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The Physics Laboratories, Kyushu Institute of Technology,Kawazu 680-4, Iizuka 820-8502, Japan 

October 7, 2011 

Abstract 

Anomalous behavior of singularities of solution on stable and/ or unstable manifolds 
is discussed and an aspect understanding complexity of chaotic trajectories from the 
view point of complex dynamical systems is given. 

1 Introduction 

Shuichi Tasaki was one of my classmates during student days in 'iVaseda University. Before 
he was affected by a disease, I met him a few times every year mainly in conferences. His 
student, Shigeru Ajisaka, and he wrote a paper titled 'Reconnection of Unstable/Stable 
I'vlanifolds of the Harper Map' five years ago[l]. Concerning with this problem, they seemed 
to be interested in the nature of singularities of solution on stable and unstable manifolds 
in continuous time systems[2]. 

During last fifteen years, I have worked in collaboration with Kensuke S. Ikeda on the 
problem of multidimensional tunneling by using the complex semiclassical method[3]. Com
plex stable and unstable manifolds play an important role in understanding multidimensional 
tunneling; namely they guide tunneling trajectories, which are governed by anomalous behav
ior of singularities of solution on them[3, 4]. In this paper, I address the issue of singularities 
of solution on stable and/ or unstable manifolds and give an aspect understanding complexity 
of chaotic trajectories from the view point of complex dynamical systems. 

2 Divergence behavior of singularities of trajectories 
on stable or unstable manifold 

The minimum model system to study anomalous properties of stable and unstable manifolds 
is a 1D barrier potential. Here we choose the Eckart barrier potential and the Hamiltonian 
is written by 

1 
H(Q, P) = 2P 2 + sech2 (Q). (1) 

The solution in the range (0 < E1 < 1) is given by[5] 

Q( t) = sinh -I (A cosh ( ~ ( t - t 0 ))) , (2) 
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Figure 1: Singularities, integration paths and complex trajectories for the Eckart potential. 
(a) Singularities and representative integration paths on the lapse time plane. (b) Complex 
trajectories for E < 1. (c) Complex trajectories for E > 1. 

where ..\ - }1/ E1 - 1 and to is the time at which the trajectory hits the turning point 

at Qturn = ±log [ ..\ + V ..\2 + 1 J. For a given initial condition ( Q = Q 1 (>> 1), P = P 1 ( = 
-y'2:E;_ < 0)) at t = t1, the interval between t 0 and t1 is determined by t 01 t 0 - t 1 

( QI - log..\)/ y'2:E;_. 
The solution has singularities in the complex lapse time planes, i.e., s = t- t 1 , at 

Sg:/: = vk ( Q1 -log..\± log( 1/ ..\ }1/ ..\2 + 1)) + i( -n + 1/2)fltJ/2, (3) 

where flt1 = 21r / y'2:E;[3, 4, 5]. There are two types of singularities, namely entrance 

singularities S g;; and exit singularities S g:;. The singularities correspond, but not one-to
one, to the singularities of the potential V = sech2

( Q) at Qm = i(2m + 1)7r /2, and around 
a singularity the solution has a form, Q - Qm ex J s - S g~, which is a branch point of 
solution. 

Fig.1(a) shows the singularities in the complex lapse time plane s. Representative inte
gration paths Cn with different topologies with respect to the singularities are also shown in 
this picture. Fig.1 (b) shows trajectories corresponding to the integration paths for the case 
E < 1 in the complex phase space projected on the space (ReQ, ReP, ImQ). 

As shown in Fig.l (b), the trajectory starting at an initial point in an asymptotic side hits 
the turning point at s = t 01 and goes around a cycle in the classically forbidden region with 
imaginary time evolution along the vertical line in Fig.1(a). This cycle is nothing more than 
an instanton path used for the semiclassical analysis of quantum tunneling in classically 
integrable systems[6]. If it takes an odd integration path C2n+I, it reaches the opposite 
turning point after a half-integer times rotations and goes toward the transmitted side with 
real time evolution. But it, for an even path C2n, goes back to the same turning point after 
n-th rounds and is scattered to the reflective side. 

From eq.(3), the singularities Sg:; diverge logarithmically at E 1 = 1, though the singu
larities Sg;; remain in finite ranges due to the cancellation of the logarithmic terms[3, 4] 
The solution Qs on the stable manifold at E1 = 1 is given by[3, 4], 

Qs(t,{t) = sinh-1 (e-v'2(t-J-L)), (4) 

where the parameter M denotes the initial phase or initial time of the solution. Note that for 
the solution on the unstable manifold, Sg;;'s diverge but Sg:;'s remain in finite ranges. 

The solution for the case E 1 > 1 is obtained by the analytical continuation of the solution 
eq.(2) along one of the contours on the complex energy plane avoiding the critical energy 
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Figure 2: Critical point and movement of the singularities. (a) Critical point(critical en
ergy) at E1 = 1 on the complex energy plane and two topologically different contours. (b) 
:Movement of the singularities S g;; along the contours in (a) and integration path C0 on the 
lapse time plane. 

E 1 = 1 as shown in Fig.2(a). During this process the singularities Sg;; go up or down 
depending on the choice of contour in the complex E1 plane(see Fig.2(b)). As a result, 
the location of singularities in the lapse time plane is similar to that for E1 < 1, but the 
topology of integration paths with respect to the singularities changes from transmissive one 
to reflective one, and vice versa, as shown in Fig.l(c): trajectories along odd integration 
paths go back to the reflective side, though those for even ones reach the transmissive side. 

