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A practical method of solving cutoff Coulomb problems of two-cluster systems in mo-
mentum space is given. When a sharply cut-off Coulomb force with a cutoff radius ρ is in-
troduced at the level of constituent particles, the two-cluster direct potential of the Coulomb
force becomes in general a local screened Coulomb potential. The asymptotic Hamiltonian
yields two types of asymptotic waves; one is an approximate Coulomb wave with ρ in the
middle-range region, and the other a free (no-Coulomb) wave in the longest-range region.
The constant Wronskians of this Hamiltonian can be calculated in either region. We can
evaluate the Coulomb-modified nuclear phase shifts for the screened Coulomb problem using
the matching condition proposed by Vincent and Phatak for the sharply cut-off Coulomb
problem. We apply this method first to an exactly solvable model of the αα scattering with
the Ali-Bodmer potential and confirm that a complete solution is obtained with a finite ρ.
The stability of nuclear phase shifts with respect to the change in ρ within some appropri-
ate range is demonstrated in the αα resonating-group method (RGM) calculation using the
Minnesota three-range force. An application to the pd elastic scattering is also discussed.

Subject Index: 200, 205

§1. Introduction

In the momentum representation, incorporation of the long-range Coulomb force
always poses problems. In particular, three-body scattering problems involving the
Coulomb force are still under intensive investigations.1)–5) Here, we mainly consider
a much simpler problem of solving the Lippmann-Schwinger (LS) equations in the
momentum representation, in which the Coulomb force is included in the two-cluster
resonating-group method (RGM). In this particular case, the longest range direct po-
tential consists of a nuclear direct potential and the long-range Coulomb potential in
the error function form when simple harmonic-oscillator shell-model wave functions
are employed for clusters. We introduce a sharp cutoff radius ρ for the Coulomb
force acting between constituent particles. We can solve the LS equations and ob-
tain the T -matrix in the standard procedure. A problem is how to extract the correct
nuclear phase shifts from this T -matrix or the phase shifts, including the effect of
the screened Coulomb force. Here, we propose a simple method, taking examples of
the αα RGM and the proton-deuteron (pd) elastic scattering using the quark-model
baryon-baryon interaction.

The standard procedure of solving the Coulomb problem, including the short-
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range nuclear potential and the long-range Coulomb force, is well established as far
as two-body problems are concerned. In the treatment in terms of distorted waves,
the relative-wave function ψ�(r) between two clusters is solved numerically in the
configuration space, including the complete Coulomb force. The nuclear phase shift
δN
� is then obtained from the asymptotic form of the relative-wave function through

the so-called matching condition

tan δN
� = −W [F�, ψ�]ρ

W [G�, ψ�]ρ
, (1.1)

where F� = F�(k, r) and G� = G�(k, r) stand for the regular and irregular Coulomb
wave functions, respectively, andW [f, g] = f(k, r)(∂/∂r)g(k, r)−g(k, r)(∂/∂r)f(k, r)
is the Wronskian for functions f(k, r) and g(k, r). The Wronskian values in Eq. (1.1)
are evaluated at the relative distance r = ρ, which should be sufficiently large to
avoid the effect of the nuclear force in the short-range region. Quite naturally, this
standard procedure should be modified in the momentum representation if we try to
solve three-body problems like the pd scattering, and also the Lippmann-Schwinger
RGM (LS-RGM) equations with the Coulomb interaction. In these applications,
the basic ingredient is the T -matrix, which is usually formulated in the momentum
space. The Born term of the T -matrix is already singular for the diagonal part of
the initial and final momenta, qf = qi.

A practical method of dealing with the Coulomb force in the momentum rep-
resentation is to use the cutoff or screened Coulomb force. In the early work by
Vincent and Phatak,6) the Coulomb force in the π± + 16O scattering is assumed to
be a sharply cut-off Coulomb force

ωρ(r) =
2ηk
r
θ(ρ− r) , (1.2)

where η = α/�v is the Sommerfeld parameter and θ is the step function. Since the
relative-wave function has a Coulomb-free asymptotic behavior, the asymptotic wave
is composed of the nuclear plus cutoff Coulomb phase shift and the known Bessel and
Neumann functions. This phase shift δρ

� is obtained by solving the LS equation for
the T -matrix in the momentum space. The nuclear phase shift δN

� is then calculated
from the matching condition of the asymptotic waves:

tan δN
� = −W [F�, u�]ρ + tan δρ

� W [F�, v�]ρ
W [G�, u�]ρ + tan δρ

� W [G�, v�]ρ
, (1.3)

with a sufficiently large ρ.
A recent Coulomb treatment by Deltuva et al.7)–9) for the pd scattering uses a

screened Coulomb potential in the form of

ωρ(r) =
2ηk
r
e−(r/ρ)n

(1.4)

with n ∼ 4, and the “screening and renormalization procedure”, which was developed
by Alt et al.10)–14) The basic ingredient of this approach is Taylor’s theorem,15),16)
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which implies that the phase shift of the screened Coulomb potential δρ
� requires

the renormalization δρ
� −→ σ� − ζρ(k) as ρ → ∞ in the sense of the Schwartz

distribution, where

ζρ(k) =
1
2k

∫ ∞

1
2k

ωρ(r) dr (1.5)

is the diverging renormalization phase determined from the explicit form of the
screened Coulomb potential ωρ(r). Since the relative-wave functions with the screened
Coulomb potential always suffer the renormalization of this phase factor, the com-
plete pd scattering amplitude is achieved only when the limit ρ → ∞ is reached
in the two-potential formula for the scattering amplitude. In practice, this limit is
taken numerically such that a well converged result is obtained. A problem of this
procedure is that the error estimate of the finite ρ is not possible, and we usually need
to take a very large ρ value, for which solving the Alt-Grassberger-Sandhas equation
(AGS equation)17) accurately is difficult because of the quasi-singular nature of the
screened Coulomb potential. The convergence of the partial wave decomposition also
becomes problematic if the Coulomb singularity is very strong.

A final goal of this study is to find an approximate but practical method of
incorporating the Coulomb force to the pd elastic scattering by using a reasonable
magnitude of ρ. For this purpose, we incorporate the Vincent and Phatak approach6)

to the “screening and renormalization procedure”. In this paper, we first consider
a simple potential model for the αα scattering and examine if this approach gives a
reasonable accuracy of the phase shift using the screened Coulomb potential. The
stability of the nuclear phase shift with respect to the change in ρ within an appro-
priate range is examined by αα LS-RGM. An application to the pd elastic scattering
is briefly discussed.

In the next section, we discuss the sharply cut-off Coulomb problem, for which
analytic derivation of the cutoff Coulomb wave functions is feasible. The definitions
of the pure Coulomb wave functions used in this paper are given in Appendix A.
A general procedure to calculate the nuclear phase shift from solutions of the LS
equations for the two-cluster T -matrix is discussed in §3. In §4, a formulation for the
screened Coulomb problem is given by paying attention to new features appearing in
the screened Coulomb potential. An extension to deal with the pd elastic scattering in
the present approach is given in §5. In §6, the numerical performance of the proposed
method is examined, first for an exactly solvable model in the case of the Ali-Bodmer
phenomenological αα potential, secondly for the αα LS-RGM using the Minnesota
three-range force, and finally, for the pd elastic scattering using the quark-model
baryon-baryon interaction fss2. In Appendix B, shift functions of various screening
functions are evaluated. The screening function αρ(R) for the pd scattering is derived
in Appendix C. The last section is devoted to a summary and outlook.

§2. Exact solutions of the sharply cut-off Coulomb problem

In this section, we assume a sharply cut-off Coulomb potential in Eq. (1.2) and
consider the pure Coulomb problem as the limit of ρ → ∞. The regular solu-
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tion ϕρ
� (k, r) corresponding to the Jost solution satisfies the following integral equa-

tion:18)–20)

ϕρ
� (k, r) =

1
k�+1

u�(kr) +
∫ r

0
G0�(r, r′; k)

2kη
r′
θ(ρ− r′)ϕρ

� (k, r
′)d r′ . (2.1)

Here, u�(kr) is the Riccati-Bessel function and the Green function G0�(r, r′; k) is
given by

G0�(r, r′; k) =
1
k

[
u�(kr) v�(kr′) − v�(kr) u�(kr′)

]
θ(r − r′) , (2.2)

with v�(kr) being the Riccati-Neumann function. For r ≤ ρ, ϕρ
� (k, r) is the same as

the regular Coulomb function ϕ�(k, r) given in Eq. (A.1), which implies

1
k�
F ρ

� (k)ψρ
� (k, r) =

1
k�
F�(k)ψ�(k, r) → ψρ

� (k, r) =
F�(k)
F ρ

� (k)
ψ�(k, r)

for r ≤ ρ , (2.3)

where F ρ
� (k) is the Jost function of the sharply cut-off Coulomb potential and F�(k)

is the Coulomb Jost function. If we use this in the integral equation for the regular
solution ψρ

� (k, r),

ψρ
� (k, r) =

1
k
u�(kr) + 〈r|G0�ωρψ

ρ
� 〉 , (2.4)

we obtain

ψ�(k, r) =
F ρ

� (k)
F�(k)

1
k
u�(kr) + 〈r|G0�ωρψ�〉 for r ≤ ρ , (2.5)

with G0� being the regular Green function. The Jost function F ρ
� (k) of the sharply

cut-off Coulomb potential is calculated from F ρ
� (k) = 1 + k�〈w(−)

� |ωρ|ϕρ
� 〉 using the

Riccati-Hankel function w(−)
� (kr) = w

(+)
� (kr)

∗
= v�(kr) − iu�(kr). This results in21)

F ρ
� (k) = −iη �!

Γ (�+ 1 − iη)

�∑
n=0

(�+ n)!
n!

�−n∑
m=0

(−2ikρ)m

m!
Γ (n+m− iη)
Γ (�+ n+m+ 1)

×F (n+m− iη, �+ n+m+ 1, 2ikρ) . (2.6)

In particular, the S-wave Jost function is very simple:

F ρ
0 (k) = F (−iη, 1, 2ikρ) . (2.7)

If we use the asymptotic form of the confluent hypergeometric function F (α, γ, z) at
|z| → ∞, we obtain

lim
ρ→∞(2kρ)−iηF ρ

� (k) = F�(k) = eπη/2 �!
Γ (�+ 1 + iη)

, (2.8)
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resulting in

lim
ρ→∞

F ρ
� (k)
F�(k)

(2kρ)−iη = 1 . (2.9)

This relationship yields the limit of Eq. (2.5) as

ψ�(k, r) = lim
ρ→∞

{
1
k
u�(kr)(2kρ)iη + 〈r|G0�ωρψ�〉

}
. (2.10)

Furthermore, Eq. (2.3) implies

lim
ρ→∞(2kρ)iηψρ

� (k, r) = ψ�(k, r) . (2.11)

The asymptotic behavior of the cutoff Coulomb phase shift for ρ → ∞ can be
derived from the non-Coulomb version of Eq. (1.1), since the Wronskians W [u�, ψ�]ρ
and W [v�, ψ�]ρ with the ρ → ∞ limit are analytically calculated. The result is, of
course,

δρ
� → σ� − η log 2kρ as ρ→ ∞ , (2.12)

with the ambiguity of integral multiples of π.15),16)

The Jost solution for the sharply cut-off Coulomb potential is defined by the
integral equation

fρ
� (k, r) = w

(+)
� (kr) +

∫ ∞

r
g0�(r, r′; k)

2kη
r′
θ(ρ− r′)fρ

� (k, r′)d r′ , (2.13)

where the Green function is

g0�(r, r′; k) = −1
k

[
u�(kr) v�(kr′) − v�(kr) u�(kr′)

]
θ(r′ − r) . (2.14)

The asymptotic behavior is given by

fρ
� (k, r) = w

(+)
� (kr) ∼ ei(kr−(π/2)�) for r ≥ ρ . (2.15)

For the Coulomb solutions, we cannot formulate the integral equation, since the
asymptotic behavior is different from Eq. (2.15). However, for r ≤ ρ, fρ

� (k, r) can be
written as a linear combination of two independent Coulomb Jost solutions, f�(k, r)
and f∗� (k, r):

fρ
� (k, r) = Cρ

1f�(k, r) + Cρ
2f

∗
� (k, r) for r ≤ ρ . (2.16)

The coefficients Cρ
1 and Cρ

2 are derived by evaluating the Wronskians W [f∗� , f
ρ
� ] and

W [f�, f
ρ
� ] at ρ→ ∞. We find

Cρ
1 =

(
1 − η

2kρ

)
(2kρ)iη ,

Cρ
2 = (−)�+1 η

2kρ
(2kρ)−iηe2ikρ as ρ→ ∞ . (2.17)
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Thus, if we use the symmetry given by Eq. (A.5) for f∗� (k, r), we find

fρ
� (k, r) =

(
1 − η

2kρ

)
(2kρ)iηf�(k, r) − η

2kρ
eπη(2kρ)−iηe2ikρf�(−k, r)

∼ (2kρ)iηf�(k, r) for r ≤ ρ→ ∞ . (2.18)

Finally, we obtain for a fixed r

lim
ρ→∞(2kρ)−iηfρ

� (k, r) = f�(k, r) . (2.19)

Note that the renormalization phase is the complex conjugate of the one appearing in
Eq. (2.11). This results in a basic property of the sharply cut-off Coulomb potential,
that is the Coulomb Green function can be obtained as the ρ → ∞ limit of the
sharply cut-off Coulomb Green function. Namely, if we define

Gρ
� (r, r

′; k) = −ψρ
� (k, r<)fρ

� (k, r>) ,

GC
� (r, r′; k) = −ψ�(k, r<)f�(k, r>) , (2.20)

then we find

lim
ρ→∞Gρ

� (r, r
′; k) = GC

� (r, r′; k) for r, r′ ≤ ρ→ ∞ . (2.21)

This relationship is valid only when the Green functions are operated on short-range
potentials.

