

Title	Iron-induced dissociation of the Aft1p transcriptional regulator from target gene promoters is an initial event in iron-dependent gene suppression.
Author(s)	Ueta, Ryo; Fujiwara, Naoko; Iwai, Kazuhiro; Yamaguchi-Iwai, Yuko
Citation	Molecular and cellular biology (2012), 32(24): 4998-5008
Issue Date	2012-10-08
URL	http://hdl.handle.net/2433/168518
Right	© 2012, American Society for Microbiology.
Туре	Journal Article
Textversion	author

1 TITLE

2 Iron-Induced Dissociation of the Aft1p Transcriptional Regulator from Target Gene 3 Promoters is an Initial Event in Iron-Dependent Gene Suppression 4 5 Running title: Iron-regulated DNA binding of Aft1 6 Ryo Ueta,^{1,2} Naoko Fujiwara,³ Kazuhiro Iwai^{1,2,4#} and Yuko Yamaguchi-Iwai⁵ 7 8 9 ¹Department of Biophysics and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan. ²CREST, Japan Science Technology Corporation, 10 Kawaguchi, Saitama 332-0012, Japan. ³Laboratory of Molecular Biology of Bioresponse, 11 12 Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan. ⁴Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto 13 University, Sakyo-ku, Kyoto 606-8501, Japan. ⁵Department of Applied Molecular Biology, 14 15 Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan. 16 17 Abstract: 191 words, Abstract, Introduction, Results, Discussion and Figure legends: 35,307 18 characters

19 [#]Corresponding author: K. Iwai, E-mail: kiwai@mcp.med.kyoto-u.ac.jp

21 ABSTRACT

23	Aft1p is an iron-responsive transcriptional activator that plays a central role in the regulation
24	of iron metabolism in Saccharomyces cerevisiae. Aft1p is regulated by accelerated nuclear
25	export in the presence of iron, mediated by Msn5p. However, the transcriptional activity of
26	Aft1p is suppressed in iron-replete conditions in the <i>Amsn5</i> strain, although Aft1p remains in
27	the nucleus. Aft1p dissociates from its target promoters in iron-replete conditions due to an
28	interaction between Aft1p and the monothiol glutaredoxins Grx3p or Grx4p (Grx3/4p). The
29	binding of Grx3/4p to Aft1p is induced by iron repletion and requires binding of an
30	iron-sulfur cluster to Grx3/4p. The mitochondrial transporter Atm1p that has been implicated
31	in the export of iron-sulfur clusters and related molecules is required not only for iron
32	binding to Grx3p but also for dissociation of Aft1p from its target promoters. These results
33	suggest that iron binding to Grx3p (and presumably Grx4p) is prerequisite for the
34	suppression of Aft1p. Since Atm1p plays crucial roles in the delivery of iron-sulfur clusters
35	from the mitochondria to the cytoplasm and nucleus, these results support the previous
36	observations that the mitochondrial iron-sulfur cluster assembly machinery is involved in
37	cellular iron sensing.

38 INTRODUCTION

39

40 Iron is essential for various biological processes, including oxygen transport, electron 41 transfer, and many catalytic reactions. However, iron is potentially toxic because it 42 accelerates the generation of reactive oxygen species. Therefore, cells must be equipped with 43 machinery for sensing and regulating intracellular iron (10, 15, 34). The yeast 44 Saccharomyces cerevisiae has served as a model organism to investigate iron metabolism in 45 eukaryotic cells because iron homeostatic mechanisms are highly conserved between yeast, 46 plants and animals (7). Iron homeostasis in S. cerevisiae is maintained primarily by the 47 transcriptional activator Aft1p (40). Aft1p is activated only under iron-limiting conditions, 48 and then induces the expression of more than 20 genes that comprise the iron regulon (36, 40, 49 42, 46, 47). The iron regulon includes genes encoding proteins involved in iron uptake and 50 utilization, such as the iron permease Ftr1p and the multicopper ferroxidase Fet3p that form a 51 high affinity iron transporting complex (1, 43). Iron-dependent modulation of Aft1p 52 localization is involved in this regulation (48). Aft1p is imported into the nucleus by the 53 nuclear import receptor Pse1p regardless of cellular iron status (45). However, Aft1p is 54 exported from the nucleus by the nuclear export receptor Msn5p in iron-replete conditions 55 (44). As a result, Aft1p accumulates in the nucleus only under iron-limited conditions. But, 56 no evidence has convincingly shown that iron-dependent nuclear export by Msn5p is 57 essential for down-regulating the transcriptional activity of Aft1p.

58	In this study, the mechanism underlying the iron-dependent suppression of Aft1p
59	transcriptional activity was investigated. Aft1p activity was suppressed in a <i>Amsn5</i> yeast
60	strain, in iron-replete conditions, even though Aft1p remained in the nucleus. Thus, iron
61	regulates Aft1p by two mechanisms: first, Aft1p is dissociated from target promoters in
62	iron-replete conditions; second, Aft1p is recognized by Msn5p and exported to the cytoplasm
63	(44). This study shows that the dissociation of Aft1p from target DNA is the critical step in
64	the regulation of iron metabolism by Aft1p, and that dissociation requires the
65	extra-mitochondrial monothiol glutaredoxins, Grx3p and Grx4p (Grx3/4p), and the
66	mitochondrial ABC exporter Atm1p. Grx3/4p are thought to participate in intracellular
67	transport of iron-sulfur clusters or their related molecules that are assembled in the
68	mitochondria. These results suggest that, in iron-replete conditions, iron-sulfur clusters
69	produced by the mitochondria are exported by Atm1p into the cytosol, where the iron-sulfur
70	clusters are bound to Grx3/4p, and are subsequently recognized by Aft1p upon interacting
71	with Grx3/4p.

72 MATERIALS AND METHODS

74	Yeast strains and media. The yeast strains used in this study are listed in Table 1. Y26
75	($\Delta aft1 \Delta msn5$) was derived by sporulation and tetrad dissection of crosses between Y23
76	($\Delta aft1$, $MATa$) and Y25 ($\Delta msn5$, $MAT\alpha$). Y30 ($\Delta grx3\Delta grx4$) was derived by sporulation and
77	tetrad dissection of crosses between Y27 ($\Delta grx3$, MATa) and Y29 ($\Delta grx4$, MATa).
78	Disruption of each gene was verified by PCR using specifically designed primers. Strains
79	containing the GRX3-HA or GRX4-HA gene integrated at the chromosomal loci of GRX3 or
80	GRX4, respectively, were constructed using the classical pop-in/pop-out gene replacement
81	method (39). Proper gene replacement was confirmed by PCR using specifically designed
82	primers and DNA sequencing. The GAL-ATM1 strains were maintained in YPGal or SGal
83	medium supplemented with appropriate amino acids. Other cells were grown routinely in
84	YPD or SD medium supplemented with appropriate amino acids. To produce iron-starved
85	conditions, before each assay, cells were cultured for 20 h in iron-free medium, which
86	consisted of yeast nitrogen base without iron, 2% glucose, 50 mM MES buffer (pH 6.1), and
87	500 μ M ferrozine. To deplete Atm1p, the <i>GAL-ATM1</i> strains were cultivated in SD medium
88	for 48 h prior to analysis.
89	Plasmids. Expression plasmids for HA-tagged Aft1p (Aft1-HA), tandem affinity
90	purification (TAP)-tagged Aft1p (Aft1-TAP), or their mutants, driven by the AFT1 promoter
91	have been described previously (44). For yeast two-hybrid assays, pAD-AFT1 (44),

92	pBD-GRX3, pBD-GRX4, and pBD-NBP35 were used. The pBD-GRX3, pBD-GRX4, and
93	pBD-NBP35 constructs were created by inserting DNA fragments covering the complete
94	coding regions of GRX3, GRX4 or NBP35 into pGBKT7 (Invitrogen). Expression plasmids
95	for Grx3-HA, Grx4-HA, or their mutants, were created by inserting the open reading frames
96	(ORF) of GRX3-HA, GRX4-HA, or their mutants, into pRS415 containing the ADH1
97	promoter.
98	Indirect immunofluorescence microscopy. The subcellular localization of HA-tagged
99	proteins was examined by indirect immunofluorescence microscopy as described previously
100	(44). Briefly, cells expressing HA-tagged proteins were fixed in 4% formaldehyde. Cell walls
101	were digested with 300 units of zymolyase (Seikagaku Kogyo), followed by the addition of
102	2% SDS. Spheroplasts were fixed on poly-lysine-coated cover slips, permeabilized with
103	0.05% saponin, and then incubated with an anti-HA antibody (HA.11, Covance). Signals
104	were amplified and visualized using an Alexa Fluor 594 Signal-Amplification Kit
105	(Invitrogen). Nuclei were stained by incubation with 500 ng/ml 4',6'-diamino-2-phenylindole
106	(DAPI) for 5 min. Fluorescent and differential interference contrast (DIC) images were
107	captured using a FV-1000 confocal microscope (Olympus). Expression of the tagged proteins
108	was measured by immunoblotting and found to be similar in each of the strains under the
109	different iron conditions employed.
110	Northern blotting. Cells cultured to mid-log phase were harvested and total RNA was
111	isolated, as described (17). The RNA was separated on a 1% agarose gel containing

