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Abstract Lattice polyhedra, as introduced by Gröflin and Hoffman, form a common
framework for various discrete optimization problems. They are specified by a lat-
tice structure on the underlying matrix satisfying certainsub- and supermodularity
constraints. Lattice polyhedra provide one of the most general frameworks of total
dual integral systems. So far no combinatorial algorithm has been found for the cor-
responding linear optimization problem. We show that the important class of lattice
polyhedra in which the underlying lattice is of modular characteristic can be reduced
to the Edmonds-Giles polyhedra. Thus, submodular flow algorithms can be applied
to this class of lattice polyhedra. In contrast to a previousresult of Schrijver, we do
not explicitly require that the lattice is distributive. Moreover, our reduction is very
simple in that it only uses an arbitrary maximal chain in the lattice.

Keywords Lattice polyhedra· Edmonds-Giles polyhedra· distributive lattices

1 Introduction

Discrete optimization problems often allow, or even ask for, a formulation as an in-
teger linear program, i.e., as a problem to find optimal integral solutions of a linear
program of type

max{wTx | Ax≤ f},

whereA∈ {−1,0,1}m×n, w∈R
n and f ∈R

m. By duality theory, the value of the lin-
ear problem is equal to the value of its dual linear program min{yT f | yTA= wT , y≥
0}.
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Being interested in integral solutions, a fundamental problem in polyhedral com-
binatorics is to decide which linear programs have guaranteed integer optimal so-
lutions. The probably most important concept here is that oftotal dual integral in-
equality systems [22], where systemAx≤ f is calledtotal dual integral (TDI)if the
minimum in min{yT f | yTA = wT , y ≥ 0} can be achieved by an integral vectory
for each integralw for which the optima exist. Various classes of linear programs
with specially structured right-hand sides (often submodular) can be proven to have
integral optimal solutions. However, the development of polynomial algorithms to
solve TDI problems has lagged behind the theoretical results, although there have
been some recent successes (see, e.g., [16], [17], [18].)

When asking for combinatorial algorithms for as general TDI-systems as possi-
ble, one promising model to look at is that oflattice polyhedrawhich were introduced
by Hoffman and Schwartz [12] for{0,1}-matrices, and generalized by Gröflin and
Hoffman [11] to{−1,0,1}-matrices.

1.1 Lattice polyhedra

The name “lattice polyhedron” comes from a certain, very general, lattice structure
on the underlying matrix on which the right-hand side is submodular. We first need
some notation: A poset(L,�) is a lattice if for any two elementsi, j ∈ L there exist a
“meet” i∧ j = sup{k∈ L | k� i, j} and a “join” i∨ j = inf{k∈ L | k� i, j}. We denote
by m andM the (unique) minimal and maximal element of latticeL, respectively. A
function f : L → R is submodularif it satisfies for alli, j ∈ L the inequalityf (i)+
f ( j) ≥ f (i ∧ j)+ f (i ∨ j).

Definition 1 [Lattice polyhedron [11]] Let(L,�,∧,∨) be a lattice on whichf ∈R
|L|

is submodular. Given a matrixA∈ {−1,0,1}|L|×|E| with entriesχ(i,e) for i ∈ L and
e∈ E, lower and upper boundsc,d ∈ R

|E| the polyhedron

P(A, f ) = {x∈R
|E| | Ax≤ f , c≤ x≤ d}

is called alattice polyhedronif for all i, j,k∈ L and alle∈E the following three hold:

(C1) if i ≺ j ≺ k andχ(i,e) = χ(k,e) = t 6= 0, thenχ( j,e) = t,
(C2) if i ≺ j, thenχ(i,e) · χ( j,e)≥ 0, and
(C3) χ(i,e)+ χ( j,e)≤ χ(i ∨ j,e)+ χ(i ∧ j,e).

