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THE LINKAGE PRINCIPLE FOR RESTRICTED CRITICAL

LEVEL REPRESENTATIONS OF AFFINE KAC–MOODY

ALGEBRAS

TOMOYUKI ARAKAWA, PETER FIEBIG

Abstract. We study the restricted category O for an affine Kac–Moody
algebra at the critical level. In particular, we prove the first part of the
Feigin–Frenkel conjecture: the linkage principle for restricted Verma mod-
ules. Moreover, we prove a version of the BGG-reciprocity principle and we
determine the block decomposition of the restricted category O. For the
proofs we need a deformed version of the classical structures, so we mostly
work in a relative setting.

1. Introduction

The representation theory of an affine Kac–Moody algebra at the critical
level is of central importance in the approach towards the geometric Lang-
lands program that was proposed by Edward Frenkel and Dennis Gaitsgory
in [FG06]. While there is already a good knowledge on the connection be-
tween critical level representations and the geometry of the associated affine
Grassmannian, central problems, for example the determination of the critical
simple highest weight characters, still remain open. In this paper we continue
our approach towards a description of the critical level category O, started in
the paper [AF08].

Let ĝ be the affine Kac–Moody algebra associated to a finite dimensional,
simple complex Lie algebra g (for the specialists we point out that we add
the derivation operator to the centrally extended loop algebra). We study the
corresponding highest weight category O.

The Lie algebra ĝ has a one dimensional center and we letK ∈ ĝ be one of its
generators. The center acts semisimply on each object of O, so O decomposes
according to the eigenvalue of the action of K. We say that an object M of
O has level k ∈ C if K acts on M as multiplication with k, and we let Ok be
the full subcategory of O that consists of all modules of level k. There is one
special value, k = crit, which is called the critical level. It is the level of the
simple highest weight module L(−ρ), where ρ is a Weyl vector, i.e. a vector
that takes the value 1 on each simple affine coroot. In the usual normalization
(see Section 2) it is crit = −h∨, where h∨ is the dual Coxeter number.

For all levels k 6= crit the categorical structure of Ok is well-known and
admits a description in terms of the affine Hecke algebra associated to ĝ, in
analogy to the case of the category O for a finite dimensional simple complex
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Lie algebra (cf. [F06]). However, for k = crit the structure changes drastically.
In fact, Lusztig anticipated in his ICM address in 1990 that the representa-
tion theory at the critical level resembles the representation theory of a small
quantum group or a modular Lie algebra (cf. [L91]). In particular, it should
not be the affine Hecke algebra that governs the structure of Ocrit, but its pe-
riodic module. The Feigin–Frenkel conjecture on the simple critical characters
(cf. [AF08]) points in this direction as well. So one might hope that there is a
description of the critical level representation theory that closely resembles the
one given for small quantum groups and modular Lie algebras by Andersen,
Jantzen and Soergel in [AJS94].

The main result in this paper is another step towards such a description
(following the paper [AF08]). We prove the restricted linkage principle, i.e. we
show that a simple module occurs in a restricted Verma module only if their
highest weights lie in the same orbit under the associated integral Weyl group.
Moreover, we study restricted projective objects, prove a BGG-reciprocity re-
sult and describe the corresponding block decomposition. Our results are in
close analogy to the quantum group and the modular case, hence they strongly
support the above conjectures.

1.1. Acknowledgments: We would like to thank Henning Haahr Andersen
and Jens Carsten Jantzen for very motivating and inspiring discussions on the
subject of this paper. We would also like to thank the Newton Institute in
Cambridge for its hospitality during the program ”Algebraic Lie Theory”.

2. Affine Kac–Moody algebras and the deformed category O

In this section we recall the construction of the deformed category O asso-
ciated to an affine Kac–Moody algebra. Our main reference for the structure
theory is [K90] and for the deformed representation theory it is [F03].

2.1. Affine Kac–Moody algebras. We fix a finite dimensional, complex,
simple Lie algebra g and denote by ĝ the corresponding affine Kac–Moody
algebra. As a vector space we have ĝ = (g ⊗C C[t, t−1]) ⊕ CK ⊕ CD and the
Lie bracket is given by

[K, ĝ] = 0,

[D, x⊗ tn] = nx⊗ tn,

[x⊗ tm, y ⊗ tn] = [x, y]⊗ tm+n +mδm,−nκ(x, y)K

for x, y ∈ g, m,n ∈ Z. Here κ : g× g → C denotes the Killing form for g.

Let us fix a Borel subalgebra b ⊂ g and a Cartan subalgebra h ⊂ g inside
b. The corresponding Cartan and Borel subalgebras of ĝ are

ĥ := h⊕ CK ⊕ CD

b̂ := (g⊗C tC[t] + b⊗C C[t])⊕ CK ⊕ CD.

2.2. Roots of ĝ. The decomposition ĥ = h ⊕ CK ⊕ CD allows us to embed

h⋆ in ĥ⋆ using the map that is dual to the projection ĥ → h. Let δ,Λ0 ∈ ĥ⋆ be
the elements dual to D and K, resp., with respect to the direct decomposition,
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so we have δ(h ⊕ CK) = Λ0(h ⊕ CD) = {0} and δ(D) = Λ0(K) = 1. Then

ĥ⋆ = h⋆ ⊕ CΛ0 ⊕ Cδ.

Let R ⊂ h⋆ be the set of roots of g with respect to h and g = h⊕
⊕

α∈R gα

the root space decomposition. The set of roots of ĝ with respect to ĥ then is

R̂ = R̂re ∪ R̂im, where

R̂re = {α + nδ | α ∈ R, n ∈ Z},

R̂im = {nδ | n ∈ Z, n 6= 0}.

The sets R̂re and R̂im are called the sets of real and of imaginary roots, resp.
The corresponding root spaces are

ĝα+nδ = gα ⊗ tn,

ĝnδ = h⊗ tn.

The positive roots R̂+ ⊂ R̂ are the roots of b̂. Explicitly, we have

R̂+ = {α+ nδ | α ∈ R, n > 0} ∪ {α | α ∈ R+} ∪ {nδ | n > 0},

where R+ ⊂ R denotes the roots of b ⊂ g. We set R̂+,re := R̂+ ∩ R̂re and

R̂+,im := R̂+∩ R̂im. We denote by Π ⊂ R the set of simple roots corresponding
to our choice of b. The set of simple affine roots is

Π̂ = Π ∪ {−γ + δ},

where γ ∈ R+ is the highest root.

2.3. The Weyl group and the bilinear form. To any real root α ∈ R̂re

there is an associated coroot α∨ ∈ ĥ and a reflection sα : ĥ
⋆ → ĥ⋆ given by

sα(λ) = λ − 〈λ, α∨〉α. The affine Weyl group associated to our data is the

subgroup Ŵ of GL(ĥ⋆) generated by the sα with α ∈ R̂re.

We denote by (·, ·) : ĝ × ĝ → C the standard bilinear form that is non-
degenerate, symmetric and invariant, i.e. it satisfies ([x, y], z) = (x, [y, z]) for

x, y, z ∈ ĝ. Its restriction to ĥ×ĥ is non-degenerate as well and hence induces a

non-degenerate bilinear form on ĥ⋆ that we denote again by (·, ·). It is explicitly
given by the following formulas:

(α, β) = κ(α, β),

(Λ0, h
⋆ ⊕ CΛ0) = 0,

(δ, h⋆ ⊕ Cδ) = 0,

(Λ0, δ) = 1,

for α, β ∈ h⋆ (here we denote by κ : h⋆ × h⋆ → C the bilinear form induced

by the Killing form). Moreover, it is invariant under the action of Ŵ , i.e. for

λ, µ ∈ ĥ⋆ and w ∈ Ŵ we have

(λ, µ) = (w(λ), w(µ)).
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2.4. The deformed category O. Let S := S(h) and Ŝ := S(ĥ) be the sym-

metric algebras over the complex vector spaces h and ĥ. The projection ĥ → h

along the decomposition ĥ = h⊕ CK ⊕ CD yields an algebra homomorphism
Ŝ → S. We think from now on of S as an Ŝ-algebra via this homomorphism.

Let A be a commutative, associative, noetherian, unital S-algebra. In the
following we call such an algebra a deformation algebra. Using the homomor-
phism Ŝ → S from above we can consider A as an Ŝ-algebra as well. We

denote by τ : ĥ → A the composition of the canonical map ĥ → Ŝ with the

structure homomorphism Ŝ → A, f 7→ f · 1A. Note that τ(D) = τ(K) = 0.