112	formaldehyde, transferred to a Biodyne B membrane (Pall Corporation) and hybridized with
113	³² P-labeled probes for <i>FTR1</i> (nucleotides 1 to 649 of the <i>FTR1</i> ORF), <i>FET3</i> (nucleotides 1 to
114	582 of the FET3 ORF), FRE1 (nucleotides 1 to 2058 of the FRE1 ORF), SIT1/ARN3
115	(nucleotides 1 to 1884 of the SIT1/ARN3 ORF), and ACT1 (nucleotides 37 to 1070 of the
116	ACT1 ORF). The hybridized membranes were analyzed using a BAS-2000 Imager (GE
117	Healthcare).
118	Chromatin immunoprecipitation. Cells carrying the Aft1-TAP plasmid were incubated in
119	1% formaldehyde for 15 min followed by 125 mM glycine for 5 min at 30 °C. Cells were
120	collected and lysed in 50 mM HEPES (pH 7.5), 500 mM NaCl, 1 mM EDTA, 1% Triton
121	X-100, 0.1% deoxycholate using Multi-Beads Shocker (Yasui Kikai), and the homogenate
122	was then sonicated to shear chromatin. Aft1-TAP was precipitated from an aliquot of the
123	soluble fraction (500 μ g total protein) using rabbit IgG conjugated Dynabeads M-270 Epoxy
124	(Invitrogen). Co-precipitated DNA fragments were incubated in 10 mM Tris-Cl (pH 8.0), 1
125	mM EDTA, 1% SDS at 65 °C for 12 h for reverse-crosslinking, and then analyzed by
126	semi-quantitative PCR to amplify -702 to -3 nt of the FET3 promoter and -292 to -33 nt of the
127	ACT1 promoter. PCR-amplified DNA was separated on 2% agarose gels and analyzed using
128	an LAS-3000 Imager (GE Healthcare).
129	Yeast two-hybrid screening and assays. Yeast two-hybrid screening for Aft1p-interacting
130	proteins has been described previously (23). Yeast two-hybrid assay was performed by

examining the growth of PJ69-4A strains expressing both AD- and BD-fused proteins in

132	media lacking adenine and histidine. Cells were spotted using 3-fold serial dilutions
133	beginning at 600 cells. All cells showed similar growth on medium containing adenine and
134	histidine.
135	Co-precipitation. Cells expressing TAP- and HA- fused proteins were lysed in 50 mM
136	Tris-Cl (pH 8.0), 150 mM NaCl, and 2 mM PMSF using Multi-Beads Shocker. The soluble
137	fraction was incubated with rabbit IgG conjugated Dynabeads M-270 Epoxy in 50 mM
138	Tris-Cl (pH 8.0), 150 mM NaCl, 0.5% Triton X-100 at 4 °C for 2 h. The beads were washed
139	five times with the same buffer, and precipitates were separated using 9% SDS-PAGE, and
140	subjected to immunoblotting using anti-HA or anti-TAP antibodies (Thermo Scientific).
141	Expression levels of the fusion proteins were confirmed by immunoblotting an aliquot of
142	each cell lysate using the anti-HA and anti-TAP antibodies.
143	Iron binding to Grx3p in vivo. Cells expressing Grx3-TAP were cultured in iron-depleted
144	medium to mid-log phase growth. Cells ($OD_{600} = 10$) were radiolabeled with 370 KBq of
145	⁵⁵ Fe for 30 min. Cells were washed with 50 mM citrate (pH 7.4), 1 mM EDTA, and lysed in
146	50 mM Tris-Cl (pH 8.0), 150 mM NaCl, 0.5% Triton X-100, 2.5 mM EDTA, 10% glycerol,
147	and 2 mM PMSF using Multi-Beads Shocker. Grx3-TAP was precipitated from lysates (5 mg
148	total protein) with rabbit IgG conjugated Dynabeads M-270 Epoxy, and co-precipitated ⁵⁵ Fe
149	was quantified by scintillation counting. The precipitated protein was assessed by
150	immunoblotting using an anti-TAP antibody.

151 **RESULTS**

153 Iron mediates growth suppression in constitutively active Aft1p cells but not in $\Delta msn5$ 154 cells. Aft1-1^{up}, which is a C291F mutant, is constitutively nuclear and activates the 155 expression of target genes regardless of the iron status of the cells (46-48). The growth of the AFT1-1^{up} mutant strain is inhibited in iron-replete conditions, possibly because of 156 iron-toxicity (46). We confirmed that the growth of the $AFTI-I^{up}$ mutant strain was inhibited 157 158in the presence of as little as 50 μ M iron in the medium (Fig. 1A). The nuclear export 159 receptor Msn5p is required for the iron-mediated nuclear export of Aft1p, and, consequently, 160 Aft1p resides in the nucleus regardless of the iron concentration in the medium in the $\Delta msn5$ strain (44) (Fig. 1C). However, in contrast to the AFT1- I^{up} strain, the growth of the Amsn5 161 162 strain was not retarded in iron-replete conditions and appeared similar to the wild-type strain 163 (Fig. 1A). 164 Several amino acid residues of Aft1p, including Leu99, Leu102, Ser210, Ser224, Cys291, 165 Cys293, Thr421, Thr423, Thr431 and Thr435, play important roles in the iron-responsive 166 nuclear export of Aft1p (44, 48). Aft1p mutants, in which some of those amino acid residues 167 were substituted for alanine, were generated (Aft1pLeu99/102Ala [Aft1p(LA)], 168 Aft1pSer210/224Ala [Aft1p(SA)], Aft1pCys291/293Ala [Aft1p(CA)] and 169 Aft1pThr421/423/431/435Ala [Aft1p(TA)]). The mutants were introduced in $\Delta aft1$ cells to 170 generate cells expressing only the Aft1p mutant. The Aft1p mutants were localized in the

171	nucleus even in iron-replete conditions (Fig. 1C) and the effect of iron on the growth of cells
172	expressing these Aft1p-mutants was examined. Although cells expressing Aft1p(LA) or
173	Aft1p(CA) grew poorly in high iron medium, as observed in the <i>AFT1-1^{up}</i> strain, the growth
174	of cells expressing Aft1p(SA) or Aft1p(TA) was not retarded in iron-rich medium (Fig. 1B).
175	These results suggest that nuclear retention of Aft1p is not sufficient to induce iron-mediated
176	growth suppression.
177	
178	Aft1p dissociates from its target promoters in response to iron repletion. The growth of
179	the AFT1-1 ^{up} strain and of cells expressing Aft1p(LA) or Aft1p(CA) was retarded in high
180	iron medium, whereas iron exerted virtually no effect on the growth of the $\Delta msn5$ strain, or
181	cells expressing Aft1p(SA) or Aft1p(TA), despite the fact that Aft1p localizes in the nucleus
182	in iron-replete conditions (Fig 1). Although Ser210, Ser224, Thr421, Thr423, Thr431 and
183	Thr435, which are mutated in Aft1p(SA) or Aft1p(TA), are involved in interactions with
184	Msn5p, Leu99, Leu102, Cys291 and Cys293 do not appear to be involved in binding Msn5p
185	(44). To dissect the differential roles of these two groups of amino acid residues, we tested
186	the iron-regulated expression of Aft1p target genes (FET3, FTR1, FRE1, and SIT1/ARN3) by
187	Northern blotting (Fig. 2A). The mRNA levels for these genes were high in iron-depleted
188	conditions in all strains, suggesting that mutation of these amino acid residues did not affect
189	the transcriptional activation activity of Aft1p. Expression of the iron regulon decreased in
190	iron-replete conditions in the $\Delta msn5$ strain, as well as in Aft1p(SA)- and

191	Aft1p(TA)-expressing cells, similar to cells expressing wild-type Aft1p. However, in
192	Aft1p(LA)- or Aft1p(CA)-expressing cells, the iron regulon was not substantially
193	down-regulated under iron-replete conditions. Previously, target DNA binding by Aft1p was
194	suggested to occur only in iron-limited conditions by in vivo footprinting (47). Indeed,
195	chromatin immunoprecipitation revealed that Aft1p bound to the Aft1p-regulated FET3
196	promoter only under iron-limited conditions in the $\Delta msn5$ strain, as well as in cells
197	expressing Aft1p(SA) or Aft1p(TA) and in wild-type cells (Fig. 2B). By contrast, the
198	Aft1p(LA) and Aft1p(CA) mutants bound to the FET3 promoter even in iron-replete
199	conditions (Fig. 2B). The $\Delta aft1$ strain transformed with a centromere-based plasmid
200	expressing Aft1-TAP under the Aft1 promoter expressed and regulated Aft1p-target genes in
201	a manner identical to cells expressing the wild-type Aft1p (Fig. 2C), indicating that
202	Aft1-TAP is functional. These results are consistent with the previous observations that
203	substitution of Leu99 with Ala and Cys291 with Phe generated a constitutively active Aft1p
204	transcriptional activator (32, 46, 48). Thus, iron-replete conditions appear to induce not only
205	Aft1p-nuclear export but also the dissociation of Aft1p from target promoters, and Cys291,
206	Cyc293, Leu99 and Leu102 appear to be involved in the dissociation of Aft1p from the iron
207	regulon promoters.
208	

Involvement of Leu99, Leu102, Cys291, and Cys293 in Aft1p interactions with Grx3p
and Grx4p. To elucidate the mechanism underlying dissociation of Aft1p from the iron

211	regulon promoters in iron-replete cells, yeast two-hybrid screening was used to identify
212	proteins that are involved in regulation of Aft1p (23). Using Aft1p lacking the transactivation
213	domain [Aft1(1-413)] as prey, we identified six candidate genes, three of which encode
214	iron-sulfur proteins: Nbp35p and two monothiol glutaredoxin homologs, Grx3p and Grx4p
215	(Grx3/4p). We tested if the interaction between Aft1p and these candidates for
216	Aft1p-interacting protein requires Leu99, Leu102, Cys291, and Cys293 of Aft1p, and found
217	that Grx3/4p did not bind to Aft1p(LA) or Aft1p(CA) in a yeast two-hybrid assay, although
218	Aft1p(SA) and Aft1p(TA) did interact with Grx3/4p (Fig. 3A). Immunoblot analyses of
219	cellular extracts using both anti-HA (for AD-fused proteins) and anti-myc (for BD-fused
220	proteins) showed that the fusion proteins were expressed in co-transformed cells although
221	expression of BD-Grx4p was higher than that of BD-Grx3p (Fig 3B). The interaction
222	between Aft1p and Grx3/4p was also examined by co-immunoprecipitation analyses.
223	Consistent with the results obtained by the yeast two-hybrid assays, neither Aft1p(LA) nor
224	Aft1p(CA) co-precipitated with Grx3/4p, whereas Aft1p, Aft1p(SA) and Aft1p(TA) did
225	co-precipitate (Fig. 3C and D). These results indicate that Aft1p interacts with Grx3/4p, and
226	that the Aft1p residues Leu99, Leu102, Cys291, and Cys293 are involved in this interaction,
227	raising the possibility that Grx3/4p are involved in the dissociation of Aft1p from target
228	promoters in response to iron repletion.
229	