Analogously, if, in the above definition, functionf is supermodular (i.e., if− f is
submodular) and (C3) is replaced by (C3′) χ(i,e)+χ( j,e)≥ χ(i∨ j,e)+χ(i∧ j,e),
the polyhedronP′(A, f ) = {x∈R

|E| |Ax≥ f , c≤ x≤ d} is also called a lattice poly-
hedron. The pair of the matrixA and the latticeL is calledconsecutiveif properties
(C1) and (C2) are satisfied. If(A,L) satisfies (C3) (or (C3′), or both), we say that
(A,L) has supermodular (or submodular, or modular) characteristic. For technical
reasons, we assume throughout that for eache∈ E there exists at least onei ∈ L such
thatχ(i,e) 6= 0.

Lattice polyhedra form a common framework for various combinatorial struc-
tures. For example, lattice polyhedra with{0,1}-matrices include polyhedra types
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such as polymatroids, the intersection of polymatroids, and submodular systems. The
lattice polyhedra with{−1,0,1}-matrix include Edmonds-Giles polyhedra [3], so
that the optimization problem for lattice polyhedra also covers the well-studied sub-
modular flow problem. (See Section 2 below for the definition of Edmonds-Giles
polyhedra and the submodular flow problem). Several min-maxresults for combina-
torial structures can be derived from the following theorem:

Theorem 1 ([11]) If either (A,L) is of modular characteristic, or c≥ 0, then the
system of linear inequalities for the lattice polyhedron istotally dual integral. If f,c
and d are integral, then all vertices of lattice polyhedra are integral.

However, Gröflin and Hoffman’s integrality result for lattice polyhedra is only
a structural existence theorem without algorithmic foundation. In the last decades,
combinatorial algorithms have been developed only for various special instances of
lattice polyhedra. For example, there exist several greedy-type algorithms for special
classes of{0,1}-lattice polyhedra (e.g., [7], [6], [2], [4], [5], [13], [15]), as well as
a primal-dual algorithm for{0,1}-lattice polyhedra with supermodular right-hand
side [18].

Lattice polyhedra on{−1,0,1}-matrices seem to be a lot harder to investigate
under algorithmic aspects. For{−1,0,1}-lattice polyhedra, algorithms have mainly
been developed for the special case of Edmonds-Giles polyhedra. (See e.g. [20], [14],
[19] for the currently fastest submodular flow algorithms, or the survey paper [10].)
The reason why polyhedra on{−1,0,1}-matrices and their underlying structure are
not so tractable might be that it is much more natural to play around with subset fam-
ilies L ⊆ 2E than with families of disjoint ordered tuplesL ⊆ 3E = {(X,Y) | X,Y ⊆
E, X ∩Y = /0} in which the elements may occur “positive” or “negative”. Thus, in
order to design a combinatorial algorithm for{−1,0,1}-lattice polyhedra in gen-
eral, we would need to better understand the underlying combinatorial structure, and
maybe even give some graph-theoretic interpretation of theproblem. Moreover, we
would need to find an appropriate oracle to access the lattice.

Our contribution. This paper can be seen as a further step toward this goal. We will
show that{−1,0,1}-lattice polyhedra in which(A,L) is of modular characteristic
can be reduced to Edmonds-Giles polyhedra via a very simple reduction. For our
reduction, we only need an oracle that gives us an arbitrary maximal chain inL.
In contrast to a related result of Schrijver [21], we do not require explicitly thatL
is a distributive lattice, and we do not need an oracle to return minimal and maximal
elements in certain sublattices. The differences between Schrijver’s and our reduction
will be described below.

2 Preliminaries and Definitions

Let P(A, f ) = {x∈ R
|E| | Ax≤ f , c≤ x ≤ d} be a lattice polyhedron on latticeL =

(L,�,∧,∨). Thus, by Definition 1, the pair(A,L) is consecutive and of supermodular
characteristic, andf is submodular.
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Note that, sinceA is a{−1,0,1}-matrix, we might as well identify eachi ∈ L with
some element(Xi ,Yi) in 3E, where 3E denotes the family of all ordered pairs(X,Y)
of disjoint subsets of a finite setE, i.e.,A can be interpreted as the incidence matrix
of some (multi-)set of elements in 3E via

χ(i,e) =







1 if e∈ Xi
−1 if e∈Yi

0 otherwise.

