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Abstract Lattice polyhedra, as introduced by Groflin and Hoffmampf@a common
framework for various discrete optimization problems. aee specified by a lat-
tice structure on the underlying matrix satisfying certsirb- and supermodularity
constraints. Lattice polyhedra provide one of the most gerfeameworks of total
dual integral systems. So far no combinatorial algorithis lis@en found for the cor-
responding linear optimization problem. We show that thpanant class of lattice
polyhedra in which the underlying lattice is of modular citeristic can be reduced
to the Edmonds-Giles polyhedra. Thus, submodular flow #@lyoas can be applied
to this class of lattice polyhedra. In contrast to a previm@sslt of Schrijver, we do
not explicitly require that the lattice is distributive. Maver, our reduction is very
simple in that it only uses an arbitrary maximal chain in ti#ide.

Keywords Lattice polyhedra Edmonds-Giles polyhedraistributive lattices

1 Introduction

Discrete optimization problems often allow, or even ask éoformulation as an in-
teger linear program, i.e., as a problem to find optimal irgkgolutions of a linear
program of type

max{w' x| Ax< f},

whereA e {—1,0,1}™" we R"andf € R™. By duality theory, the value of the lin-
ear problem is equal to the value of its dual linear program{glif |[yTA=w", y >

0}.
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Being interested in integral solutions, a fundamental [@wokin polyhedral com-
binatorics is to decide which linear programs have guaeghieteger optimal so-
lutions. The probably most important concept here is thabtdl dual integral in-
equality systems [22], where systéim < f is calledtotal dual integral (TDI)if the
minimum in min{y" f | y"TA=w", y > 0} can be achieved by an integral vecyor
for each integralv for which the optima exist. Various classes of linear progga
with specially structured right-hand sides (often submadwcan be proven to have
integral optimal solutions. However, the development dfypomial algorithms to
solve TDI problems has lagged behind the theoretical rgsalthough there have
been some recent successes (see, e.g., [16], [17], [18].)

When asking for combinatorial algorithms for as general-Eidtems as possi-
ble, one promising model to look at is thatlaftice polyhedravhich were introduced
by Hoffman and Schwartz [12] fof0, 1}-matrices, and generalized by Groflin and
Hoffman [11] to{—1,0,1}-matrices.

1.1 Lattice polyhedra

The name “lattice polyhedron” comes from a certain, veryegeh lattice structure
on the underlying matrix on which the right-hand side is satoiar. We first need
some notation: A posét, <) is alatticeif for any two elements, j € L there exist a
“‘meet’iAj=suplkel|k=i,j}anda“join"iVvj=inf{keL|k>1i,]j}. We denote
by mandM the (unique) minimal and maximal element of lattlcerespectively. A
function f : L — R is submodulaiif it satisfies for alli, j € L the inequalityf (i) +
()= fn))+fiv]).

Definition 1 [Lattice polyhedron [11]] LetfL, <, A, V) be a lattice on whicti € RIY!
is submodular. Given a matri € {—1,0,1}/5*[El with entriesx (i, e) for i € L and
ec E, lower and upper boundsd < R/El the polyhedron

P(A f) = {xeREl|Ax< f, c<x<d}
is called dattice polyhedrorif for all i, j,k € L and alle € E the following three hold:

(C1) ifi<j<kandx(i,e) = x(k,e) =t #£0, thenx(j,e) =t,
(C2) ifi < j, thenx(i,e)-x(j,e) >0, and
(C3) x(i,e)+x(j,© < x(iVje+x(irje).

Analogously, if, in the above definition, functidnis supermodular (i.e., if-f is
submodular) and (C3) is replaced by (£8(i,e) + x(j,e) > x(iV j,e)+ x(iAj,e),
the polyhedrof® (A, f) = {xc RIEl | Ax> f, c < x < d} is also called a lattice poly-
hedron. The pair of the matri& and the latticeL is calledconsecutivéf properties
(C1) and (C2) are satisfied. (A, L) satisfies (C3) (or (C3, or both), we say that
(A,L) has supermodular (or submodular, or modular) charadterfsor technical
reasons, we assume throughout that for eaele there exists at least ome L such
thatx (i,e) # 0.