For any complex Lie algebra l we denote by lA := l ⊗C A the A-linear Lie
algebra obtained from l by base change. An lA-module is then an A-module
endowed with an operation of l that is A-linear. We denote by U(lA) the
universal enveloping algebra of the A-Lie algebra lA.

Definition 2.1. Let M be a ĝA-module.

(1) We say that M is a weight module if M =
⊕

λ∈ĥ⋆ Mλ, where

Mλ :=
{
m ∈ M | H.m = (λ(H).1A + τ(H))m for all H ∈ ĥ

}
.

We call Mλ the weight space of M corresponding to λ (even though its
weight is rather λ+ τ).

(2) We say thatM is locally b̂A-finite, if for eachm ∈ M the space U(b̂A).m
is a finitely generated A-module.

We define OA as the full subcategory of ĝA-mod that consists of locally b̂A-
finite weight modules.

One checks easily that OA is an abelian subcategory of the category of all ĝA-
modules. In the following we write O for the non-deformed category, i.e. for
the category OC that is defined by giving C the structure of a deformation
algebra by identifying it with S/mS, where m ⊂ S is the ideal generated by
h ⊂ S.

Suppose that A = K is a field. Then we can consider ĥK and b̂K as Cartan

and Borel subalgebras of ĝK. The C-linear map τ : ĥ → K induces a K-linear

map ĥK → K that we denote by τ as well and which we consider as an element

in the dual space ĥ⋆K = HomK(ĥK,K). Moreover, each λ ∈ ĥ⋆ induces a K-

linear map ĥK → K, hence we can consider ĥ⋆ as a subset of ĥ⋆K. Then OK is
the full subcategory of the usual category O over ĝK that consists of modules

with the property that all weights lie in the set τ + ĥ⋆ ⊂ ĥ⋆K.

2.5. The level. Suppose that M is a weight module. Since τ(K) = 0, the
element K acts on a weight space Mλ by multiplication with the scalar λ(K) ∈
C. For k ∈ C we denote by Mk the eigenspace of the action of K on M with
eigenvalue k. Since K is central, each eigenspace Mk is a submodule of M and
we have M =

⊕
k∈CMk. In the case M = Mk we call k the level of the module

M and we let OA,k ⊂ OA be the full subcategory whose objects are those of
level k.
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It turns out that there is a distinguished level crit ∈ C which is critical in
the sense that the structure of OA,crit differs drastically from the structure of
OA,k for all k 6= crit. For the definition of crit see Section 2.15.

Let A → A′ be a homomorphism of deformation algebras. The following
result is easy to prove.

Lemma 2.2. The functor · ⊗A A′ induces a functor OA → OA′ and for any

k ∈ C a functor OA,k → OA′,k.

We denote by ĥ⋆k ⊂ ĥ⋆ the affine hyperplane containing all λ with λ(K) = k.

2.6. The duality. For M ∈ OA we define

M⋆ :=
⊕

λ∈ĥ⋆

HomA(Mλ, A).

Then M⋆ carries an action of ĝ that is given by (X.φ)(m) = φ(−ω(X).m)
for X ∈ ĝ, φ ∈ M⋆ and m ∈ M . Here ω : ĝ → ĝ is the Chevalley-involution
(cf. [K90, Section 1.3]). It has the property that it maps the root space ĝα to

ĝ−α and acts as multiplication by −1 on ĥ. In particular, we have (M⋆)λ =
HomA(Mλ, A). Together with the obvious A-module structure, M⋆ is an object
in OA, and if M is of level k, then M⋆ is also of level k.

2.7. The deformed Verma modules. For λ ∈ ĥ⋆ we denote by Aλ the b̂A-

module that is free of rank one as an A-module and on which b̂ acts via the
character λ+ τ : this means that H ∈ ĥ acts as multiplication with the scalar

λ(H).1A+τ(H) and each X ∈ [b̂, b̂] acts by zero. The deformed Verma-module

with highest weight λ is

∆A(λ) := U(ĝA)⊗U(b̂A) Aλ.

The deformed dual Verma module associated to λ is

∇A(λ) := ∆A(λ)
⋆.

Both ∆A(λ) and ∇A(λ) are locally b̂A-finite weight modules, hence are con-
tained in OA. If A → A′ is a homomorphism of deformation algebras, then we
have isomorphisms

∆A(λ)⊗A A′ ∼= ∆A′(λ), ∇A(λ)⊗A A′ ∼= ∇A′(λ).

2.8. Simple objects in OA. Now suppose that A is a local deformation al-
gebra with maximal ideal m ⊂ A and residue field K = A/m. The residue
field inherits the structure of an S-algebra and is, as such, a deformation al-
gebra as well. The canonical map A → K gives us a base change functor
· ⊗A K : OA → OK by Lemma 2.2.

As we have observed before, the category OK is just a direct summand of the
usual category O for the affine Kac–Moody algebra ĝK. Its objects are those

whose weight spaces correspond to weights in τ + ĥ⋆ ⊂ ĥ⋆K. By the classical
theory, the simple isomorphism classes in OK are parametrized by their highest

weights in τ + ĥ⋆, and we denote by LK(λ) a representative corresponding to
τ + λ.

In [F03, Proposition 2.1] we showed the following.
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Proposition 2.3. Suppose that A is a local deformation algebra with residue

field K. Then the functor · ⊗A K yields a bijection
{
simple isomorphism

classes of OA

}
∼
→

{
simple isomorphism

classes of OK

}
.

We denote by LA(λ) the simple object corresponding to LK(λ) under the
above bijection.

2.9. Characters and Jordan–Hölder multiplicities. We denote by “6”

the usual partial order on ĥ⋆ defined by λ 6 µ if µ − λ is a sum of positive
roots of ĝ. Suppose now that A = K is a field. In this case we consider the
full subcategory Of

K of OK that consists of objects M such that each weight
space Mλ is finite dimensional as a K-vector space and such that there exist

µ1, . . . , µn ∈ ĥ⋆ with the property that Mλ 6= 0 implies λ ≤ µi for some i.

Let Z[ĥ⋆] =
⊕

λ∈ĥ⋆ Ze
λ be the group ring of the additive group ĥ⋆ and

̂
Z[ĥ⋆] ⊂

∏
λ∈ĥ⋆ Ze

λ its completion with respect to the partial order: an element

in
̂
Z[ĥ⋆] is an element

∑
λ∈ĥ⋆ fλe

λ such that there exist µ1, . . . , µn ∈ ĥ⋆ with

the property that fλ 6= 0 implies λ ≤ µi for some i. For each M ∈ Of
K we can

then define its character

chM :=
∑

λ∈ĥ⋆

dimKMλ · e
λ ∈

̂
Z[ĥ⋆].

Now each simple object LK(λ) belongs to Of
K and there are well defined num-

bers aµ ∈ N with

chM =
∑

µ∈ĥ⋆

aµ chLK(µ).

(cf. [DGK82]). Note that the sum on the right hand side is in general an
infinite sum. We define the multiplicity of LK(µ) in M as

[M : LK(µ)] := aµ.

2.10. Truncation. Our next aim is to study the projective objects in OA. Un-
fortunately, not all of the LA(λ) admit a projective cover. In order to overcome
this slight technical problem, we introduce certain truncated subcategories of
OA in which a projective cover exists for each of its simple objects.

Let J be a subset of ĥ⋆. We call J open if for all λ ∈ J , µ ∈ ĥ⋆ with µ ≤ λ

we have µ ∈ J . This indeed defines a topology on ĥ⋆. Note that a subset

I ⊂ ĥ⋆ is closed in this topology if λ ∈ I, µ ∈ ĥ⋆ with µ ≥ λ implies µ ∈ I.

We now construct a functorial filtration on each object of OA that is indexed

by the set of closed subsets of ĥ⋆ and, dually, a functorial cofiltration indexed

by the set of open subsets of ĥ⋆.

Definition 2.4. Suppose that J ⊂ ĥ⋆ is open and let I := ĥ⋆ \J be its closed
complement. Let M ∈ OA.
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(1) We define MI ⊂ M as the ĝA-submodule generated by the weight
spaces corresponding to weights in I, i.e.

MI := U(ĝA).
⊕

λ∈I

Mλ.

(2) We define
MJ := M/MI .

Let OA,I ⊂ OA be the full subcategory of objects M with M = MI and
OJ

A ⊂ OA the full subcategory of objects M with M = MJ .

Note that an object M of OA belongs to OA,I if and only if it is generated
by its weight spaces corresponding to weights in I. Dually, M belongs to OJ

A

if and only if Mλ 6= 0 implies that λ ∈ J .

