i}):i\in\omega\}$ is consistent.

31



By claim $A$ , the class $a_{0E_{i}}$ is $p_{i}^{\Lambda 4}$ -definable. Choose elements $b_{i1},$
$\ldots,$

$b_{ik_{i}}\in p_{i}^{\mathcal{M}}$

and a formula $\varphi_{i}(x, b_{i1}, \ldots, b_{ik_{i}})$ equivalent to $E_{i}(x, a_{0})$ . Choose an automor-
phism $\sigma_{i}$ that maps $a_{0}$ to $a_{i}$ . Let $\tau_{i}$ be the restriction of $\sigma_{i}$ to the domain $p_{i}^{\lambda 4}$ .
Then by the strong orthogonality we see that $\bigcup_{i\in\omega}\tau_{i}$ is an elementary map-
ping. Since $\{E_{i}(x, a_{0}):i\in\omega\}$ is consistent, $\{\varphi_{i}(x, \tau_{i}b_{i1}, \ldots, \tau_{i}b_{ik_{i}}):i\in\omega\}$ is
also consistent. So $\{E_{i}(x, \sigma_{i}(a_{0})):i\in\omega\}$ is consistent.

From Claim $A$ , we also know the following.

Claim $C$ For each $\eta\in 2^{\omega},$ $q(x)\cup q(y)\cup\{E_{i}(x, y) : i<n, \eta(i)=1\}\cup$

$\{\neg E_{i}(x, y):i<n, \eta(i)=0\}$ is consistent.

From Claim $B$ , we have continuum many complete types over $\emptyset$ . But this is
impossible, since $I(\omega, T)<\omega$ .

Lemma 8 Let $q$ be a principal type. Then $q$ and $p^{*}$ are weakly $0$rthogonal.

Proof.$\cdot$ Suppose otherwise and choose a formula $\theta(x, y)$ such that both
$p^{*}(x)\cup q(y)\cup\{\theta(x, y)\}$ and $p^{*}(x)\cup q(y)\cup\{\neg\theta(x, y)\}$ are consistent. Let
$\chi(y)\in q(y)$ be a formula isolating $q$ . Then the formula

$\exists y_{0}\exists y_{1}[\chi(y_{0})\wedge\chi(y_{1})\wedge\theta(x, y_{0})\wedge\neg\theta(x, y_{1})]$

belongs to $p^{*}(x)$ . Since $p^{*}$ is an $\mathcal{F}$-limit type, this formula belongs to infinitely
many $p_{i}’ s$ . Among such $p_{i}’ s$ , by the previous lemma, there is $p_{i}$ such that $p_{i}$

and $q$ are weakly orthogonal. Then we can choose $a\models p_{i}$ and $b_{0},$ $b_{1}$ such that

$\mathcal{M}\models\chi(b_{0})\wedge\chi(b_{1})\wedge\theta(a, b_{0})\wedge\neg\theta(a, b_{1})]$ .

Since $\chi(y)$ isolates $q(y)$ , we have tp$(b_{j})=q(j=0,1)$ . Thus we have two
distinct extensions tp $(ab_{0})$ and tp $(ab_{1})$ of $p_{i}(x)\cup q(y)$ . This contradicts the
weak orthogonality of $p_{i}$ and $q$ .

Lemma 9 $Le,fr(x)\in S(\emptyset)$ be a $t\uparrow/pe$, with $CB(r)=1$ . Let $b\models r$ and
$a_{0},$ $a_{1}\models p^{*}$ . Suppose that tp $(a_{1}/a_{0})$ is semi-isolated and that tp $(b/a_{0})$ is not
semi-isolo.$ted$ . Thcn tp $(a_{0}b)=$ tp $(a_{1}b)$ .

$P_{70of}.\cdot$ Let $\chi(y)$ be a formula isolating $r(y)$ among the types with CB-
rank $\geq 1$ . By way of contradiction, we assume that the lemma is not true.
Choose a formula $\theta(x, y)$ such that $\mathcal{M}\models\theta(a_{0}, b)\wedge\neg\theta(a_{1}, b)\wedge\chi(b)$ . Choose
a formula $\psi(z, a_{0})$ witnessing the semi-isolation of tp $(a_{1}/a_{0})$ . Then we have
$\mathcal{M}\models$ ョ$z[\theta(a_{0}, b)\wedge\neg\theta(z, b)\wedge\chi(b)\wedge\psi(z, a_{0})]$ . Since $tp(b/a_{0})$ is not semi-
isolated, we can choose $b^{f}$ and $a_{1}^{f}$ with the following properties:
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1. $\mathcal{M}\models\theta(a_{0}, b’)\wedge\neg\theta(a_{1}’, b’)$ A $\chi(b^{f})\wedge\psi(a_{1}^{f}, a_{0})$ .