Lattice polyhedra form a common framework for various camalbdrial struc-
tures. For example, lattice polyhedra wifB, 1}-matrices include polyhedra types
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such as polymatroids, the intersection of polymatroidd,sabmodular systems. The
lattice polyhedra with{—1,0,1}-matrix include Edmonds-Giles polyhedra [3], so
that the optimization problem for lattice polyhedra alseers the well-studied sub-
modular flow problem. (See Section 2 below for the definitibriEdmonds-Giles
polyhedra and the submodular flow problem). Several min-results for combina-
torial structures can be derived from the following theorem

Theorem 1 ([11]) If either (A,L) is of modular characteristic, or & 0, then the
system of linear inequalities for the lattice polyhedromaally dual integral. If fc
and d are integral, then all vertices of lattice polyhedra @mtegral.

However, Groflin and Hoffman'’s integrality result for liag polyhedra is only
a structural existence theorem without algorithmic fouimta In the last decades,
combinatorial algorithms have been developed only forotegispecial instances of
lattice polyhedra. For example, there exist several grégdg algorithms for special
classes of 0,1}-lattice polyhedra (e.qg., [7], [6], [2], [4], [5], [13], [T}, as well as
a primal-dual algorithm fof 0, 1}-lattice polyhedra with supermodular right-hand
side [18].

Lattice polyhedra o{—1,0,1}-matrices seem to be a lot harder to investigate
under algorithmic aspects. Fér1,0, 1}-lattice polyhedra, algorithms have mainly
been developed for the special case of Edmonds-Giles paigth¢See e.g. [20], [14],
[19] for the currently fastest submodular flow algorithmisttee survey paper [10].)
The reason why polyhedra dn-1,0,1}-matrices and their underlying structure are
not so tractable might be that it is much more natural to ptayad with subset fam-
ilies L C 2F than with families of disjoint ordered tuplésC 3F = {(X,Y) | X,Y C
E, XNY = 0} in which the elements may occur “positive” or “negative”.ush in
order to design a combinatorial algorithm fo+1,0,1}-lattice polyhedra in gen-
eral, we would need to better understand the underlying amatdrial structure, and
maybe even give some graph-theoretic interpretation optbhblem. Moreover, we
would need to find an appropriate oracle to access the lattice

Our contribution. This paper can be seen as a further step toward this goal. e wi
show that{—1,0,1}-lattice polyhedra in which{A,L) is of modular characteristic
can be reduced to Edmonds-Giles polyhedra via a very singalaction. For our
reduction, we only need an oracle that gives us an arbitraxyimmal chain inL.

In contrast to a related result of Schrijver [21], we do najuiee explicitly thatL

is a distributive lattice, and we do not need an oracle tarnettinimal and maximal
elements in certain sublattices. The differences betwebrijger’s and our reduction
will be described below.

2 Preliminaries and Definitions

LetP(A, f) = {xc RIEl | Ax< f, ¢ < x < d} be a lattice polyhedron on lattite=
(L,=,A,V). Thus, by Definition 1, the pa{A, L) is consecutive and of supermodular
characteristic, andl is submodular.
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Note that, sincé is a{—1,0, 1}-matrix, we might as well identify eadhe L with
some elementX;,Y;) in 35, where & denotes the family of all ordered paifX,Y)
of disjoint subsets of a finite s&, i.e., A can be interpreted as the incidence matrix
of some (multi-)set of elements iff¥ia

1 ifeeX
Xx(i,e)=¢ -1 ifeey,
0 otherwise.

With this interpretationP(A, f) can equivalently be written &&(L, f) = {x € RE |
Viel: x(X)—x(Y,) < f;, c<x<d}. To shorten notation, we call lattide con-
secutive, supermodular, or modulérthe pair (A L) is consecutive, supermodular,
or modular, respectively. For eadte L we denote byy (i) the {—1,0,1}-vector
(x(i,e) | ee E). For technical reasons, we assume jn@h) = x (M) = 0 andf (m) =
f(M) = 0 for the unique minimal and maximal elemen&andM in L, respectively.

As usual, we assume that the sizeoénd the height of the lattice (i.e., the size
of a maximal chain irL) are rather small, whereas the size of the latticenight
be huge, say exponential |&|. These assumptions are justified by all the known
examples and applications of lattice polyhedra (see, R4]). The function values
of f are assumed to be given implicitly via some oracle.

Chains, ideals, lower neighbours, join-irreducible elertge Given a posefP, <), a
subseC C P is achain, if for any two elements, j € C eitheri < j or j <i. A subset
| CPiscalledideal w.rt.(P,xX)ifi €l, j <iimpliesj € I. An element € Pis called
lower neighbourof j € Pif i < j and there exists nbkec P withi <k < j. Given a
lattice (L, <, A, V) an element € L is calledjoin-irreducibleif for every j andkin L

it holds thati = j vk impliesi = j ori =k.

