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Abstract

Under the assumption that the infinite product of the evolution process con-

verges almost surely, the set of strong solutions is characterized by a compact

space T , which may be regarded as the set of possible initial states. More

precisely, any strong solution may be represented as the result of a uniquely

specified element of T acted by the infinite product of the evolution process.

Keywords: Stochastic equation, strong solution, infinite product of random

variables
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1. Introduction

Let S and Σ be compact metric spaces with countable bases and suppose

that Σ is a topological semigroup acting continuously on S. Denote N =

{0, 1, 2, . . .} and consider the following stochastic equation (which we call
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Tsirelson’s equation in discrete time):

Xk = NkXk−1 for k ∈ −N, (1.1)

where X = (Xk)k∈−
� is the unknown process taking values in S and N =

(Nk)k∈−
� is the driving noise process taking values in Σ. More precisely, for

a given sequence (µk)k∈−
� of laws on Σ, the process

{(Xk)k∈−
� , (Nk)k∈−

� } (1.2)

is called a solution of equation (1.1) if it satisfies (1.1) and for each k ∈ −N

the random variable Nk has law µk and is independent of σ(Xj : j ≤ k − 1).

We adopt the convention that two solutions are identified if their joint laws

on S−
�

× Σ−
�

are equal in law. For instance, uniqueness always means the

uniqueness in law. The process (Xk)k∈−
� evolves forward in time k so that

the present state Xk is obtained from Xk−1, the state one step before, by

being acted by Nk. Here we must keep in mind that the index k varies in

−N, the set of non-positive integers, so that there are a priori no initial time

nor initial state in this evolution.

Equation (1.1) on the one-dimensional torus {z ∈ C : |z| = 1} as a

multiplicative group has been originally studied by Tsirelson (1975) and

further studied by Yor (1992). It was generalized to compact groups by

Akahori et al. (2008) and by Hirayama and Yano (2010) (see Yano and

Yor (2010) for the related survey). It was generalized to compact spaces

with semigroup action by Yano (2010). For other related works, see Taka-

hashi (2009), Raja (2012), Evans and Gordeeva (2011) and Delattre and

Rosenbaum (2012). Note also that equation (1.1) can also be found in

Furstenberg (1973).
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A solution (1.2) of equation (1.1) is called strong if, for each k ∈ −N, the

present state Xk is measurable with respect to the past noise Nk, Nk−1, . . .

up to null sets; or in other words, there exists a Borel function fk : Σ−
�

→ S

such that

Xk = fk(Nk, Nk−1, . . .) almost surely. (1.3)

Let (µk)k∈−
� be a sequence of laws on Σ and let (Nk)k∈−

� be a sequence

of independent random variables such that Nk has law µk for each k ∈ −N.

If the infinite product

Φk = lim
l→−∞

NkNk−1 · · ·Nl+1 (1.4)

converges almost surely for each k ∈ −N, then, for each x ∈ S, we see that

{(Φkx)k∈−
� , (Nk)k∈−

� } (1.5)

is a strong solution. For this solution, one might think of the various choices

of x as corresponding to distinguishable initial states in the sense that differ-

ent choices of x lead to different distributions, but that this is not always the

case, as Theorem 1.3 given below shows. The following is the main result of

this paper, which suggests an alternative to the initial states.

Theorem 1.1. Suppose that the infinite product (1.4) converges almost surely

for each k ∈ −N. Then there exist a compact Hausdorff space T with a

coutable base, a continuous onto mapping π : S → T and a measurable

section ψ : T → S of π (i.e., π ◦ ψ is identity) which satisfy the following

conditions:

(i) for any two distinct elements y1, y2 ∈ T , the solutions (1.5) for x =

ψ(y1) and x = ψ(y2) are distinct;
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(ii) the solutions (1.5) for x = ψ(y) with y running over T exhaust all

strong solutions;

(iii) any solution (1.2) is equal to

{(Φkψ(Ξ))k∈−
� , (Nk)k∈−

� } (1.6)

for some T -valued random variable Ξ which is independent of (Nk)k∈−
� .

Theorem 1.1 will be proved in Section 3.

Theorem 1.1 provides us with a general framework which unifies the fol-

lowing two earlier studies, which seem in completely different situations.

1◦). Suppose that S = Σ = G for a compact metric group G with a

countable base. (We note that the Ellis theorem (Ellis (1957)) asserts that

a topological semigroup which is algebraically a group is necessarily a topo-

logical group; in particular, the inversion operation is continuous as well.)