With this interpretation,P(A, f ) can equivalently be written asP(L, f ) = {x∈ R
E |

∀i ∈ L : x(Xi)− x(Yi) ≤ fi , c ≤ x ≤ d}. To shorten notation, we call latticeL con-
secutive, supermodular, or modularif the pair (A,L) is consecutive, supermodular,
or modular, respectively. For eachi ∈ L we denote byχ(i) the {−1,0,1}-vector
(χ(i,e) | e∈E). For technical reasons, we assume thatχ(m) = χ(M) = /0 andf (m) =
f (M) = 0 for the unique minimal and maximal elementm andM in L, respectively.

As usual, we assume that the size ofE and the height of the lattice (i.e., the size
of a maximal chain inL) are rather small, whereas the size of the latticeL might
be huge, say exponential in|E|. These assumptions are justified by all the known
examples and applications of lattice polyhedra (see, e.g.,[21]). The function values
of f are assumed to be given implicitly via some oracle.

Chains, ideals, lower neighbours, join-irreducible elements. Given a poset(P,�), a
subsetC⊆ P is achain, if for any two elementsi, j ∈C eitheri � j or j � i. A subset
I ⊆P is calledideal w.r.t.(P,�) if i ∈ I , j � i implies j ∈ I . An elementi ∈P is called
lower neighbourof j ∈ P if i ≺ j and there exists nok ∈ P with i ≺ k ≺ j. Given a
lattice(L,�,∧,∨) an elementi ∈ L is calledjoin-irreducibleif for every j andk in L
it holds thati = j ∨k implies i = j or i = k.

Distributive lattices.A lattice (L,�,∧,∨) is calleddistributive if the binary opera-
tors∧,∨ satisfy the distributive lawi∧( j∨k) = (i∧ j)∨(i∧k) for all i, j,k∈ L. (Note
that this implies that alsoi ∨ ( j ∧k) = (i ∨ j)∧ (i ∨k) holds.) Alternatively, distribu-
tive lattices can be characterized by the exclusion of the sublatticesN5 andM3 (see
Figure 1).

Birkhoff ’s representation of distributive lattices.By a theorem of Birkhoff [1], a fi-
nite distributive latticeL = (L,�,∧,∨) admits a canonical representation as a union-
and intersection-closed system of sets in the following way: Let P ⊆ L denote the
set of all join-irreducible elements ofL. Then the ordering� in L induces the poset
P= (P,�). Let D(P) denote the collection of all ideals w.r.t.(P,�). Then there ex-
ists an order isomorphismφ : L → D(P) between the two lattices(L,�,∧,∨) and
(D(P),⊆,∩,∪) with φ(i) = {p ∈ P | p � i} andφ−1(I) =

∨
{p ∈ P | p ∈ I}. For

further details on lattices, the reader is referred to [1].

Distributive lattice polyhedra.Let us call a lattice polyhedrondistributive if (A,L)
is of modular characteristic and latticeL is distributive. One important example of
distributive lattice polyhedra areEdmonds-Giles polyhedra:
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Fig. 1 LatticesN5 andM3.

Edmonds-Giles polyhedra and the submodular flow problem.Independent of the lat-
tice polyhedron model, Edmonds and Giles introduced thesubmodular flow prob-
lem [3], i.e., the problem to optimize a linear function over an Edmonds-Giles poly-
hedron as a common generalization of the min-cost flow problem, the polymatroid
intersection, and the minimum directed-cut covering problem:

Let G= (V,E) be a connected directed graph andF ⊆ 2V be aring family, i.e., a
set family that is closed with respect to the set-theoretic intersection and union. Note
that (F ,⊆,∩,∪) is a distributive lattice. Given a submodular functionf : F → R,
an edge-assignmentx∈ R

|E| is called asubmodular flowif

x(∆+(S))− x(∆−(S))≤ f (S) ∀S∈ F , (1)

where∆+(S) and∆−(S) denote, respectively, the sets of arcs leavingSand entering
S. Edmonds and Giles [3] proved that the linear inequality system in (1) is box-TDI,
i.e., the system is TDI even if we add box-constraintsc≤ x≤ d for any integral lower
and upper bound capacitiesc,d ∈ Z

E. The polyhedron

PEG(G,F , f ) = {x∈ R
E | x(∆+(S))− x(∆−(S))≤ f (S) ∀S∈ F ,c≤ x≤ d},

is calledEdmonds-Giles polyhedron, and the corresponding linear optimization prob-
lem is calledsubmodular flow problem (SF)1. In the last decades, numerous algo-
rithms have been developed for the submodular flow problem, which is said to be
“one of the most important frameworks for efficiently solvable combinatorial opti-
mization problems“[20].