Distributive lattices.A lattice (L, <, A, V) is calleddistributiveif the binary opera-
torsA, V satisfy the distributive lawA (jVk) = (iAj) V (iAk) foralli, j,k € L. (Note

that this implies that alsbv (j AK) = (i V j) A (i VK) holds.) Alternatively, distribu-
tive lattices can be characterized by the exclusion of tidasticesN; and M, (see

Figure 1).

Birkhoff’s representation of distributive lattice8y a theorem of Birkhoff [1], a fi-
nite distributive latticd. = (L, <, A, V) admits a canonical representation as a union-
and intersection-closed system of sets in the following:wast P C L denote the
set of all join-irreducible elements &f Then the orderings in L induces the poset

P = (P, x). Let 2(P) denote the collection of all ideals w.r(, <). Then there ex-
ists an order isomorphism : L — 2(P) between the two latticed, <, A, V) and
(2(P),C,n,u) with ¢(i) = {pcP|p=i}ande (1) =V{pecP|pecl}. For
further details on lattices, the reader is referred to [1].

Distributive lattice polyhedralet us call a lattice polyhedrodistributiveif (A,L)
is of modular characteristic and lattiteis distributive. One important example of
distributive lattice polyhedra afedmonds-Giles polyhedra
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m m

N M
Fig. 1 LatticesN; andMs.

Edmonds-Giles polyhedra and the submodular flow problerdependent of the lat-
tice polyhedron model, Edmonds and Giles introducedsiiiemodular flow prob-
lem[3], i.e., the problem to optimize a linear function over aintonds-Giles poly-
hedron as a common generalization of the min-cost flow probtae polymatroid
intersection, and the minimum directed-cut covering peohl

Let G = (V,E) be a connected directed graph aidC 2V be aring family, i.e., a
set family that is closed with respect to the set-theoratiersection and union. Note
that (.#,C,N,U) is a distributive lattice. Given a submodular functibn % — R,
an edge-assignmert RIE is called asubmodular flowif

X(AT(9) ~x(A™(9) < f(S) VS 7, )

whereA™ (S) andA~(S) denote, respectively, the sets of arcs leaBrand entering
S. Edmonds and Giles [3] proved that the linear inequalityesysin (1) is box-TDI,
i.e., the system is TDI even if we add box-constragtsx < d for any integral lower
and upper bound capacitiesd € ZF. The polyhedron

Peg(G.. 7, f) = {x€ RE | x(A*(9) —x(A~(9) < f(9) ¥Se .F,c<x<d},

is calledEdmonds-Giles polyhedrpand the corresponding linear optimization prob-
lem is calledsubmodular flow problem (SE) In the last decades, numerous algo-
rithms have been developed for the submodular flow problenigiwis said to be
“one of the most important frameworks for efficiently soll@lbombinatorial opti-
mization problems*“[20].

Itis not hard to see that an Edmonds-Giles polyhedron bsltmthe class of dis-
tributive lattice polyhedra: given an Edmonds-Giles pegtonP.;(G, .7, f) con-
sider the collection of ordered paits= {(A*(S),A=(S)) | Se€ .#} C 3F partially

1 Originally, the submodular flow problem was defined in terrhsrossing submodular functions on
crossing families. It is, however, shown in [8] that is sdfido consider submodular functions on ring
families.
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ordered by(A*(S),A=(S)) < (A*(T),A(T)) ifand only if SC T. Note that(L, <)
forms a distributive lattice with meet and join operatiomsresponding to the cuts
induced by the intersection and union of the two vertex setgiestion. Also for all
SCV andec E define

1 ifeeA™ (S
XSe=¢ -1 ifecA (S
0 otherwise.

Then(L, =, A, V) together with the incidence matik= (X (S,€))g. # o IS CONSEC-
utive and of modular characteristic. Moreovét, (and thud.) is distributive. Thus,
the integrality of Edmonds-Giles polyhedra follows as assuence of Theorem 1.