If J ′ ⊂ J is another open subset with complement I ′ ⊃ I, then we have a

natural inclusion MI ⊂ MI′ and a natural quotient MJ → MJ ′

. For λ ∈ ĥ⋆,
each of the modules ∆A(λ), ∇A(λ) and LA(λ) is contained in OJ

A if and only
if λ ∈ J . Note that M → MI defines a functor from OA to OA,I that is right
adjoint to the inclusion OA,I ⊂ OA. Dually, M 7→ MJ defines a functor from
OA to OJ

A that is left adjoint to the inclusion OJ
A ⊂ OA.

Lemma 2.5. Suppose that J is an open subset in ĥ⋆ and that P is a projective

object in OJ
A . Then for any open subset J ′ ⊂ J , the object PJ ′

is projective

in OJ ′

A .

Proof. This follows immediately from the fact that the functor (·)J
′

: OJ
A →

OJ ′

A is left adjoint to the (exact) inclusion functor OJ ′

A → OJ
A . �

Lemma 2.6. Let M ∈ OA. Suppose that J
′ ⊂ J ⊂ ĥ⋆ are open subsets. Then

there is a canonical isomorphism MJ ′ ∼
→ (MJ )J

′

.

Proof. Clearly, the kernel of the quotient M → MJ ′

as well as the kernel of
the composition M → MJ → (MJ )J

′

are generated by the weight spaces Mµ

with µ 6∈ J ′. �

2.11. Verma flags. We start this subsection with a well-known definition.

Definition 2.7. Let M be an object in OA. We say that M admits a Verma

flag if there is a finite filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M

such that for i = 1, . . . , n, Mi/Mi−1 is isomorphic to ∆A(µi) for some µi ∈ ĥ⋆.

Suppose that M ∈ OA admits a Verma flag. For each µ ∈ ĥ⋆, the number
of occurences of ∆A(µ) as a subquotient of a Verma flag of M is independent
of the chosen filtration. We denote this number by (M : ∆A(µ)).

Let µ ∈ ĥ⋆ and M ∈ OA. The set J = {ν ∈ ĥ⋆ | ν ≤ µ} is open and we
define M6µ := MJ . We define M<µ likewise. Then we set

M[µ] := ker
(
M6µ → M<µ

)
.

Note that M[µ] is generated by its µ-weight space. If M admits a Verma flag,
thenM[µ] is a direct sum of (M : ∆A(µ))-copies of ∆A(µ). This follows from the
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fact that one can reorder each Verma flag such that subquotients corresponding
to higher weights occur earlier (see Lemma 3.14 for an analogous result).

2.12. Projective objects in OA. As before we assume that A is a local
deformation algebra with residue field K. For general λ the simple module
LA(λ) admits a projective cover in OA only if we restrict the set of allowed

weights from above. So let us call a subset J of ĥ⋆ bounded (rather locally

bounded from above) if for any λ ∈ J the set J ∩ {≥ λ} = {µ ∈ J | µ ≥ λ} is
finite.

Theorem 2.8. Suppose that A is a local deformation algebra with residue field

K. Let J be a bounded open subset of ĥ⋆.

(1) For each λ ∈ J there exists a projective cover PJ
A (λ) of LA(λ) in OJ

A .

It admits a Verma flag and we have

(PJ
A (λ) : ∆A(µ)) =

{
[∇K(µ) : LK(λ)], if µ ∈ J ,

0, otherwise.

(2) If J ′ ⊂ J is open as well, then

PJ
A (λ)J

′ ∼= PJ ′

A (λ).

(3) If A → A′ is a homomorphism of local deformation algebras and P ∈
OJ

A is projective, then P ⊗A A′ ∈ OJ
A′ is projective.

(4) We have PJ
A (λ)⊗A K ∼= PJ

K (λ).
(5) Suppose that P is a finitely generated projective object in OJ

A and that

A → A′ is a homomorphism of local deformation algebras. For any

M ∈ OJ
A the natural map

HomOA
(P,M)⊗A A′ → HomOA′

(P ⊗A A′,M ⊗A A′)

is an isomorphism.

Proof. Part (1) is contained in [F11, Theorem 4.2, Theorem 5.3]. Part (2) is
shown in the course of the proof of Theorem 4.2 in [F11]. The statements in
(3) and (5) are found in [F03, Proposition 2.4]. Finally, part (4) is shown in
the course of the proof of Theorem 5.3 in [F11]. �

2.13. The block decomposition of OA. Let A be a local deformation alge-

bra with residue field K. We let ∼A be the equivalence relation on ĥ⋆ that is

generated by the relations λ ∼A µ for all λ, µ ∈ ĥ⋆ for which there exists an

open bounded subset J of ĥ⋆ such that LA(µ) is a subquotient of PJ
A (λ), i.e.

if there is a non-zero homomorphism PJ
A (µ) → PJ

A (λ).

Lemma 2.9. The equivalence relation ∼A is also generated by either of the

following sets of relations:

(1) λ ∼A µ if there exists an open bounded subset J of ĥ⋆ such that (PJ
A (λ) :

∆A(µ)) 6= 0.
(2) λ ∼A µ if [∆K(λ) : LK(µ)] 6= 0.

Proof. See [F11, Lemma 5.5]. �
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For an equivalence class Λ ∈ ĥ⋆/ ∼A we define the full subcategory OA,Λ

of OA that contains all objects M that have the property that each highest
weight of a subquotient lies in Λ. Note that it is the subcategory generated

by the objects PJ
A (λ) for all λ ∈ Λ and all bounded open subsets J of ĥ⋆ that

contain λ. Then we have the following result on the decomposition of OA.

Theorem 2.10 ([F11, Theorem 5.1]). The functor
∏

Λ∈ĥ⋆/∼A

OA,Λ → OA

(MΛ) 7→
⊕

Λ

MΛ

is an equivalence of categories.

2.14. The Kac–Kazhdan theorem, integral roots and the integral

Weyl group. The Kac–Kazhdan theorem gives a rather explicit description
of the set of pairs (λ, µ) such that [∆K(λ) : LK(µ)] 6= 0. By Lemma 2.9, these
pairs generate the equivalence relation “∼A”.

Recall the bilinear form (·, ·) : ĥ⋆ × ĥ⋆ → C. For any deformation algebra A

we set ĥ⋆A := ĥ⋆⊗CA = HomC(ĥ, A) and denote by (·, ·)A : ĥ
⋆
A× ĥ⋆A → A the A-

bilinear continuation of (·, ·). The structure map τ : ĥ → A can be considered

as an element in ĥ⋆A. Let ρ ∈ ĥ⋆ be an element with (ρ, α) = 1 for any simple

affine root α ∈ Π̂.

Now we can state the result of Kac and Kazhdan (we slightly reformulate
their original theorem in terms of equivalence classes):

Theorem 2.11 ([KK79]). The relation “∼A” is generated by λ ∼A µ for all

pairs λ, µ such that there exists a root α ∈ R̂ and n ∈ Z with 2(λ + ρ, α)K =
n(α, α)K and λ− µ = nα.

For λ ∈ ĥ⋆ we define the set of integral roots (with respect to λ) by

R̂A(λ) := {α ∈ R̂ | 2(λ+ ρ, α)K ∈ Z(α, α)K}

and the corresponding integral Weyl group by

ŴA(λ) := 〈sα | α ∈ R̂A(λ) ∩ R̂re〉 ⊂ Ŵ.

Let Λ ⊂ ĥ⋆ be an equivalence class with respect to “∼A”. It follows from the

Kac–Kazhdan theorem that we have R̂A(λ) = R̂A(µ) and ŴA(λ) = ŴA(µ) for

all λ, µ ∈ Λ. Hence we can denote these two objects by R̂A(Λ) and ŴA(Λ).

2.15. The critical level. Let Λ ∈ ĥ⋆/ ∼A be an equivalence class. For each
λ, µ ∈ Λ we then have λ(K) = µ(K), hence there is a certain k = k(Λ) ∈ C

such that each object in OA,Λ is of level k. Note that ν(K) = (ν, δ) for all

ν ∈ ĥ⋆.

Lemma 2.12 ([AF08, Lemma 4.2]). Let Λ ∈ ĥ⋆/ ∼A be an equivalence class.

The following are equivalent.

(1) We have λ(K) = −ρ(K) for some λ ∈ Λ.
(2) We have λ(K) = −ρ(K) for all λ ∈ Λ.