Grx3/4p are required for the iron-dependent dissociation of Aft1p from target

231 promoters. GRX3 and/or GRX4 deletion strains were constructed to test whether the binding 232 of Aft1p to the FET3 promoter is regulated by iron. In the strains that lacked either Grx3p or 233 Grx4p, Aft1p dissociated from the *FET3* promoter in response to iron repletion as observed 234 in the wild-type strain (Fig.4A). When both GRX3 and GRX4 were deleted, Aft1p occupied 235 the FET3 promoter even in iron-replete conditions (Fig. 4A). The Aft1p-regulated iron 236 regulon was highly expressed even in iron-replete conditions in $\Delta grx3 \Delta grx4$ cells, but not 237 $\Delta grx3$ or $\Delta grx4$ cells (Fig. 4B), similar to previous results (32). These results indicate that 238 Grx3/4p are required for iron-suppression of transcription of the iron regulon by inducing 239 iron-dependent dissociation of Aft1p from target promoters.

240

241 The interaction between Aft1p and Grx3/4p is augmented in iron-replete conditions.

242 The above results suggested that the interaction between Aft1p and Grx3/4p plays a crucial

role in dissociation of Aft1p from target promoters in iron-rich conditions. Hence, we

examined whether the interaction between Aft1p and Grx3/4p is induced upon iron repletion,

in order to suppress the transcriptional activation activity of Aft1p. Cells containing both

246 AFT1-TAP and GRX3-HA integrated at the chromosomal loci of AFT1 and GRX3,

247 respectively, were constructed. Grx3-HA is functional because the expression of the iron

- 248 regulon was normally regulated by iron in Δgrx3Δgrx4 cells expressing Grx3-HA (Fig. 4B).
- 249 Cells expressing Aft1-TAP and Grx3-HA were first cultured in iron-free medium (SD
- 250 lacking ferric chloride, and supplemented with 500 μM ferrozine) for 20 h to ensure iron

251	starvation. Cells were then cultured for 15 min in the presence of 200 μ M ferrous sulfate.
252	Cell lysates were prepared before, or 15 min after, the addition of 200 μ M ferrous sulfate, and
253	co-precipitation experiments were performed. Grx3p-HA was effectively co-precipitated
254	with Aft1p-TAP in lysates from cells after iron repletion, whereas minimal amounts of
255	Grx3p-HA co-precipitated with Aft1p-TAP in lysates from iron-starved cells (Fig. 5A).
256	Similarly, Grx4-HA was effectively co-precipitated with Aft1-TAP only after iron repletion
257	(Fig. 5B). By contrast, previous reports suggest that Grx3/4p interact with Aft1p regardless
258	of the iron status of cells (19, 32). Kumanovics et al indicated that Aft1-TAP is effectively
259	co-precipitated with Grx3p both under high- and low-iron conditions (19). In their analysis,
260	cells were cultivated in SD medium containing either 250 μM iron sulfate or 40 μM BPS, an
261	impermeable iron (II) chelator, for 6 h, to produce high- or low-iron conditions, respectively
262	(19). The expression of iron regulon genes including FET3 and FTR1 was induced in the
263	iron-depleted condition. The levels of FTR1 and FET3 mRNAs were higher in cells
264	cultivated for 20 h in SD medium lacking iron than in cells cultivated for 6 h in SD medium
265	containing BPS (Fig. 5C). This result suggests that treatment of BPS for 6 h does not
266	completely deprive the cells of iron and a substantial amount of iron bound to Grx3/4p,
267	accounting for the interaction between Aft1p and Grx3/4p in cells treated with BPS for 6 h,
268	as observed in the previous report (18). However, in the BPS treated cells, the Grx3/4p may
269	not be fully saturated with iron and some free Aft1p may be available to induce the
270	expression of the iron regulon. Moreover, indirect immunofluorescence analyses revealed

that Grx3/4p reside both in the nucleus and the cytoplasm, and changes in cellular iron status
did not overtly affect their subcellular localization (Fig. 5D), as reported previously (19, 24).
Taken together, these results strongly suggest that iron induces the interaction between Aft1p
and Grx3/4p.

276	Grx3/4p require an iron-sulfur cluster to interact with Aft1p. Several lines of evidence
277	suggest that ligation of a [2Fe-2S] cluster plays a crucial role in dimer formation by
278	monothiol glutaredoxins in vitro and in vivo (26, 35). Because Grx3/4p-Aft1p binding
279	appeared to be regulated by the iron status of cells, a [2Fe-2S] cluster and/or [2Fe-2S] cluster
280	dependent dimerization of Grx3/4p may be involved in the Grx3/4p-Aft1p interactions. To
281	address the possibility, we first tested the iron-dependent dimerization of Grx3/4p. We
282	expressed Grx3-TAP, which was shown to be functional (Fig 4B), and Grx3-HA in
283	$\Delta grx 3 \Delta grx 4$ cells. Cells were cultured in iron-free medium for 20 h, and co-precipitation
284	experiments were performed using cell lysates that were prepared before, or 15 min after, the
285	addition of 200 μ M ferrous sulfate. As shown in Fig 6A, Grx3-HA is co-precipitated
286	effectively with Grx3-TAP in the lysate of iron-replete cells, but not in the lysate of
287	iron-starved cells. To verify iron-dependent dimerization of monothiol glutaredoxins in
288	physiological settings, we constructed cells with both GRX3-TAP and GRX4-HA integrated at
289	the chromosomal loci of GRX3 and GRX4, respectively. Co-precipitation analyses revealed
290	that Grx3-TAP and Grx4-HA form stable complexes only in iron-rich conditions (Fig. 6B).

These results indicate that Grx3/4p dimerize in an iron-dependent manner, raising the possibility that Grx3/4p bind to Aft1p in the dimer form.

293 Next, Grx3p mutants that cannot bind iron were constructed. Since Cys31 and glutathione

- binding residues such as Lys23 and Thr71 of a cyanobacterium Grx3p, which is homologous
- to Grx3/4p, is involved in [2Fe-2S] cluster ligation (35), the corresponding residues of S.

296 cerevisiae Grx3p were mutated: Cys211 to Ser, Lys203 to Gln, and Thr251 to Val

297 (Grx3pC211S, Grx3pK203Q and Grx3pT251V). To analyze iron binding by these Grx3p

298 mutants in vivo, $\Delta grx3 \Delta grx4$ cells expressing TAP-tagged wild-type or mutant Grx3p were

299 cultured in the presence of ⁵⁵Fe. Subsequently, TAP-tagged Grx3p proteins were

300 immunoprecipitated and the amount of co-precipitated ⁵⁵Fe was quantified by scintillation

301 counting. Wild-type Grx3p bound ⁵⁵Fe, but the Grx3pC211S, Grx3pK203Q and

302 Grx3pT251V mutants failed to bind ⁵⁵Fe (Fig 6C), indicating that these residues are

303 important for iron-sulfur ligation by S. cerevisiae Grx3p. Whether these Grx3p mutants can

304 bind to Aft1p was examined by co-immunoprecipitation analyses. The wild-type Grx3p, but

not the C211S, K203Q, or T251V mutants, co-precipitated with Aft1p (Fig. 6D), suggesting

that [2Fe-2S] cluster ligation by Grx3p is prerequisite for Aft1p-Grx3p interactions. The

307 Grx3p mutants were expressed in $\Delta grx3 \Delta grx4$ cells and promoter occupation by Aft1p and

308 expression of Aft1p target genes was evaluated. As shown in Fig. 6E, Aft1p occupied the

309 FET3 promoter even in iron-replete conditions in cells expressing the Grx3p mutants that

310 failed to ligate the iron-sulfur cluster, but Aft1p dissociated from the FET3 promoter in

311iron-replete cells expressing wild-type Grx3p. Northern blotting revealed that expression of312the iron regulon was not reduced in response to iron in $\Delta grx3\Delta grx4$ cells expressing the313C211S, K203Q, or T251V mutants of Grx3p, but was reduced in cells expressing wild-type314Grx3p (Fig. 6F). Collectively, these results indicate that ligation of a [2Fe-2S] cluster by

Grx3p is necessary for dissociation of Aft1p from its target promoters.