One can derive the Coulomb scattering amplitude from the scattering amplitude
for the sharply cut-off Coulomb potential. We use the formula for the short-range
force

fρ
� = −1

k
〈u�|ωρ|ψρ

� 〉 = − 1
k2

〈u�|T ρ
� |u�〉 = −1

k

	mF ρ
� (k)

F ρ
� (k)

=
1

2ik

(
F ρ

� (k)∗

F ρ
� (k)

− 1
)
, (2.22)

and calculate

f� ≡ lim
ρ→∞(2kρ)iη fρ

� (2kρ)iη . (2.23)

Equation (2.8) yields for ρ→ ∞

f� ∼ 1
2ik

(
(F ρ

� (k)(2kρ)−iη)∗

F ρ
� (k)(2kρ)−iη

− (2kρ)2iη

)
=

1
2ik

(
F�(k)∗

F�(k)
− (2kρ)2iη

)
=

1
2ik

(
e2iσ� − (2kρ)2iη

)
=

1
2ik

(
e2iσ� − 1

)− 1
2ik

(
(2kρ)2iη − 1

)
= fC

� − 1
2ik

(
(2kρ)2iη − 1

)
. (2.24)
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Here, the last term is �-independent and contributes only to θ = 0 if we add up over
all the partial waves. Thus, we find

f(θ) =
∞∑

�=0

(2�+ 1)f�P�(cos θ)

= fC(θ) −
∞∑

�=0

(2�+ 1)
1

2ik
(
(2kρ)2iη − 1

)
P�(cos θ)

= fC(θ) for θ �= 0 . (2.25)

Here,

fC(θ) =
1

2ik

∞∑
�=0

(2�+ 1) (e2iσ� − 1)P�(cos θ)

= − η

2k
(
sin θ

2

)2 e−2iη log (sin θ
2)Γ (1 + iη)
Γ (1 − iη)

(2.26)

is the standard Coulomb scattering amplitude.
We should note that the renormalization phase (2kρ)iη appearing in the above

equations is simply Taylor’s phase factor in Eq. (1.5). In fact, we can easily show
for Eq. (1.2) that

ζρ(k) =
1
2k

∫ ∞

1
2k

ωρ(r) dr = η

∫ ρ

1
2k

1
r
d r = η log (2kρ) . (2.27)

Then, the relationships in Eqs. (2.11) and (2.19) can be written as

lim
ρ→∞ eiζρ(k)ψρ

� (k, r) = ψ�(k, r) , lim
ρ→∞ e−iζρ(k)fρ

� (k, r) = f�(k, r) . (2.28)

More basically, the different parametrizations of Coulomb functions in Eq. (A.9) and
a trivial relationship

ψ
(+)
� (k, r) =

1
k
	m f�(k, r) + fC

� f�(k, r) (2.29)

derived from them are essential. Since many relations are also valid even for more
general screened Coulomb functions introduced in §4, we reformulate the sharply
cut-off Coulomb problem in a more general form, using the parametrization of wave
functions as

ψρ
� (k, r) =

1
k
eiδρ

� F ρ
� (k, r) ,

ϕρ
� (k, r) =

1
k�+1

|F ρ
� (k)| F ρ

� (k, r) = real ,

fρ
� (k, r) = e−iδρ

�
[
Gρ

� (k, r) + iF ρ
� (k, r)

]
,

fρ∗
� (k, r) = eiδρ

�
[
Gρ

� (k, r) − iF ρ
� (k, r)

]
. (2.30)
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For the sharply cut-off Coulomb force, the basic screened Coulomb wave functions
satisfying

lim
ρ→∞F ρ

� (k, r) = F�(k, r) , lim
ρ→∞Gρ

� (k, r) = G�(k, r) , (2.31)

for a fixed r are analytically derived using the regular and irregular Coulomb wave
functions, F�(k, r) and G�(k, r), and various Wronskians between these wave func-
tions and the free wave functions. They are given by

F ρ
� (k, r) =

⎧⎨⎩
|F�(k)|
|F ρ

� (k)|F�(k, r) for r ≤ ρ ,

u�(kr) cos δρ
� + v�(kr) sin δρ

� for r ≥ ρ ,

Gρ
� (k, r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|F ρ

� (k)|
|F�(k)|G�(k, r) + 1

k

(−W [G�(k, r), u�(kr)]ρ sin δρ
�

+W [G�(k, r), v�(kr)]ρ cos δρ
�

)
F�(k, r) for r ≤ ρ ,

v�(kr) cos δρ
� − u�(kr) sin δρ

� for r ≥ ρ .

(2.32)

The screened Coulomb wave function ψρ
� (k, r) also has an expression similar to Eq.

(2.29):

ψ
ρ(+)
� (k, r) =

1
k
	m fρ

� (k, r) + fρ
� f

ρ
� (k, r) , (2.33)

where fρ
� = (1/k)eiδρ

� sin δρ
� . Since fρ

� (k, r) = w
(+)
� (kr) = v�(kr) + iu�(kr) for r ≥ ρ,

the asymptotic form of Eq. (2.33) is

ψ
ρ(+)
� (k, r) =

1
k
u�(kr) + fρ

� w
(+)
� (kr) for r ≥ ρ . (2.34)

We multiply Eq. (2.33) by eiζρ(k) and find

ψ
ρ(+)
� (k, r)eiζρ(k) =

1
k
	m

{
fρ

� (k, r)e−iζρ(k)
}

+
[
eiζρ(k)fρ

� e
iζρ(k) + fρ

η

]
fρ

� (k, r)e−iζρ(k) , (2.35)

where we have set

fρ
η ≡ 1

2ik

(
e2iζρ(k) − 1

)
=

1
2ik

(
e2iη log (2kρ) − 1

)
. (2.36)

Here, we take the limit ρ → ∞ and use Eq. (2.28). If we compare the resultant
expression with Eq. (2.29), we find the correspondence

eiζρ(k)fρ
� e

iζρ(k) → fC
� − fρ

η as ρ→ ∞ . (2.37)

In fact, Eq. (2.37) diverges, but if we add up over all the partial waves, the second
term of Eq. (2.37) does not contribute except for θ = 0 because fρ

η is �-independent.
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Thus, the scattering amplitude of the sharply cut-off Coulomb force

fρ(θ) =
∞∑

�=0

(2�+ 1)fρ
� P�(θ) , (2.38)

satisfies

lim
ρ→∞ eiζρ(k)fρ(θ)eiζρ(k) = fC(θ) for θ �= 0 . (2.39)

§3. Two-body Coulomb problem

In this section, we consider a scattering problem for a two-body Coulomb system
consisting of a short-range local potential v(r) with the interaction range a and the
Coulomb force ωC(r) = 2kη/r. The Schrödinger equation in the configuration space
reads [(

d

dr

)2

− �(�+ 1)
r2

− v(r) − 2kη
r

+ k2

]
Ψ

(+)
� (r) = 0 , (3.1)

with the boundary condition

Ψ
(+)
� (r) ∼ 1

k
	m f�(k, r) + f� f�(k, r) . (r → ∞) (3.2)

Here, f�(k, r) is the Coulomb Jost solution in Eq. (A.3), and the partial-wave scat-
tering amplitude f� is expressed as

f� = fC
� + e2iσ�fN

� =
1

2ik
(e2i(σ�+δN

� ) − 1) ,

with fN
� =

1
2ik

(e2iδN
� − 1) , (3.3)

using the nuclear phase shift δN
� . In the usual approach, δN

� is calculated from the
real regular function F�(k, r) for the Schrödinger equation in Eq. (3.1), which satisfies
the relationship

Ψ
(+)
� (r) =

1
k
ei(σ�+δN

� )F�(k, r) . (3.4)

The asymptotic wave of F�(k, r) is expressed as

F�(k, r) ∼ F�(k, r) cos δN
� +G�(k, r) sin δN

�

∼ sin (kr − η log 2kr − (π/2)�+ σ� + δN
� ) . (r → ∞) (3.5)

The nuclear phase shift δN
� is then calculated from Eq. (1.1) by assigning F�(k, r) to

ψ� and taking a sufficiently large ρ > a.
Similar equations are also valid for the sharply cut-off Coulomb force ωρ(r) in

Eq. (1.2). Namely, the Schrödinger equation for this system,[(
d

dr

)2

− �(�+ 1)
r2

− v(r) − ωρ(r) + k2

]
Ψ

ρ(+)
� (r) = 0 , (3.6)
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has the asymptotic wave

Ψ
ρ(+)
� (r) =

1
k
	m fρ

� (k, r) + f̄ρ
� f

ρ
� (k, r) for r ≥ a

=
1
k
u�(kr) + f̄ρ

� w
(+)
� (k, r) for r ≥ ρ , (3.7)

where fρ
� (k, r) is the Jost solution for ωρ(r). The scattering amplitude f̄ρ

� in Eq.
(3.7) is this time parametrized as

f̄ρ
� =

1
2ik

(e2iδ̄ρ
� − 1) = fρ

� + e2iδρ
� fρN

� with δ̄ρ
� = δρ

� + δρN
� ,

and fρN
� =

1
2ik

(e2iδρN
� − 1) , (3.8)

where fρ
� = (1/2ik)(e2iδρ

� −1) is the scattering amplitude for ωρ(r). Furthermore, we
have the relationship

Ψ
ρ(+)
� (r) =

1
k
eiδ̄ρ

� Fρ
� (k, r) ,

Fρ
� (k, r) = u�(kr) cos δ̄ρ

� + v�(kr) sin δ̄ρ
� . (r ≥ ρ) (3.9)

Note that the second equation of Eq. (3.9) is exact for the sharply cutoff Coulomb
force. We multiply Eq. (3.7) by the phase factor eiζρ(k) and take the limit ρ → ∞.
Then, a procedure similar to Eq. (2.35) leads to the correspondence

lim
ρ→∞

[
eiζρ(k)f̄ρ

� e
iζρ(k) + fρ

η

]
= fC

� + e2iσ�fN
� ,

lim
ρ→∞Ψ

ρ(+)
� (k, r)eiζρ(k) = Ψ

(+)
� (k, r) for r ≥ a . (3.10)

From Eq. (3.8), the nuclear phase shift δN
� is obtained through

δN
� = lim

ρ→∞ δρN
� = lim

ρ→∞(δ̄ρ
� − δρ

� ) . (3.11)

The sharply cut-off Coulomb phase shift δρ
� is calculated from

tan δρ
� = −W [F�(k, r), u�(k, r)]ρ

W [F�(k, r), v�(k, r)]ρ
. (3.12)

Since δ̄ρ
� is obtained by solving the potential problem for v(r) + ωρ(r), Eqs. (3.11)

and (3.12) give a solution for the two-body Coulomb problem in the momentum
representation using the sharply cut-off Coulomb force.

Another method of deriving the nuclear phase shift in the momentum repre-
sentation is to use the two-potential formula for the T -matrix. For the short-range
potential v and the sharply cut-off (or screened) Coulomb potential ωρ, we solve the
T -matrix equation

T ρ = (v + ωρ) + (v + ωρ)G0T
ρ , (3.13)
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where G0 = (z − h0)−1 with z = E + iε is the free Green function with energy
E. We assume the energy factor (�2/2μ) = 1 and set E = k2. Furthermore, the
partial wave decomposition is implicitly assumed and the orbital angular momentum
� is omitted for typological simplicity. The kinetic energy operator h0 is, therefore,
h0 = (d/dr)2 − �(�+ 1)/r2. The two-potential formula for T ρ is given by

T ρ = tωρ + (1 + tωρG0)t̃ωρ(1 +G0tωρ) ,
tωρ = ωρ + ωρG0tωρ = ωρ + ωρGωρωρ ,

t̃ωρ = v + vGωρ t̃ωρ = v + vGρv , (3.14)

where Gωρ = (z−h0 −ωρ)−1 and Gρ = (z−h0 − v−ωρ)−1. To derive the scattering
amplitude, we sandwich T ρ with the plane wave (with the wave number k)

|φ〉 =
1
k
|u〉 , (3.15)

and define

|ψρ(+)〉 = |φ〉 +G0ωρ|ψρ(+)〉 . (3.16)

Then, by using

|ψρ(+)〉 = (1 +G0tωρ)|φ〉 , 〈ψρ(−)| = 〈φ|(1 + tωρG0), (3.17)

we find

〈φ|T ρ|φ〉 = 〈φ|tωρ |φ〉 + 〈ψρ(−)|t̃ωρ |ψρ(+)〉 . (3.18)

In Eqs. (3.17) and (3.18), 〈ψρ(−)| is defined by ψ(−)(k, r) =
(
ψ(+)(k, r)

)∗
. This

equation is essentially equivalent to the T -matrix in the distorted-wave Born ap-
proximation (DWBA). In fact, if we set

t̃ωρ |ψρ(+)〉 = v(1 +Gωρ t̃ωρ)|ψρ(+)〉 ≡ v|Ψρ(+)〉 , (3.19)

the on-shell T -matrix is expressed as

〈φ|T ρ|φ〉 = 〈φ|ωρ|ψρ(+)〉 + 〈ψρ(−)|v|Ψρ(+)〉 . (3.20)

The LS equation for the total wave function

|Ψρ(+)〉 = |ψρ(+)〉 +Gωρv|Ψρ(+)〉 (3.21)

is equivalent to Eqs. (3.6) and (3.7).
Equation (3.18) gives a starting point for the “screening and renormalization

procedure”. Namely, if we sandwich Eq. (3.18) with the renormalization phase eiζρ

with ζρ = ζρ(k), and take the limit ρ→ ∞, we find

〈φ|T |φ〉 ≡ lim
ρ→∞ eiζρ〈φ|T ρ|φ〉eiζρ

= lim
ρ→∞ eiζρ〈φ|tρω|φ〉eiζρ + lim

ρ→∞ eiζρ〈ψρ(−)|t̃ρω|ψρ(+)〉eiζρ

= 〈φ|tC |φ〉 + lim
ρ→∞〈ψ(−)|t̃ρω|ψ(+)〉 . (3.22)
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Here,

|ψ(±)〉 = lim
ρ→∞ |ψρ(±)〉e±iζρ (3.23)

denotes the pure Coulomb wave functions. The first term in Eq. (3.22) is sepa-
rated into the partial-wave Coulomb amplitude fC

� and the �-independent term from
the discussion of the preceding section. When all the partial-wave contributions
are added up, the first term becomes the pure Coulomb amplitude. Actually, the
relationship between the scattering amplitude and the on-shell T -matrix yields

〈qf |tC |qi〉 = − 4π
(2π)3

�
2

2μ
fC(θ) = − �

2

(2π)2μ
fC(θ) (3.24)

with |qf | = |qi| = k. In the second term of Eq. (3.22), ρ → ∞ limit can be
taken, since the nuclear potential v is of short range. We define t̃ by the solution of
t̃ = v+vGC t̃, where GC = (z−h0−2ηk/r)−1 is the Coulomb Green function. Thus,
we find

lim
ρ→∞〈ψ(−)|t̃ωρ |ψ(+)〉 = 〈ψ(−)|t̃|ψ(+)〉 . (3.25)

To derive this matrix element, we introduce the total wave function |Ψ (+)〉 through

t̃|ψ(+)〉 = v(1 +GC t̃)|ψ(+)〉 = v|Ψ (+)〉 , (3.26)

which satisfies the LS equation

|Ψ (+)〉 = (1 +GC t̃)|ψ(+)〉 = |ψ(+)〉 +GCv|Ψ (+)〉 , (3.27)

and the Schrödinger equation in Eqs. (3.1) and (3.2). We should note that Eq. (3.27)
has a solution, since v is of short range. Here, we introduce a decomposition of the
partial-wave Green function

