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Abstract

The cerebellar granule cell is a unique neuron which undergoes tangential migration 

along axonal tracts and radial migration along glial fibers sequentially during postnatal 

development. Little is known about molecular bases of the differential kinetics of 

tangential and radial migration. Here we developed a time-lapse imaging assay for 

tangential migration of cerebellar granule cells, and investigated comparative 

contributions of cyclin-dependent kinase 5 (CDK5), a key regulator of neuronal 

migration, in tangential and radial migration of granule cells in vivo and in organotypic 

cultures. Overexpression of a dominant-negative form of CDK5 severely disrupted cell 

morphology and somal movement during radial migration, while it only moderately 

affected tangential migration. Dominant-negative inhibition of CDK5 induced 

formation of ectopic radial processes in granule cells in vivo which aberrantly elongated 

into the white matter in the cerebellum. Live imaging of granule cell migration in 

cerebellar slices revealed that CDK5 regulates not only nuclear migration but also 

centrosome movement during radial migration. These findings suggest a mode-specific 

function of CDK5 in neuronal migration.

Keywords: neuron, development, cerebellum, live cell imaging, centrosome
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Introduction

Neuronal migration is a fundamental step during development of the mammalian central 

nervous system. Post-mitotic neurons migrate from their birthplace to their final 

destination for integration into specific neural circuits. Defects in neuronal migration  

cause a wide variety of brain diseases. CNS neuronal migration has been classified into 

two distinct phases, radial and tangential, by their direction of travel. Radial migration, 

as seen in a subset of cortical pyramidal cells, is the main mechanism for lamination of 

the cortex in which neurons move along the radial dimension of the neuroepithelium. 

The leading processes of radially migrating neurons often interact with radial fibers of 

glia. In contrast, tangential migration are seen in many interneurons traveling long 

distance from one brain region to another. Tangentially migrating neurons extend the 

leading processes parallel to the brain surface along axons of other neurons. These two 

phases of migrations usually take place in distinct cell types, in distinct 

microenvironments. 

	

 Cerebellar granule cells provide a unique opportunity to observe both radial 

and tangential migration in the same cells (Rakic, 1990; Komuro and Rakic, 1998; 

Komuro et al., 2001). During postnatal development of the cerebellum, granule cells 

immigrate from the external granular layer (EGL) to the internal granular layer (IGL). 
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Granule cells first elongate bipolar processes along the preformed parallel fiber axons of 

early-born granule cells and migrate tangentially along the longitudinal axis of 

cerebellar laminae. After the tangential migration, they make a vertical turn and then 

migrate radially along Bergmann glial fibers until they reach the IGL. We have 

previously shown that tangential and radial migration of granule cells exhibit different 

kinetics guided by leading processes with different morphological and molecular 

properties (Kawaji et al., 2004). However, little is known about the molecular 

mechanisms for driving the different kinetics of tangential and radial migration.

	

 CDK5 is a proline-directed serine/threonine kinase enriched in post-mitotic 

neurons. CDK5 is activated when bound to p35 or p39 and phosphorylates many 

substrates, including regulators of cytoskeletal organization (Dhavan and Tsai, 2001). 

Several lines of evidence have indicated that CDK5 plays crucial roles in neuronal 

migration. In the cerebral cortex, radial migration of pyramidal cells shows severe 

defects in the absence of CDK5, including failures of transition from multipolar to 

bipolar morphologies and proper adhesion to radial glia (Gilmore et al., 1998; Gupta et 

al., 2003; Hatanaka et al., 2004; Ohshima et al., 2007). On the other hand, tangential 

migration of GABAergic interneurons in the cerebrum is less affected by CDK5 

deficiency (Gilmore and Herrup, 2001). This raises the interesting possibility that CDK5 

might be differentially involved in kinetics of radial and tangential migration. However, 
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it is yet unclear whether differential effects of CDK5 in pyramidal neurons and 

interneurons are due to its action in molecular kinetics specific for radial migration, or 

differential expression of CDK5 and/or related molecules in these cell types. Loss of 

CDK5 activity also affects migration of cerebellar granule cells (Chae et al., 1997; 

Ohshima et al., 1999; Hirasawa et al., 2004). To address the question of which aspects 

of biphasic migration of granule cells depend on CDK5, we established a time-lapse 

imaging system for quantitative analyses of biphasic migration of granule cells in 

cerebellar organotypic cultures. By combining this approach with in vivo analyses of 

granule cell migration in the cerebellar cortex, we found that radial migration was 

severely affected, while tangential migration was less affected in granule cells 

overexpressing a dominant-negative CDK5 mutant. The present data suggest the mode-

specific regulation of cerebellar granule cell migration by CDK5.
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Result

In vivo electroporation for specific gene transfer into pre-migratory granule cells

To elucidate migrating behaviors of cerebellar granule cells in vivo, we transfected 

pCAG-EGFP plasmids into postnatal day 8 (P8) mice cerebella by using an in vivo 

electroporation system (Umeshima et al., 2007). The plasmid DNA solution was 

injected into the primary fissure of the cerebellum (interlobular space between lobule V 

and VI), and electric pulses were then applied between the injecting syringe and the 

electrodes attached to the head. This enabled us to transduce plasmids specifically into 

immature granule cells and their progenitors in the outer EGL close to the injection site. 

Twenty-four hours after electroporation (P9), injected brains were fixed and sectioned. 