It is not hard to see that an Edmonds-Giles polyhedron belongs to the class of dis-
tributive lattice polyhedra: given an Edmonds-Giles polyhedronPEG(G,F , f ) con-
sider the collection of ordered pairsL = {(∆+(S),∆−(S)) | S∈ F} ⊆ 3E partially

1 Originally, the submodular flow problem was defined in terms of crossing submodular functions on
crossing families. It is, however, shown in [8] that is suffices to consider submodular functions on ring
families.
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ordered by(∆+(S),∆−(S))� (∆+(T),∆−(T)) if and only if S⊆ T. Note that(L,�)
forms a distributive lattice with meet and join operations corresponding to the cuts
induced by the intersection and union of the two vertex sets in question. Also for all
S⊆V ande∈ E define

χ(S,e) =







1 if e∈ ∆+(S)
−1 if e∈ ∆−(S)

0 otherwise.

Then(L,�,∧,∨) together with the incidence matrixA= (χ(S,e))S∈F ,e∈E is consec-
utive and of modular characteristic. Moreover,F (and thusL) is distributive. Thus,
the integrality of Edmonds-Giles polyhedra follows as a consequence of Theorem 1.

Schrijver’s reduction of distributive lattice polyhedra to Edmonds-Giles polyhedra.
Let P(L, f ) be a distributive lattice polyhedron, i.e.,L is a consecutive distributive
lattice of modular characteristic on whichf is submodular. Schrijver [21] showed
that this model coincides with the Edmonds-Giles model via the following reduction:
Consider the setV of all join-irreducible elements of latticeL, which will turn out to
be the vertices in the corresponding Edmonds-Giles model. For eachi ∈ L define the
vertex setVi := { j ∈V | j � i}. ThenF = {Vi | i ∈ L} ⊆ 2V is a ring family on sub-
sets of vertices. Now, pick anye∈ E (recall that we assumed that there exists at least
onei∗ ∈ L with χ(i∗,e) 6= 0, sayχ(i∗,e) = 1). SinceL has modular characteristic, we
know that there exist unique minimal and maximal elementsie andMe in the sublat-
tice L+

e = {i ∈ L | χ(i,e) = 1}. Schrijver showed that the set{ j ∈ L | j ≻ Me} con-
tains a unique minimal elementje. Furthermore, he proved that the two elementsie
(as defined above as unique minimal element inL+

e ) and je are both join-irreducible.
Assigning the arcae = (ie, je) (in the caseχ(i∗,e) = −1 the arc gets opposite direc-
tion) one can show for eachi ∈ L thatae enters the vertex setVi iff χ(i,e) =−1, and
ae leavesVi iff χ(i,e) = 1. Thus, the distributive lattice polyhedron model coincides
with the Edmonds-Giles model.

Schrijver’s reduction of distributive lattice polyhedra to Edmonds-Giles polyhe-
dra is a big step into the direction of understanding the combinatorial structure of lat-
tice polyhedra in general, and finding a combinatorial algorithm for them. However,
if we really want to transform his reduction into an algorithm to solve the problem,
we would need an efficient way to construct the auxiliary digraph, i.e., we would
need to identify for eache∈ E the minimal elementie and the maximal elementMe