10 TOMOYUKI ARAKAWA, PETER FIEBIG

(3) We have λ+ δ ∈ Λ for all λ ∈ Λ.

(4) We have nδ ∈ R̂A(Λ) for some n 6= 0.

(5) We have nδ ∈ R̂A(Λ) for all n 6= 0.

The level crit := −ρ(K) is called the critical level.

3. Restricted representations

In this section we recall one of the most significant structures that we en-
counter for the category O of an affine Kac–Moody algebra at the critical
level. Recall that we add the derivation operator D to the central extension
of the loop algebra corresponding to g. This allows us to consider O (and the
deformed versions OA) as graded categories.

3.1. A shift functor. Suppose that M is a ĝA-module and that L is a ĝ = ĝC-
module. Then M ⊗C L acquires the structure of a ĝA-module such that ĝ acts
via the usual tensor product action (X(m⊗ l) = Xm⊗ l+m⊗Xl for X ∈ ĝ,
m ∈ M , l ∈ L) and A acts on the first tensor factor. The following is easy to
prove.

Lemma 3.1. (1) If M is locally b̂A-finite and L is locally b̂-finite, then

M ⊗C L is locally b̂A-finite.

(2) If M and L are weight modules, then M ⊗C L is a weight module.

(3) If M ∈ OA and L ∈ O, then M ⊗C L ∈ OA.

Note that the simple module L(δ) = LC(δ) is one-dimensional (the subal-
gebra g̃ = [ĝ, ĝ] acts trivially, while D acts as the identity operator). The
ĝ-module L(δ)⊗C L(−δ) ∼= L(0) is the trivial module. In particular, the shift

functor

T : OA → OA

M 7→ M ⊗C L(δ)

is an equivalence with inverse T−1 = · ⊗C L(−δ). Since L(δ) has level 0 the
shift functor T preserves the subcategories OA,k, i.e. we get induced autoe-
quivalences T : OA,k → OA,k for each k.

Let Λ ∈ ĥ⋆/∼A be an equivalence class. The corresponding block OA,Λ is
preserved by the functor T if and only if for each λ ∈ Λ we have λ + δ ∈ Λ,
hence if and only if Λ is critical (cf. Lemma 2.12).

In the following we will study natural transformations z : T n → id (for some
n ∈ Z) from the functor T n to the identity functor (on OA, OA,k or OA,Λ).
Note that, if k 6= crit, then there is no non-vanishing natural transformation
from T n to idOA,k

if n 6= 0. In contrast, for k = crit the space of natural
transformations from T n to idOA,crit

is huge.

3.2. The Feigin–Frenkel center. For a more thorough discussion of the
structure that we introduce now we refer to Section 5 of [AF08]. We denote by
V crit(g) the universal affine vertex algebra associated with g at the critical level
and by z its center. Then each smooth g̃ = [ĝ, ĝ]-module M can be considered
as a graded module over the vertex algebra V crit(g) and hence over z. In [AF08]
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we exhibited homogeneous generators p(1), . . . , p(l), where l denotes the rank
of g, of z and this yields an action of the graded polynomial ring

Zcrit = C[p(i)s | i = 1, . . . , l, s ∈ Z] =
⊕

n∈Z

Zn
crit

on M . Here, Zn
crit is the subspace of Zcrit spanned by the elements p

(i1)
n1 · · · p

(ir)
nr

with n1 + · · ·+ nr = n. We set Z−
crit =

⊕
n<0Z

n
crit, Z

+
crit =

⊕
n>0Z

n
crit, Z

≥0
crit =⊕

n≥0Z
n
crit and Z≤0

crit =
⊕

n≤0Z
n
crit.

Now ĝ = g̃⊕CD and the action of the grading operator D allows us to view
each z ∈ Zn

crit as a natural transformation from T n to the identity functor on
OA,crit. For M ∈ OA,crit we denote by zM : T nM → M the resulting homomor-
phism. This natural transformation is compatible with the base change func-
tors OA,crit → OA′,crit associated to a homomorphism A → A′ of deformation
algebras, in the sense that zM⊗AA′

= zM ⊗ id : T n(M⊗AA
′) = (T nM)⊗AA

′ →
M ⊗A A′.

3.3. Restricted representations. Let A be a local deformation algebra.

Definition 3.2. Let M ∈ OA,crit. We say that M is restricted if for all n 6= 0
and all z ∈ Zn

crit the homomorphism zM : T nM → M is zero.

We denote by OA,crit the full subcategory of OA,crit that consists of restricted

representations. For an open subset J of ĥ⋆ we set O
J

A,crit = OA,crit ∩OJ
A,crit.

For M ∈ OA,crit we define Mres, the largest restricted submodule, and M res,
the largest restricted quotient, as follows. For each z ∈ Zn

crit we can view
zT

−nM as a homomorphism from T−nT nM = M to T−nM . Then

Mres = {m ∈ M | zT
−nM(m) = 0 for all z ∈ Zn

crit, n 6= 0}.

Let Zn
critM be the submodule of M generated by the images of all homomor-

phisms zM : T nM → M with z ∈ Zn
crit. Then

M res = M/
∑

n∈Z,n 6=0

Zn
critM.

BothMres andM res are restricted objects in OA,crit. We get functorsM 7→ Mres

and M 7→ M res from OA,crit to OA,crit that are right resp. left adjoint to the
inclusion functor OA,crit → OA,crit.

3.4. Restriction, truncation and base change. We now collect some re-
sults on the restriction functor.

Lemma 3.3. Let J ⊂ ĥ⋆ be open. For each M ∈ OA there is a natural

isomorphism

(M res)J ∼= (MJ )res.

Proof. The kernel of both compositions M → M res → (M res)J and M →
MJ → (MJ )res is generated by all weightspaces Mµ with µ 6∈ J together with∑

n 6=0Z
n
critM . �

Lemma 3.4. Let M ∈ OA and fix a homomorphism A → A′ of deformation

algebras. Then there is a canonical isomorphism

(M ⊗A A′)res
∼
→ (M res ⊗A A′)res.
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Proof. We consider the canonical homomorphisms a : M⊗AA
′ → (M⊗AA

′)res

and b : M⊗AA
′ → M res⊗AA

′ → (M res⊗AA
′)res and we show that ker a = ker b.

Note that the kernel of a is generated by the subspaces Zn
crit(M ⊗A A′) =

(Zn
critM) ⊗A A′ for n 6= 0, and the kernel of b is generated by the spaces

Zn
crit(M ⊗A A′), n 6= 0, and (Zm

A M)⊗A A′, m 6= 0, so clearly ker a = ker b. �

3.5. Restricted Verma modules. For each critical λ ∈ ĥ⋆ we define the
restricted Verma module by

∆A(λ) := ∆A(λ)
res

and the restricted dual Verma module by

∇A(λ) := ∇A(λ)res.

We clearly have Z+
crit∆A(λ) = 0 and Z−

crit∇A(λ) = 0. Hence we obtain

Lemma 3.5. For each critical λ ∈ ĥ⋆ we have ∆A(λ) = ∆A(λ)/Z
−
crit∆A(λ),

and ∇A(λ) ⊂ ∇A(λ) is the set of Z+
crit-invariant elements.

3.6. The character of a restricted Verma module. Let us define the

numbers p(n) ∈ N for n ≥ 0 by the following equation (in
̂
Z[ĥ⋆])

∏

l≥0

(1 + e−lδ + e−2lδ + . . . )rk g =
∑

n≥0

p(n)e−nδ,

and the numbers q(n) ∈ Z, n ≥ 0 by the corresponding equation for the inverse
of the left hand side:

(∏

l≥0

(1 + e−lδ + e−2lδ + . . . )rk g

)−1

=
∏

l≥0

(1− e−lδ)rk g =
∑

n≥0

q(n)e−nδ.

Lemma 3.6. Suppose that A = K is a field. Let λ ∈ ĥ⋆ be critical.

(1) We have

ch∆K(λ) = eλ
∏

α∈R̂+,re

(1 + e−α + e−2α + . . . ).

(2) For all µ ∈ ĥ⋆ we have

[∆K(λ) : LK(µ)] =
∑

n≥0

q(n)[∆K(λ− nδ) : LK(µ)].

