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Momentary configurations of long polymers at thermal equilibrium usually deviate from 
spherical symmetry and can be better described, on average, by a prolate ellipsoid. The as­
phericity and nature of asphericity (or pro lateness) that describe these momentary ellipsoidal 
shapes of a polymer are determined by specific expressions involving the three principal mo­
ments of inertia calculated for configurations of the polymer. Earlier theoretical studies and 
numerical simulations have established that as the length of the polymer increases, the average 
shape for the statistical ensemble of random configurations asymptotically approaches a char­
acteristic universal shape that depends on the solvent quality. It has been established, however, 
that these universal shapes differ for linear, circular, and branched chains. We investigate here 
the effect of knotting on the shape of cyclic polymers modeled as random isosegmental polygons. 
We observe that random polygons forming different knot types reach asymptotic shapes that 
are distinct from the ensemble average shape. For the same chain length, more complex knots 
are, on average, more spherical than less complex knots. This paper is a shorter, revised version 
of the article Ref. [12]. For more details, see Ref. [12]. 

1 Introduction 

It is an accepted convention in studies of shape and size of polymer chains to characterize actual 
configurations adopted by the polymers by calculating their inertial properties. The radius of 
gyration, i.e. the root mean square distance from the center of mass, is a standard measure of 
polymer size. In simulation studies, the mass of the polymer is assumed to be equally distributed 
among the vertex points of the simulated chains. Studies of overall polymer size reveal that the 
radius of gyration of circular polymers for a fixed knot type scales like that of self-avoiding walks 
(1, 2, 5, 13, 14] with an estimated scaling exponent v = 0.5874 ± 0.0002 (11] while phantom 
polymers behave like neutral ideal chains with the scaling exponent v = 0.5. 

Studies of shapes of polymer chains use the three principal moments of inertia calculated for a 
given configuration of the chain to build an ellipsoid with the same ratio of its principal moments 
of inertia as those of the given polymer configuration. Kuhn [9] was first to propose that the 
overall shape of random coils formed by polymer chains at thermodynamic equilibrium should, 
for entropic reasons, have the shape of a prolate ellipsoid. His proposal has been confirmed in 
numerical simulation studies (see e.g. Refs. [6, 15, 16]) and also in experimental measurements 
[7, 10]. In the present study, we address how the shape and overall size of polymer chains are 
influenced by the presence of knots in these polymers. 
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Similarly to earlier studies of polymer shapes, we characterize the shape based on inertial· 
properties and construct the ellipsoid of inertia. The ellipsoid of inertia is defined using the. 
moment of inertia tensor, 

N N 

Tii = 2~2 I: I: (X~- X!:n) ·(X~- Xt,.) (i = 1, 2, 3; j = 1, 2, 3), 
n=lm=l · . 

(1) 

where X~ denotes the ith coordinate of the nth vertex and N is the number of vertices in the 
polygon on which one has equally distributed the mass of the polymer. As Tij is a real symmetric 
tensor, it has three real eigenvalues A1 , Az, A3 giving the three principal moments of inertia and 
determining the corresponding eigenvectors providing the principal axes of inertia. The square 
roots of AI, Az, A3 define the semi-axis lengths of the associated,ellipsoid of inertia. However, 
the ellipsoid of inertia does not have the same moments of inertia as the polygon it represents. 
To have this property, the semi-axis lengths a, b, and c should have values corresponding to 
.J3X}, .J3.\2, and y'3X3, respectively. The ellipsoid with these semi-axis lengths is what we call 
the characteristic inertial ellipsoid [12] of the given polymer. The characteristic inertial ellipsoid 
has the attractive property that it is its own characteristic inertial ellipsoid. 