GC(r, r′; k) = −ψ�(k, r<)f�(k, r>) ,

GC = G̃C − |f�〉〈ψ(−)
� | with G̃C → 0 as r → ∞ . (3.28)

Then, we find the asymptotic behavior

|Ψ (+)〉 = |ψ(+)〉 − |f〉〈ψ(−)|v|Ψ (+)〉 + G̃Cv|Ψ (+)〉
∼ |ψ(+)〉 − |f〉〈ψ(−)|t̃|ψ(+)〉 as r → ∞ . (3.29)

If we use the Wronskians of the Coulomb wave functions

W [F�, G�] = −k ,
W [F�, f�] = −ke−iσ� ,

W [ψ(+)
� , f�] = −1 , (3.30)

derived from Eq. (A.9), we obtain

W [ψ(+)
� , Ψ (+)]r→∞ = 〈ψ(−)|t̃|ψ(+)〉 ,

W [f�, Ψ
(+)]r→∞ = 1 , (3.31)
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and

〈ψ(−)|t̃|ψ(+)〉� = lim
r→∞

W [ψ(+)
� (k, r), Ψ (+)(k, r)]

W [f�(k, r), Ψ (+)(k, r)]
. (3.32)

If we further parametrize

〈ψ(−)|t̃|ψ(+)〉� = −e2iσ�
1

2ik

(
e2iδN

� − 1
)
, (3.33)

Eq. (3.32) is equivalent to

tan δN
� = − lim

r→∞
W [F�(k, r), Ψ (+)(k, r)]
W [G�(k, r), Ψ (+)(k, r)]

. (3.34)

Eventually, we find

〈φ|T |φ〉 = − �
2

(2π)2μ
f(θ) ,

f(θ) = fC(θ) +
∞∑

�=0

(2�+ 1)e2iσ� fN
� P�(cos θ) ,

with fN
� =

1
2ik

(
e2iδN

� − 1
)
. (3.35)

For practical calculations in the momentum space, it is much easier to start
with the sharply cut-off Coulomb force from the very beginning. We multiply the
LS equation in Eq. (3.21) by the renormalization phase eiζρ and take the limit ρ→ ∞.
Then, by using Eqs. (2.11) and (2.21), we obtain

lim
ρ→∞ |Ψρ(+)〉eiζρ = |ψ(+)〉 +GCv lim

ρ→∞ |Ψρ(+)〉eiζρ . (3.36)

If we compare this with Eq. (3.27), we find

lim
ρ→∞ |Ψρ(+)〉eiζρ = |Ψ (+)〉 . (3.37)

If we further use Eq. (3.37) to calculate tan δN
� in Eq. (3.34), we find

tan δN
� = − lim

r→∞
W [F�(k, r), Ψ

ρ(+)
� (k, r)]

W [G�(k, r), Ψ
ρ(+)
� (k, r)]

, (3.38)

for sufficiently large ρ. On the other hand, the asymptotic behavior of the wave
functions for the short-range force yields

Ψ
ρ(+)
� (k, r) =

1
k
eiδ

ρ
�

{
u�(kr) cos δρ

� + v�(kr) sin δρ
�

}
for ρ < r → ∞ , (3.39)
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for sufficiently large ρ. Thus, if we calculate the Wronskians in Eq. (3.38) at r = ρ,
we obtain

tan δN
� = −W [F�(k, r), Ψ

ρ(+)
� (k, r)]r=ρ

W [G�(k, r), Ψ
ρ(+)
� (k, r)]r=ρ

= −W [F�, u�]ρ + tan δρ
� W [F�, v�]ρ

W [G�, u�]ρ + tan δ
ρ
� W [G�, v�]ρ

, (3.40)

which is simply Eq. (1.3). After all, if δρ
� is calculated in the momentum represen-

tation, the nuclear phase shift δN
� is obtained through Eq. (3.40). The scattering

amplitude f�(θ) is calculated from Eq. (3.35) using δN
� .

§4. The screened Coulomb case

In this section, we will extend the preceding discussion for the sharply cut-off
Coulomb force to a more general screened Coulomb force, which is formulated as

ωρ(r) =
2kη
r
αρ(r) , (4.1)

according to Taylor.15) Here, the screening function αρ(r) with 1 ≥ αρ(r) ≥ 0 is a
monotonically decreasing function of r satisfying

1) with ρ fixed, αρ(r) decreases to zero faster than O(r−ε−2) (ε > 0) as r ap-
proaches to ∞,

2) with r fixed, αρ(r) approaches 1 as ρ approaches ∞,
3) around r ∼ ρ, there exist sufficiently wide regions in which αρ(r) ∼ 1 and ∼ 0.

In 3) above, we added “an almost sharply cut-off condition” in addition to the
original conditions 1) and 2) in Ref. 15). This condition is required if we wish to
develop an almost parallel discussion to the sharply cut-off Coulomb case, as seen
below. Note that the sharply cut-off Coulomb case is included in the above category
by taking αρ(r) = θ(ρ− r).

The necessity of relaxing the sharply cut-off condition is as follows. First, in the
LS-RGM formalism, the longest-range direct Coulomb potential becomes a screened
Coulomb force as will be explicitly shown in §§6.1 and 6.2. If the cluster wave
functions are assumed to be standard harmonic-oscillator shell-model wave functions,
the cutoff function αρ(r) is usually expressed by the error function. Secondly, in
the application to the pd elastic scattering, the asymptotic Hamiltonian involves a
screened Coulomb force that is obtained from the pp Coulomb force by the folding
procedure using a realistic deuteron wave function. In Ref. 7), the same pp screened
Coulomb force is used for the pd screened Coulomb force, but using a more realistic
pd Coulomb potential is certainly desirable to avoid unnecessary extra distortion of
the deuteron in the asymptotic region by the Coulomb force. In any case, the most
appropriate screening function αρ(r) should be chosen for each problem, since “in
practice Coulomb potentials are always screened” as stated in Ref. 15).
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For the screened Coulomb force in Eq. (4.1), the parametrization of screened
Coulomb wave functions in Eq. (2.30) is employed in the following, but the explicit
solutions of F ρ

� (k, r) and Gρ
� (k, r) like in Eq. (2.32) are no longer available. In order

to extend Eq. (2.32) to the screened Coulomb case, we first examine the behavior of
the screened Coulomb wave functions around the origin r ∼ 0. For the pure Coulomb
solutions, F�(k, r) and G�(k, r), we can easily show that

F�(k, r) ∼ 1
|F�(k)|u�(kr) , G�(k, r) ∼ |F�(k)|v�(kr) as r → 0 , (4.2)

by using the explicit expression of the Coulomb Jost solution f�(k, r) in Eq. (A.3) and
the parametrization in Eq. (A.9). The corresponding expressions for the screened
Coulomb wave functions are

F ρ
� (k, r) ∼ 1

|F ρ
� (k)|u�(kr) ,

Gρ
� (k, r) ∼ |F ρ

� (k)|v�(kr) +
1

|F ρ
� (k)|A

ρ
� (r)u�(kr) as r → 0 , (4.3)

where an extra term including Aρ
� (r) appears in the irregular solution Gρ

� (k, r). The
real function Aρ

� (r) is given by

Aρ
� (r) = −|F ρ

� (k)| 1
k
W
[
Gρ

� (k, r), v�(kr)
]

∼
{

log r
1

r2�

for
� = 0

� ≥ 1
as r → 0 , (4.4)

and diverges as r → 0. These results are derived by applying Calogero’s variable
phase method22) to the regular solution ϕρ

� (k, r) and the Jost solution fρ
� (k, r).

For practical applications, we use the “almost sharply cut-off condition” 3) and
assume a screening function satisfying

3)′

αρ(r) =

{
1 for r < ρ− b = Rin

0 for r > ρ+ b = Rout

, (4.5)

with a sufficiently large ρ � b. A new parameter b is introduced to make a smooth
transition for the Coulomb force to disappear. To make the pure Coulomb region
available, Rin � a should also be sufficiently large compared with the range a of
the short-range nuclear force. By this assumption, we can extend the discussion in
the sharply cut-off Coulomb case, although some modifications are necessary as seen
below. First, we apply Calogero’s variable phase method to the regular function
ϕρ

� (k, r). This solution and the pure Coulomb wave function ϕ�(k, r) both satisfy
integral equations similar to Eq. (2.1) with θ(ρ−r) → αρ(r) or 1 for r < Rin, yielding

ϕρ
� (k, r) = ϕ�(k, r) for r ≤ Rin . (4.6)
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If we use the standard relationship

ϕ�(k, r) =
1

k�+1
|F�(k)|F�(k, r) , (4.7)

(see Eqs. (A.9) and (2.30)), Eq. (4.6) implies

F ρ
� (k, r) =

|F�(k)|
|F ρ

� (k)|F�(k, r) for r ≤ Rin . (4.8)

Here, we can prove

lim
ρ→∞

|F�(k)|
|F ρ

� (k)| = 1 . (4.9)

Similarly, the screened Coulomb phase shift δρ
� = δρ

� (k) is proved to have the Coulomb
limit

lim
ρ→∞

(
δρ
� + ζρ

)
= σ� , (4.10)

where ζρ = ζρ(k) is given by applying Eq. (1.5) to ωρ(r) in Eq. (4.1). For the
irregular solution Gρ

� (k, r), the local phase approach does not work. In this case,
we have an admixture of the regular solution F�(k, r) for r < Rin, which is related
to Aρ

� (r) in Eq. (4.4). Summarizing the above discussion, the explicit results of Eq.
(2.32) in the sharply cut-off Coulomb case should be modified to

F ρ
� (k, r) =

1
aρ

�

F�(k, r) ,

Gρ
� (k, r) = aρ

�G�(k, r) +Aρ
�F�(k, r) for r ≤ Rin ,

F ρ
� (k, r) = u�(kr) cos δρ

� + v�(kr) sin δρ
� ,

Gρ
� (k, r) = v�(kr) cos δρ

� − u�(kr) sin δρ
� for r ≥ Rout ,

(4.11)

where

aρ
� =

|F ρ
� (k)|

|F�(k)| , lim
ρ→∞ aρ

� = 1 , (4.12)

and

δρ
� → σ� − ζρ as ρ→ ∞ ,

with ζρ = ζρ(k) =
1
2k

∫ ∞

1
2k

ωρ(r) d r . (4.13)

We note that, for the pure Coulomb problem, the renormalization of the screened
Coulomb wave functions and the scattering amplitude is possible. In particular,
Eqs. (2.33) – (2.39) are all valid owing to Eq. (4.13). However, the renormalization
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of the irregular solutions like the one in Eq. (2.19) needs modification, since in general
Aρ

� �= 0 in Eq. (4.11). For example, the relationship in Eq. (2.28) should be modified
as

lim
ρ→∞ψ

ρ(+)
� (k, r)eiζρ

= lim
ρ→∞

1
k
ei(δρ

� +ζρ) F ρ
� (k, r) =

1
k
eiσ� F�(k, r)

= ψ
(+)
� (k, r) (for regular Coulomb wave function) ,

lim
ρ→∞ fρ

� (k, r)e−iζρ
= lim

ρ→∞ e−i(δρ
� +ζρ)

[
Gρ

� (k, r) + iF ρ
� (k, r)

]
= e−iσ�

[
G�(k, r) + lim

ρ→∞Aρ
� F�(k, r) + iF�(k, r)

]
= f�(k, r) +A� e

−iσ� F�(k, r) ,

lim
ρ→∞

[
eiζρ

fρ
� e

iζρ
+ fρ

η

]
=

1
2ik

(
e2iσ� − 1

)
= fC

� , (4.14)

for r < Rin. Here, we have assumed that A� = limρ→∞Aρ
� exists for simplicity. By

the same token, the ρ→ ∞ limit in Eq. (2.35) becomes

ψ
(+)
� (k, r) =

1
k
	m

{
f�(k, r) +A�e

−iσ� F�(k, r)
}

+fC
�

[
f�(k, r) +A�e

−iσ� F�(k, r)
]

for r < Rin . (4.15)

Here, because A� is real, the contribution from the terms proportional to A� vanishes
as

−1
k
A� sin σ� F�(k, r) +

1
2ik

(
e2iσ� − 1

)
A� e

−iσ� F�(k, r) = 0 , (4.16)

resulting in Eq. (2.29) again. It is important to note that this renormalization
is possible only for the regular solution of the pure Coulomb problem. Once the
nuclear potential is introduced, we need further renormalization for the magnitude
of the wave function related to Aρ

� , since the derivation of the regular solution also
requires an irregular solution of the screened Coulomb problem.

To make the similarity to the sharply cut-off Coulomb case more transparent, it
is convenient to introduce a modified set of screened Coulomb wave functions given
by

F̃ ρ
� (k, r) = aρ

� F
ρ
� (k, r) ,

G̃ρ
� (k, r) =

1
aρ

�

Gρ
� (k, r) −Aρ

� F
ρ
� (k, r) . (4.17)

For r < Rin, these are the pure Coulomb wave functions:

F̃ ρ
� (k, r) = F�(k, r) , G̃ρ

� (k, r) = G�(k, r) for r ≤ Rin . (4.18)

However, for r ≥ Rout, Eq. (4.11) leads to

F̃ ρ
� (k, r) = aρ

�

[
u�(kr) cos δρ

� + v�(kr) sin δρ
�

]
,
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G̃ρ
� (k, r) =

1
aρ

�

[
v�(kr) cos δρ

� − u�(kr) sin δρ
�

]
−Aρ

�

[
u�(k, r) cos δρ

� + v�(k, r) sin δρ
�

]
for r ≥ Rout . (4.19)

The Wronskians of these wave functions with the free scattering solutions in the
asymptotic region are given by

1
k
W
[
F̃ ρ

� (k, r), u�(kr)
]

= aρ
� sin δρ

� ,

1
k
W
[
F̃ ρ

� (k, r), v�(kr)
]

= −aρ
� cos δρ

� ,

1
k
W
[
G̃ρ

� (k, r), u�(kr)
]

=
1
aρ

�

cos δρ
� −Aρ

� sin δρ
� ,

1
k
W
[
G̃ρ

� (k, r), v�(kr)
]

=
1
aρ

�

sin δρ
� +Aρ

� cos δρ
� for r ≥ Rout . (4.20)

Let us assume a Rin and consider the regular solution of the Schrödinger equation
for v(r) + (2kη/r)αρ(r):

Ψ
ρ(+)
� (r) = F̃ ρ

� (k, r) cos δN
� + G̃ρ

� (k, r) sin δN
� for r > a . (4.21)

In the a < r < Rin region, δN
� becomes the nuclear phase shift owing to Eq. (4.18).