316

315

317 Atm1p is required for iron-sulfur loading onto Grx3/4p and Aft1p regulation by iron. 318 Defects in the iron-sulfur cluster assembly (ISC) machinery in mitochondria lead to 319 reductions in iron binding by Grx3/4p in vivo (26). Thus, whether iron-sulfur clusters 320 transported from the mitochondria are involved in iron-sulfur cluster loading by Grx3/4p in 321 the cytosol or nucleus was examined. The mitochondrial ABC-transporter Atm1p has been 322 suggested to be an exporter of iron-sulfur clusters or related molecules (16, 22). Whether 323 Atm1p is required for iron-sulfur cluster loading onto Grx3/4p and, therefore, the 324 iron-dependent dissociation of Aft1p from target promoters was examined. A strain in which 325 ATM1 gene expression was driven by the glucose-repressible GAL1-10 promoter 326 (GAL-ATM1) was constructed, as described previously (2). To repress the GAL1-10 promoter 327 and deplete Atm1p, the GAL-ATM1 strain was grown for 48 h on synthetic medium 328 containing D-glucose as a sole carbon source (2). As shown in Fig. 7A, the expression of 329 ATM1 in the GAL-ATM1 strain was undetectable by Northern blotting after culture in the 330 glucose medium. Wild-type control cells were also cultured on the glucose containing

331	medium for these experiments. In the GAL-ATM1 strain, expression of the iron regulon did
332	not decrease in iron-rich conditions, as reported previously (41), indicating that expression of
333	Atm1p was adequately suppressed in the GAL-ATM1 strain (Fig. 7B). Expression of iron
334	regulon transcripts decreased in the wild-type, but not in the GAL-ATM1 strain, in the
335	presence of iron. Chromatin immunoprecipitation analyses revealed that Aft1p bound to the
336	FET3 promoter regardless of iron status in the Atm1p-depleted (GAL-ATM1) cells (Fig. 7C).
337	The interaction between Aft1p and Grx3p in Atm1p-depleted cells was assessed by
338	co-immunoprecipitation. In the wild-type strain, Grx3p co-precipitated with Aft1p in
339	iron-replete conditions, but Grx3p failed to interact with Aft1p in iron-replete
340	Atm1p-depleted cells (Fig. 7D). Since ligation of the iron-sulfur cluster by Grx3p appears to
341	be a prerequisite for interactions between Grx3p and Aft1p, ⁵⁵ Fe-binding to Grx3p in
342	iron-replete cells was assessed, as described in Fig 6C. The amount of ⁵⁵ Fe in Grx3p
343	immunoprecipitates was significantly lower in Atm1p-depleted cells than in wild-type cells
344	(Fig. 7E). Collectively, these results indicate that Atm1p is involved in iron-sulfur cluster
345	loading by Grx3p, the net result of which is dissociation of Aft1p from target promoters in
346	iron-replete cells.

DISCUSSION

349	The activity of Aft1p, a central transcriptional regulator of iron metabolism in S. cerevisiae,
350	is regulated by iron-dependent nuclear export of Aft1p mediated by the nuclear export
351	receptor Msn5p (44). This study demonstrates another layer of iron regulation of Aft1p:
352	Aft1p dissociates from target promoters in response to iron repletion.
353	Several transcriptional regulators are exported by Msn5p. Crz1p, a calcineurin-responsive
354	transcriptional activator is regulated, in part, by Msn5p-mediated nuclear export.
355	Calcineurin-mediated dephosphorylation of Crz1p suppresses Msn5p-mediated nuclear
356	export. In $\Delta msn5$ cells, some Crz1p is localized in the nucleus and activates the
357	Crz1p-responsive CDRE promoter (4). Thus, Msn5p-mediated nuclear export is required to
358	suppress Crz1p activity. However, Msn5p-mediated nuclear export of some transcriptional
359	regulators is not required for their suppression. For example, Pho4p is a transcription factor
360	that regulates a variety of genes in response to phosphate availability, and Msn5p-mediated
361	nuclear export of Pho4p is regulated by Pho4p phosphorylation in phosphate-rich conditions
362	(31). Pho4p has multiple phosphorylation sites and phosphorylation of some of these induces
363	the Pho4p interaction with Msn5p (14). However, phosphorylation of Pho4p at a different
364	site disrupts the interaction with its dimerization partner, Pho2p, and thereby suppresses
365	Pho4p transcriptional activator activity (18). Nuclear export of Mig1p, a transcriptional
366	repressor that represses a number of genes in the presence of glucose (28, 29), is also

367	mediated by Msn5p (8). However, phosphorylation of Mig1p, induced by glucose
368	deprivation, not only facilitates Msn5p-mediated nuclear export of Mig1p, but also induces
369	dissociation from the co-repressor complex (8, 33). Therefore, Msn5p-mediated nuclear
370	export is not required for suppression of Pho4p or Mig1p activity. Here, Msn5p-mediated
371	nuclear export was shown to be dispensable for iron-mediated suppression of Aft1p
372	transcriptional activity (Fig. 2). Msn5p-mediated nuclear export of Crz1p, Pho4p and Mig1p
373	is regulated by phosphorylation/dephosphorylation (4, 8, 14). Although phosphorylation of
374	Aft1p is necessary for recognition by Msn5p, Aft1p phosphorylation is not regulated by
375	cellular iron status (44).
376	The present study has demonstrated that iron-mediated dissociation of Aft1p from target
377	DNA sequences occurs prior to Msn5p-mediated nuclear export. Since earlier work showed
378	that dimerization or multimerization of Aft1p was required for Aft1p-Msn5p binding (44),
379	Aft1p must form multimers after dissociation from the target sequences, and is then
380	recognized by Msn5p. Therefore, it would be of interest to determine whether
381	phosphorylation of Crz1p, Pho4p or Mig1p induces dimerization of the transcriptional
382	regulators as an essential step in Msn5p recognition.
383	Grx3/4p play crucial roles in iron-mediated suppression of the transcriptional activity of
384	Aft1p (32, 37). However, the precise roles played by Grx3/4p in Aft1 regulation had not been
385	determined previously. Here, we showed that Grx3/4p induced Aft1p dissociation from the
386	target promoters through an enhanced interaction with Aft1p in iron-replete conditions.

387	Aft1p mutants that were unable to interact with Grx3/4p did not dissociate from the
388	Aft1p-regulated gene promoters even in iron-rich conditions (Fig. 1-3). Grx3/4p failed to
389	dimerize in severe iron-deprived conditions (Fig 6). Several lines of evidence suggest that
390	iron bound to Grx3/4p in cells is in the form of a [2Fe-2S] cluster. When overproduced in
391	Escherichia coli, the GRX domain of Grx3/4p binds a [2Fe-2S] cluster utilizing the cysteine
392	located within the conserved CGFS motif (Cys211 for Grx3p and Cys171 for Grx4p) and a
393	glutathione cofactor (35). The conserved Cys within the CGFS motifs and the amino acids
394	that are involved in glutathione binding are thus implicated in [2Fe-2S] binding. Mutations of
395	these amino acids in Grx3/4p reduced iron incorporation into Grx3/4p to near background
396	levels in vivo and suppressed the binding of Grx3p to Aft1p (Fig. 6) (26). Moreover,
397	glutathione depletion of cells impairs iron incorporation into Grx3/4p (26). Therefore, iron
398	binding to Grx3/4p appears to be prerequisite for dimerization and Aft1p interactions with
399	the monothiol glutaredoxins. Whether dimerization of Grx3/4p is sufficient for binding to
400	Aft1p or iron itself, bound to Grx3/4p, is required for the interaction with Aft1p will be of
401	interest to determine in future studies.
402	Iron-sulfur clusters are generated in mitochondria (27) and defects in proteins in the
403	mitochondrial ISC machinery result in constitutive expression of Aft1p-regulated genes (41).
404	A previous report indicated that the ISC machinery is required for iron incorporation into
405	Grx3/4p in vivo (26). The mitochondrial ABC exporter Atm1p has been implicated in the
406	export of iron-sulfur clusters or related molecules from mitochondria into the cytosol

407	because iron loading of several extra-mitochondrial iron-sulfur proteins, such as Leu1p and
408	Nbp35p, is decreased in Atm1p-depleted strains (16, 22). In this study, Atm1p depletion
409	significantly decreased both binding of Grx3p to iron, and binding of Grx3p to Aft1p in
410	iron-replete conditions, and resulted in misregulation of Aft1p (Fig. 8). Although heme and
411	intermediates in the heme biosynthetic pathway may also be Atm1p-substrates (2, 20), heme
412	is not required for Aft1p inhibition by iron (6). The possibility that the iron bound to Grx3/4p
413	that is required for the interaction between Grx3/4p and Aft1p is not in the form of an
414	iron-sulfur cluster cannot be excluded. However, our results strongly indicate that iron-sulfur
415	clusters or molecules that invoke iron-sulfur cluster formation, which are generated in
416	mitochondria and exported from mitochondria by Atm1p, are involved in iron-sulfur cluster
417	loading of Grx3p and probably Grx4p, although the mechanism for cluster loading of
418	Grx3/4p in the nucleus reminds to be elucidated. Since Grx3/4p binding to Aft1p is strongly
419	augmented in iron-replete cells and iron binding of Grx3p is prerequisite for the interaction
420	with Aft1p (Fig 6), iron-sulfur clusters or related molecules generated in the mitochondria
421	and transported by Atm1p appear to play crucial roles in Grx3/4p binding to Aft1p in
422	iron-replete cells. The net result of these interactions is dissociation of Aft1p from target
423	promoters (Fig 8). This result is consistent with the previous observation that the
424	mitochondrial ISC machinery is involved in cellular iron sensing (41).
425	Grx3/4p participate in iron loading of several iron-containing proteins (26, 49). Grx3/4p may
426	be involved in iron loading of Rnr2p, a cofactor of ribonucleotide reductase containing a