Schrijver’s reduction of distributive lattice polyhedma Edmonds-Giles polyhedra.
Let P(L, f) be a distributive lattice polyhedron, i.&. is a consecutive distributive
lattice of modular characteristic on whidhis submodular. Schrijver [21] showed
that this model coincides with the Edmonds-Giles modellvéfollowing reduction:
Consider the set of all join-irreducible elements of lattide, which will turn out to
be the vertices in the corresponding Edmonds-Giles modek&ch € L define the
vertex seV, :={j eV | j <i}. ThenZ = {V, |i € L} C 2V is aring family on sub-
sets of vertices. Now, pick arg/e E (recall that we assumed that there exists at least
onei* € L with x(i*,e) # 0, sayx (i*,e) = 1). SinceL has modular characteristic, we
know that there exist uniqgue minimal and maximal eleméngsdMe in the sublat-
ticeLg = {i e L | x(i,e) = 1}. Schrijver showed that the séf € L | j = Me} con-
tains a unique minimal elemeiy. Furthermore, he proved that the two elemegts
(as defined above as unique minimal elemerttiipnand je are both join-irreducible.
Assigning the ar@e = (i¢, je) (in the casex(i*,e) = —1 the arc gets opposite direc-
tion) one can show for eagle L thatae enters the vertex s#t iff x(i,e) = —1, and
ae leavesy, iff x(i,e) = 1. Thus, the distributive lattice polyhedron model coimsid
with the Edmonds-Giles model.

Schrijver’s reduction of distributive lattice polyhed@Edmonds-Giles polyhe-
drais a big step into the direction of understanding the doatbrial structure of lat-
tice polyhedra in general, and finding a combinatorial athor for them. However,
if we really want to transform his reduction into an algonitto solve the problem,
we would need an efficient way to construct the auxiliary ajdr, i.e., we would
need to identify for eack € E the minimal elemeni,; and the maximal elemeiMe
inLg (resp.Lg ={i eL| x(i,e) = —1} in the casex(i*,e) = —1), as well as the
minimal elemente in the set{j € L | j = Mg} (note that such an elemefjtalways
exists by our assumption that the unique maximal elerivesttisfiesy(M,e) = 0
for all e € E). Furthermore, Schrijver requires that latticés not only of modular
characteristic, but also distributive whereas Groflin odfman’s integrality result
holds for allL of modular characteristic. (In fact, in [21], the requiremef L be-
ing distributive seems to be forgotten. However, the distivity is necessary for the
correctness of the proofin [21].) So one of the first questioranswer is whether we
can find a combinatorial algorithm for lattice polyhedra wehee only require that
has modular characteristic.
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Our contribution. In this paper we will see that the modular characteristit. d$
almost sufficient for the lattice polyhedron to be distribat(Theorem 2). It turns
out that it suffices to require the additional property thét # x(j) whenevei is

a lower neighbor ofj in (L,=<). We call this property (*). In Section 3.1, we give
an alternative, constructive proof to show that the ineityugaystem of a distributive
lattice polyhedron corresponds to one in an Edmonds-Gibdghpdron, and vice
versa. That is, given a lattice polyhedron in whiclas modular characteristic and
satisfies property (*), we give a simple way to construct axileuy digraphG so
that the lattice polyhedron is equivalent to some Edmonitiss@olyhedron orG.
We will see that in order to constru@ we only need to consider the elements of an
arbitrary maximal chain irL.

3 Distributive lattice polyhedra and Edmonds-Giles polyhelra

Birkhoff’s representation of the lattice elements by idaal(2(P), C) as described
above turns out to be the key for the reduction of distrilutattice polyhedra to
Edmonds-Giles polyhedra in the subsequent Section 3.br8gbing into its detalil,

let us observe that the modular characteristic @fe., property (C3) is satisfied with
equality) is almost sufficient for the lattice polyhedrorb®distributive.

Theorem 2 LetP(A, f) be a lattice polyhedron where the underlying lattice L has
modular characteristic and satisfies

X (i) # x(j) wheneveri is a lower neighbor of j ifL, <). *
Then the underlying latticé, <, A, V) is distributive.

Proof For the sake of contradiction, assume thais not distributive, i.e., that it
contains arN;- or anMs-sublattice (see Figure 1). Then there exist five distinct el
ementsi, j,kI,me L such thal =iAj=iAkandm=iV | =iVk Note that
we can assume that j is a lower neighborkoih the latticeL if j andk are ele-
ments in theN; sublattice, and thaj andk are lower neighbors ofn in the lat-
tice L if j,k, andm are elements in th&l;-sublattice. By (*), it follows imme-
diately thatx(j) # x (k) must be true in thé\;-sublattice. Howevery (j) # x (k)
must also be true in thbl;-sublattice as otherwisg(j) = x(m) by the consecu-
tivity and modular characteristic af, in contradiction to (*). Thus, we can choose
some elemene € E with x(j,e) # x(k,e). SinceL is of modular characteristic, it
follows that x(1,e) + x(m,e) = x(i.e) + x(j.e) = x(i,e) + x(k,e), which implies
Xx(ij,e) = x(k,e), a contradiction.