Proof. The first statement is due to Feigin–Frenkel and Frenkel (cf. the proof
of Theorem 6.4.1 in [Fr07]). Using the well-known character formula for the
usual Verma modules we get

ch∆K(λ) = eλ
∏

α∈R̂+

(1 + e−α + e−2α + . . . )dim ĝα

=
∏

l>0

(1 + e−lδ + e−2lδ + . . . )rk g ch∆K(λ).
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(Note that dim ĝα = 1 for real roots α, and dim ĝlδ = rk g for all l 6= 0.
Dividing this equation by

∏
l>0(1 + e−lδ + e−2lδ + . . . )rk g yields

ch∆K(λ) =

(∏

l>0

(1 + e−lδ + e−2lδ + . . . )rk g

)−1

ch∆K(λ)

=
∑

n≥0

q(n)e−nδ ch∆K(λ)

=
∑

n≥0

q(n) ch∆K(λ− nδ),

hence (2). �

3.7. Restricted Verma modules over local rings. The following is an easy
consequence of Nakayama’s lemma:

Lemma 3.7. Let A be a local domain with residue field K and quotient field

Q. Let M be a finitely generated A-module and suppose that

dimKM ⊗A K = dimQM ⊗A Q.

Then M is a free A-module with rkAM = dimK M ⊗A K = dimQM ⊗A Q.

From now on let A be a local deformation domain with residue field K and
quotient field Q.

Lemma 3.8. Suppose λ ∈ ĥ⋆ is critical. Then the following holds. For any

µ ∈ ĥ⋆ the weight space ∆A(λ)µ is a free A-module of rank

rkA∆A(λ)µ = dimK ∆K(λ)µ.

Proof. The base change remark in Section 3.2 shows that we have isomorphisms

∆A(λ)⊗A Q ∼= ∆Q(λ), ∆A(λ)⊗A K ∼= ∆K(λ).

As these isomorphisms induce isomorphisms on any weight space and since
the weight space dimensions coincide by Lemma 3.6, we can apply Lemma 3.7,
which immediately yields the statement that we want to prove. �

Lemma 3.9. Let λ ∈ ĥ⋆ be critical. Then we have ∆A(λ)
⋆ ∼= ∇A(λ), ∇A(λ)

⋆ ∼=
∆A(λ).

Proof. Note that by Lemma 3.8, each weight space of ∆A(λ) is a free A-module
of finite rank, so it is reflexive, i.e. (∆A(λ)

⋆)⋆ = ∆A(λ). Hence it is enough to
prove that ∆A(λ)

⋆ ∼= ∇A(λ).

We consider now the short exact sequence

0 →
∑

n 6=0

Zn
crit∆A(λ) → ∆A(λ) → ∆A(λ) → 0.

As each weight space of ∆A(λ) and of ∆A(λ) is a free A-module of finite rank,
the sequence above splits as a sequence of A-modules. Hence each weight space
of
∑

n 6=0Z
n
crit∆A(λ) is free and the dual sequence

0 → ∆A(λ)
⋆ → ∇A(λ) →

(∑

n 6=0

Zn
crit∆A(λ)

)⋆

→ 0
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is exact as well.

The injective map factors over the inclusion ∇A(λ) → ∇A(λ), as ∆A(λ)
⋆

is restricted. By definition, the composition of ∇A(λ) → ∇A(λ) with the
surjection ∇A(λ) → (

∑
n 6=0Z

n
crit∆A(λ))

⋆ is zero. Hence ∆A(λ)
⋆ ∼= ∇A(λ). �

3.8. An auxiliary category. In the following it is convenient to work with
”half-restricted” objects.

Definition 3.10. We let O−
A,crit be the full subcategory of OA,crit that consists

of all objects M such that Z−
critM = 0. For an open bounded subset J of ĥ⋆

we let O−J
A,crit be the full category of O−

A,crit of objects that are also contained

in OJ
A,crit.

It is clear that O−
A,crit and O−J

A,crit are stable under taking quotients or sub-

objects. For a base change homomorphism A → A′ and an object M of O−
A,crit

we have that M ⊗A A′ is contained in O−
A′,crit. Note that a critical Verma

module does not belong to O−
A,crit, but each critical restricted Verma module

does. Also the dual non-restricted critical Verma modules belong to O−
A,crit.

In analogy to the restriction functors M 7→ M res, M 7→ Mres we have func-
tors M 7→ M−, M 7→ M− that are left resp. right adjoint to the inclusion of
O−

A,crit in OA,crit. For example, M− is the quotient of M by the submodule

Z−
critM .

3.9. Restricted Verma flags. Now we state the definition of a restricted
Verma flag in analogy to Definition 2.7.

Definition 3.11. We say that a moduleM ∈ O−
A,crit admits a restricted Verma

flag if there is a finite filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M

such that for each i = 1, . . . , n, Mi/Mi−1 is isomorphic to ∆A(µi) for some

µi ∈ ĥ⋆.

Again, if M ∈ O−
A,crit admits a restricted Verma flag, then for each µ ∈ ĥ⋆

the number of occurences of ∆A(µ) is independent of the chosen filtration. We
denote this number by (M : ∆A(µ)).

Note that if M ∈ O−
A,crit admits a restricted Verma flag, then so does M ⊗A

A′ ∈ O−
A′,crit for any homomorphism A → A′ of deformation algebras (as a

restricted Verma module is free over the deformation algebra and ∆A(λ) ⊗A

A′ ∼= ∆A′(λ)), and we have

(M ⊗A A′ : ∆A′(µ)) = (M : ∆A(µ)).

Proposition 3.12. (1) Suppose that M ∈ OA,crit admits a Verma flag.

Then M− admits a restricted Verma flag and we have (M− : ∆A(λ)) =

(M : ∆A(λ)) for any λ ∈ ĥ⋆.

(2) Let 0 → M → N → L → 0 be an exact sequence in OA,crit and suppose

that M , N and O admit a Verma flag. Then the induced sequence

0 → M− → N− → L− → 0
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is also exact.

Proof. This follows easily from the fact that each Verma module is free over
Z≤0

crit (cf. [Fr07, Theorem 9.5.3]). �

Lemma 3.13. Let M ∈ O−
A,crit and let λ ∈ ĥ⋆ be maximal with Mλ 6= 0. Then

each surjective map M → ∆A(λ) splits.

Proof. Let x ∈ Mλ be a preimage of a generator of ∆A(λ). By maximality of λ
there is a homomorphism ∆A(λ) → M that sends a generator of ∆A(λ) to x.
As M is in O−

A,crit, this map factors over the quotient map ∆A(λ) → ∆A(λ)
− =

∆A(λ). �

Lemma 3.14. Let M ∈ O−
A,crit.

(1) Suppose that M admits a restricted Verma flag and let {µ1, . . . , µl} be

an enumeration of the multiset that contains each µ ∈ ĥ⋆ with multi-

plicity (M : ∆A(µ)). Suppose furthermore that this enumeration has

the property that µi > µj implies i < j. Then there is a filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Ml = M with Mi/Mi−1
∼= ∆A(µi) for each

i = 1, . . . , l.

Let J be an open subset of ĥ⋆ and let I := ĥ⋆ \ J be its complement.

(2) M admits a restricted Verma flag if and only if both MI and MJ admit

restricted Verma flags.

(3) If M admits a restricted Verma flag, then we have for all µ ∈ ĥ⋆

(MI : ∆A(µ)) =

{
(M : ∆A(µ)), if µ ∈ I,

0, otherwise,

(MJ : ∆A(µ)) =

{
(M : ∆A(µ)), if µ ∈ J ,

0, otherwise.

Proof. Part (1) follows directly from Lemma 3.13. So let us prove (2) and (3).
Consider the short exact sequence 0 → MI → M → MJ → 0. Clearly, if MI

and MJ admit restricted Verma flags, then so does M . So suppose that M
admits restricted Verma flag. By (1) we can find a filtration 0 = M0 ⊂ M1 ⊂
· · · ⊂ Ml = M such that Mi/Mi−1

∼= ∆A(µi) and such that {µ1, . . . , µn} ⊂ I
and {µn+1, . . . , µl} ⊂ J for some n ≥ 0. We then have MI = Mn, as Mn

is generated by its vectors of weights µ1, . . . , µn and the weights of M/Mn

belong to J . Hence MJ = M/Mn and we deduce that both MI and MJ

admit a restricted Verma flag and that the multiplicity statements in (3) hold
as well. �

4. Restricted projective objects

Let A be a local deformation algebra and J ⊂ ĥ⋆ a bounded open subset. For
each λ ∈ J we have a projective cover PJ

A (λ) → LA(λ) in OJ
A,crit. By applying

the functor (·)res we obtain a surjective map PJ
A (λ)res → LA(λ)

res = LA(λ). As

(·)res is left adjoint to the (exact) inclusion functor O
J

A,crit ⊂ OJ
A,crit, P

J
A (λ)res is
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a projective object in O
J

A,crit. It is even indecomposable as PJ
A (λ) has a unique

simple quotient (see Section 4.3 in [F11]). We define

P
J

A(λ) := PJ
A (λ)res.