in L+
e (resp.L−

e = {i ∈ L | χ(i,e) = −1} in the caseχ(i∗,e) = −1), as well as the
minimal elementje in the set{ j ∈ L | j ≻ Me} (note that such an elementje always
exists by our assumption that the unique maximal elementM satisfiesχ(M,e) = 0
for all e∈ E). Furthermore, Schrijver requires that latticeL is not only of modular
characteristic, but also distributive whereas Gröflin andHoffman’s integrality result
holds for allL of modular characteristic. (In fact, in [21], the requirement of L be-
ing distributive seems to be forgotten. However, the distributivity is necessary for the
correctness of the proof in [21].) So one of the first questions to answer is whether we
can find a combinatorial algorithm for lattice polyhedra where we only require thatL
has modular characteristic.
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Our contribution. In this paper we will see that the modular characteristic ofL is
almost sufficient for the lattice polyhedron to be distributive (Theorem 2). It turns
out that it suffices to require the additional property thatχ(i) 6= χ( j) wheneveri is
a lower neighbor ofj in (L,�). We call this property (*). In Section 3.1, we give
an alternative, constructive proof to show that the inequality system of a distributive
lattice polyhedron corresponds to one in an Edmonds-Giles polyhedron, and vice
versa. That is, given a lattice polyhedron in whichL has modular characteristic and
satisfies property (*), we give a simple way to construct an auxiliary digraphG so
that the lattice polyhedron is equivalent to some Edmonds-Giles polyhedron onG.
We will see that in order to constructG, we only need to consider the elements of an
arbitrary maximal chain inL.

3 Distributive lattice polyhedra and Edmonds-Giles polyhedra

Birkhoff’s representation of the lattice elements by ideals in (D(P),⊆) as described
above turns out to be the key for the reduction of distributive lattice polyhedra to
Edmonds-Giles polyhedra in the subsequent Section 3.1. Before going into its detail,
let us observe that the modular characteristic ofL (i.e., property (C3) is satisfied with
equality) is almost sufficient for the lattice polyhedron tobe distributive.

Theorem 2 Let P(A, f ) be a lattice polyhedron where the underlying lattice L has
modular characteristic and satisfies

χ(i) 6= χ( j) whenever i is a lower neighbor of j in(L,�). (*)

Then the underlying lattice(L,�,∧,∨) is distributive.

Proof For the sake of contradiction, assume thatL is not distributive, i.e., that it
contains anN5- or anM3-sublattice (see Figure 1). Then there exist five distinct el-
ementsi, j,k, l ,m ∈ L such thatl = i ∧ j = i ∧ k and m= i ∨ j = i ∨ k. Note that
we can assume that j is a lower neighbor ofk in the latticeL if j and k are ele-
ments in theN5 sublattice, and thatj and k are lower neighbors ofm in the lat-
tice L if j,k, and m are elements in theM3-sublattice. By (*), it follows imme-
diately thatχ( j) 6= χ(k) must be true in theN5-sublattice. However,χ( j) 6= χ(k)
must also be true in theM3-sublattice as otherwiseχ( j) = χ(m) by the consecu-
tivity and modular characteristic ofL, in contradiction to (*). Thus, we can choose
some elemente∈ E with χ( j,e) 6= χ(k,e). SinceL is of modular characteristic, it
follows that χ(l ,e) + χ(m,e) = χ(i,e) + χ( j,e) = χ(i,e) + χ(k,e), which implies
χ( j,e) = χ(k,e), a contradiction.

3.1 Reduction to Edmonds-Giles polyhedra

Let P(A, f ) (respectivelyP(L, f )) be a distributive lattice polyhedron, andP denote
the set of join-irreducible elements of the underlying distributive lattice(L,�,∧,∨).
By Birkhoff’s Theorem, we may identify each elementi ∈ L (resp. the corresponding
ordered pair(Xi ,Yi) ∈ 3E with Xi := {e∈ E | χ(i,e) = 1} andYi := {e∈ E | χ(i,e) =
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−1}) with some idealIi ∈ D(P). Thus, our inequality system{x ∈ R
E | Ax≤ f}

can be rewritten as{x∈ R
E | x(XI )− x(YI ) ≤ fI , ∀I ∈ D(P)}. In the following, we

will construct an auxiliary digraphG= (P,E′) whose vertices correspond to the join-
irreducibles ofL, and whose edges are copies ofE, i.e.,E′ = {e′ | e∈ E}, such that
for all I ∈ D(P)

e∈ XI ⇐⇒ e′ ∈ ∆+(I), (2)

e∈YI ⇐⇒ e′ ∈ ∆−(I). (3)

This directly implies that the vectors inP(A, f ) are exactly the vectors in the Edmonds-
Giles polyhedronP(G,D(P), f ).