We study equation (1.1) where NkXk−1 in the right hand side of (1.1) is

considered to be the usual product in G. In Hirayama and Yano (2010),

the authors utilized the results of Csiszár (1966) concerning convergence of

infinite product of G-valued random variables, and obtained the following

result:

Theorem 1.2 (Hirayama and Yano (2010)). Suppose that there exists

a solution (1.2) which is strong. Then there exists a sequence (αk)k∈−
� of

deterministic elements of G such that the “centered processes” defined as

N
(α)
k := α−1

k+1Nkαk, X
(α)
k := α−1

k+1Xk for k ∈ −N (1.7)

satisfy the following:
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(i) for each k ∈ −N, the infinite product N
(α)
k N

(α)
k−1 · · ·N

(α)
l+1 converges al-

most surely as l → −∞ to the limit random variable Φ
(α)
k ;

(ii) any strong solution is of the form (1.5) for some x ∈ G, where Φk =

αk+1Φ
(α)
k .

We note that, under the assumptions of Theorem 1.2, Theorem 1.1 holds

with T = G and π : G→ G being identity.

2◦). Suppose that S has finitely many elements and Σ is the composition

semigroup of all mappings from S to itself. We equip S and Σ with discrete

topologies. We study equation (1.1) where NkXk−1 in the right hand side of

(1.1) is considered to be Nk(Xk−1), the value of the mapping Nk evaluated

at Xk−1. Yano (2010) obtained the following result.

Theorem 1.3 (Yano (2010)). Let µ be a law on Σ. Suppose that the

Markov chain whose transition probability is

p(x, y) = µ(σ : σx = y) (1.8)

is ergodic. Set µk = µ for all k ∈ −N. (In this case, there exists a unique

solution.) Then the unique solution is strong if and only if there exists a

finite sequence {σ0, σ1, . . . , σr} of the support of µ such that the composition

product σrσr−1 · · ·σ0 maps S into a singleton. In this case, for each k ∈ −N,

the infinite product (1.4) converges almost surely and is given as

Φk = NkNk−1 · · ·Nk−Tk
(1.9)

where

Tk = inf {n ≥ r : Nk−n+r = σr, Nk−n+r−1 = σr−1, . . . , Nk−n+0 = σ0} .

(1.10)
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Consequently, the unique strong solution is given as (1.5) for any choice of

x ∈ S.

We note that, under the assumptions of Theorem 1.3, Theorem 1.1 holds

with T being a singleton.

Note that Theorem 1.3 is related to the coupling from the past; see, e.g.,

Häggström (2002) and also Diaconis and Freedman (1999). For other related

works, see Yano and Yasutomi (2011, 2012).

This paper is organized as follows. In Section 2, we show that equation

(1.1) can be reduced to convolution equation. Section 3 is devoted to the

proof of Theorem 1.1.

2. Convolution equation

For general theory of topological semigroups, see, e.g., Berglund and Hof-

mann (1967), Mukherjea and Tserpes (1976) and Högnäs and Mukher-

jea (1995).

Let B(S) denote the set of all Borel sets of S, and let P(S) denote the

set of all probability laws on S. We introduce B(Σ) and P(Σ) similarly. We

equip P(S) and P(Σ) with the topology of weak convergence. Since S and

Σ are compact, they are compactly metrizable. For µ1, µ2, µ ∈ P(Σ) and

λ ∈ P(S), we define the convolutions µ1 ∗ µ2 ∈ P(Σ) and µ ∗ λ ∈ P(S) by

(µ1 ∗ µ2)(A) =

∫

Σ

µ1(dσ1)

∫

Σ

µ2(dσ2)1{σ1σ2∈A}, A ∈ B(Σ), (2.1)

(µ ∗ λ)(A) =

∫

Σ

µ(dσ)

∫

S

λ(dx)1{σx∈A}, A ∈ B(S). (2.2)
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By the semigroup structure of Σ, we see that

µ1 ∗ (µ2 ∗ µ3) = (µ1 ∗ µ2) ∗ µ3, µ1, µ2, µ3 ∈ P(Σ). (2.3)

By the associativity of the Σ-action on S, we see that

µ1 ∗ (µ2 ∗ λ) = (µ1 ∗ µ2) ∗ λ. (2.4)

Since S and Σ are compact, the convolutions (µ1, µ2) 7→ µ1 ∗µ2 and (µ, λ) 7→

µ ∗ λ are jointly continuous.

Let (µk)k∈−
� be a sequence in P(Σ). Let (1.2) be a solution of equation

(1.1) and let (λk)k∈−
� denote its marginal law system, i.e., λk is the law of

Xk for each k ∈ −N. Then it follows by the definition of a solution that the

convolution equation

λk = µk ∗ λk−1 for k ∈ −N (2.5)

holds. The following proposition, which generalizes Lemma 4.3 of Akahori

et al. (2008), asserts that equation (1.1) can be reduced to the convolution

equation (2.5).

Proposition 2.1. The following statements hold:

(i) Two solutions whose marginal law systems coincide are equal.

(ii) Let (λk)k∈−
� be a sequence in P(S) such that (2.5) holds. Then there

uniquely exists a solution (1.2) whose marginal law system is (λk)k∈−
� .