427	di-iron center, together with Dre2p (49). Grx3/4p are also involved in the insertion of
428	iron-sulfur clusters into cytosolic iron-sulfur containing proteins such as Leu1p or Rli1p (26).
429	Dre2p and Nbp35p, components of the cytoplasmic iron-sulfur assembly machinery, are also
430	required for the insertion of iron-sulfur clusters (9, 30, 50). Although Nbp35p was identified
431	as a candidate Aft1p-interacting protein by yeast two-hybrid screening (Fig. 3A), no
432	significant interaction between Aft1p and Nbp35p was detected by co-immunoprecipitation
433	and Aft1p was normally regulated by iron in Nbp35p-depleted cells (data not shown).
434	Moreover, suppression of Dre2p expression had no influence on iron-mediated suppression
435	of expression of Aft1p target genes (data not shown). Thus, neither Nbp35p, consistent with
436	earlier reports (41), nor Dre2p are required for suppression of Aft1p activity in iron-replete
437	cells, while Grx3/4p are indispensable.
438	Fra1p and Fra2p are also involved in iron-mediated suppression of Aft1p activity (19). Both
439	Fra1p and Fra2p bind to Grx3/4p (11, 21). Therefore, both proteins may function as a
440	bridging molecule between Aft1p and Grx3p. However, no interactions between Aft1p and
441	Fra1p or Fra2p have been detected and both proteins are localized primarily in the cytosol
442	(19), suggesting that either Fra1p or Fra2p is not involved in the Grx3/4p-mediated
443	dissociation of Aft1p from target promoters. Grx5p, a mitochondrial monothiol glutaredoxin,
444	is involved in storage and delivery of [2Fe-2S] clusters in the organelle (25, 38). Since forced
445	expression of Grx3/4p in mitochondria partially rescues Grx5p function and growth defects
446	of $\Delta grx5$ mutants (24), one role of Grx3/4p may be to deliver iron-sulfur clusters. The

447	activities of other metal-regulated transcriptional activators, Zap1p and Mac1p, are inhibited
448	by the direct binding of zinc and copper (3, 13, 40), respectively. Direct metal binding may be
449	the case with Aft1p as well. Aft1p forms homodimers or multimers in iron-rich cells and
450	Cys291 of Aft1p is involved in this interaction (44). In this study, Grx3p and Grx4p were
451	shown to form homo- or hetero-dimers in an iron-dependent manner (Fig. 6). Considering
452	that <i>in vivo</i> and <i>in vitro</i> analyses suggest that Grx3/4p dimerize through bridging a [2Fe-2S]
453	cluster (26, 35), it is tempting to speculate that Grx3/4p dimers deliver iron, possibly an
454	iron-sulfur cluster, to Aft1p at Cys291 and Cys293 to form iron-sulfur cluster-bridging Aft1p
455	dimers. Alternatively, Aft1p may indirectly sense cellular iron status through increased
456	interactions with a [2Fe-2S] cluster-containing Grx3/4p dimer. Resolution of these complex
457	interactions will require further biochemical and structural studies.

458 ACKNOWLEDGEMENTS

459

- 460 This work was supported in part by Grants-in-Aid from the Ministry of Education, Culture,
- 461 Sports, Science, and Technology in Japan to R.U. and K. I.

463**REFERENCES**

- Askwith C, Eide D, Van Ho A, Bernard PS, Li L, Davis-Kaplan S, Sipe DM,
 Kaplan J. 1994. The FET3 gene of S. cerevisiae encodes a multicopper oxidase
 required for ferrous iron uptake. Cell 76:403-410.
- 468 2. Bedekovics T, Li H, Gajdos GB, Isaya G. 2011. Leucine biosynthesis regulates
 469 cytoplasmic iron-sulfur enzyme biogenesis in an Atm1p-independent manner. J. Biol.
 470 Chem. 286:40878-40888.
- 471 3. Bird AJ, McCall K, Kramer M, Blankman E, Winge DR, Eide DJ. 2003. Zinc
 472 fingers can act as Zn²⁺ sensors to regulate transcriptional activation domain function.
 473 EMBO J. 22:5137-5146.
- 474 4. Boustany LM, Cyert MS. 2002. Calcineurin-dependent regulation of Crz1p nuclear
 475 export requires Msn5p and a conserved calcineurin docking site. Genes Dev.
 476 16:608-619.
- Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. 1998.
 Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications.
 Yeast 14:115-132.
- Crisp RJ, Pollington A, Galea C, Jaron S, Yamaguchi-Iwai Y, Kaplan J. 2003.
 Inhibition of heme biosynthesis prevents transcription of iron uptake genes in yeast. J.
 Biol. Chem. 278:45499-45506.
- 484 7. De Freitas J, Wintz H, Kim JH, Poynton H, Fox T, Vulpe C. 2003. Yeast, a model
 485 organism for iron and copper metabolism studies. Biometals 16:185-197.
- 486 8. DeVit MJ, Johnston M. 1999. The nuclear exportin Msn5 is required for nuclear
 487 export of the Mig1 glucose repressor of Saccharomyces cerevisiae. Curr. Biol.
 488 9:1231-1241.
- 489 9. Hausmann A, Aguilar Netz DJ, Balk J, Pierik AJ, Muhlenhoff U, Lill R. 2005.
 490 The eukaryotic P loop NTPase Nbp35: an essential component of the cytosolic and

- 491 nuclear iron-sulfur protein assembly machinery. Proc. Natl. Acad. Sci. U. S. A.
 492 102:3266-3271.
- 493 10. Hentze MW, Muckenthaler MU, Galy B, Camaschella C. 2010. Two to tango:
 494 regulation of Mammalian iron metabolism. Cell 142:24-38.
- 495 11. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, 496 Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, 497 Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, 498 499 Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, 500 501 Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, 502 Tyers M. 2002. Systematic identification of protein complexes in Saccharomyces
- 503 cerevisiae by mass spectrometry. Nature **415**:180-183.
- James P, Halladay J, Craig EA. 1996. Genomic libraries and a host strain designed
 for highly efficient two-hybrid selection in yeast. Genetics 144:1425-1436.
- Jensen LT, Winge DR. 1998. Identification of a copper-induced intramolecular
 interaction in the transcription factor Mac1 from Saccharomyces cerevisiae. EMBO J.
 17:5400-5408.
- Kaffman A, Rank NM, O'Neill EM, Huang LS, O'Shea EK. 1998. The receptor
 Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus. Nature
 396:482-486.
- 512 15. Kaplan CD, Kaplan J. 2009. Iron acquisition and transcriptional regulation. Chem.
 513 Rev. 109:4536-4552.
- 514 16. Kispal G, Csere P, Prohl C, Lill R. 1999. The mitochondrial proteins Atm1p and
 515 Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J.
 516 18:3981-3989.
- 517 17. Kohrer K, Domdey H. 1991. Preparation of high molecular weight RNA. Methods
 518 Enzymol. 194:398-405.
- 519 18. Komeili A, O'Shea EK. 1999. Roles of phosphorylation sites in regulating activity

- 520 of the transcription factor Pho4. Science **284**:977-980.
- 521 19. Kumanovics A, Chen OS, Li L, Bagley D, Adkins EM, Lin H, Dingra NN, 522 Outten CE, Keller G, Winge D, Ward DM, Kaplan J. 2008. Identification of 523 FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to 524 decreased mitochondrial iron-sulfur cluster synthesis. J. Biol. Chem. 525 **283:**10276-10286.
- Leighton J, Schatz G. 1995. An ABC transporter in the mitochondrial inner
 membrane is required for normal growth of yeast. EMBO J. 14:188-195.
- Li H, Mapolelo DT, Dingra NN, Naik SG, Lees NS, Hoffman BM, Riggs-Gelasco
 PJ, Huynh BH, Johnson MK, Outten CE. 2009. The yeast iron regulatory proteins
 Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with
 cysteinyl and histidyl ligation. Biochemistry 48:9569-9581.
- 532 22. Lill R. 2009. Function and biogenesis of iron-sulphur proteins. Nature 460:831-838.
- Measday V, Baetz K, Guzzo J, Yuen K, Kwok T, Sheikh B, Ding H, Ueta R, Hoac
 T, Cheng B, Pot I, Tong A, Yamaguchi-Iwai Y, Boone C, Hieter P, Andrews B.
 2005. Systematic yeast synthetic lethal and synthetic dosage lethal screens identify
 genes required for chromosome segregation. Proc. Natl. Acad. Sci. U. S. A.
 102:13956-13961.
- Molina MM, Belli G, de la Torre MA, Rodriguez-Manzaneque MT, Herrero E.
 2004. Nuclear monothiol glutaredoxins of Saccharomyces cerevisiae can function as
 mitochondrial glutaredoxins. J. Biol. Chem. 279:51923-51930.
- 541 25. Muhlenhoff U, Gerber J, Richhardt N, Lill R. 2003. Components involved in
 542 assembly and dislocation of iron-sulfur clusters on the scaffold protein Isu1p. EMBO
 543 J. 22:4815-4825.
- Muhlenhoff U, Molik S, Godoy JR, Uzarska MA, Richter N, Seubert A, Zhang Y,
 Stubbe J, Pierrel F, Herrero E, Lillig CH, Lill R. 2010. Cytosolic monothiol
 glutaredoxins function in intracellular iron sensing and trafficking via their bound
 iron-sulfur cluster. Cell Metab. 12:373-385.
- 548 27. Napier I, Ponka P, Richardson DR. 2005. Iron trafficking in the mitochondrion:

549 novel pathways revealed by disease. Blood 105:1867-1874. 550 28. Nehlin JO, Carlberg M, Ronne H. 1991. Control of yeast GAL genes by MIG1 551 repressor: a transcriptional cascade in the glucose response. EMBO J. 10:3373-3377. Nehlin JO, Ronne H. 1990. Yeast MIG1 repressor is related to the mammalian early 552 29. 553 growth response and Wilms' tumour finger proteins. EMBO J. 9:2891-2898. 554 30. Netz DJ, Stumpfig M, Dore C, Muhlenhoff U, Pierik AJ, Lill R. 2010. Tah18 555 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis. Nat. Chem. 556 Biol. 6:758-765. 557 31. O'Neill EM, Kaffman A, Jolly ER, O'Shea EK. 1996. Regulation of PHO4 nuclear localization by the PHO80-PHO85 cyclin-CDK complex. Science 271:209-212. 558 559 32. Ojeda L, Keller G, Muhlenhoff U, Rutherford JC, Lill R, Winge DR. 2006. Role 560 of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional 561 activator in Saccharomyces cerevisiae. J. Biol. Chem. 281:17661-17669. 33. 562 Papamichos-Chronakis M, Gligoris T, Tzamarias D. 2004. The Snfl kinase 563 controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cvc8-Tup1 co-repressor. EMBO Rep. 5:368-372. 564 565 34. Philpott CC, Protchenko O. 2008. Response to iron deprivation in Saccharomyces 566 cerevisiae. Eukaryot. Cell 7:20-27. 567 35. Picciocchi A, Saguez C, Boussac A, Cassier-Chauvat C, Chauvat F. 2007. 568 CGFS-type monothiol glutaredoxins from the cyanobacterium Synechocystis other evolutionary distant model organisms possess a 569 PCC6803 and 570 glutathione-ligated [2Fe-2S] cluster. Biochemistry 46:15018-15026. 571 Protchenko O, Ferea T, Rashford J, Tiedeman J, Brown PO, Botstein D, 36. 572 **Philpott CC.** 2001. Three cell wall mannoproteins facilitate the uptake of iron in 573 Saccharomyces cerevisiae. J. Biol. Chem. 276:49244-49250. 574 37. Pujol-Carrion N, Belli G, Herrero E, Nogues A, de la Torre-Ruiz MA. 2006. 575 Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative 576 stress response in Saccharomyces cerevisiae. J. Cell Sci. 119:4554-4564. 577 38. Rodriguez-Manzaneque MT, Tamarit J, Belli G, Ros J, Herrero E. 2002. Grx5 is

- a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol.
 Biol. Cell 13:1109-1121.
- 39. Rothstein R. 1991. Targeting, disruption, replacement, and allele rescue: Integrative
 581 DNA transformation in yeast. Methods Enzymol. 194:281-301.
- 40. Rutherford JC, Bird AJ. 2004. Metal-responsive transcription factors that regulate
 iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot. Cell 3:1-13.
- Rutherford JC, Ojeda L, Balk J, Muhlenhoff U, Lill R, Winge DR. 2005.
 Activation of the iron regulon by the yeast Aft1/Aft2 transcription factors depends on
 mitochondrial but not cytosolic iron-sulfur protein biogenesis. J. Biol. Chem.
 280:10135-10140.
- 588 42. Shakoury-Elizeh M, Tiedeman J, Rashford J, Ferea T, Demeter J, Garcia E,
 589 Rolfes R, Brown PO, Botstein D, Philpott CC. 2004. Transcriptional remodeling in
 590 response to iron deprivation in Saccharomyces cerevisiae. Mol. Biol. Cell
 591 15:1233-1243.
- 592 43. Stearman R, Yuan DS, Yamaguchi-Iwai Y, Klausner RD, Dancis A. 1996. A
 593 permease-oxidase complex involved in high-affinity iron uptake in yeast. Science
 594 271:1552-1557.
- 595 44. Ueta R, Fujiwara N, Iwai K, Yamaguchi-Iwai Y. 2007. Mechanism underlying the
 596 iron-dependent nuclear export of the iron-responsive transcription factor Aft1p in
 597 Saccharomyces cerevisiae. Mol. Biol. Cell 18:2980-2990.
- 598 45. Ueta R, Fukunaka A, Yamaguchi-Iwai Y. 2003. Pse1p mediates the nuclear import
 599 of the iron-responsive transcription factor Aft1p in Saccharomyces cerevisiae. J. Biol.
 600 Chem. 278:50120-50127.
- 46. Yamaguchi-Iwai Y, Dancis A, Klausner RD. 1995. AFT1: a mediator of iron
 regulated transcriptional control in Saccharomyces cerevisiae. EMBO J.
 14:1231-1239.
- 47. Yamaguchi-Iwai Y, Stearman R, Dancis A, Klausner RD. 1996. Iron-regulated
 DNA binding by the AFT1 protein controls the iron regulon in yeast. EMBO J.
 15:3377-3384.

- 48. Yamaguchi-Iwai Y, Ueta R, Fukunaka A, Sasaki R. 2002. Subcellular localization
 of Aft1 transcription factor responds to iron status in Saccharomyces cerevisiae. J.
 Biol. Chem. 277:18914-18918.
- 49. Zhang Y, Liu L, Wu X, An X, Stubbe J, Huang M. 2011. Investigation of in vivo
 diferric tyrosyl radical formation in Saccharomyces cerevisiae Rnr2 protein:
 requirement of Rnr4 and contribution of Grx3/4 and Dre2 proteins. J. Biol. Chem.
 286:41499-41509.
- 50. Zhang Y, Lyver ER, Nakamaru-Ogiso E, Yoon H, Amutha B, Lee DW, Bi E,
 615 Ohnishi T, Daldal F, Pain D, Dancis A. 2008. Dre2, a conserved eukaryotic Fe/S
 616 cluster protein, functions in cytosolic Fe/S protein biogenesis. Mol. Cell. Biol.
 617 28:5569-5582.
- 618 619

620 FIGURE LEGENDS

621

622 **FIG 1.** The $\Delta msn5$ strain is not sensitive to excess iron. (A) The indicated strains were 623 spotted on SD medium supplemented with the indicated concentrations of FeSO₄ using 624 3-fold serial dilutions beginning at 200 cells per spot. Cell growth was observed after 625 incubation at 30 °C for 3 days. (B) The growth of cells expressing the indicated Aft1p 626 mutants was tested as in (A). (C) Aft1p accumulates in the nucleus of the *Amsn5* strain 627 independent of cellular iron status. $\Delta aft1$ or $\Delta msn5\Delta aft1$ cells carrying an expression plasmid 628 for wild-type Aft1-HA or the indicated mutants were cultured in iron-depleted (-Fe) or iron-replete (+Fe) medium to mid-log phase growth. After fixation, the subcellular 629 630 localization of Aft1-HA was examined by indirect immunofluorescence microscopy using an 631 anti-HA antibody. DAPI staining of nuclei and differential interference contrast (DIC) 632 images are provided for comparison. 633 634 FIG 2. Aft1p dissociates from a target promoter in response to iron repletion. (A) Expression 635 of the iron regulon is suppressed in iron-replete $\Delta msn5$ cells. $\Delta aft1$ or $\Delta msn5\Delta aft1$ cells 636 carrying an expression plasmid for wild-type Aft1-HA or the indicated mutants were cultured 637 in iron-free medium to mid-log phase growth. Cells were cultured for an additional 30 min in 638 the absence (- iron) or presence (+ iron) of 200 µM FeSO4, and total RNA was extracted. The 639 mRNA levels of the indicated genes were then analyzed by Northern blotting. (B) Aft1p

640 binds to the FET3 promoter only under iron-deprived conditions in Amsn5 cells. Aaft1 or 641 $\Delta msn5 \Delta aft1$ cells carrying an expression plasmid for wild-type Aft1-TAP or the indicated 642 mutants were cultured as in (A) and Aft1p binding to the FET3 and ACT1 promoters was 643 detected by chromatin immunoprecipitation. (C) Aft1-TAP is functional. BY4741 (AFT1) 644 cells, *Aaft1* cells, and *Aaft1* cells carrying an expression plasmid for Aft1-TAP, Aft1-HA, or 645 Aft1-1^{up}-HA were cultured in iron-free medium to mid-log phase growth. Total RNA was 646 isolated after the addition of iron at the indicated times, and mRNA levels of the indicated 647 genes were analyzed by Northern blotting.

648

649 FIG 3. Leu99, Leu102, Cys291, and Cys293 are required for the Aft1p-Grx3/4p interaction. 650 (A) The PJ69-4A strain was transformed with an expression plasmid for AD-fused Aft1p, 651 mutant Aft1p, or the corresponding empty vector, as well as an expression plasmid for the BD-fused indicated proteins or the corresponding empty vector. Cells were grown at 30 °C 652 653 for 4 days on SD medium lacking (-ADE -HIS) or containing (+ADE +HIS) adenine and 654 histidine. Cells were spotted using 3-fold serial dilutions beginning at 600 cells per spot. (B) 655 Lysates from the cells in (A) were analyzed by immunoblotting with anti-HA (for the 656 detection of AD-fused proteins) or with anti-myc (for the detection of BD-fused proteins). *: 657 non-specific bands. (C and D) Agrx3Agrx4 cells carrying expression plasmids for Aft1-TAP 658 or the indicated mutants, and Grx3-HA (C) or Grx4-HA (D) were cultured in iron-depleted 659 medium to mid-log phase growth. Cells were cultured for an additional 15 min in the

660 presence of 200 μM FeSO₄. TAP-precipitates and lysates were probed with the indicated
 661 antibodies.