This can be calculated from

tan δN
� = −

W
[
F̃ ρ

� (k, r), Ψρ(+)
� (r)

]
W
[
G̃ρ

� (k, r), Ψ
ρ(+)
� (r)

] for r > a . (4.22)

The Wronskians in Eq. (4.22) can be calculated at any point r > a, since F̃ ρ
� (k, r),

G̃ρ
� (k, r) and Ψρ

� (r) are all solutions of the Schrödinger equation for the screened
Coulomb potential. In particular, the asymptotic behavior

Ψ
ρ(+)
� (r) = B

[
u�(kr) cos δρ

� + v�(kr) sin δρ
�

]
for r > Rout (4.23)

without the Coulomb force yields the connection condition

tan δN
� = −

W
[
F̃ ρ

� (k, r), u�(kr)
]
Rout

+ tan δρ
� W

[
F̃ ρ

� (k, r), v�(kr)
]
Rout

W
[
G̃ρ

� (k, r), u�(kr)
]
Rout

+ tan δρ
� W

[
G̃ρ

� (k, r), v�(kr)
]
Rout

, (4.24)

which is an extension of Eq. (3.40) in the sharply cut-off Coulomb case. The phase
shift δρ

� is calculated from the standard procedure to solve the T -matrix of v(r) +
(2kη/r)αρ(r) in the momentum representation.

Conversely, we can also recover the asymptotic behavior of Ψρ(+)
� (r) in Eq. (4.23),

starting from Eqs. (4·21) and (4·24). If we use the expressions of the Wronskians in
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Eq. (4.20), the connection condition Eq. (4.24) yields

tan δN
� =

aρ
� sin

(
δ
ρ
� − δρ

�

)
[

1
aρ

�
cos

(
δ
ρ
� − δρ

�

)
+Aρ

� sin
(
δ
ρ
� − δρ

�

)] . (4.25)

We write this as

sin δN
� =

aρ
�

Bρ
�

sin
(
δ
ρ
� − δρ

�

)
,

cos δN
� =

1
Bρ

�

[
1
aρ

�

cos
(
δ
ρ
� − δρ

�

)
+Aρ

� sin
(
δ
ρ
� − δρ

�

)]
,

Bρ
� =

{[
1
aρ

�

cos
(
δ
ρ
� − δρ

�

)
+Aρ

� sin
(
δ
ρ
� − δρ

�

)]2

+
[
aρ

� sin
(
δ
ρ
� − δρ

�

)]2} 1
2

.

(4.26)

If we use this in Eq. (4.21) for r > Rout, the asymptotic behavior of F̃ ρ
� (k, r) and

G̃ρ
� (k, r) in Eq. (4.19) yields Eq. (4.23) with B = 1/Bρ

� . In particular, if v(r) = 0,
δ
ρ
� = δρ

� in Eq. (4.25) yields the correct result of δN
� = 0.

In fact, δN
� in Eq. (4.21) is ρ-dependent: δN

� = δρN
� , and we need to take the

limit δN
� = limρ→∞ δρN

� . Furthermore, the present assumption that αρ(r) = 1 or 0
except for the interval [Rin, Rout] = [ρ− b, ρ+ b] is just an approximation. We have
to examine the accuracy of this approximation for finite ρ on a case-by-case basis. In
practical calculations, we solve F̃ ρ

� (k, r) and G̃ρ
� (k, r) from Rin to Rout by taking the

starting values of the pure Coulomb wave functions F�(k,Rin) and G�(k,Rin). The
Wronskians needed in Eq. (4.24) are calculated numerically. In the sharply cut-off
Coulomb case with b = 0 and Rin = Rout = ρ, this process is unnecessary, and Eq.
(4.24) reduces to Eq. (3.40).

The extra term proportional to Aρ
� in Eq. (4.17) also affects the relationship

of the Green function in Eq. (2.21). To find a new relationship for the screened
Coulomb force, we solve Eq. (4.17) inversely and express F ρ

� (k, r) and Gρ
� (k, r) as

F ρ
� (k, r) =

1
aρ

�

F̃ ρ
� (k, r) ,

Gρ
� (k, r) = aρ

� G̃
ρ
� (k, r) +Aρ

� F̃
ρ
� (k, r) . (4.27)

Then, the Green function of the screened Coulomb force in Eq. (2.20) is expressed
for a fixed � as

Gρ
ω = G̃ρ

ω − 1
k

1
aρ

�

Aρ
� |F̃ ρ

� 〉〈F̃ ρ
� | , (4.28)

with

G̃ρ
ω(r, r′; k) = −1

k

1
aρ

�

F̃ ρ
� (k, r<)

[
aρ

� G̃
ρ
� (k, r>) + i

1
aρ

�

F̃ ρ
� (k, r>)

]
. (4.29)
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For r, r′ < Rin, the ρ→ ∞ limit of Eq. (4.29) yields

lim
ρ→∞ G̃ρ

ω(r, r′; k) = GC
� (r, r′; k) − 1

k
A�|F�〉〈F�| for r, r′ < Rin → ∞ . (4.30)

We keep the finite ρ and write Eq. (3.21) as

|Ψρ(+)〉 = |ψρ(+)〉 + G̃ρ
ω v |Ψρ(+)〉 − 1

k

1
aρ

�

Aρ
� |F̃ ρ

� 〉〈F̃ ρ
� |v|Ψρ(+)〉

=
1
k
eiδρ

�
1
aρ

�

|F̃ ρ
� 〉
[
1 − e−iδρ

�Aρ
� 〈F̃ ρ

� |v|Ψρ(+)〉
]

+ G̃ρ
ω v |Ψρ(+)〉 . (4.31)

Here, we define

|Ψρ(+)〉 = |Ψ̃ρ(+)〉
[
1 − e−iδρ

�Aρ
� 〈F̃ ρ

� |v|Ψρ(+)〉
]
. (4.32)

Then, we find

|Ψ̃ρ(+)〉 =
1
k
eiδρ

�
1
aρ

�

|F̃ ρ
� 〉 + G̃ρ

ω v |Ψ̃ρ(+)〉 . (4.33)

Here, we multiply Eq. (4.33) by eiζρ
and take the limit ρ→ ∞ with r ∈ [a,Rin] fixed.

The first term of the right-hand side of Eq. (4.33) is (1/k)eiσ�|F�〉 = |ψ(+)
� 〉. In the

second term, we further use the decomposition of the Green function

G̃ρ
ω = g̃res

ωρ
− 1
k

1
aρ

�

|
[
aρ

� G̃
ρ
� + i(1/aρ

� ) F̃
ρ
�

]
〉〈F̃ ρ

� | ,

g̃res
ωρ

(r, r′; k) = −1
k

{
F̃ ρ

� (k, r) G̃ρ
� (k, r

′) − G̃ρ
� (k, r) F̃

ρ
� (k, r′)

}
θ(r′ − r) , (4.34)

and find∫ ∞

0
d r′ G̃ρ

ω(r, r′; k)v(r′)Ψ̃ρ(+)(r′) eiζρ
=
∫ ∞

r
d r′ g̃res

ωρ
(r, r′; k)v(r′)Ψ̃ρ(+)(r′) eiζρ

−1
k

1
aρ

�

[
aρ

� G̃
ρ
� (k, r) + i

1
aρ

�

F̃ ρ
� (k, r)

]∫ ∞

0
d r′ F̃ ρ

� (k, r′) v(r′) Ψ̃ρ(+)(r′) eiζρ
. (4.35)

Here, the first integral in the right-hand side vanishes since v(r′) = 0 for r′ > r > a.
In the second integral, the range of v(r′) means that r′ < a ≤ Rin, so that we can
safely replace F̃ ρ

� (k, r′) by F�(k, r′). Thus, we find

G̃ρ
ω v |Ψ̃ρ(+)〉 eiζρ ∼ −1

k
| [G� + iF�]〉〈F�|v|Ψ̃ρ(+)〉 eiζρ

= −1
k
eiσ� |f�〉〈F�|v|Ψ̃ρ(+)〉 eiζρ

= −|f�〉〈ψ(−)|v|Ψ̃ρ(+)〉 eiζρ
for ρ→ ∞ , (4.36)

and

lim
ρ→∞ |Ψ̃ρ(+)〉 eiζρ

= |ψ(+)
� 〉 − |f�〉 lim

ρ→∞〈ψ(−)|v|Ψ̃ρ(+)〉 eiζρ

for a < r < Rin . (4.37)
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If we compare Eq. (4.37) with the asymptotic form in the exact Coulomb case in Eq.
(3.29), we find

lim
ρ→∞ |Ψ̃ρ(+)〉 eiζρ

= |Ψ (+)〉 . (4.38)

In the matrix element of Eq. (4.32), we can also replace F̃ ρ
� by F�, since v(r) is of

short range. By solving Eq. (4.32) inversely, we can show that

|Ψρ(+)〉 = |Ψ̃ρ(+)〉
[
1 + e−iδρ

�Aρ
� 〈F�|v|Ψ̃ρ(+)〉

]−1
. (4.39)

If we multiply Eq. (4.39) by eiζρ
and take the limit ρ→ ∞, δρ → σ� − ζρ yields

lim
ρ→∞ |Ψρ(+)〉eiζρ

= |Ψ (+)〉
[
1 + e−iσ�A� 〈F�|v|Ψ (+)〉

]−1
, (4.40)

and

|Ψ (+)〉 = lim
ρ→∞ |Ψρ(+)〉 eiζρ

[
1 − e−iσ�Aρ

� 〈F�|v|Ψρ(+)〉 eiζρ
]−1

. (4.41)

This expression implies that Eq. (3.37) is no longer valid for the screened Coulomb
force, and we need an extra normalization factor

[
1 − e−iσ�Aρ

� 〈F�|v|Ψρ(+)〉 eiζρ]−1
.

Finally, we will show that another type of connection condition, equivalent to
Eq. (4.24), is also obtained by considering two types of asymptotic forms of |Ψ̃ρ(+)〉.
First, the asymptotic form of |Ψ̃ρ(+)〉 for Rin > r → ∞ is from Eqs. (4.33) and (4.35)

|Ψ̃ρ(+)〉 ∼ 1
k
eiδρ

�
1
aρ

�

|F̃ ρ
� 〉

−1
k

1
aρ

�

[
aρ

� G̃
ρ
� (k, r) + i

1
aρ

�

F̃ ρ
� (k, r)

]
〈F�|v|Ψ̃ρ(+)〉 for r ≤ Rin . (4.42)

The Wronskians at r → ∞ with r ≤ Rin are given by

W
[
F̃ ρ

� , Ψ̃
ρ(+)

]
= 〈F�|v|Ψ̃ρ(+)〉 = eiδρ

�
1
aρ

�

〈F�|v|Ψ̃ρ(+)
� 〉 aρ

� e
−iδρ

� ,

W
[
G̃ρ

� , Ψ̃
ρ(+)

]
= eiδρ

�
1
aρ

�

− i
1

(aρ
� )

2
〈F�|v|Ψ̃ρ(+)〉

= eiδρ
�

1
aρ

�

{
1 − i〈F�|v|Ψ̃ρ(+)〉 1

aρ
�

e−iδρ
�

}
. (4.43)

Thus, if we define K̃ρ
� by

K̃ρ
�

1
k
〈F�|v|Ψ̃ρ(+)〉 aρ

� e
−iδρ

� = 1 − i〈F�|v|Ψ̃ρ(+)〉 1
aρ

�

e−iδρ
� , (4.44)

we obtain

K̃ρ
� W

[
F̃ ρ

� , Ψ̃
ρ(+)

]
= k W

[
G̃ρ

� , Ψ̃
ρ(+)

]
. (4.45)
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Here, we note that all the wave functions with a tilde satisfy the Schrödinger equation
for the screened Coulomb potential for r > a, so that we can evaluate Wronskians
at any point r > a. If we take the limit ρ→ ∞ in Eq. (4.44), Eq. (4.38) yields

lim
ρ→∞

1
k
〈F�|v|Ψ̃ρ(+)〉aρ

� e
−iδρ

� =
1
k
〈F�|v|Ψ (+)〉e−iσ� =

1
k
〈F�|t̃�|ψ(+)

� 〉e−iσ�

=
1
k2

〈F�|t̃�|F�〉 = e−2iσ�〈ψ(−)
� |t̃�|ψ(+)

� 〉 . (4.46)

Thus, if we define limρ→∞ K̃ρ
� = KN

� , Eq. (4.44) becomes

KN
� e−2iσ� 〈ψ(−)

� |t̃�|ψ(+)
� 〉 = 1 − ie−2iσ� k 〈ψ(−)

� |t̃�|ψ(+)
� 〉 . (4.47)

If we further parametrize

〈ψ(−)
� |t̃�|ψ(+)

� 〉 = −e2iσ�
1

2ik

(
e2iδN

� − 1
)
, (4.48)

we find KN
� = −k cot δN

� .
On the other hand, in the region r ≥ Rout, the Coulomb-free asymptotic wave

gives

|Ψρ(+)〉 =
1
k
|u�〉 − |w(+)

� 〉〈φ�|T ρ
� |φ�〉 for r ≥ Rout , (4.49)

where the T -matrix T ρ
� is defined in Eq. (3.13). If we write Eq. (4.49) using the

K-matrix defined by

Kρ
� 〈φ�|T ρ

� |φ�〉 = 1 − ik 〈φ�|T ρ
� |φ�〉 , (4.50)

it is expressed as

|Ψρ(+)〉 =
[|u�〉Kρ

� − |v�〉k
] 1
k
〈φ�|T ρ

� |φ�〉 for r ≥ Rout . (4.51)

We can use this to calculate the Wronskians in Eq. (4.45) at r = Rout, since the
difference between Ψ̃

ρ(+)
� and Ψ

ρ(+)
� is just a normalization. From these processes,

we eventually obtain

K̃ρ
�

{
W [F̃ ρ

� , u�]RoutK
ρ
� − kW [F̃ ρ

� , v�]Rout

}
= k

{
W [G̃ρ

� , u�]RoutK
ρ
� − kW [G̃ρ

� , v�]Rout

}
,

(4.52)

which is equivalent to Eq. (4.24) since Kρ
� = −k cot δρ

� and K̃ρ
� = −k cot δρN

� .
Summarizing this section, we first calculate 〈φ�|T ρ

� |φ�〉 from the LS equation in
the momentum representation, calculate Kρ

� by Eq. (4.50), transform it to K̃ρ
� by

Eq. (4.52), and take the limit limρ→∞ K̃ρ
� = KN

� . Then, the nuclear phase shift δN
�

is obtained from KN
� = −k cot δN

� .
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§5. Application to the pd scattering

Application of the present formalism to the pd scattering is not straightforward
because of several reasons. First, the asymptotic pd Coulomb potential suffers the
strong distortion effect of the deuteron due to the long-range nature of the Coulomb
force. In the strict three-body treatment of the nd scattering by the AGS equation,
the distortion effect of the deuteron is fully taken into account, but only for the short-
range force. Even if we neglect the Coulomb distortion effect by using the screened
Coulomb force, the quasi-singular nature of this interaction causes the difficulty that
the treatment by the standard AGS equation eventually breaks down at the limit of
ρ → ∞. To avoid this, a new formulation by the Coulomb-modified AGS equation
was devised. However, the very singular behavior of the screened Coulomb wave
functions in the momentum representation makes it difficult to solve this equation
numerically. Another difficulty lies in the partial-wave expansion of the AGS equa-
tion. Even in the two-body Coulomb problem, the partial-wave expansion of the
Coulomb amplitude does not converge in the usual sense, but converges only as the
distribution. It is therefore attempted to formulate the AGS equation based on the
three-dimensional description of the two-body T -matrix.1)–5) The isospin symmetry
breaking by the T = 3/2 component should also be taken into account, since the
Coulomb force admixes the different isospins. Here, we extend the “screening and
renormalization technique” to incorporate the present approach and try to find a
practical method of dealing with the pd elastic scattering even in an approximate
way.