The logarithmic divergence of some group of singularities giving rise to the topological 
change of the Riemann surface is an important nature of stable and unstable manifolds 
extended to the complex domain and it also occurs for a periodically perturbed system[3, 4], 

HE(Q, P,wt) = ~P2 + (1 + Esinwt)sech2 (Q). (5) 

Let us consider a set of initial points with E 1 = 1 in a asymptotic region in Fig.3. By the 
effect of the perturbation, trajectories starting from the part indicated by A are bounced 
off the potential wall, though trajectories of the other part B go over it, except for the 
intersections with the stable manifold Wt. Since the intersections are on the stable manifold, 
they asymptotically approach the unstable periodic orbit Up on the top of the potential. The 
solution in A, which goes along l¥t and is scattered along 1-VJ", has the Riemann surface 
with the essentially same topology as the solution for E1 < 1 of the unperturbed system. 
On the other hand, the solution in B, which is going along Wt and l¥u, has the opposite 
Riemann surface topologically same as that for E1 > 1 of the unperturbed system. The 
singularities S g;; disappear for the solution starting at the intersection, namely they diverse 
for the solution on the stable manifold. 

3 Anomalous behavior of singularities of solution on 
separatricies 

Let us consider behavior of singularities of solution on separatricies. An invariant manifold 
that separates the phase space into two distinct areas is called separatrix. In a 1D system, the 
separatrix exists at a critical energy, below and above which the geometrical change occurs 
to the Riemann surface of the solution. Examples of separatricies for several potentials are 
shown in Fig.4. As shown in the upper left picture, the stable and unstable manifolds of 
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Figure 3: Schematic picture of the Poincare map of the periodically perturbed system( eq. ( 5)). 
Up denotes the unstable saddle. Wf and lVJ indicate the stable and unstable manifolds of 
Up, respectively. 
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Figure 4: Separatrices of various potentials. 

the potential saddle are separatricies. At the potential minimum in the lower left picture, 
the elliptic fixed point exists, but the trajectory goes in imaginary time evolution along a 
complex stable or unstable manifold, namely complex separatrix. 

There exists other type of separatrix, on which the solution asymptotically approaches 
the saddle that moves to infinity. Several examples are shown in Fig.4. In the case of the 
rounded off step potential at the upper right picture, the separatrix exists at the energy 
of the potential top, i.e., saddle, which moves to negative infinity[7]. The trajectory on the 
separatrix logarithmically approaches the saddle at negative infinity. Like stable and unstable 
manifolds, anomalous behavior of singularities of the solution on this type of separatrix is 
observed. Fig.5 shows the location of singularities for the rounded off step for the three 
cases, E 1 < 1, E1 = 1 and E1 > 1. Below and above the critical energy E1 = 1, the 
location of singularities completely changes and some of singularities diverge to infinity at 
E 1 = 1, i.e., on the separatrix. Anomalous behavior of singularities of solution always occur 
on separatrices of every potential and it should be generic. 
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Figure 5: Location of singularities of the solution for the rounded off step potential with the 
unit height. (a) For £ 1 < 1, the trajectory with the path C0 is bounced by the potential and 
the path cl of imaginary time evolution induces instanton. (b) At EI = 1, the solution is 
on the separatrix and some singularities disappear. (c) For E1 > 1, the trajectory with C0 

goes over the potential. 

4 Riemann surface of chaotic solution 

Let us see how the Riemann surface of chaotic solution is constructed in non-integrable 
systems. There are infinitely many unstable periodic orbits in a chaotic sea: A few of them 
are dominant periodic orbits which survive in the unperturbed limit, i.e., integrable system, 
and infinitely many others are created by resonance bifurcations, e.g, unstable periodic orbits 
forming a resonance chain in cooperation with elliptic orbits. Since a trajectory wanders in 
the chaotic sea passing close to one unstable periodic orbit after another, then its history is 
designated by 

{u ( ) W {+,-} W{+,-}} {Ur ( 1) W{+.-} w{+,-}} 
... -----+ P n ' s ' u -----+ P n + ' s · ' u -----+ ... , (6) 

where Up(n) denotes n-th unstable periodic orbit which it visits and , w1+,-} and wJ+,-} 
are the stable and unstable manifolds of Up(n), respectively. One of+ and- in superscript 
of vvJ+,-} (lvJ+,-}) is chosen at each step and the sequence in eq.(6) defines the history of an 
individual trajectory. Roughly speaking every trajectory has an individually different history 
designated by eq.(6) due to instability of chaos. According to the discussion in section 2, at 
least every when passing close to a dominant unstable periodic orbit, it makes a choice of 
Riemann sheet, e.g., w; -----+ W[j or w; -----+ Wif. As a result, every solution starting at a 
different initial point has topologically different structure of the Riemann surface from each 
other. In other words, every trajectory has a topologically different integration path with 
respect to singularities. 

I believe that this ·is an explanation of instability and complexity of chaotic solution 
from the view point of complex dynamical systems of continuous time. For more complete 
discussion, we need to the knowledge of behavior of singularities of stable and unstable 
manifolds of sub-dominant periodic orbits caused by resonance bifurcation and have to take 
into account every entanglement among stable and unstable manifolds of dominant and 
sub-dominant periodic orbits together with generalized separatorices introduced in section 
3. This is not easy task, but it seems to me that it gives fruitful results in understanding 
chaos and quantum chaos from the view points of complex dynamical systems and complex 
semiclassical method, if it succeeds. 
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