662

663 FIG 4. Grx3/4p are required for the dissociation of Aft1p from DNA in response to iron. (A) 664 Grx3/4p are required for the iron-dependent dissociation of Aft1p from the FET3 promoter. 665 BY4741 (WT), $\Delta grx3$, $\Delta grx4$ or $\Delta grx3 \Delta grx4$ strains carrying expression plasmids for 666 Aft1-TAP were cultured in iron-free medium to mid-log phase growth. Cells were cultured 667 for an additional 30 min in the absence (-) or presence (+) of 200 μ M FeSO₄, and Aft1p 668 binding to the FET3 and ACT1 promoters was detected by chromatin immunoprecipitation. (B) Iron regulon expression is not suppressed even under iron-replete conditions in the 669 670 $\Delta grx3 \Delta grx4$ strain. The BY4741 (WT), $\Delta grx3$, $\Delta grx4$, $\Delta grx3 \Delta grx4$ strains, or $\Delta grx3 \Delta grx4$ 671 cells carrying expression plasmids for Grx3-TAP or Grx3-HA were cultured as in (A) and 672 expression of the indicated genes was analyzed by Northern blotting. 673 674 FIG 5. The Grx3/4p interaction with Aft1p is augmented in the presence of iron. (A and B) 675 Binding of Grx3/4p to Aft1p was enhanced in iron-replete conditions. (A) Cells expressing 676 both Aft1-TAP and Grx3-HA (+ Aft1-TAP), or Grx3-HA alone (- Aft1-TAP) from their 677 natural chromosomal loci were cultured in iron-free medium to mid-log phase growth (20 h). 678 Cells were cultured for an additional 15 min in the absence (- iron) or presence (+ iron) of 679 200 µM FeSO₄, and TAP-immunoprecipitates and cell lysates were probed with the indicated

680	antibodies. (B) Cells expressing both Aft1-TAP and Grx4-HA (+ Aft1-TAP), or Grx4-HA
681	alone (- Aft1-TAP) from their natural chromosomal loci were cultured as in (A) and the
682	interaction between Aft1-TAP and Grx4-HA was analyzed by immunoprecipitation. (C)
683	Induction of the expression of the iron regulon is incomplete after a 6 h treatment with 40 μM
684	BPS. BY4741 cells were cultured under the following conditions: SD medium containing 40
685	μM BPS for 6 h (BPS), SD medium containing 250 μM FeSO4 for 6 h (Fe), SD medium
686	lacking iron for 20 h (Fe; -), or SD medium lacking iron for 20 h with an additional 15 min
687	cultivation in the presence of 200 μ M FeSO ₄ (Fe; +). Total RNA was extracted and
688	expression of the indicated genes was analyzed by Northern blotting. The values indicated
689	below each panel are relative mRNA levels as a percentage of the amount in the cells cultured
690	in SD medium lacking iron for 20 h. (D) Grx3/4p reside both in the nucleus and in the
691	cytoplasm. $\Delta grx3 \Delta grx4$ cells carrying expression plasmids for Grx3/4-HA were cultured in
692	iron-free medium to mid-log phase growth. Cells were cultured for an additional 30 min in
693	the absence (-Fe) or presence (+Fe) of 200 μ M FeSO ₄ . After fixation, the subcellular
694	localization of Grx3/4-HA was examined by indirect immunofluorescence microscopy using
695	an anti-HA antibody. Differential interference contrast (DIC) images are provided for
696	comparison.
697	

FIG 6. Grx3/4p require an iron-sulfur cluster to interact with Aft1p. (A and B) Grx3-TAP and 699 Grx3-HA interact in iron-replete conditions. (A) $\Delta grx3 \Delta grx4$ cells carrying expression

700	plasmids for Grx3-TAP and Grx3-HA were cultured in iron-free medium to mid-log phase	
701	growth (20 h). Cells were cultured for an additional 15 min in the absence (-) or presence (+)	
702	of 200 μ M FeSO ₄ , and TAP-immunoprecipitates and cell lysates were probed with the	
703	indicated antibodies. (B) Cells expressing both Grx3-TAP and Grx4-HA (+ Aft1-TAP), or	
704	Grx4-HA alone (- Aft1-TAP) from their original chromosomal loci were cultured as in (A)	
705	and interactions between Grx3-TAP and Grx4-HA were analyzed by immunoprecipitation.	
706	(C) Lys203, Thr251 and Cys211 of Grx3p are important for iron binding by Grx3p <i>in vivo</i> .	
707	△grx3△grx4 cells carrying an expression plasmid for Grx3 (-), Grx3-TAP (WT) or the	
708	indicated mutants were cultured in iron-free medium to mid-log phase growth. Cells were	
709	radiolabeled with 370 KBq of ⁵⁵ Fe for 2 h. TAP-tagged proteins were precipitated, and bound	
710	⁵⁵ Fe was quantified by scintillation counting. Data represent mean values from three	
710 711	55 Fe was quantified by scintillation counting. Data represent mean values from three independent experiments. Error bars indicate ± SD. The amount of precipitated proteins was	
711	independent experiments. Error bars indicate \pm SD. The amount of precipitated proteins was	
711 712	independent experiments. Error bars indicate \pm SD. The amount of precipitated proteins was assessed by immunoblotting using an anti-TAP antibody. (D) Lys203, Thr251 and Cys211 of	
711712713	independent experiments. Error bars indicate \pm SD. The amount of precipitated proteins was assessed by immunoblotting using an anti-TAP antibody. (D) Lys203, Thr251 and Cys211 of Grx3p are important for the Aft1p-Grx3p interaction. $\Delta grx3\Delta grx4$ cells carrying expression	
711712713714	independent experiments. Error bars indicate \pm SD. The amount of precipitated proteins was assessed by immunoblotting using an anti-TAP antibody. (D) Lys203, Thr251 and Cys211 of Grx3p are important for the Aft1p-Grx3p interaction. $\Delta grx3\Delta grx4$ cells carrying expression plasmids for Aft1-TAP and Grx3-HA or the indicated mutants were cultured in iron-depleted	
 711 712 713 714 715 	independent experiments. Error bars indicate \pm SD. The amount of precipitated proteins was assessed by immunoblotting using an anti-TAP antibody. (D) Lys203, Thr251 and Cys211 of Grx3p are important for the Aft1p-Grx3p interaction. $\Delta grx3\Delta grx4$ cells carrying expression plasmids for Aft1-TAP and Grx3-HA or the indicated mutants were cultured in iron-depleted medium to mid-log phase growth. Cells were cultured for an additional 15 min in the	
 711 712 713 714 715 716 	independent experiments. Error bars indicate \pm SD. The amount of precipitated proteins was assessed by immunoblotting using an anti-TAP antibody. (D) Lys203, Thr251 and Cys211 of Grx3p are important for the Aft1p-Grx3p interaction. $\Delta grx3\Delta grx4$ cells carrying expression plasmids for Aft1-TAP and Grx3-HA or the indicated mutants were cultured in iron-depleted medium to mid-log phase growth. Cells were cultured for an additional 15 min in the presence of 200 µM FeSO ₄ , and TAP-immunoprecipitates and cell lysates were probed with	

120	non nee meanant to find tog phase growth. Cens were editated for an additional 50 min in
721	the absence (-) or presence (+) of 200 μ M FeSO ₄ , and Aft1p binding to the <i>FET3</i> and <i>ACT1</i>
722	promoters was probed by chromatin immunoprecipitation. (F) Lys203, Thr251 and Cys211
723	of Grx3p are important for the regulation of <i>FTR1</i> expression by iron. $\Delta grx3 \Delta grx4$ cells
724	carrying an expression plasmid for Grx3p-HA or the indicated mutants were cultured in
725	iron-depleted medium to mid-log phase growth. Cells were cultured for an additional 30 min
726	in the absence (-) or presence (+) of 200 μ M FeSO ₄ , and the expression of <i>FTR1</i> , <i>FET3</i> ,
727	FRE1, SIT1 and ACT1 was analyzed by Northern blotting.
728	
729	FIG7. Atm1p is required for Aft1p inactivation in response to iron. (A) The ATM1 mRNA is
730	depleted in GAL-ATM1 strains cultured in glucose containing medium. The wild-type or
731	Atm1p-depleted GAL-ATM1 strains were cultured in iron-free medium containing galactose
732	(Gal) or glucose (Glc) as a sole carbon source to mid-log phase growth. Cells were cultured
733	for an additional 30 min in the absence (-) or presence (+) of 200 μ M FeSO ₄ , and the <i>ATM1</i>
734	and ACT1 mRNA levels were analyzed by Northern blotting. (B) Iron regulon expression

iron-free medium to mid-log phase growth. Cells were cultured for an additional 30 min in

720

remains high in iron-replete conditions in Atm1p-depleted cells. The wild-type or

736 Atm1p-depleted GAL-ATM1 strains were cultured in iron-free medium to mid-log phase

growth. Cells were cultured for an additional 30 min in the absence (-) or presence (+) of 200

⁷³⁸ μM FeSO₄, and the expression of *FTR1*, *FET3*, *FRE1*, *SIT1* and *ACT1* was analyzed by

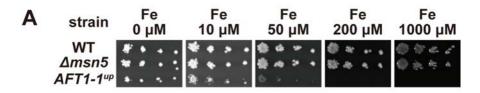
Northern blotting. (C) Atm1p is required for the iron-dependent dissociation of Aft1p from

740	the FET3 promoter. The wild-type or Atm1p-depleted GAL-ATM1 strains expressing
741	Aft1-TAP were cultured in iron-free medium to mid-log phase growth. Cells were cultured
742	for an additional 30 min in the absence (-) or presence (+) of 200 μ M FeSO ₄ , and Aft1p
743	binding to the FET3 and ACT1 promoters was analyzed by chromatin immunoprecipitation.
744	(D) Atm1p is required for the Aft1p-Grx3p interaction. The wild-type or Atm1p-depleted
745	GAL-ATM1 strains expressing Aft1-TAP and Grx3-HA were cultured in iron-free medium to
746	mid-log phase growth. Cells were cultured for an additional 15 min in the absence (-) or
747	presence (+) of 200 μ M FeSO ₄ , and the interaction between Aft1-TAP and Grx3-HA was
748	analyzed by co-immunoprecipitation. (E) Atm1p is important for iron binding by Grx3p in
749	vivo. The wild-type or Atm1p-depleted GAL-ATM1 strains expressing non-tagged Grx3p (-)
750	or Grx3-TAP (+) were cultured in iron-free medium to mid-log phase growth. Cells were
751	radiolabeled with 370 kBq of ⁵⁵ Fe for 30 min. TAP-tagged proteins were immunoprecipitated,
752	and bound ⁵⁵ Fe was quantified by scintillation counting. Data represent mean values from
753	three independent experiments. Error bars indicate \pm SD. The amount of precipitated protein
754	was assessed by immunoblotting using an anti-TAP antibody.