Construction of auxiliary digraph.To construct our digraph corresponding toP(A, f ),
we arbitrarily choose a maximal chain(C ,�) = {(X1,Y1)≺ (X2,Y2)≺ ·· · ≺ (Xn,Yn)}
in (L,�).

Observation 1 Each e∈ E occurs either in some set{Xi}i∈P or in some set{Yi}i∈P.

Proof By (C2), an elemente∈ E cannot occur both in someXi and someYj for i, j ∈
{1, . . . ,n}. Suppose for the sake of contradiction thate does not occur in any chain
element(Xi ,Yi)∈C at all. Let(X,Y) be the minimal element in(L,�) with e∈X∪Y,
and let(Xi ,Yi) be the minimal element of chain(C ,�) with (X,Y) ≺ (Xi ,Yi). Then
(X,Y) and(Xi−1,Yi−1) must be incomparable. Sincee occurs neither in(Xi−1,Yi−1)
nor in (Xi ,Yi) = (X,Y)∨ (Xi−1,Yi−1), the modular characteristic ofL implies that
e occurs in(X,Y)∧ (Xi−1,Yi−1). But, since(X,Y)∧ (Xi−1,Yi−1) ≺ (X,Y), this is a
contradiction to the choice of(X,Y).

Note that, by Birkhoff’s Theorem, our chosen chain(C ,�) is isomorphic to a
chain(C̄ ,⊆) = P0 ⊂ P1 ⊂ P2 ⊂ ·· · ⊂ Pn in (D(P),⊆), wherePn = {p1, . . . , pn} is a
linear extension of(P,�) (i.e., pi ≺ p j implies i < j), andPi−1 = Pi \ {pi} for i =
1, . . . ,n. We now define for alle∈ E the potentialνe : P→ {−1,0,1} with νe(pi) =
χ(Pi,e)− χ(Pi−1,e) for all i = 1, . . . ,n. By the consecutiveness ofL we observe that
eachνe uniquely definesie, je with νe(ie) = 1 andνe( je) =−1. These verticesie and
je will now form the tail and head of arce′, i.e., we define the arc setE′ = {e′ =
(ie, je) | e∈ E}. (See Figure 2.)

Theorem 3 If P(A, f ) is a distributive lattice polyhedron and G= (P,E′) is the aux-
iliary digraph described above, thenP(A, f ) = PEG(G,D(P), f ).

Proof Note that the statement of the theorem follows immediately if we can show
that for all idealsI ∈ D(P) with the corresponding lattice element(XI ,YI ) ∈ L and all
e∈ E the equivalences (2) and (3) hold. Note that these are equivalent to

χ(I ,e) = 1 ⇐⇒ e′ ∈ ∆+(I), (4)

χ(I ,e) =−1 ⇐⇒ e′ ∈ ∆−(I). (5)

Thus, in order to show the statement of Theorem 3 it suffices toprove that

χ(I ,e) = ∑
p∈I

νe(p) ∀I ∈ D(P) e∈ E. (6)
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Fig. 2 A maximal chain inL and the corresponding auxiliary graph.

This follows as a consequence of Lemma 7.5 in [9]. For the sakeof complete-
ness, we add the proof of (6) here: For any integers 1≤ i1 < · · · < im ≤ n consider
I = {pi1

, . . . , pim
} with {pik

} = Pik
\Pik−1 (k = 1, . . . ,m). Sinceχ(·,e) is a modular

function, it follows that

χ(I ,e)+
m

∑
k=1

χ(Pik−1,e)

= χ(I ∪Pim−1
︸ ︷︷ ︸

Pim

,e)+
m

∑
k=2

χ((I ∩Pik−1)∪Pik−1−1
︸ ︷︷ ︸

Pik−1

,e)+ χ(I ∩Pi1−1
︸ ︷︷ ︸

/0

,e)

=
m

∑
k=1

χ(Pik
,e),

which implies that

χ(I ,e) =
m

∑
k=1

χ(Pik
,e)−

m

∑
k=1

χ(Pik−1,e) = ∑
p∈I

νe(p).
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