Similarly, using the functor (·)− instead of (·)res, we can define a restricted
projective cover PJ

A (λ)− → LA(λ) in the category O−J
A,crit. In particular, O−J

A,crit

contains enough projectives, so we can calculate Ext-groups.

By Proposition 3.12, PJ
A (λ)− admits a restricted Verma flag with multiplic-

ities
(PJ

A (λ)− : ∆A(µ)) = (PJ
A (λ) : ∆A(µ)).

One of the main results in this article is that P
J

A(λ) admits restricted Verma
flag as well and that the multiplicities are given by a BGG-reciprocity formula.

4.1. An Ext-vanishing criterion. We now prove a result that is well-known
in similar, more classical situations. For this we need to assume that A = K

is a field. Let J ⊂ ĥ⋆ be open and bounded.

Proposition 4.1. Let X ∈ O−J
K,crit. The following conditions are equivalent:

(1) X admits a restricted Verma flag.

(2) X is finitely generated and Exti
O−J

K,crit

(X,∇K(λ)) = 0 for any i ≥ 1 and

any λ ∈ J .

(3) X is finitely generated and Ext1
O−J

K,crit

(X,∇K(λ)) = 0 for any λ ∈ J .

Proof. For brevity we write Exti for Exti
O−J

K,crit

in the course of this proof. We

show that (1) implies (2). So suppose that X admits a restricted Verma
flag. It is clear that each module admitting a restricted Verma flag is finitely
generated. We prove the vanishing of Exti by induction on i.

Let i = 1 and let X = X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xl = 0 be a restricted Verma
flag of X . From the exact sequence

0 → X1 → X → X/X1 → 0,

we obtain the exact sequence

Ext1(X/X1,∇K(λ)) → Ext1(X,∇K(λ)) → Ext1(X1,∇K(λ)).

Now X1 and X/X1 admit a restricted Verma flag. Hence, by using induction
on l, one sees that it is enough to prove the case when l = 1. So let X = ∆K(µ)
with µ ∈ J , and let

0 → ∇K(λ) → M → ∆K(µ) → 0

be an exact sequence in O−J
K,crit. We have to show that this sequence splits.

If µ ≥ λ, then this splits by Lemma 3.13. If µ 6≥ λ, apply the duality functor
and consider the exact sequence

0 → ∇K(µ) → M⋆ → ∆K(λ) → 0

in the category OJ
K,crit (note that this is not a sequence in O−J

K,crit!). This splits
because λ is a maximal weight in M⋆, hence the former sequence splits as
well, so Ext1(∆K(λ),∇K(µ)) = 0. We have now proved statement (2) of the
proposition for i = 1.
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Next let i ≥ 2. By the same argument as above, it is enough to consider the
case X = ∆K(µ) for some µ ∈ J . One has an exact sequence

0 → N → PJ
K (µ) → ∆K(µ) → 0

in the category OJ
K,crit and each occuring module admits a (non-restricted)

Verma flag. By Proposition 3.12, this yields an exact sequence

0 → N− → PJ
K (µ)− → ∆K(µ)

− = ∆K(µ) → 0

in the category O−J
K,crit and each module admits a restricted Verma flag. Note

that PJ
K (µ)− is projective in O−J

K,crit.

The above exact sequence yields the exact sequence

Exti−1(N−,∇K(λ)) → Exti(∆K(µ),∇K(λ)) → Exti(PJ
K (µ)−,∇K(λ))(= 0).

But Exti−1(N−,∇K(λ)) = 0 by the induction hypothesis, so we can deduce
Exti(∆K(µ),∇K(λ)) = 0. This finishes the proof that (1) implies (2).

It is clear that (2) implies (3), and now we prove that (3) implies (1). Let
X be as in (3). Let 0 = X0 ⊂ X1 ⊂ X2 · · · ⊂ Xl = X be a highest weight
series of X . That means each quotient Xi/Xi−1 is a highest weight module
with highest weight µi. We may also assume that µi 6< µj for any i < j. We
prove by induction on l that this sequence is actually a restricted Verma flag
of X .

Let l = 1. Then, X = X1 is a highest weight module of highest weight
µ := µ1. As it is contained in O−J

K,crit we have a surjection ∆K(µ) → X . Let
N be its kernel. We have to show that N = 0. This is equivalent to showing
that Hom(N,∇K(λ)) = 0 for all λ. From the exact sequence

0 → N → ∆K(µ) → X → 0

we obtain, for any λ, the exact sequence

Hom(∆K(µ),∇K(λ)) → Hom(N,∇K(λ)) → Ext1(X,∇K(λ))(= 0).

But the space Hom(∆K(µ),∇K(λ)) vanishes unless λ = µ and for λ = µ the
space Hom(N,∇K(µ)) is zero, since there is no weight vector of weight µ in N
(here we need the assumption that our deformation algebra is a field). Hence
Hom(N,∇K(λ)) = 0 for all λ, hence N = 0 and X ∼= ∆K(µ).

Now let l ≥ 2 and consider the exact sequence

0 → X1 → X → X/X1 → 0.

Using the induction hypothesis it is sufficient to show that

Ext1(X1,∇K(λ)) = Ext1(X/X1,∇K(λ)) = 0

for all λ. Consider the long exact sequence

0 → Hom(X/X1,∇K(λ)) → Hom(X,∇K(λ)) → Hom(X1,∇K(λ))

→ Ext1(X/X1,∇K(λ)) → Ext1(X,∇K(λ))(= 0) → Ext1(X1,∇K(λ))

→ Ext2(X/X1,∇K(λ)) → . . .
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Since X1 is a quotient of ∆K(µ1), it follows that Hom(X1,∇K(λ)) = 0 unless
λ = µ1. Hence, Ext1(X/X1,∇K(λ)) = 0 unless λ = µ1. We now show that
Ext1(X/X1,∇K(µ1)) = 0, so let

0 → ∇K(µ1) → Y → X/X1 → 0

be a short exact sequence in O−J
K,crit and consider the dual sequence

0 → (X/X1)
⋆ → Y ⋆ → ∆K(µ1) → 0.

Since µ1 6< µi for any i ≥ 2, µ1 is a maximal weight of Y . This means that the
above sequences split, proving that Ext1(X/X1,∇K(µ1)) = 0.

Hence Ext1(X/X1,∇K(λ)) = 0 for any λ ∈ J , so by our induction hypoth-
esis X/X1 admits a restricted Verma flag. By what we have already proven,
Ext2(X/X1,∇K(λ)) = 0 for all λ ∈ J . From the long exact sequence above
we deduce Ext1(X1,∇K(λ)) = 0 for all λ ∈ J , hence X1 admits a restricted
Verma flag, hence so does X . This completes the proof. �

4.2. An Ext-vanishing result. We can now prove that, in the case that

A = K is a field, the module P
J

K (λ) admits a restricted Verma flag. For this
we have to check an Ext-vanishing property, by Proposition 4.1.

Proposition 4.2. One has Ext1
O−J

K,crit

(P
J

K (λ),∇K(µ)) = 0 for all λ, µ ∈ J .

Proof. Let

0 → ∇K(µ) → M → P
J

K (λ) → 0

be an exact sequence in O−J
K,crit. One needs to show that this sequence splits.

Because ∆K(µ) is a free Z≤0
crit-module we have

Ext1
Z+

crit

(C,∇K(µ)) = Ext1
Z−

crit

(∆K(µ),C) = 0,

where C is the trivial Z±
crit-module. Therefore, by applying the functor HomZ+

crit
(C, ?)

to the above sequence we obtain the exact sequence

0 → ∇K(µ) → HomZ+

crit
(C,M)→P

J

K (λ) → 0

in the category O
J

K,crit. As the module on the right is projective in this cate-

gory, we obtain a splitting P
J

K (λ) → HomZ+

crit
(C,M) and the composition with

HomZ+

crit
(C,M) → M also splits our original short exact sequence. �

Corollary 4.3. Each P
J

K (λ) admits a restricted Verma flag.

Using Corollary 4.3, the following assertion can be proved in the same man-
ner as Proposition 4.1.

Proposition 4.4. Let X ∈ O
J

K,crit. The following conditions are equivalent:

(1) X admits a restricted Verma flag.