2. tp $(b^{f})\neq$ tp $(b)$ , so tp $(b’)$ is a principal type.

By our choice of $\psi(z, a_{0}),$ $a_{1}’$ realizes the type $p^{*}$ . So tp $(a_{0}b^{f})$ and tp $(a_{1}^{f}b’)$ are
two distinct extensions of $p^{*}(x)\cup$ tp $(b’)$ , contradicting lemma 8.

Lemma 10 Let $r=$ tp $(b)$ be a type of CB-mnk 1. Let $a$ be a realization of
$p^{*}$ such that tp $(a/b)$ is isolated while tp $(b/a)$ is not semi-isolated. Let $\psi(x, x’)$

be the $fo$rmula
$\forall y[\chi(y)arrow(\theta(x, y)arrow\theta(x’, y))]$ ,

$?l)f_{l,(_{\text{ノ}}^{}7()\theta(x,b)}$ is a formula isolating tp $(a/b)$ , and $\chi(y)$ is a $f_{0?7}r\iota ula$ isolating
$r$ among the $t\uparrow/pc^{J},s?1$) $\uparrow th$ CB-mnk $\geq 1$ . Then, for $am/a^{f}\models p^{*}$ , the following
$a7^{\cdot}\theta$, equivalent:

1. tp $(a’/a)$ is semi-isolated;

2. $\Lambda l\models\psi(a, a’)$ .

Proof: $1\Rightarrow 2$ : Assume 1. Let $b’$ be any element satisfying $\chi(y)$ . First
suppose that tp $(b’)$ is principal. Then tp $(b’)$ and $p^{*}$ are weakly orthogonal by
lemma 8, so we have the equivalence of $\theta(a, b’)$ and $\theta(a’, b’)$ . Next suppose
that tp $(b’)$ is nonprincipal and that $\theta(a, b^{f})$ holds. Now $b^{f}$ realizes $r=$ tp $(b)$ .
So we have tp(ab’) $=$ tp(ab), as $\theta(x, b)$ isolates the type tp $(b/a)$ . In particular,
tp $(b’/a)$ is not semi-isolated.
$2\Rightarrow 1$ : Assume 2. Notice that $b$ satisfies $\chi(y)\wedge\theta(a, y)$ . So, by 2, we have
$\mathcal{M}\models\theta(a’, b)$ . From this and the fact that $\theta(x, b)$ isolates tp $(a/b)$ , we have
tp $(a^{f})=$ tp $(a)=p^{*}$ . Thus, tp $(a’/a)$ is a semi-isolated type.

Proof of Proposition 6: Since $T$ has exactly three countable models, for any
two nonalgebraic types $q_{i}(i=1,2)$ there are $a_{i}\models q_{i}(i=1,2)$ such that
tp $(a_{1}/a_{2})$ is isolated while tp $(a_{2}/a_{1})$ is not semi-isolated. This can be shown
using the fact that if $I(\omega, T)=3$ then every type is a powerful type (see [1]).
So the assumption of the last lemma 10 is fulfilled. Thus the semi-isolation
is definable on $p^{*\mathcal{M}}$ . Since the semi-isolation relation is an infinite order, we
get a contradiction. So we have shown that $T$ is unstable.
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3 Strongly Orthogonal Family of Algebraic
Types

Proposition 11 Let $T$ be a theo $r\cdot y$ with $I(\omega, T)=3$ . Suppose that there is
a strongly orthogonal infinite family of algebraic types. Then $T$ has the strict
orde $7^{\cdot}$ $p_{7}ope7^{\cdot}ty$ .

We fix a strongly orthogonal infinite family $\mathcal{F}=\{p_{i}(x) : i\in\omega\}$ , where
each $p_{i}(x)$ is an algebraic type.

In section 2lemma 7, by assuming the stability we proved the weak
orthogonality of $p_{i}$ and $q$ . However if each $p_{i}$ is an algebraic type, we can
prove the same result without assuming the stability.

So let us recall the proof there. We assumed that each $p_{i}$ and $q$ are
not weakly orthogonal. For each $i$ , we defined an equivalence relation
$E_{i}(u, v)= \bigwedge_{d\models p_{i}}(\theta_{i}(u, d)rightarrow\theta_{i}(v, d))$ , where $\theta_{i}(u, v)$ is a witness of the non-
weak-orthogonality. It is a $\emptyset$-definable equivalence relation on $q^{\mathcal{M}}$ , having at
least two equivalence classes. The main task was to show that each class is

$p_{i}^{\Lambda 4}$ -definable. We used the stability at this point. But, if $q_{i}$ is an algebraic
type, the stability assumption is not necessary. The rest can be proven sim-
ilarly. So we can show that $T$ has the strict order property. The existence of
a dense tree can be proved using the argument in [3].
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