Proof. (i) Let two solutions be given such that their marginal law systems

coincide. Then, by equation (2.5), their finite dimensional distributions co-

incide, which implies that they are equal.
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(ii) Let (λk)k∈−
� be a sequence in P(S) such that (2.5) holds. For each k ∈

−N, we define a law Λk+1 on (Σ×S)−k as follows. Let N0, N−1, . . . , Nk+1, Xk

be independent random variables such thatNj has law µj for j = 0,−1, . . . , k+

1 and that Xk has law λk. For j = 0,−1, . . . , k + 1, we set Xj = Nj,kXk,

where

Nj,k = NjNj−1 · · ·Nk+1 for j > k. (2.6)

Define Λk+1 be the law of (Xj, Nj : j = 0,−1, . . . , k+1) on (Σ×S)−k. Then,

by (2.5), it is obvious that the family {Λk+1 : k ∈ −N} is consistent. Thus,

by Kolmogorov’s extension theorem, we obtain existence of a solution.

3. Proof of main theorem

Since P(S) is a compact Hausdorff space with a countable base, so is the

countable direct product space P(S)−
�

. Since P(S) is equipped with a con-

vex structure in the usual way, so is P(S)−
�

. Let us write Pcvl for the set of

all solutions (λk)k∈−
� of equation (2.5).

Lemma 3.1. The set Pcvl is a compact convex subset of P(S)−
�

.

Proof. It is obvious by equation (2.5) that P cvl is a convex subset of P(S)−
�

.

Let us prove that Pcvl is closed in P(S−
�

). Let (λ
(n)
k )k∈−

� ⊂ Pcvl be such

that (λ
(n)
k )k∈−

� → (λk)k∈−
� as n → ∞ for some (λk)k∈−

� ∈ P(S)−
�

. Then

we have

λ
(n)
k = µk ∗ λ

(n)
k−1 for all k ∈ −N and n ∈ N. (3.1)
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Since λ
(n)
k → λk as n → ∞ for all k ∈ −N, we see, by the continuity of

convolutions, that equation (2.5) holds, which implies that (λk)k∈−
� ∈ Pcvl.

Since P(S)−
�

has a countable base, we conclude that P cvl is closed.

Now we proceed to prove Theorem 1.1.

Proof of Theorem 1.1. Let us assume that the infinite product (1.4) con-

verges almost surely for each k ∈ −N. We then see that

µk,l := µk ∗ µk−1 ∗ · · · ∗ µl+1 −→
l→−∞

νk for all k ∈ −N, (3.2)

where νk is the law of Φk for all k ∈ −N.

Let T = Pcvl. By Lemma 3.1, we see that T is a compact Hausdorff space

with a countable base. For x ∈ S, we write π(x) = (νk ∗ δx)k∈−
� . It is now

obvious that the mapping π : S → T is continuous. By Theorem 6.9.7 of

Bogachev (2007), there exists a measurable section ψ : T → S of π. Claim

(i) is obvious by Proposition 2.1.

Let {(Xk)k∈−
� , (Nk)k∈−

� } be an arbitrary strong solution. Let λk denote

the law of Xk for all k ∈ −N. We then have (λk)k∈−
� ∈ Pcvl. Since we have

Xk = Nk,lXl (3.3)

by iterating equation (1.1), the conditional law ofXk given Fk,l := σ(Nk, Nk−1, · · · , Nl+1)

is written as

P (Xk ∈ ·|Fk,l) = δNk,l
∗ λl. (3.4)

Letting l → −∞, we see that the left hand side converges to δXk
since Xk is

measurable with respect to Fk,−∞ := σ(Nk, Nk−1, . . .) up to null sets. Taking
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a subsequence if necessary, we may assume that λl → λ for some λ ∈ P(S),

we obtain

δXk
= δΦk

∗ λ =

∫

S

λ(dx) (δΦk
∗ δx) . (3.5)

This shows that

(λk)k∈−
� = π(x) for λ-almost every x ∈ S, (3.6)

which implies, in particular, that (λk)k∈−
� ∈ T . This proves Claim (ii).

Let {(Xk)k∈−
� , (Nk)k∈−

� } be an arbitrary solution. Let λk denote the law

of Xk for all k ∈ −N. We then have (λk)k∈−
� ∈ Pcvl. Since we have (3.3) by

iterating equation (1.1), we have

λk = µk,l ∗ λl for k > l. (3.7)

Taking a subsequence if necessary, we may assume that λl → λ for some

λ ∈ P(S), so that we obtain

λk = νk ∗ λ =

∫

S

λ(dx)(νk ∗ δx) for k ∈ −N. (3.8)

Now we obtain

(λk)k∈−
� =

∫

S

λ(dx)π(x) =

∫

T

λ̃(dy)y, (3.9)

where λ̃ = λ ◦ π−1. Taking an independent random variable Ξ whose law is

λ̃, we obtain Claim (iii).

The proof is now complete.
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