The semi-axis lengths a, b, and c of the characteristic inertial ellipsoid are used to define 
two measures of polymer shape: asphericity (denoted A) and prolateness (denoted P). The 
asphericity is a number between 0 (implying a spherical shape, when a= b =c) and 1 (implying 
a rod-like shape, when b = c = 0) and is defined by 

A( b ) = (a-b)2+(a-c)2 +(b-c)2 
(2) 

a, ,c 2(a+b+c)2 

The prolateness has values between -1 (perfectly oblate ellipsoid, when a - b > c) and 1 
(perfectly prolate ellipsoid, when a> b =c) and is defined by 

P(a b c) = (2a- b- c)(2b- a- c)(2c- a- b) (3) 
' ' 2(a2 +b2 +c2-ab-ac-bc)312 

Note that both A and Pare invariant of scale and symmetric in a, b, and c. 
As discussed in Ref. [12), traditionally the principal moments of inertia AI, Az, and A3 have 

been used as the arguments to A and P instead of the semi-axis lengths a, b, and c. However, this 
leads to a bias for large dimensions in A. By using the semi-axis lengths, we eliminate this bias. 
Specifically, the squared radius of gyration and A and P (using the semi-axis lengths) provide 
a three-dimensional orthogonal system that separates the measurement of size from shape [12]. 

2 Results 

We have analyzed equilateral random polygons from 6 to 48 edges with a step size of 2 and from 
50 edges to 500 edges by a step size of 10 edges. For each number of edges, we generated 400,000 
random knots using the hedgehog method [8]. To identify the knot type of each ofthe polygons, 
we calculated the HOMFLY polynomial [4] using the program of Ewing and Millett [3]. The 
generated random polygons were divided into the individual knot types and their shapes were 
analyzed in terms of asphericity and prolateness. 

Fig. 1 shows how the average asphericity and prolateness depend on the knot type and the 
length of the polygon. It is interesting to analyze some of these profiles in order to understand 
better their meaning. 

The asphericity profile for unknots shows that for small number of segments (say 6 and 
8 segments), the unknotted polygons deviate strongly from spherical symmetry. However, the 

-33-



0.09 
0.5 

0 

0.08 0.4 

0.3 • 0.07 0.36 

~ f/) 0.2 0.06 f/) 
"(3 CD 
·;:: 

0.05 c 0.1 .... Q) Q) 
.c ...... 
c. 0.04 til 0 
f/) e <( 0.03 01 0.. -0.1 0.32 

+ 01 + 
0.02 31 D -0.2 31 0 

41 A 41 A 

O.Q1 51 <> C.fJ72 -0.3 51 0 
0.3 

phantom • 200 400 
phantom • 200 400 

0 -0.4 
0 100 200 300 400 500 0 100 200 300 400 500 

Edges Edges 

Figure 1: Scaling profiles for the average asphericity (left) and average prolateness (right) of 
knotted polygons and phantom polygons. The insets provide zoomed-in views, permitting better 
differentiation between polygons forming the different knot types. 

asphericity values in this range do not tell us whether the polygons are aspherical due to adopting 
discoidal planar configurations or due to forming elongated shapes. Inspection of the right panel 
of Fig. 1 reveals, however, that unknotted polygons with 6 or 8 segments have, on average, 
positive prolateness. Therefore, we can conclude that the dominant deviation from spherical 
symmetry for unknotted polygons with small number of segments is towards forming elongated 
configurations. This contrasts with the negative prolateness of polygons with 6 segments that 
form trefoil knots and have on average an oblate shape (negative prolateness). However, polygons 
forming trefoil knots with increasing number of segments quickly become prolate on average and 
their asphericity increases. 

A more general comparison of the asphericity of polygons forming different knot types reveals 
that for a given number of segments, the polygons forming more complex knots are on average 
more spherical, i.e. have lower asphericity, than polygons forming less complex knots. We expect 
however that for very long polymers, the asphericity values of various simple knots will approach 
the same universal value. 

A general comparison of prolateness of polygons forming various knot types reveals that for 
a given number of segments, the prolateness of less complex knots is lower than that of more 
complex knots. It is interesting to note that for the individual knot types analyzed here, the 
prolateness reaches its maximal value for relatively short polygons (n < 70) and then shows 
a decrease. It may seem contradictory that the decrease in prolateness with the increasing 
chain length is associated with increasing asphericity. However, there is no real contradiction 
as the flattening of a rugby ball shape from its sides decreases its prolateness and increases its 
asphericity. The joint correlation of asphericity and prolateness for increasing numbers of edges 
is shown in Fig. 2. Here one can observe the limiting tendency of these quantities. 