Let ωρ(r; 1, 2) be a screened Coulomb force acting between two nucleons 1 and
2:

ωρ(r; 1, 2) =
e2

r
αρ(r)

1 + τz(1)
2

1 + τz(2)
2

. (5.1)

Here, r is the relative coordinate between the two nucleons. We use a set of Jacobi
coordinates of particles (1-2)+3 as the standard one and denote it by γ = 3. Another
relative coordinate is denoted by R in this section. Then, the screened Coulomb
potential in Eq. (5.1) is expressed as ωρ

γ with γ = 3. In the following, we formulate the
Coulomb-modified AGS equation in the isospin representation. The three-particle
symmetric three-body screened Coulomb potential ωρ

C =
∑

α ω
ρ
α is given in the

isospin basis as23)

ωρ
C = ωρ

γ + Wρ
γ +W ρ

γ for ∀γ . (5.2)

Here, W ρ
γ denotes the screened Coulomb potential between the nucleon γ and the

residual NN pair, and is a function of the Jacobi coordinate Rγ between them.
Furthermore, the three-body potential Wρ

γ , which is usually called the polarization
potential,23) is defined by

Wρ
γ =

∑
β

(
δ̄γ,βω

ρ
β − δγ,βW

ρ
β

)
=
∑

β

δ̄γ,βω
ρ
β −W ρ

γ , (5.3)
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where δ̄γ,β = 1 − δγ,β. It should be noted that, for the ppn system, either ωρ
γ or

Wρ
γ +W ρ

γ in Eq. (5.2) is only nonzero.
The two-potential formula for the three-body system is derived for the solutions

of the Coulomb-modified AGS equation.7) First, the three-body transition operator
Uρ

β,α for the usual AGS equation is defined through

Gρ = δβ,αg
ρ
α + gρ

β U
ρ
β,αg

ρ
α , (5.4)

where the full resolvent Gρ and the channel resolvent gρ
α are defined by

Gρ =

(
z −H0 −

∑
α

vα − ωρ
C

)−1

, gρ
α = (z −H0 − vα − ωρ

α)−1 , (5.5)

with vα being the short-range nuclear potential and z = E + εd + i0 composed of
the incident energy E and the deuteron energy εd. The three-body kinetic-energy
operator is expressed as H0 = h0γ +h0γ for an arbitrary set of Jacobi coordinates γ.
The transition operator Uρ

β,α satisfies the AGS equation

Uρ
β,α = δ̄β,αG

−1
0 +

∑
σ

δ̄β,σ t
ρ
σ G0 U

ρ
σ,α , (5.6)

where G−1
0 = (z −H0)−1 is the free resolvent, and the basic two-nucleon T -matrix

tρσ is generated by solving the LS equation for vσ + ωρ
σ. Namely,

tρ = (v + ωρ) + (v + ωρ)G0 t
ρ . (5.7)

The full resolvent Gρ can also be decomposed as

Gρ = δβ,αG
ρ
α +Gρ

β Ũ
ρ
β,αG

ρ
α , (5.8)

using another resolvent Gρ
α defined by

Gρ
α = (z −H0 − vα − ωρ

α −W ρ
α)−1 . (5.9)

The operator Ũρ
β,α satisfies the Coulomb-modified AGS equation:7)

Ũρ
β,α = δ̄β,α

(
(Gρ

α)−1 + vα

)
+ δβ,αWρ

α +
∑
σ

(
δ̄β,σvσ + δβ,σWρ

σ

)
Gρ

σŨ
ρ
σ,α . (5.10)

From the relationship between gρ
α and Gρ

α, the operator Ũρ
β,α is related to Uρ

β,α
through

Uρ
β,α = δβ,αT

ρ
α + (1 + T ρ

β g
ρ
β)Ũρ

β,α(1 + gρ
αT

ρ
α) , (5.11)

where the screened Coulomb T -matrix T ρ
α for the pd scattering is obtained from W ρ

α

through

T ρ
α = W ρ

α +W ρ
α g

ρ
α T

ρ
α = W ρ

α +W ρ
α G

ρ
αW

ρ
α . (5.12)
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Equation (5.11) is the two-potential formula for the three-body system. The Coulomb-
distorted asymptotic wave function is defined by |ψρ(+)

α 〉 = (1 + gρ
αT

ρ
α)|φα〉 from the

channel wave function |φα〉 = |q0α, ψ
d
α〉, where ψd

α is the deuteron wave function in
the α-channel. From this definition and Eq. (5.12), we obtain

|ψρ(+)
α 〉 = |φα〉 + gρ

αW
ρ
α |ψρ(+)

α 〉 . (5.13)

We define |ψρ(−)
α 〉 as the complex conjugate of |ψρ(+)

α 〉 and find

〈φβ |Uρ
β,α|φα〉 = δβ,α〈φα|T ρ

α |φα〉 + 〈ψρ(−)
β |Ũρ

β,α|ψρ(+)
α 〉 . (5.14)

We can separate the deuteron part in Eq. (5.13) and we obtain

|ψρ(+)
α 〉 = |χρ(+)

α , ψd
α〉 ,

|χρ(+)
α 〉 = |q0α〉 + (Eα + i0 − h̄0α)−1W ρ

α |χρ(+)
α 〉 , (5.15)

where Eα is the incident energy in the α-channel and |ψd
α〉 satisfies

(εd − h0α − vα − ωρ
α)|ψd

α〉 = 0 . (5.16)

Note that ωρ does not actually contribute in Eq. (5.16), since the isospin of the
deuteron is zero. From Eq. (5.15), we find

(Gρ
α)−1|ψρ(+)

α 〉 = (Eα − h̄0α −W ρ
α)|χρ(+)

α , ψd
α〉 = 0 . (5.17)

For three identical particles in the isospin formalism, a transition operator to the
channel γ, Ũρ

γ , is defined through∑
α

Ũρ
γ,α|ψρ(+)

α 〉 ≡ Ũρ
γ |ψρ(+)

γ 〉 . (5.18)

We assume γ to be the standard coordinate system γ = 3 and abbreviate the sub-
script γ. Then, we obtain from Eqs. (5.10) and (5.17) the Coulomb-modified AGS
equation for three identical particles:

Ũρ|ψρ(+)〉 = (Pv + Wρ)|ψρ(+)〉 + (Pv + Wρ)GρŨρ|ψρ(+)〉 , (5.19)

where Gρ = (z − H0 − v − ωρ − W ρ)−1 and P = P(12)P(23) + P(13)P(23) is the
permutation operator for the rearrangement. In Eq. (5.19), we set Ũρ|ψρ(+)〉 =
(Pv + Wρ)|Ψρ(+)〉 and obtain

|Ψρ(+)〉 = |ψρ(+)〉 +Gρ(Pv + Wρ)|Ψρ(+)〉 . (5.20)

Here, |Ψρ(+)〉 is the total wave function for the screened Coulomb problem and is
related to the total wave function for the full Coulomb problem |Ψ (+)〉 through∗)

lim
ρ→∞ |Ψρ(+)〉 eiζρ

= |Ψ (+)〉 (5.21)

∗) Strictly speaking, this relationship is valid only for the sharply cut-off Coulomb potential.

For general screened Coulomb potentials, an extra finite normalization factor like in Eq. (4.32) is

necessary for |Ψρ(+)〉. The following relations are all valid by modifying |Ψρ(+)〉 to |eΨρ(+)〉.
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with a shift function ζρ. The shift function ζρ = ζρ(k) is defined by

ζρ(q0) =
1

2q0

∫ ∞

1
2q0

W ρ(R) dR , (5.22)

where q0 is the wave number between the incident proton and the deuteron in the
center-of-mass (cm) system. The “screening and renormalization procedure”7) con-
verts Eq. (5.14) to its full Coulomb correspondence

〈φ|UC |φ〉 = 〈φ|TC |φ〉 + 〈ψC(−)|ŨC |ψC(+)〉 . (5.23)

Equation (5.20) is the distorted-wave version of

|Ψρ(+)〉 = |φ〉 + gρP (v + ωρ)|Ψρ(+)〉 , (5.24)

which can be derived similarly from the AGS equation in Eq. (5.6) by assigning
Uρ|φ〉 = P (v + ωρ)|Ψρ(+)〉. In fact, if we note that |Ψρ(+)〉 is three-nucleon anti-
symmetric, we can easily derive Eq. (5.19) from Eq. (5.24) by using P (v + ωρ) =
Pv + Wρ + W ρ. On the other hand, the Faddeev component |Ψρ〉, satisfying
|Ψρ(+)〉 = (1 + P )|Ψρ〉, can be derived by setting G0U

ρ|φ〉 = P |Ψρ〉 in the AGS
equation:

|Ψρ〉 = |φ〉 +G0t
ρP |Ψρ〉 . (5.25)

In the isospin formalism for the total isospin T = 1/2 state, we use the effective
T -matrix tI=1 = (2/3)tρpp + (1/3)tnp for the isospin 1 NN channel.24)

Instead of using the “screening and renormalization” procedure, we use an ex-
tension of the Vincent and Phatak procedure6) of the two-cluster Coulomb problem,
which is equivalent to the “screening and renormalization procedure” in the limit of
ρ → ∞. The scattering amplitude is obtained by imposing a connection condition
on the K-matrix ∗) Kρ

α,β ≡ (Z−1)α,β − 〈φα|Xρ|φβ〉 for the pd scattering,25) which
is derived from the two different asymptotic forms of the total wave function in
Eqs. (5.20) and (5.24). From here on, the subscripts α, β, etc., specify the channel
quantum numbers. We define a reduced wave function Φ

ρ(+)
α,γ (R) ≡ 〈R,ψd

α|Ψρ(+)
γ 〉.

The asymptotic form for the wave function given by Eq. (5.24) is without a constant
normalization factor

Φρ(+)
α,γ (R) ∼ uα(q0R) Kρ

α,γ − c vα(q0R) δα,γ for R > Rout , (5.26)

where c = q0(π/2)(4MN/3�
2) with MN being the nucleon mass. For the total wave

function in Eq. (5.20), the asymptotic form is

Φρ(+)
α,γ (R) ∼ 1

q0

∑
β

{
F̃ ρ

α(q0, R) K̃ρ
α,β − c G̃ρ

α(q0, R) δα,β

}
× 1
q0
〈Fβ, ψ

d
β|(Pv + Wρ)|Ψρ(+)

γ 〉 for R > a , (5.27)

∗) Here, the K-matrix is defined by the form of K�(q0) = −c cot δ�(q0) for the on-shell matrix

elements.
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where a is the range of the nuclear force. Here, F̃ ρ
α and G̃ρ

α are the screened Coulomb
wave functions defined in Eq. (4.17). In the inside region R < Rin, F̃α and G̃α are
equal to Fα and Gα, respectively. The connection condition for Φρ(+)

α,γ (R) at R = Rout

is written in terms of Wronskians:∑
β

K̃ρ
α,β

{
W [F̃ ρ

β , uβ ]Rout K
ρ
β,γ −W [F̃ ρ

β , vβ ]Rout c δβ,γ

}
= c

{
W [G̃ρ

α, uα]Rout K
ρ
α,γ −W [G̃ρ

α, vα]Rout c δα,γ

}
. (5.28)

Matrix elements Ũρ
β,γ , defined by∑

β

[
K̃ρ

α,β + i c δα,β

]
Ũρ

β,γ = δα,γ (5.29)

in the limit of ρ→ ∞, are related to 〈ψρ(−)
β |Ũρ|ψρ(+)

γ 〉 through

〈ψρ(−)
β |Ũρ|ψρ(+)

γ 〉 = ei(σβ+σγ) Ũρ
β,γ . (5.30)

Here, σβ and σγ are the Coulomb phase shifts in the channels β and γ, respectively.
The scattering amplitude fN,ρ

β,γ is obtained from Ũρ
β,γ through

fN,ρ
β,γ = −π

2
4MN

3�2
Ũρ

β,γ . (5.31)

In the channel-spin representation, the full scattering amplitude is written as

fρ
S′

cS′
cz,ScScz

(q̂f , q̂i) = δS′
c,ScδS′

cz,Sczf
C(θ) + 4π

∑
�′�JJz

ei(σ�′+σ�) fNJ,ρ
(�′S′

c),(�Sc)

×
∑
m′

〈�′m′S′
cS

′
cz |JJz〉Y�′m′(q̂f )

∑
m

〈�mScScz|JJz〉Y ∗
�m(q̂i) , (5.32)

for a sufficiently large ρ.