(2) X is finitely generated and Exti
O

J

K,crit

(X,∇K(λ)) = 0 for any i ≥ 1 and

all λ ∈ J .

(3) X is finitely generated and Ext1
O

J

K,crit

(X,∇K(λ)) = 0 for all λ ∈ J .
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4.3. A BGG-reciprocity formula. The next result allows us to compute
restricted Verma multiplicities.

Proposition 4.5. Suppose that A is a local deformation algebra and that M ∈
O−J

A,crit admits a restricted Verma flag. For ν ∈ J the following holds:

(1) We have Ext1
O−J

A,crit

(M,∇A(ν)) = 0.

(2) HomO−J

A,crit
(M,∇A(ν)) is a free A-module of rank (M : ∆A(ν)).

Proof. The proof of part (1) is analogous to the proof of the corresponding
statement in Proposition 4.1 (the field case), in particular, it can be analo-
gously reduced to the case that M ∼= ∆A(λ) for some λ ∈ J . Consider a short
exact sequence

0 → ∇A(ν) → X → ∆A(λ) → 0.

If ν 6> λ, then this sequence splits by Lemma 3.13. Each weight space in the
above sequence is a free A-module of finite rank, so the duality is involutive
and exact on the above sequence. If ν > λ, then the dual sequence

0 → ∇A(λ) → X⋆ → ∆A(ν) → 0

splits. Hence Ext1
O−J

A,crit

(∆A(λ),∇A(ν)) = 0.

Now let us prove part (2). Again we use induction on the length l of a
restricted Verma flag of M . Suppose that M ∼= ∆A(λ). We have

Hom(∆A(λ),∇A(ν)) = Hom(∆A(λ),∇A(ν)).

The latter space vanishes if λ 6= ν and it is free of rank 1 if λ = ν (by
the statement that is dual to statement (2) in Lemma 3.8). So suppose that
l > 1 and choose M1 ⊂ M such that M1 and M/M1 are non-zero and admit
restricted Verma flags. By (1) we have an exact sequence

0 → Hom(M/M1,∇A(ν)) → Hom(M,∇A(ν)) → Hom(M1,∇A(ν)) → 0

and part (2) follows from the induction hypothesis and the additivity of the
multiplicities with respect to short exact sequences. �

Now we can prove a reciprocity statement for the restricted projectives in
the field case.

Theorem 4.6. Suppose that A = K is a field. Let J ⊂ ĥ⋆ be open and bounded

and let λ ∈ J be critical. Then we have

(P
J

K (λ) : ∆K(µ)) =

{
[∇K(µ) : LK(λ)], if µ ∈ J

0, otherwise.

Proof. Clearly, (P
J

K (λ) : ∆K(µ)) = 0 if µ 6∈ J . So suppose that µ ∈ J . Using
Proposition 4.5 we have

(P
J

K (λ) : ∆K(µ)) = dimKHomO−J

K,crit
(P

J

K (λ),∇K(µ))

= dimKHom
O

J

K,crit
(P

J

K (λ),∇K(µ))

= [∇K(µ) : LK(λ)].
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The last identity is a consequence of the fact that P
J

K (λ) → LK(λ) is a projec-

tive cover in O
J

K,crit. �

4.4. Base change. Now we need the following variant of Lemma 3.7.

Lemma 4.7. Let A be a local deformation domain with residue field K and

quotient field Q. Suppose that M ∈ O−
A,crit has the property that both M ⊗A

K ∈ O−
K,crit and M ⊗A Q ∈ O−

Q,crit admit restricted Verma flags and that the

multiplicities coincide, i.e. that for all µ ∈ ĥ⋆ we have

(M ⊗A K : ∆K(µ)) = (M ⊗A Q : ∆Q(µ)).

Then M admits a restricted Verma flag with (M : ∆A(µ)) = (M⊗AK : ∆K(µ))

for all µ ∈ ĥ⋆.

Proof. Let µ ∈ ĥ⋆. From the above equality of multiplicities we deduce that

dimKMµ ⊗A K = dimQMµ ⊗A Q.

By Lemma 3.7, Mµ is a free A-module. In particular, the natural homomor-
phism M → M ⊗A Q is injective.

Now let µ ∈ ĥ⋆ be a maximal weight of M , let v ∈ Mµ be a preimage
of a non-zero element v ∈ (M ⊗A K)µ. Let M1 ⊂ M be the ĝA-submodule

generated by v. We have a surjective homomorphism ∆A(µ) → M1 that sends
a generator of ∆A(µ) to v, as M1 ∈ O−

A,crit. Now M1 ⊗A Q is generated by the
non-zero vector v⊗1 and since M ⊗AQ admits a Verma flag and µ is maximal
we have M1⊗AQ ∼= ∆Q(µ). We deduce that the homomorphism ∆A(µ) → M1

is also injective, hence an isomorphism.

AsM1⊗AK is generated by v and by maximality of µ we have thatM1⊗AK ∼=
∆K(µ). Moreover, (M/M1) ⊗A K and (M/M1) ⊗A Q admit restricted Verma
flags with coinciding multiplicities. Hence we can assume, by induction on
the length of the Verma flags of M ⊗A K and M ⊗A Q, that M/M1 admits a
restricted Verma flag. Hence so does M . �

4.5. The case of a local deformation domain. Now we have proved all
relevant statements in the field case. Our next objective is to generalize them
to the local case. The following is an almost immediate consequence of the
BGG-reciprocity we proved above.

Lemma 4.8. Suppose that the deformation algebra A = K is a field. Let

J ⊂ ĥ⋆ be a bounded open subset and let P ∈ OJ
K,crit be projective. Then the

module P res admits a restricted Verma flag and the multiplicities are given by

the following formula:

(P res : ∆K(µ)) =
∑

n≥0

q(n)(P : ∆K(µ− nδ))

for all µ ∈ J .

Proof. We can assume that P = PJ
K (λ) for some λ ∈ J , so P res = P

J

A(λ). By
the reciprocity results in Theorem 2.8 and Theorem 4.6, equivalent to

[∇K(µ) : LK(λ)] =
∑

n≥0

q(n)[∇K(µ− nδ) : LK(λ)]
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which is statement (2) of Lemma 3.6 in terms of the dual Verma modules. �

Now we can translate the results that we obtained so far to the case of a
local deformation domain A. We denote by K its residue field and by Q its
quotient field.

Theorem 4.9. Suppose that A is a local deformation domain. Let J ⊂ ĥ⋆ be

open and bounded and let λ ∈ J be critical. Then P
J

A (λ) admits a restricted

Verma flag with multiplicities

(P
J

A (λ) : ∆A(µ)) =

{
[∇K(µ) : LK(λ)], if µ ∈ J

0, otherwise.

Proof. Note that the functor M 7→ M res commutes with the base change func-
tors · ⊗A K and · ⊗A Q. By Lemma 4.8, the restricted Verma multiplici-
ties of (PJ

A (λ) ⊗A K)res and of (PJ
A (λ) ⊗A Q)res coincide, so by Lemma 4.7,

PJ
A (λ)res = P

J

A(λ) admits a restricted Verma flag with the same multiplici-
ties. Hence the statement follows from the BGG-reciprocity result for K, as
PJ
A (λ)⊗A K ∼= PJ

K (λ). �

5. The restricted linkage principle and the restricted block

decomposition

In this section we use the above BGG-reciprocity to prove our main theorem,
the restricted linkage principle:

Theorem 5.1. For all critical λ, µ ∈ ĥ⋆ we have [∆(λ) : L(µ)] = 0 if µ 6∈

Ŵ(λ).λ.

Note that the above statement refers to the non-deformed objects (i.e. we
have A = C here). However, for its proof we need the deformation theory
developed in the main body of this paper. So let A be an arbitrary local
deformation domain with residue field K. As a first step we study the restricted
block decomposition.

5.1. The restricted block decomposition. Let ĥ⋆crit be the set of critical

weights in ĥ⋆ and let ∼res
A be the relation on ĥ⋆crit that is generated by setting

λ ∼res
A µ if there is some open subset J ⊂ ĥ⋆crit such that LA(µ) is isomor-

phic to a subquotient of P
J

A(λ). For an equivalence class Λ ∈ ĥ⋆crit/∼res
A

let

OA,Λ ⊂ OA,crit be the full subcategory that contains all objects M that have
the property that if LA(λ) occurs as a subquotient of M , then λ ∈ Λ. Then
well-known arguments yield the following.