After exploring the asphericity and prolateness profiles for polygons forming individual knot 
types, let us analyze the corresponding profiles for the ensemble average of all polygons grouped 
together. Such a statistical set represents phantom polygons that can freely undergo interseg­
mental passages such as those exemplified by circular DNA molecules in the presence of type II 
DNA topoisomerase. Of course, the profile of all polygons is the weighted average of profiles for 
individual knot types where the relative probability of a given knot type is taken into ~ccount. 
Therefore, for very small number of segments, where unknots dominate, the profile for phantom 
polygons closely follows that of the unknots. As polygon sizes increase and nontrivial knots 
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Figure 2: Average asphericity and prolateness for phantom polygons, 01, 31, and 41 knotted 
polymers with increasing length. The arrow shows the direction with increasing numbers of 
edges. The key for this graph is the same as in Fig. 1. The inset provides a zoomed-in view, 
permitting better differentiation between polygons forming the different knot types. 

become frequent, the asphericity and prolateness of phantom polygons rapidly approach their 
respective characteristic constant values. 

We have concentrated on scale independent measures of overall shape adopted by modeled 
polymers like asphericity and pro lateness. However, size also matters and to completely describe 
inertia preserving ellipsoids that characterize the shapes of knotted polymers with a given length, 
one needs to consider the absolute sizes of these ellipsoids, where the natural size measure is the 
statistical segment length. Fig. 3 presents the characteristic inertial ellipsoids for the average 
shapes of the knots 01, 31, and 41 and also of phantom chains formed by 500 edge polygons. This 
form of presentation (nested ellipsoids) allows visual comparison of average shapes of polygons 
with different topology. We can see that the ellipsoid characterizing unknots forms the external 
shell and therefore is bigger than ellipsoids characterizing nontrivial knots. As the knots get 
more complicated, the ellipsoids representing them become smaller. However, they maintain 
very similar aspect ratios and it is hardly visible that 41 knots are on average more spherical 
than unknots (see Fig. 1). The most internal shell in Fig. 3 represents phantom polygons as 
these have the smallest overall dimensions from this set of knots. However, more complex knots, 
e.g. the 10165 knot, would be smaller than phantom polygons with 500 edges. The situation 
presented in Fig. 3 illustrates the particular case of 500 edge polygons. 

What would be the corresponding image for very long chains? We conjecture that for such a 
situation, the nested ellipsoids would be very closely spaced, like onion skins. The external skin 
would be still that of the unknot, and the sequential skins would be ordered according to the 
complexity of the knots 31, 41 , five crossing knots, six crossing knots, etc. Toward the center 
of the onion, one would have extremely complex knots, while the skin representing the average 
size of phantom knots would be placed between the external skin representing unknots and the 
internal skins representing the most complex knots possible for this size of the polygon. We 
also conjecture that the external skins (i.e. ellipsoids) representing simple prime knots would 
all. be asymptotically close to the aspect ratio attained by the ellipsoid representing unknots, 
while very complex knots would be more sphericaL At this point, we are uncertain whether 
the order of the skins for all knots will be the same for all chain sizes, i.e. whether there could 
be an example of two knot types where one would have its overall dimensions smaller than the 
other at 500 segments, for example, but not at 1000 segments. However, it is probably safe to 
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Figure 3: Average ellipsoids for 500 edge 01, 31, 41 , and phantom polygons as seen along the two 
shortest axes of inertia. The bar to the right of the ellipsoids represents the size of 10 statistical 
segments. 

conjecture that the order of skins (ellipsoids) representing knots belonging to the same family 
of knots (like simple torus knots 31, 51, 71, etc.), will always follow the order of the minimal 
crossing number, provided that the number of segments in the polygon ·is significantly bigger 
than the minimal number of segments needed to form most complex knots under consideration. 
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