§6. Numerical performance

6.1. Comparison with the exact solutions for the Ali-Bodmer αα potential

The Ali-Bodmer αα potential is a simple phenomenological potential that re-
produces the results of the phase-shift analysis for the αα scattering up to Ecm ∼ 15
MeV. The angular-momentum-dependent version called Ali-Bodmer d (ABd) has
the explicit form

V ABd
αα (r) = V1 e

−η1r2
+ V2 e

−η2r2
+

4e2

r
erf (βr) , (6.1)

with the parameters η1 = 0.72 fm−2, η2 = 0.4752 fm−2, V2 = −130 MeV and

V1 =

⎧⎪⎪⎨⎪⎪⎩
500 MeV for S

320 MeV for D

0 for � ≥ 4
,
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β =
√

3
2 × 1.44

= 0.6014 · · · fm−1 . (6.2)

In Eq. (6.1), erf(x) stands for the error function defined by erf(x) = (2/
√
π)
∫ x
0 e

−t2 d t.
Since this potential model is exactly solvable by the Runge-Kutta-Gill (RKG) method,
it is suitable for testing the accuracy of the Coulomb approach developed in this pa-
per. With the assignment α = 4e2, the error function-type Coulomb force

VD(r) =
α

r
erf (βr) (6.3)

in Eq. (6.1) is the direct potential of the αα RGM. When a simple (0s)4 harmonic-
oscillator shell-model wave function with the width parameter ν is assumed for the
α-cluster, the parameter β is expressed as

β =
√

ν(
1 − 1

2μ

) = 2
√
ν/3 , (6.4)

where μ = 4 · 4/(4 + 4) = 2 is the reduced mass number of the αα system. On the
other hand, the rms radius of the α-cluster with A = 4 is given by

rα =
√

〈r2〉α =

√
3
4

(
1 − 1

A

)
1
ν

=
3
4

1√
ν
, (6.5)

without the proton size effect, so that β is related to rα through

β =
√

3
2 · rα . (6.6)

In ABd, rα = 1.44 fm is assumed, corresponding to ν = 0.271 fm−2.
In the momentum representation, we use the sharply cut-off Coulomb force at

the nucleon level. The corresponding direct αα potential is given by

V ρ
D(r) =

α

r

{
erf (βr) − 1

2
[erf (β(r + ρ)) + erf (β(r − ρ))]

}
. (6.7)

If we use this screened Coulomb potential in Eq. (6.1), we find

V ρ
αα(r) = V1 e

−η1r2
+ V2 e

−η2r2
+ V ρ

D(r) . (6.8)

Here, we separate V ρ
D(r) into

V ρ
D(r) =

α

r

{
[erf (βr) − 1] + 1 − 1

2
[erf (β(r + ρ)) + erf (β(r − ρ))]

}
= −α

r
[1 − erf (βr)] +

α

r
αρ(r) , (6.9)

and set

αρ(r) = 1 − 1
2

[erf (β(r + ρ)) + erf (β(r − ρ))] . (6.10)
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Fig. 1. (a): S-wave Ali-Bodmer potential ABd with the screened Coulomb force (solid curve) for

the αα system. The dashed curve denotes the simple Coulomb potential VC(r) = 4e2/r and the

dotted curve the nuclear part. The full potential is shown by the bold solid curve. The cutoff

radius of the sharply cut-off Coulomb force at the nucleon level is assumed to be ρ = 12 fm. (b):

Enlarged profiles of (a) for various Coulomb potentials. The solid curve denotes the screened

Coulomb direct potential in Eq. (6.7) with the error function form.

Then, the αα potential that should be used in the momentum representation becomes

V ρ
αα(r) = V (r) +

α

r
αρ(r)

with V (r) = V1 e
−η1r2

+ V2 e
−η2r2

+ W(r) . (6.11)

Here, W(r) = −(α/r) [1 − erf (βr)] is the short-range attraction originating from the
Coulomb potential. In fact, the asymptotic expansion of the error function yields

W(r) =
α

r
[erf (βr) − 1] ∼ −α

r
e−(βr)2

∞∑
n=0

(−)n (2n− 1)!!
2n+1

(
1
βr

)2n+1

. (6.12)

We find that W(r) is sufficiently small around (βr)2 ∼ 16; namely, r ∼ 4/β ∼ 7 fm
(actually, even around ∼ 4 fm, as seen in Fig. 2 below).

We illustrate in Fig. 1(a) the S-wave Ali-Bodmer potential ABd and in (b) the
enlarged profiles of various types of Coulomb potentials. The cutoff function αρ(r)
in Eq. (6.10) for the cutoff Coulomb radius ρ = 12 fm and the short-range Coulomb
potential W(r) in Eq. (6.12) are shown in Fig. 2. We find that αρ(r) satisfies the
conditions 1) – 3) of the screened Coulomb potential. In particular, the much more
stringent condition 3)′ in Eq. (4.5) is also satisfied with the smoothness parameter
b ∼ 3 fm. If we take b = 6 fm, the deviation of αρ(r) from 1 (or 0) at Rin = ρ− b = 6
fm (or at Rout = ρ + b = 18 fm) is less than 10−6. Note that this kind of rapid
transition from 1 to 0 is not achieved in the standard screening functions in the form
of αρ(r) = e−(r/ρ)n

, unless n is taken to be very large like n ≥ 20. In this sense, our
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Fig. 2. Cutoff function αρ(r) in Eq. (6.10) with the cutoff Coulomb radius ρ = 12 fm and the short-

range Coulomb potential W(r)/α = [erf(βr) − 1] /r in Eq. (6.12) for the αα screened Coulomb

potential (in the unit of fm−1).

screened Coulomb potential is a small deviation from the sharply cut-off Coulomb
potential, which is probably related to the smallness of the limit limρ→∞Aρ

� ∼ 0
if it exists. This property must also be related to the small deviation of the shift
function ζρ(k) in Eq. (4.13) from ηlog (2kρ), which is the result of the sharply cut-off
Coulomb potential in Eq. (2.27). We will show in Appendix B that the screening
function αρ(r) in Eq. (6.10) satisfies the limit

ζρ(k) → η log (2kρ) as ρ→ ∞ , (6.13)

in contrast to the αρ(r) = e−(r/ρ)n
case. In the latter case, the right-hand side of Eq.

(6.13) contains an extra constant term, −(η/n)γ, with γ being the Euler constant.
(See Eq. (B.3).)

First, we have neglected the nuclear potential V1 = 0 and V2 = 0 in Eq. (6.1)
and compared the nuclear phase shifts between the present method and the direct
method using Eq. (1.1). In the direct method, the relative-wave function ψ�(r) in
Eq. (1.1) is solved from r = 0 to Rout = 12 + 6 = 18 fm by the RKG method and
smoothly connected to a linear combination of the pure Coulomb wave functions at
r = Rout. Since we are using the error function Coulomb potential, the nuclear phase
shift does not become zero. In the S-wave, δN

0 increases from 0 to 11.088◦ when the
energy increases to Ecm = 15 MeV. Similarly, δN

2 = 0.473◦ and δN
4 = 0.013◦ at

Ecm = 15 MeV. In the momentum-space approach, we first solve the LS equation
and calculate δρ

� (which is the screened Coulomb phase shift) by assuming ρ = 12
fm. The phase shift is then transformed to δN

� through the connection condition in
Eq. (4.24). Here, we assumed b = 6 fm, and F̃ ρ

� (k, r) and G̃ρ
� (k, r) are calculated

from Rin = 12 − 6 = 6 fm to Rout = 12 + 6 = 18 fm also by the RKG method, with
the pure Coulomb values at Rin = 6 fm as the starting values. The results obtained
by these two different methods, of course, agree with each other completely within a
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numerical accuracy of less than 0.001◦. Next, we switched on V1 and V2 and repeated
the same calculations. The result is shown in Table I. For each incident energy, the
first row indicates solutions obtained by the RKG method, and the second row those
in the momentum-space approach. Only figures different from the first row are shown
in the second row. In the left-hand side, the final results of δN

� are compared. In the
right-hand side, the phase shifts δρ

� directly obtained from the LS equation (before
the transformation) are also compared. We find that, in the lowest energy Ecm = 1
MeV, a difference of 0.005◦ exists in both δN

� and δρ
� . This is probably the inaccuracy

of solving the LS equation for the low energies. For other energies, the difference is
less than 0.001◦, and the agreement of the results obtained by our method with the
exact solutions is quite satisfactory.

6.2. αα Lippmann-Schwinger RGM using the Minnesota three-range force

As a more complex system, we apply the present method to the αα LS-RGM
using the Minnesota three-range force. In this calculation, we solve the RGM equa-
tion in the momentum space. All the Born kernels including the direct term and the
RGM exchange kernels for the sharply cutoff Coulomb force between two protons are
analytically calculated. For example, the direct Born kernels of the error function
Coulomb potential in Eq. (6.3) and the screened Coulomb potential in Eq. (6.7) are
given by

MCL
D (qf , qi) = 〈eiqf ·r|4e

2

r
erf (βr)|eiqi·r〉 = 4e2

4π
k2

e
− 1

4

“
k
β

”2

,

MρCL
D (qf , qi) = 〈eiqf ·r|V ρ

D(r)|eiqi·r〉 = 4e2 2πρ2

(
sin kρ

2
kρ
2

)2

e
− 1

4

“
k
β

”2

, (6.14)

where k = qf − qi. Note that MCL
D (qf , qi) involves the Coulomb singularity at

|qf | = |qi|, while MρCL
D (qf , qi) does not have such a singularity. A numerical chal-

lenge is the angular momentum projection of this kernel. We have used a standard
Gauss-Legendre integration quadrature, taking many discretization points. We can
check the accuracy of this numerical integration by examining the redundancy con-
dition of the Pauli forbidden states for the S- and D-waves. Various cutoff Coulomb
parameters are chosen from ρ = 8 fm to 16 fm, with b = 6 fm fixed. The modified
Coulomb wave functions are therefore solved from Rin = ρ−6 fm to Rout = ρ+6 fm.
In Table II, we list the variation of the nuclear phase shifts, depending on the choice
of ρ. We find that the results are quite stable in this appropriate range of ρ. We show
in Fig. 3(a) the αα phase shifts predicted using the ABd potential and in Fig. 3(b)
the results obtained by the LS-RGM using the Minnesota three-range force and the
Volkov No. 2 two-range force.

6.3. pd elastic scattering

As in the case of the αα scattering discussed in the preceding subsections, the
screening function αρ(R) for the pd elastic scattering should be derived consistently
with the screened Coulomb potential between two protons in Eq. (5.1). In our appli-
cation of the quark-model baryon-baryon interaction fss2 to the pd elastic scattering
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Table I. Comparison of αα nuclear phase shifts (δN
� ) of the ABd potential with the direct method.

For each cm energy Ecm, the first row indicates solutions obtained by the RKG method, con-

nected at Rout = 18 fm by Eq. (1.1). The second row stands for the solutions obtained by the

present momentum-space approach. Only figures different from the first row are shown. In the

left-hand side, the final results of δN
� are compared. In the right-hand side, the phase shifts

δ
ρ
� directly obtained from the LS equation (before the transformation) are also compared. The

cutoff Coulomb radius ρ is chosen to be ρ = 12 fm and the smoothness parameter in Eq. (4.5)

is b = 6 fm. The parameters (~
2/MN ) = 41.786 MeV · fm2 and e2 = 1.44 MeV · fm are used.

Ecm δN
� δ

ρ
�

(MeV) S D G S D G

1 147.021 0.485 0.000 40.403 152.767 178.017

16 398

2 110.751 9.736 0.008 10.133 141.754 168.315

2 5 4

3 85.082 66.577 0.065 176.887 22.894 158.138

6 3

4 65.251 109.426 0.261 165.105 65.200 153.102

5 49.031 115.142 0.748 153.868 73.736 153.013

6 35.271 113.611 1.756 144.160 73.663 154.882

7 23.299 110.142 3.661 135.833 71.241 157.196

8 12.689 106.077 7.140 128.379 68.336 160.738

9 3.153 101.875 13.575 121.482 65.314 167.386

10 −5.513 97.719 26.095 115.039 62.204 0.375

11 −13.462 93.685 50.814 109.027 59.060 25.569

12 −20.807 89.805 86.674 103.419 55.958 61.717

13 −27.637 86.086 113.376 98.168 52.954 88.789

8

14 −34.024 82.526 127.388 93.223 50.067 103.178

15 −40.025 79.119 134.966 88.538 47.293 111.085

2

in Ref. 26), the sharply cut-off Coulomb force is introduced at the quark level in
the form of (1/rqq)θ(ρ− rqq), where rqq is the relative distance between two quarks.
The proton-proton (pp) potential ωρ(r) is obtained by folding it with the (3q)–(3q)
internal wave function, resulting in

ωρ(r; 1, 2) =
e2

r

{
erf

(√
3

2
r

b

)
− 1

2

[
erf

(√
3

2
r + ρ

b

)
+ erf

(√
3

2
r − ρ

b

)]}
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×1 + τz(1)
2

1 + τz(2)
2

, (6.15)

where r is the distance between the two protons, r = |r12| = |x1 − x2|, and b is
the harmonic-oscillator range parameter of the (3q)-clusters. Note that this screened
Coulomb potential for the two protons is not equal to Eq. (5.1) upon merely changing
αρ(r) to Eq. (6.10) (with a trivial modification β → (

√
3/2b)), but also contains the

contributions from the short-range Coulomb potential in Eq. (6.12). We calculate

Table II. Cutoff radius (ρ) dependence of the nuclear phase shifts δ� for the αα LS-RGM. The

Minnesota three-range force with u = 0.94687 and ν = 0.257 fm−2 is used.

Ecm (MeV) ρ (fm)

8 10 12 14 16

1.000 144.448 144.450 144.450 144.451 144.450

2.000 107.561 107.563 107.563 107.563 107.563

3.000 81.689 81.690 81.690 81.690 81.690

4.000 61.847 61.848 61.848 61.848 61.848
1S0 5.000 45.740 45.741 45.741 45.741 45.741

6.000 32.176 32.177 32.177 32.177 32.177

8.000 10.145 10.146 10.146 10.146 10.146

10.000 −7.395 −7.394 −7.394 −7.394 −7.394

12.000 −21.988 −21.987 −21.987 −21.987 −21.987

15.000 −40.163 −40.163 −40.163 −40.163 −40.163

1.000 0.589 0.590 0.590 0.590 0.587

2.000 11.641 11.644 11.644 11.644 11.645

3.000 70.120 70.134 70.134 70.134 70.134

4.000 106.361 106.365 106.365 106.365 106.365
1D2 5.000 111.080 111.081 111.081 111.081 111.081

6.000 109.344 109.345 109.345 109.345 109.345

8.000 101.886 101.887 101.887 101.887 101.887

10.000 93.853 93.854 93.854 93.854 93.854

12.000 86.367 86.368 86.368 86.368 86.368

15.000 76.354 76.355 76.355 76.355 76.355

1.000 0.000 0.000 0.000 0.000 0.000

2.000 0.013 0.013 0.013 0.013 0.014

3.000 0.102 0.102 0.102 0.102 0.102

4.000 0.398 0.399 0.399 0.399 0.399
1G4 5.000 1.107 1.108 1.108 1.108 1.108

6.000 2.522 2.523 2.523 2.523 2.523

8.000 9.514 9.517 9.517 9.517 9.517

10.000 29.924 29.928 29.928 29.928 29.928

12.000 75.818 75.820 75.820 75.820 75.820

15.000 120.744 120.745 120.745 120.745 120.745
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Fig. 3. (a): S-, D- and G-wave αα phase shifts predicted using the Ali-Bodmer potential ABd. (b):

Same as (a), but for αα RGM using Volkov No. 2 (VN2) with m = 0.59 and ν = 0.275 fm−1

(dashed curves) and Minnesota three-range (MN3R) potentials with u = 0.94687 and ν =

0.257 fm−1 (solid curves); the latter result is in better agreement with the experiment.

the pd screened Coulomb potential by further folding the pp potential in Eq. (6.15)
with the deuteron wave function 〈r; 1, 2|ψd〉:

V ρC
pd (R) = 〈ψd|ωρ(|R + r/2|; 2, 3)|ψd〉 + 〈ψd|ωρ(|R − r/2|; 3, 1)|ψd〉 , (6.16)

where R = x3 − (x1 + x2)/2 is the relative coordinate between the center-of-masses
of the deuteron and the proton. This calculation is made in Appendix C. We assign
the long-range part of V ρC

pd (R) in Eq. (C.2) to W ρ(R) in Eq. (5.2), and parametrize it
as W ρ(R) = (e2/R)αρ(R). The screening function αρ(R) is numerically calculated
by using Eqs. (C.15) – (C.17) and the momentum-space deuteron wave function
expanded in the dipole form factors.27) Here, we only show in Fig. 4 the profiles of the
screening function αρ(R) and the short-range Coulomb potential (the polarization
potential) W(R) for the simplest deuteron channel with Jπ = 1/2+. We find that
the cutoff behavior around R ∼ ρ is fairly sharp even at ρ ∼ 8 fm. The short-range
Coulomb potential W(R) is ρ-independent as shown in Eq. (C.5). The coupling
potential W ρ(R) between different channel-spin states, (�Sc) �= (�′S′

c), is very small.
We therefore neglect this and solve the screened Coulomb problem only by using
the diagonal part of (�Sc) in order to generate the regular and irregular screened
Coulomb wave functions for the connection condition.