Theorem 5.2. The functor
∏

Λ∈ĥ⋆
crit

/∼res
A

OA,Λ → OA,crit

(MΛ) 7→
⊕

MΛ,

is an equivalence of categories.
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5.2. Critical restricted equivalence classes. Let us denote by · : ĥ⋆ → h⋆,

λ 7→ λ, the map that is dual to the inclusion h → ĥ = h ⊕ CD ⊕ CK. Note

that δ = Λ0 = 0. For any subset Λ of ĥ⋆ we denote by Λ ⊂ h⋆ its image.

Suppose that Λ ∈ ĥ⋆crit/∼res
A

is a critical restricted equivalence class. We

define the corresponding set of finite integral roots and the finite integral Weyl
group by

RA(Λ) := {α ∈ R | 2(λ+ ρ, α)K ∈ Z(α, α)K for all λ ∈ Λ},

WA(Λ) := 〈sα | α ∈ RA(Λ)〉 ⊂ W.

Lemma 5.3. Let Λ ∈ ĥ⋆crit/∼res
A

be a critical restricted equivalence class. Then

we have

Λ = WA(Λ).λ

for all λ ∈ Λ.

Proof. Let Λ′ be the equivalence class under ∼A generated by ∼res
A (note that

∼res
A is finer than ∼A). By the Kac–Kazhdan theorem, Λ′ is the orbit of λ

under the group ŴA(Λ
′)× Zδ, so Λ = Λ′ is the image of the ŴA(Λ

′)-orbit of

λ. As Λ is critical, ŴA(Λ
′) is the affinization of WA(Λ), and the translations

act by translating by a multiple of δ. Hence, the image of Λ in h⋆ coincides
with the WA(Λ)-orbit of λ. �

5.3. Generic and subgeneric equivalence classes. Now we define the two
most basic cases for equivalence classes.

Definition 5.4. Let Λ ∈ ĥ⋆crit/∼res
A

be a critical restricted equivalence class.

We call Λ

(1) generic, if Λ ⊂ h⋆ contains exactly one element,
(2) subgeneric, if Λ ⊂ h⋆ contains exactly two elements.

We call λ ∈ ĥ⋆crit generic (subgeneric, resp.) if it is contained in a generic
(subgeneric, resp.) equivalence class.

Let Λ be a critical restricted equivalence class and α ∈ RA(Λ). Let λ ∈ Λ
and suppose that sα.λ 6= λ. Then we have sα.λ > λ if and only if s−α+δ.λ < λ.
We define α ↑ λ to be the element in the set {sα.λ, s−α+δ.λ} that is bigger
than λ.

5.4. A special deformation. Let S̃ be the localization of S at the maximal
ideal Sh. This is a local deformation domain with the obvious S-algebra

structure. Its quotient field is C = S̃/S̃h and the category OC is identified

with the usual category O. For each prime ideal p ⊂ S̃ we denote by S̃p the

localization of S̃ at p. We let Q̃ = S̃(0) be the quotient field of S̃.

Lemma 5.5. Let p ⊂ S̃ be a prime ideal of height one and let Λ ⊂ ĥ⋆crit be an

equivalence class for ∼res
S̃p

.

(1) If α∨ 6∈ p for all α ∈ R, then Λ is generic.

(2) If α∨ ∈ p for some α ∈ R, then Λ is either generic or subgeneric. In

both cases we have RS̃p
(Λ) ⊂ {α,−α}.
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Proof. Let K be the residue field of S̃p. For any β ∈ R we have (λ + τ, β)K =
(λ, β)K+(τ, β)K with (λ, β)K ∈ C and (τ, β)K ∈ h. Hence we have 2(λ+τ, β)K ∈
Z(β, β)K if and only if 2(λ, β)K ∈ Z(β, β)K and (τ, β)K = 0. The latter equality
implies β = ±α. From this we deduce both of the above statements. �

Part (1) of the following Theorem is a direct consequence of the corollary
above and Theorem 4.8 in [Fr05] (which states that a generic restricted Verma
module is simple, see also [H88]) and part (2) is a direct consequence of the
above and the main result (Theorem 5.9) in [AF08], that calculates the Jordan–
Hölder multiplicities in the subgeneric situations.

Theorem 5.6. Let Λ ∈ ĥ⋆crit/∼res
A

be a critical restricted equivalence class and

fix λ ∈ Λ. Let J ⊂ ĥ⋆crit be open and bounded.

(1) Suppose that Λ is generic. Then

P
J

A(λ)
∼= ∆A(λ)

if J contains λ.
(2) Suppose that Λ is subgeneric and suppose that Λ = {λ, sα.λ} for some

α ∈ R. Then there is a non-split short exact sequence

0 → ∆A(α ↑ λ) → P
J

A(λ) → ∆A(λ) → 0

if J contains λ and α ↑ λ.

Corollary 5.7. Let Λ ∈ ĥ⋆crit/∼res
A

be a critical restricted equivalence class.

(1) If Λ is generic, then Λ contains only one element.

(2) If Λ is subgeneric, then there is some α ∈ R(Λ) such that Λ is an orbit

under the action of the subgroup Ŵα ⊂ Ŵ that is generated by the

reflections sα+nδ for n ∈ Z.

Proposition 5.8. The equivalence relation ∼res
S̃

is the common refinement of

all the relations ∼res
S̃p

for prime ideals p ⊂ S̃ of height one, i.e. ∼res
S̃

is generated

by the relations λ ∼res
S̃

µ if there is a prime ideal p ⊂ S̃ of height one such that

λ ∼res
S̃p

µ.

Proof. Let us denote by ∼′ the common refinement of the relations ∼res
S̃p

for

prime ideals of height one. It suffices to show that if λ, µ ∈ ĥ⋆ are critical such

that there is an open bounded subset J of ĥ⋆crit and (P
J

S̃ (λ) : ∆S̃(µ)) 6= 0, then
λ ∼′ µ.

Let us consider the object P
J

S̃ (λ)⊗S̃ Q̃. It is an object in O
J

Q̃,crit and admits
a restricted Verma flag. We are going to apply the decomposition result in
Theorem 5.2 for the categories OQ̃,crit and OS̃p,crit

.

Let Λ′ ⊂ ĥ⋆crit be the equivalence class under ∼′ that contains λ. As Λ′ is a
union of equivalence classes for ∼res

Q̃
we can find a unique decomposition

P
J

S̃ (λ)⊗S̃ Q̃ = X ⊕ Y,
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where X and Y are objects in OQ̃,crit admitting a restricted Verma flag such

that for all ν ∈ ĥ⋆ we have

(X : ∆Q̃(ν)) 6= 0 ⇒ ν ∈ Λ′,

(Y : ∆Q̃(ν)) 6= 0 ⇒ ν 6∈ Λ′.

Let p ⊂ S̃ be a prime ideal of height one. As ∼′ is coarser than ∼res
S̃p

, we

deduce that the inclusion P
J

S̃ (λ) ⊗S̃ S̃p → P
J

S̃ (λ) ⊗S̃ Q̃ = X ⊕ Y induces a
direct sum decomposition

P
J

S̃ (λ)⊗S̃ S̃p =
(
P

J

S̃ (λ)⊗S̃ S̃p ∩X
)
⊕
(
P

J

S̃ (λ)⊗S̃ S̃p ∩ Y
)
.

Now each weight space of P
J

S̃ (λ) is a free S̃-module of finite rank and we
deduce that

P
J

S̃ (λ) =
⋂

p

P
J

S̃ (λ)⊗S̃ S̃p,

where the intersection is taken over all prime ideals of height one. Hence we
get an induced decomposition

P
J

S̃ (λ) =
(
P

J

S̃ (λ) ∩X
)
⊕
(
P

J

S̃ (λ) ∩ Y
)
.

As P
J

S̃ (λ) is indecomposable, and since X 6= 0 (since the restricted Verma
module ∆Q̃(λ) certainly occurs in X), we get Y = 0, i.e. all restricted Verma

subquotients of P
J

S̃ (λ) have highest weights in Λ′. Hence ∼res
S̃
=∼′. �

Now we can prove our main result, Theorem 5.1.

Proof. We show that λ ∼res
C µ implies µ ∈ Ŵ(λ).λ. Note that by definition we

have ∼res
C =∼res

S̃
.By Proposition 5.8 we have that ∼res

S̃
is the common refinement

of all ∼res
S̃p

. Lemma 5.5 shows that the equivalence classes of ∼res
S̃p

are either

generic or subgeneric. But those we determined in Corollary 5.7: They contain

either one element or are orbits under a certain subgroup Ŵα of Ŵ(λ). Hence

λ and µ must be contained in a common Ŵ(λ)-orbit. �
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