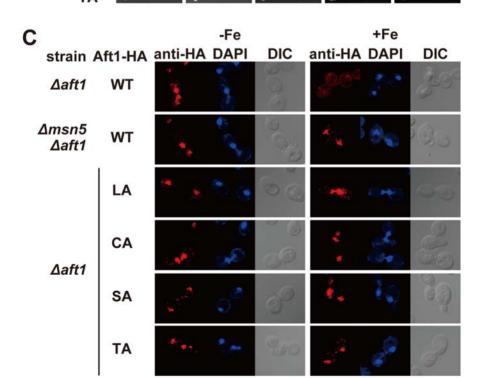
755

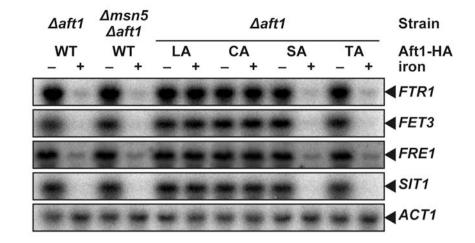
756 **FIG 8.** Proposed model for iron sensing by Aft1p. During iron starvation, iron-sulfur

assembly in the mitochondria and dimeric Grx3/4p with bound iron-sulfur clusters are

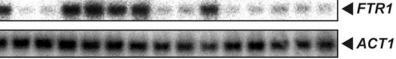

- minimal. Under these conditions, Grx3/4p binding to Aft1p is attenuated, and Aft1p binds to
- target promoters to increase the expression of the iron regulon. In response to iron

760	availability (i), iron-sulfur cluster assembly in the mitochondria increases (ii), and the
761	iron-sulfur clusters, or signals that invoke iron-sulfur cluster formation, are delivered to the
762	monothiol glutaredoxins Grx3/4p, which resides both in the nucleus and cytoplasm, via the
763	mitochondrial ABC exporter Atm1p (iii). Grx3/4p with bound iron-sulfur clusters bind to
764	Aft1p (iv), which induces dissociation of Aft1p from its target promoters (v), leaving Aft1p
765	available for nuclear export by Msn5p (vi). The expression of the iron regulon is thereby
766	down-regulated.

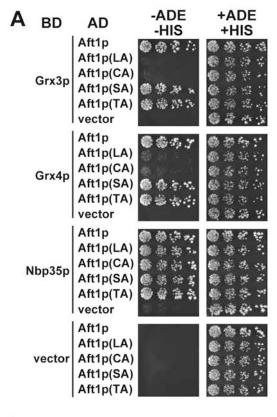

767	

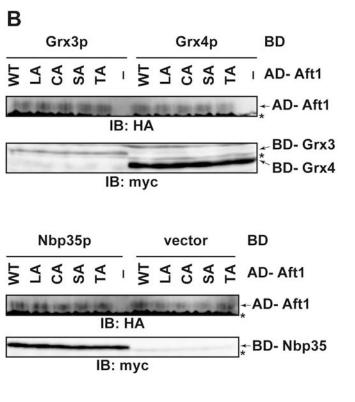

TABLE 1. Yeast Strain Genotypes.

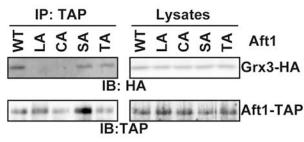
Strain	Genotype	Source
PJ69-4A	MATa ura3-52 leu2-3,112 trp1-901 his3-200	(12)
	gal4∆ gal80∆ GAL2-ADE2 LYS2::GAL1-HIS3	
	met2::GAL7-lacZ	
BY4741	MATa ura3 $\Delta 0$ leu2 Δ his3 $\Delta 1$ met15 $\Delta 0$	(5)
BY4742	MATα ura3 $\Delta 0$ leu2 Δ his3 $\Delta 1$ lys2 $\Delta 0$	(5)
Y23 (<i>Aaft1</i>)	BY4741 background, aft1∆::KanMX	(44)
Y24 (<i>Amsn5</i>)	BY4741 background, msn5∆::KanMX	This study
Y25	BY4742 background, msn5∆::KanMX	This study
Y26	BY4741 background, aft1∆::KanMX	This study
$(\Delta a ft 1 \Delta m sn 5)$	msn5_A::KanMX	
Y27 (<i>Agrx3</i>)	BY4741 background, grx3∆::KanMX	This study
Y28 (<i>Agrx4</i>)	BY4741 background, grx4∆::KanMX	This study
Y29	BY4742 background, grx4 <i>A</i> ::KanMX	This study
Y30	BY4741 background, grx3∆∷KanMX	This study
$(\Delta grx3 \Delta grx4)$	grx4 <i>A</i> ::KanMX	
Y31	BY4741 background, GRX3-HA	This study
Y32	BY4741 background, AFT1-TAP::HIS3MX6,	This study
	GRX3-HA	
Y33	BY4741 background, GRX4-HA	This study
Y34	BY4741 background, GRX3-TAP::HIS3MX6,	This study
	GRX4-HA	
Y35	BY4741 background,	This study
(GAL-ATM1)	pATM1::pGAL1-10-KanMX	



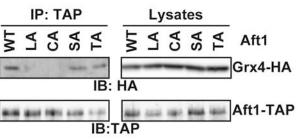
Fe Fe Fe Fe Fe В Aft1 1000 µM 0 μM 10 µM 50 µM 200 µM WT .0 5÷ LA CA SA TA

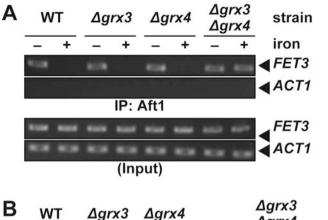


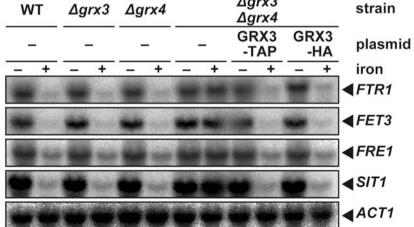


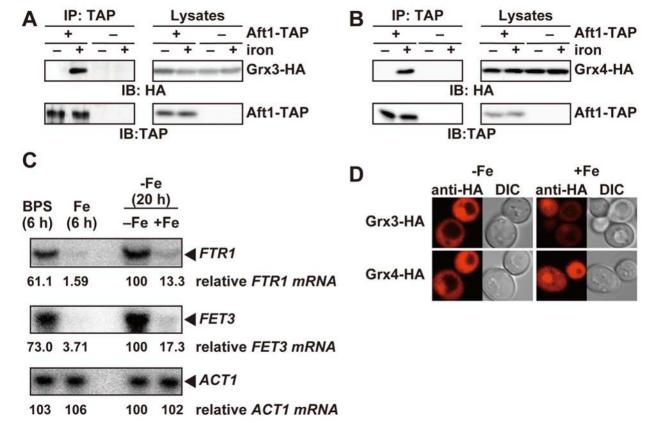


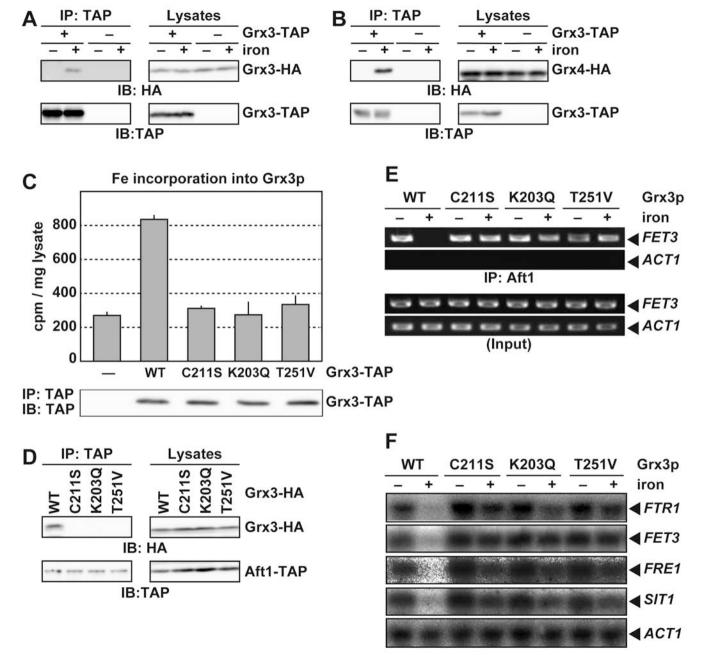
Α

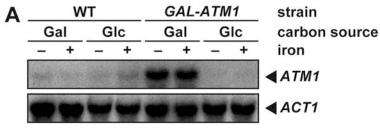


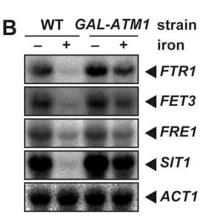


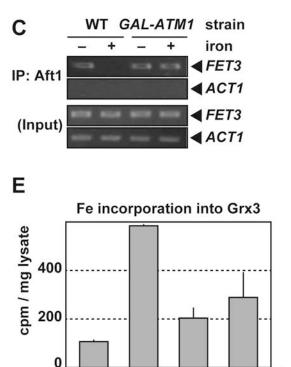


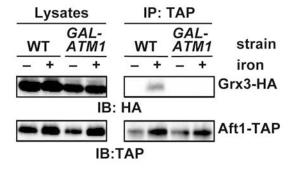


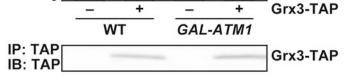


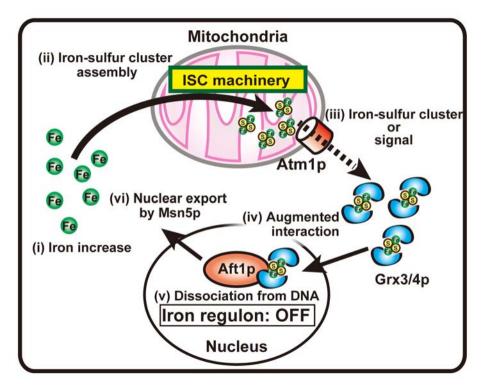












D