Some typical eigenphase shifts of the Ep = 65 MeV pd scattering with the
Coulomb cutoff radius ρ = 8, 16, and 20 fm are listed in Table III for Jπ = 1/2± and
3/2± states. Here, we have assumed the maximum total angular momentum of the
two-nucleon subsystem, Imax = 4. The real parts of the eigenphase shifts are only
given for simplicity. We find that the inclusion of the cutoff Coulomb force gives
an apparent repulsive effect, namely, the S-wave and P -wave eigenphase shifts are
−0.9◦ – −2.5◦ (−2.5◦ – −3.1◦) more repulsive than those in the no Coulomb case if
ρ = 8 fm (ρ = 16 fm) is assumed. The transformation by the connection condition
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Fig. 4. (a) Screening function αρ(R) (solid curve) and short-range potential W(R)/e2 (dashed

curve) (in the unit of fm−1), given in Eq. (C.7) for the pd scattering. A simple S-wave deuteron

wave function u(r) =
√

2γ e−γr with γ = 0.2316 fm−1 is used. The Coulomb cutoff radius

is ρ = 8 fm. (b) Realistic αρ(R) for the pd scattering in the simplest deuteron channel with

Jπ = 1/2+. In the (	Sc) = (0 1/2) (solid curve) and (2 3/2) (dashed curve) diagonal channels,

curves are almost identical. The off-diagonal αρ(R) with (	Sc)–(	′S′
c)=(0 1/2)–(2 3/2) (dotted

curve) is very small. Here, 	 is the relative angular momentum between p and d, and Sc is the

channel spin.

Table III. Real parts of the nuclear eigenphase shifts for the Nd elastic scattering at EN = 65

MeV. The nd phase shifts with no Coulomb force and the pd phase shifts including the cutoff

Coulomb force with ρ = 8, 16, and 20 fm are listed. For ρ = 8 fm (before), the eigenphase shifts

before applying the transformation in Eq. (5.28) are also shown. The maximum total angular

momentum of the two-nucleon subsystem is Imax = 4, and the momentum discretization points

n = n1-n2-n3 = 6-6-5 are used in the definition shown in Ref. 25).

no Coulomb with Coulomb force
2S+1	J force ρ = 8 fm ρ = 8 fm ρ = 16 fm ρ = 20 fm

(before)
2S1/2 26.84 24.38 28.70 28.99 29.01
4D1/2 −7.25 −9.41 −7.20 −6.92 −6.76
2P1/2 −0.44 −2.51 −0.04 0.35 0.45
4P1/2 24.28 21.83 24.76 24.98 24.99
4S3/2 32.11 31.23 33.79 34.25 34.63
2D3/2 8.74 6.87 9.15 9.35 9.51
4D3/2 −5.49 −7.84 −5.32 −5.01 −5.11
4P3/2 24.98 22.53 25.32 25.84 25.72
2P3/2 6.73 4.60 7.16 7.38 7.47
4F3/2 −1.05 −2.81 −0.86 −0.63 −0.55
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Fig. 5. Cutoff radius dependence of the proton analyzing power for the pd elastic scattering at

Ep = 3 MeV. The results in the no Coulomb case, ρ = 8, 10, and 12 fm are shown by the

dot-dot-dashed, dotted, dashed, and solid curves, respectively. The left panel shows the results

of Imax = 3 and the right panel shows those of Imax = 4. The pd experimental data from Ref. 28)

are also shown by circles.

in Eq. (5.28) gives an attractive effect to make the resultant eigenphase shifts rather
close to those in the no Coulomb case. As far as low partial waves such as the S and
P waves are concerned, the final results of the nuclear eigenphase shifts are rather
stable within the fluctuation of less than 0.8◦. We have calculated pd differential
cross sections and other polarization observables using various ρ values. The results
obtained with ρ = 8 fm are quite reasonable, but if we take larger values like ρ = 16
and 20 fm, we have found that undesirable oscillations develop in all the observables.
The origin of the oscillations is traced back to the high partial waves, in which the
restriction of Imax = 4 is too severe. Since we are using the channel-spin formalism,
the total angular momentum Jπ of the three-nucleon system is achieved by the
angular-momentum coupling (�Sc)J , where the channel spin Sc is constructed from
(I 1

2)Sc. For a large Jπ, the large contribution of the Coulomb force from the large
relative orbital angular momentum of the two-proton subsystem is not fully taken
into account, since the magnitude of Sc is restricted by Imax = 4. To demonstrate
this situation, we show in Fig. 5 the ρ-dependence of the nucleon analyzing power
for the 3 MeV pd scattering, calculated with Imax = 3 and Imax = 4. In the forward
angular region with θcm < 90◦, we find that an undesirable bump structure develops
as ρ increases from 8 to 12 fm when Imax = 3 is used. However, such enhancement
is strongly suppressed when Imax = 4 is used. This demonstrates very clearly that
two-nucleon partial waves should be included up to sufficiently high values to obtain
the well-converged results if the screened Coulomb force is incorporated into the
standard AGS equations.

Since the calculation with Imax = 6 and more is not presently possible because
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Fig. 6. pd differential cross sections (dσ/dΩ), analyzing power (Ay(θ)) of the proton, and vector

(iT11(θ)) and tensor (T2m(θ)) analyzing powers of the deuteron at Ep = 65 MeV. The results in

the no Coulomb case, ρ = 8, 16, and 20 fm are shown by the dashed, dotted, solid, and bold-

solid curves, respectively. These curves almost overlap with each other, except for the forward

nuclear-Coulomb interference region. The screened Coulomb force is neglected for higher partial

waves with Jπ ≥ 11/2+. The experimental data are taken from Ref. 30) for dσ/dΩ and Ay(θ),

and from Ref. 31) for iT11(θ) and T2m(θ).
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of limited computer resources, here, we propose to cut the Coulomb force for higher
Jπ values and use a simple “Coulomb externally corrected approximation”, in which
the nd eigenphase shifts are directly used for the nuclear phase shifts.29) Figure 6
shows the pd differential cross sections and some polarization observables at Ep = 65
MeV, calculated by neglecting the Coulomb force for Jπ ≥ 11/2+. We find that the
results with ρ = 8, 16, and 20 fm are very similar, although some difference is seen in
T20(θ) and T22(θ). The results with ρ = 8 fm are almost the same as those obtained
by the full calculation, including the Coulomb force for all the partial waves.

§7. Summary and outlook

In the present work, we have proposed a practical method of dealing with the
Coulomb problem in the momentum space. Although a standard procedure to deal
with the Coulomb force in two-body systems has been formulated in the configuration
space, the extension of such an approach to three-body systems is not trivial.32)

Here, we have reformulated the momentum-space approach of two-cluster systems
based on the essential idea of the “screening and renormalization procedure”, which
has recently been used in the standard formulation of the AGS equations for the
pd scattering in the momentum representation.7)–9) In this approach, the screened
Coulomb force with a cutoff parameter ρ is introduced to the basic equations as if it is
a part of the short-range nuclear force. The two-potential formula for the short-range
potentials is used to generate the scattering amplitude. The pure Coulomb results are
reproduced by taking the ρ→ ∞ limit based on Taylor’s formula15),16) for the phase
renormalization of the asymptotic wave functions of the screened Coulomb potential.
The central issue in this approach is if one can reproduce the exact Coulomb results
by taking a finite ρ. Since the quasi-singular nature of the screened Coulomb force
becomes stronger for larger ρ, it is essential that one can reproduce almost exact
results with a reasonable choice of ρ.

To achieve this, we propose to extend the Vincent and Phatak approach,6) which
was originally formulated for sharply cut-off Coulomb problems. When a sharply
cut-off Coulomb force with a cutoff radius ρ is introduced at the level of constituent
particles, the two-cluster direct potential of the Coulomb force becomes in general a
local screened Coulomb potential implemented with the short-range Coulomb force.
The screening function αρ(r) is determined by the properties of the cluster wave
functions, and involves a smoothness parameter b related to the size of clusters. In
practice, b satisfies b ρ, which is an additional condition to Taylor’s properties15)

of screening functions. We find that this condition is necessary to make the present
treatment work well. We pay attention to the existence of two different types of
asymptotic waves contained in the screened Coulomb wave functions. The first one
is the approximate Coulomb wave for the relative distance of two clusters, r, smaller
than Rin = ρ − b, and the other is the free (no-Coulomb) wave in the longer range
region, r > Rout = ρ + b. The asymptotic Hamiltonian composed of the screened
Coulomb force allows us to calculate the constant Wronskians of this Hamiltonian in
either region. Using this property, we can extend the standard procedure of matching
conditions for asymptotic waves to the screened Coulomb potential.
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We should note that the renormalization property of the screened Coulomb wave
functions is more involved than in the sharply cutoff Coulomb case. In particular, the
irregular function of the screened Coulomb potential in general contains an admixture
of the regular solution even in the ρ → ∞ limit. As a result, the limit of the Green
function for the screened Coulomb potential is not reduced to the Coulomb Green
function. This requires an extra renormalization of the regular wave function for the
problem of the short-range nuclear potential plus the screened Coulomb potential.
This renormalization factor, however, does not affect the final expression of the
connection condition, since it is given by the ratio of Wronskians.

We first applied this method to an exactly solvable model of the αα scattering
with the Ali-Bodmer potential and confirmed that essentially exact phase shifts are
reproduced using a finite ρ. The stability of nuclear phase shifts with respect to the
change of ρ in some appropriate range is demonstrated by using the αα Lippmann-
Schwinger RGM with the Minnesota three-range force. In the application to the pd
elastic scattering, some dependence on the choice of ρ remains, although the essential
features of the nuclear and Coulomb interference in forward angles are reproduced
not only for the differential cross sections but also for the deuteron tensor analyzing
powers.

We have to admit that a completely satisfactory Coulomb treatment of the three-
body system is still not achieved. First, the stability of ρ in the case of the above pd
elastic scattering is not completely realized. We have examined all the observables
for the pd elastic scattering in the energy range Ep ≤ 65 MeV, and found that the
present choice ρ ∼ 8 – 9 fm is appropriate to reproduce almost all the experimental
data.26) The forward behavior of the vector analyzing powers Ay(θ) for the proton
and iT11(θ) for the deuteron is not consistently achieved in the low-energy region,
using a unique ρ. Choosing a much larger ρ of around ρ ∼ 16 – 20 fm is almost
prohibited since the solution of the AGS equation becomes very singular and the
partial waves included in the actual calculations are restricted by the hardware.
Another problem is the treatment of the Coulomb force in the breakup processes.33)

The phase renormalization for the two protons observed at the final stage is not
trivial because of the exchange breakup amplitude. We probably need to solve the
Coulomb-modified AGS equations in spite of the very singular nature of the screened
Coulomb wave functions in the momentum representation. Finally, we mention that
the Coulomb treatment of three charged particles like the three-α system is a big
challenge, since the the asymptotic behavior of the three charged particles is not
a priori known.
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Appendix A
Definition of the Coulomb Wave Functions

The usual regular solution ψ�(k, r) and the regular solution corresponding to
the Jost solution, ϕ�(k, r), for the Coulomb problem are defined by the confluent
hypergeometric functions through

ϕ�(k, r) =
1
k�
F�(k)ψ�(k, r)

=
r�+1

(2�+ 1)!!
eikrF (�+ 1 + iη, 2�+ 2,−2ikr)

=
r�+1

(2�+ 1)!!
e−ikrF (�+ 1 − iη, 2�+ 2, 2ikr) = real

∼ 1
k�+1

|F�(k)| sin
(
kr − ηlog 2kr − π

2
�+ σ�

)
. (r → ∞) (A.1)

Here, η is the Sommerfeld parameter and F�(k) is the Coulomb Jost function

F�(k) = e
π
2
η �!
Γ (�+ 1 + iη)

, (A.2)

which can be obtained by comparing the behavior at the origin between ψ�(k, r)
and ϕ�(k, r). The Jost solution of the Coulomb problem is defined by the irregular
solution with the asymptotic behavior f�(k, r) ∼ ei(kr−ηlog 2kr−π�/2) for r → ∞. More
explicitly, it is given by

f�(k, r) = (−i)�(2kr)−iηeikrG(�+ 1 + iη,−�+ iη, 2ikr)
= i(−)�+1eπη/2(2kr)�+1eikrΨ(�+ 1 + iη, 2�+ 2,−2ikr)
∼ ei(kr−ηlog 2kr−π�/2) . (r → ∞) (A.3)

Here, G(α, β, z) and Ψ(α, γ, z) are irregular solutions of the confluent hypergeometric
functions defined in Refs. 34) and 35), respectively, and they are related to each other
by

Ψ(α, γ, z) = z−αG(α, α− γ + 1,−z) . (A.4)

The symmetries of the Jost solution and Jost function are given by

f∗� (k, r) = (−)�eπηf�(−k, r) , F ∗
� (k) = eπηF�(−k) , (A.5)

with the Coulomb factor eπη. They satisfy the usual definition of the Jost function

F�(k) = lim
r→0

(kr)�

(2�− 1)!!
f�(k, r) , (A.6)
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and the relationship