3.1 Reduction to Edmonds-Giles polyhedra

Let P(A, f) (respectivelyP(L, f)) be a distributive lattice polyhedron, afddenote
the set of join-irreducible elements of the underlyingrdisttive lattice(L, <, A, V).
By Birkhoff's Theorem, we may identify each elemért L (resp. the corresponding
ordered paifX;,Y,) € 3F with X, := {ec E | x(i,e) = 1} andY; := {ec E | x(i,e) =
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—1}) with some ideal; € 2(P). Thus, our inequality systerfx € RE | Ax < f}
can be rewritten agx € RE | x(X,) — x(Y,) < f;, VI € 2(P)}. In the following, we
will construct an auxiliary digrapt = (P,E’) whose vertices correspond to the join-
irreducibles ofL, and whose edges are copiedfi.e.,E' = {€¢ | e€ E}, such that
foralll € 2(P)

eeX <« €deat(l), 2
ecY, <= ¢€ea (). (3)

This directly implies that the vectors (A, f) are exactly the vectors in the Edmonds-
Giles polyhedro?(G, 2(P), f).

Construction of auxiliary digraphTo construct our digraph correspondind®@, f),
we arbitrarily choose a maximal chaief, <) = {(X,Y;) < (X5, Y,) <--- < (X, Yn)}
in (L,=).

Observation 1 Each ec E occurs either in some s€K; };.p or in some setY; }; p.

Proof By (C2), an elemenrg € E cannot occur both in son¥ and some; for i, j €
{1,...,n}. Suppose for the sake of contradiction teatoes not occur in any chain
element(X,Y;) € ¥ atall. Let(X,Y) be the minimal elementifL, <) with ec XUY,
and let(X,Y;) be the minimal element of chaif¥’, <) with (X,Y) < (X.,Y;). Then
(X,Y) and(X,_;,Y,_;) must be incomparable. Sinesoccurs neither ir{X_,,Y, ;)
nor in (X,Y;) = (X,Y) VvV (X_4,Y,_;), the modular characteristic &f implies that
e occurs in(X,Y) A (X_4,Y,_;). But, since(X,Y) A (X_4,Y_;) < (X.,Y), this is a
contradiction to the choice ¢X,Y).

Note that, by Birkhoff’s Theorem, our chosen chdii, <) is isomorphic to a
chain(¢,C) =Py CcP,CP,C--- CPin(Z2(P),C), whereP, = {p;,....pn} is a
linear extension ofP, <) (i.e., p; < p; impliesi < j), andR,_; =R\ {p;} fori=
1,...,n. We now define for ale € E the potentiabe : P — {—1,0,1} with ve(p;) =
X(P.e)—x(P_y,e foralli=1,...,n. By the consecutiveness bfwe observe that
eachve uniquely defines, je with ve(ie) = 1 andve(je) = —1. These verticels and
je will now form the tail and head of aré€, i.e., we define the arc s& = {€ =
(e, Je) | €€ E}. (See Figure 2.)

Theorem 3 If P(A, f) is a distributive lattice polyhedron and & (P,E’) is the aux-
iliary digraph described above, théi(A, f) =P5(G, Z2(P), f).

Proof Note that the statement of the theorem follows immediatielyel can show
that for all ideald € 2(P) with the corresponding lattice elemepy,,Y,) € L and all
e € E the equivalences (2) and (3) hold. Note that these are dquiva

x(l,e)=1<= € cAat(l), 4)
x(l,e)=-1l=€eca (). (5)
Thus, in order to show the statement of Theorem 3 it sufficgsdwee that

x(l,e) = Zve(p) Vle 2(P) ecE. (6)
pe
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Fig. 2 A maximal chain inL and the corresponding auxiliary graph.

This follows as a consequence of Lemma 7.5 in [9]. For the sdkeomplete-
ness, we add the proof of (6) here: For any integefSil < --- < im < n consider
| = {pil,...,pim} with {pik} = Pik\F’iF1 (k=1,...,m). Sincex(-,e) is a modular
function, it follows that

I, P _4
X8+ 3 X, 1.0

m
= X(IUR,_1.€)+ 3 x((INR_)UR__1.&)+x(INR _;.¢)
~—— k=2 ——
P P 0
k-1
m
= > X(R_.e),
K=1
which implies that
m m
X(Iae): X(Pve)i X(P'fae): V(p)
kZl 'k kzl Wt % °
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