ϕ�(k, r) =
1

2ik�+1
{F ∗

� (k)f�(k, r) − F�(k)f∗� (k, r)} , (A.7)

for a real k.
The usual Coulomb wave functions are defined as the real functions satisfying

the asymptotic behavior

F�(k, r) ∼ sin
(
kr − ηlog 2kr − π

2
�+ σ�

)
,

G�(k, r) ∼ cos
(
kr − ηlog 2kr − π

2
�+ σ�

)
, (A.8)

for r → ∞. These Coulomb wave functions are related to each other through

ψ�(k, r) =
1
k
eiσ�F�(k, r) ,

ϕ�(k, r) =
1

k�+1
|F�(k)| F�(k, r) = real ,

f�(k, r) = e−iσ� [G�(k, r) + iF�(k, r)] ,
f∗� (k, r) = eiσ� [G�(k, r) − iF�(k, r)] . (A.9)

The relationship with the usual “incident plane wave + outgoing (or incoming)
spherical wave” is ψ(+)

� (k, r) = ψ�(k, r) and ψ(−)
� (k, r) = ψ∗

� (k, r). This implies that

ψ
(+)
� (k, r) = ψ�(k, r) ∼ 1

k
eiσ� sin

(
kr − ηlog 2kr − π

2
�+ σ�

)
,

∼ 1
k

sin
(
kr − ηlog 2kr − π

2
�
)

+ fC
� e

i(kr−ηlog 2kr−(π/2)�) ,

ψ
(−)
� (k, r) = ψ∗

� (k, r) ∼
1
k
e−iσ� sin

(
kr − ηlog 2kr − π

2
�+ σ�

)
,

∼ 1
k

sin
(
kr − ηlog 2kr − π

2
�
)

+ fC
�

∗
e−i(kr−ηlog 2kr−(π/2)�) . (A.10)

Here, fC
� = (1/2ik)(e2iσ� − 1) is the Coulomb partial-wave amplitude, and

e2iσ� =
Γ (�+ 1 + iη)
Γ (�+ 1 − iη)

, |F�(k)| =

[
e2πη − 1

2πη

�∏
n=1

n2

n2 + η2

] 1
2

. (A.11)

Appendix B
Shift Function of Various Screening Functions

In this appendix, we calculate the shift function

ζρ(k) ≡ 1
2k

∫ ∞

1
2k

2kη
r
αρ(r) d r = η

∫ ∞

1
2k

1
r
αρ(r) d r , (B.1)
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appearing in Eq. (1.5) for various screening functions αρ(r) and evaluate the no-
screening limit ρ → ∞. When the screening is αρ(r) = e−(r/ρ)n

, we can write an
analytic expression

ζρ(k) = η

∫ ∞

1
2k

1
r
e
−

“
r
ρ

”n

d r = η log (2kρ) − η

n
γ − η

n

∞∑
r=1

(−)r

r r!

(
1

2kρ

)nr

, (B.2)

which leads to

ζρ(k) → η log (2kρ) − η

n
γ as ρ→ ∞ . (B.3)

Here, γ is the Euler constant. On the other hand, the screening functions with
sharper transitions like 3)′ in Eq. (4.5) seem to have no constant term like Eq. (6.13)
in the limit of ρ → ∞. We will show this for the error function screening in Eq.
(6.10). The proof for the exponential screening function in Eq. (C.7) is also carried
out similarly.

In order to prove Eq. (6.13), we separate the r integral in Eq. (B.1) into three
pieces as

ζρ(k) = η

∫ ρ

1
2k

1
r
d r − η

∫ ρ

1
2k

1
r

(1 − αρ(r)) d r + η

∫ ∞

ρ

1
r
αρ(r) d r

= η log (2kρ) − I1(ρ) + I2(ρ) . (B.4)

First, the positive integral I2(ρ) is estimated by

I2(ρ) <
η

ρ

∫ ∞

ρ
αρ(r) d r , (B.5)

so that we only need to evaluate the integral over αρ(r). For the error function
screening, the expression

αρ(r) =
1√
π

{∫ ∞

β(r−ρ)
e−t2 d t+

∫ ∞

β(r+ρ)
e−t2 d t

}
(B.6)

yields ∫ ∞

ρ
αρ(r) d r =

1√
π

1
2β

(
1 + e−(2βρ)2

)
− ρ (1 − erf (2βρ)) . (B.7)

We therefore find

I2(ρ) <
1√
π

η

2βρ

(
1 + e−(2βρ)2

)
− η (1 − erf (2βρ)) −→ 0 as ρ→ ∞ . (B.8)

In order to evaluate I1(ρ), we use

αρ(r) = 1 − 1√
π

∫ β(ρ+r)

β(ρ−r)
e−t2 d t (B.9)
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derived from Eq. (B.6), and express it as

I1(ρ) =
η√
π

∫ ρ

1
2k

1
r

(∫ β(ρ+r)

β(ρ−r)
e−t2 d t

)
d r . (B.10)

Here, we change the integral variable from r to x by r = ρx and obtain

I1(ρ) =
η√
π

∫ 1

ε

1
x

(∫ α(1+x)

α(1−x)
e−t2 d t

)
d x , (B.11)

with α = βρ and ε = 1
2kρ . We consider the upper bound η√

π
Ĩ1(α) > I1(ρ) with

Ĩ1(α) =
∫ 1

0

1
x

(∫ α(1+x)

α(1−x)
e−t2 d t

)
d x . (B.12)

We separate the integral interval [0, 1] into [0, 1−δ] and [1−δ, 1] with a small positive
δ > 0. Then, we find

Ĩ1(α) =
∫ 1−δ

0

1
x

(∫ α(1+x)

α(1−x)
e−t2 d t

)
d x

+
∫ 1

1−δ

1
x

(∫ α(1+x)

α(1−x)
e−t2 d t

)
d x . (B.13)

Here, the first term is bounded by 2αe−(αδ)2(1 − δ). In the second term, we change
the integral variable from x to y by x = 1 − y and find

2nd term =
∫ δ

0

1
1 − y

(∫ α(2−y)

αy
e−t2 d t

)
d y

<
1

1 − δ

∫ δ

0

(∫ ∞

0
e−t2 d t

)
d y =

δ

1 − δ

√
π

2
. (B.14)

Thus, we obtain

0 ≤ Ĩ1(α) ≤ 2αe−(αδ)2(1 − δ) +
δ

1 − δ

√
π

2
. (B.15)

First, we take the limit α→ ∞ in Eq. (B.15) and obtain

0 ≤ lim
α→∞ Ĩ1(α) ≤ δ

1 − δ

√
π

2
. (B.16)

Since we can take δ > 0 to be arbitrarily small, we eventually find

I1(ρ) ≤ η√
π
Ĩ1(α) −→ 0 as ρ→ ∞ . (B.17)
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Appendix C
Screening Function αρ(R) for the dp Scattering

In this appendix, we derive the screening function αρ(R) for the pd scattering,
starting from the screened Coulomb function ωρ(r; 1, 2) in Eq. (6.15) for the pp
system of the quark-model baryon-baryon interaction. We first note that the ρ→ ∞
limit, ω = limρ→∞ ωρ, is an error function Coulomb potential, which satisfies

〈ψd|(Pω)|ψd〉 ∼ e2

R
for R→ ∞ , (C.1)

where 〈1, 2|ψd〉 is the deuteron wave function and P is the rearrangement permuta-
tion operator P = P(12)P(23) + P(13)P(23). We follow a procedure similar to the αα
case in Eq. (6.9) and separate the folding pd potential in Eq. (6.16) for the screened
Coulomb force into the long-range and short-range parts:

V ρC
pd (R) = 〈ψd|(Pωρ)|ψd〉 = 〈ψd|(Pωρ) − (Pω)|ψd〉 + 〈ψd|(Pω)|ψd〉

=
(
e2

R
− 〈ψd|(Pω) − (Pωρ)|ψd〉

)
+
(
−e

2

R
+ 〈ψd|(Pω)|ψd〉

)
=
e2

R
αρ(R) + W(R) = W ρ(R) + W(R) . (C.2)

Here, the screening function αρ(R) and short-range Coulomb potential W(R) are
given by

αρ(R) = 1 − R

e2
〈ψd|(Pω) − (Pωρ)|ψd〉 ,

W(R) = 〈ψd|(Pω) − e2

R
|ψd〉 . (C.3)

On the other hand, the exchange term in Eq. (5.2) in the three-body model space
yields the matrix element

V ρC
pd (R) = 〈ψd|Wρ +W ρ|ψd〉 = 〈ψd|Wρ|ψd〉 +W ρ(R) . (C.4)

We therefore find that the deuteron matrix element of the polarization potential is
ρ-independent:

〈ψd|Wρ|ψd〉 = W(R) . (C.5)

We first assume the sharply cut-off Coulomb force given by Eq. (5.1) with
αρ(r) = θ(ρ − r) for the two protons, and examine the screening property dis-
cussed in §4 by using available analytic expressions. This is possible if we further
neglect the D-state component of the deuteron wave function and assume that the
spatial part of the S-wave component is given by the simple exponential function
u(r) =

√
2γ e−γr. In this case, the folding potential is expressed in terms of the

integral exponential function defined by

Ei(−x) = −
∫ ∞

x

e−t

t
d t
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= log x+ γ − x+
x2

2 · 2!
− · · · + (−x)r

r · r! − · · · < 0 (for x > 0)

∼ e−x
∞∑

n=1

(−)n (n− 1)!
xn

. (asymptotic expansion) (C.6)

We find

V ρC
pd (R) = W(R) +

e2

R
αρ(R) ,

W(R) = V C
pd(R) − e2

R
= −e

2

R
e−4γR − 4γe2 Ei(−4γR)

∼ −e−4γR e2

4γR2

(
1 − 2!

4γR
+

3!
(4γR)2

− · · ·
)
,

αρ(R) = 1 − 2γ
∫ ∞

ρ
d r [ Ei(−4γ(r +R)) − Ei(−4γ|r −R|) ]

= −2γ
[ ∫ ∞

R−ρ
d r Ei(−4γr) +

∫ ∞

R+ρ
d r Ei(−4γr)

]
for R ≥ ρ .

(C.7)

Here, V C
pd(R) = limρ→∞ V ρC

pd (R) = 〈ψd|(Pω)|ψd〉. In order to derive the last expres-
sion of Eq. (C.7), we use the relationship

(−4γ)
∫ ∞

0
d r Ei(−4γr) = 1 , (C.8)

which is obtained by exchanging the integration order. From here, we can obtain

(−2γ)
∫ ∞

ρ
d r Ei(−4γ|r −R|) = 1 + 2γ

∫ ∞

R−ρ
d r Ei(−4γr) for R ≥ ρ . (C.9)

The asymptotic form of W(R) in Eq. (C.7) is due to

(−4γ) Ei(−4γr) ∼ 1
r
e−4γr

(
1 − 1

4γr
+

2!
(4γr)2

− · · ·
)

as r → ∞ . (C.10)

If we further use this in the last expression of Eq. (C.7), we find

αρ(R) ∼ −1
2

[ Ei(−4γ(R− ρ)) + Ei(−4γ(R+ ρ)) ]

∼ −Ei(−4γR) → 0 as R→ ∞ . (C.11)

With R fixed, we can show limρ→∞ αρ(R) = 1 as follows. First, Eq. (C.9) and some
calculations yield

2γ
R

∫ ∞

0
d r [ Ei(−4γ(r +R)) − Ei(−4γ|r −R|) ]

=
1
R

+
4γ
R

∫ ∞

R
d r Ei(−4γr) =

1
R

(
1 − e−4γR

)− 4γ Ei(−4γR) . (C.12)



346 Y. Fujiwara and K. Fukukawa

Thus, Eq. (C.10) gives

2γ
∫ ∞

0
d r [ Ei(−4γ(r +R)) − Ei(−4γ|r −R|) ]

∼ 1 − e−4γR 1
4γR

(
1 − 2!

4γR
+ · · ·

)
as R→ ∞ . (C.13)

Here, because r + R ≥ |r − R|, the integrand of Eq. (C.13) is always positive.
Furthermore, the integral from 0 to ρ in Eq. (C.13) is a monotonically increasing
function of ρ and the limit ρ→ ∞ exists. We therefore find

lim
ρ→∞ 2γ

∫ ∞

ρ
d r [ Ei(−4γ(r +R)) − Ei(−4γ|r −R|) ] = 0 . (C.14)

After all, we find that the screening function αρ(R) satisfies the condition 1)–3) at
least in this simplest case. If we calculate the shift function ζρ(k) using αρ(R) in Eq.
(C.7), we obtain the same result as Eq. (6.13); namely, there is no constant term as
in the sharply cut-off Coulomb case.

The calculation of αρ(R) using the screened Coulomb potential in Eq. (6.15) and
the realistic deuteron wave function by the quark-model baryon-baryon interaction
is rather involved. We here show only the final result for the numerical calculations.
The screening function αρ(R) in the channel-spin formalism is given by

αJ
(�Sc),(�′S′

c)
(R) = δ�,�′δSc,S′

c
−

∑
λ,λ′=0,2

∑
κ=0,2,4

fκ
λλ′(R) gλλ′κJ

(�Sc),(�′S′
c)
, (C.15)

where the kinematical factor gλλ′κJ
(�Sc),(�′S′

c)
is given by

gλλ′κJ
(�Sc),(�′S′

c)
= (−)Sc+S′

c+13ŜcŜ
′
cλ̂�̂λ̂

′�̂′〈λ0λ′0|κ0〉〈�0�′0|κ0〉

×
∑
S

(2S + 1)
{

1
2

1 Sc

λ S 1

}{
1
2

1 S′
c

λ′ S 1

}
×
∑
L

(−)L(2L+ 1)
{

λ � L
�′ λ′ κ

}{
J � Sc

λ S L

}{
J �′ S′

c

λ′ S L

}
.

(C.16)

The spatial function fκ
λλ′(R) is given by

fκ
λλ′(R) =

∫ ∞

0
d r uλ(r)uλ′(r) vκ(R, r/2) ,

vκ(R, r/2) =
1
2

∫ 1

−1
d x v

(√
R2 + r2/4 − rRx

)
Pκ(x) ,

v(r) =
R

2r

[
erf

(√
3

2
r + ρ

b

)
+ erf

(√
3

2
r − ρ

b

)]
, (C.17)

where uλ(r) stands for the S-wave (λ = 0) and D-wave (λ = 2) deuteron wave
functions, usually denoted by u(r) and w(r), respectively.
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J. M. Cameron, H. W. Fielding, M. Garçon, F. Jourdan, C. Lapointe, W. J. McDonald, J.
Pasos, G. Roy, I. The, J. Tinslay, W. Tornow, J. Yonnet and W. Ziegler, Few-Body Systems
15 (1993), 67.

32) S. Ishikawa, Phys. Rev. C 80 (2009), 054002, and private communications.
33) Y. Fujiwara and K. Fukukawa, Prog. Theor. Phys. 125 (2011), 979.
34) L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Nonrelativistic Theory –3rd edition–

(Pergamon Press, Oxford, 1977).
35) N. N. Lebedev, Special Functions and Their Applications (Dover Publications, Inc., New

York, 1972).