EGFP-labeled cells were seen only in the external granular layer (EGL), suggesting that 

plasmids were specifically incorporated in granule cell precursors in the EGL (Figure 

1A, B). In the coronal sections, cells at the lower part of the EGL had long bipolar 

processes along the medio-lateral axis. These cells were considered as post-mitotic 

granule cells initiating tangential migration (data not shown, see Figure 3A). Forty-eight 

hours after electroporation (P10), 18.9 ±  4.1% (mean ± s.d.; n = 12 slices from 3 brains, 

>300 cells counted) of EGFP+ cells were seen in the molecular layer (ML). They 

elongated leading processes toward the internal granular layer (IGL) and underwent 

radial migration. The majority of EGFP+ cells (52.2 ± 13.4%) were located in the EGL, 
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while some cells (20.4 ±  12.2%) already reached the IGL. At P11 (72nd hour of 

electroporation), more EGFP+ cells were settled in the IGL (50.0 ± 6.9%) at the 

expense of those in the EGL (25.2 ± 9.2%). After P12 (96th hour and later), most EGFP

+ cells finished migration and were located in the IGL (83.0 ±  5.9% at 96 h and 92.8 ± 

6.6% at 120 h, respectively) except for a small number of cells that were still resided in 

the EGL or ML. Mature granule cells were broadly distributed throughout the IGL with 

a slight increment in the upper half (54.8 ±  6.2% upper vs 38.1 ± 8.7% lower at 120 h). 

Thus the time course of granule cell migration could be quantitatively analyzed by the 

present in vivo electroporation approach. In the following experiments, we analyzed 

tangential and radial migration of transfected cells at 24 and 48 hours after 

electroporation, respectively, when each phase of migration was dominantly observed.

A dominant negative form of CDK5 cell-autonomously inhibits cerebellar granule 

cell migration in vivo

Previous studies using knock-out mice have indicated that loss of CDK5 activity causes 

defects in cerebellar granule cell migration in vivo (Chae et al., 1997; Ohshima et al., 

1999; Hirasawa et al., 2004). Here we electroporated a dominant negative construct of 

CDK5 (CDK5-DN, a kinase-dead K33T mutant; Nikolic et al., 1996) together with 

EGFP to inhibit cell-intrinsic CDK5 activity in the granule cells in vivo. Six days after 
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electroporation, the majority of CDK5-DN-transfected cells (52.5 ±  1.7%, mean ± 

s.e.m., n = 24 slices from 3 brains, >1000 cells counted) failed to reach the IGL and 

ectopically located in the ML or PCL (Figure 2A, B). This was in contrast to control 

cells electroporated with only EGFP that had mostly reached the IGL and only a small 

portion remained in the ML or PCL (13.0 ±  1.2%, n = 24 slices from 3 brains, >1000 

cells counted). In addition, many CDK5-DN-transfected cells stopped in the upper half 

of the IGL, while the percentage of cells that reached the lower IGL was reduced (35.0 

±  1.9% in the upper IGL vs 12.5 ±  0.9% in the lower IGL in CDK5-DN condition, 

compared to 54.7 ±  1.4% vs 32.4 ± 1.3% in control). These results support the notion 

that inhibition of CDK5 disrupts cerebellar granule cell migration in a cell-autonomous 

manner (Ohshima et al., 1999).

CDK5 inhibition has minor effects on tangential migration

Next, we asked whether CDK5 differentially contributed to tangential and radial 

migration of granule cells. We first investigated the effect of CDK5-DN on morphology 

of granule cells during tangential migration in vivo by using fixed tissue samples. 

During tangential migration, granule cells took a bipolar shape with leading and trailing 

processes along the medio-lateral axis of the cerebellum (Figure 3A). The length of the 

leading process differed among individual cells as it kept growing during tangential 
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migration (Figure 3C, D). CDK5-DN expression did not alter bipolar morphology of 

granule cells (Figure 3B). Leading processes of CDK5-DN-expressing granule cells also 

varied in length with no significant difference from those of control cells (Figure 3C, 

D).

	

 To further investigate the effect of CDK5-DN on tangential migration, 

kinetics of tangential migration was examined by live-cell imaging in an organotypic 

culture. We previously developed a time-lapse imaging system to observe radial 

migration of EGFP-labeled cerebellar granule cells in coronal cerebellar slices 

(Umeshima et al., 2007). It was, however, difficult to demarcate individual granule cell 

shapes during tangential migration by the previous method, because of the high cell 

density in the EGL. We therefore modified the imaging approach for observation of 

tangential migration. One day after electroporation, cerebellar lobes containing many 

transfected cells were identified and isolated under a fluorescent microscope. The 

isolated lobe was put on a millipore filter and observed through the superficial layer of 

the EGL (Supplemental Figure S1). Using this approach, we successfully captured the 

kinetics of individual granule cells undergoing tangential migration along the 

longitudinal axis of the EGL (Figrue 3E; see also Supplemental Movie 1). The 

architecture of the cerebellar cortex was conserved in this condition (Supplemental 

Figure S2A) Granule cells exhibited a long bipolar shape and migrated in both medial 
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and lateral directions consistent with previous observation (Ryder and Cepko, 1994; 

Komuro et al., 2001). In some cases, the trailing process took over the leading process 

on the other side so that the cells moved in opposite directions during a recording period 

of 8 hours (9 cells out of 50 cells). Some trailing processes were retracted while others 

were retained throughout the recording period. In most cases the leading process moved 

faster than the soma so that the leading process gradually elongated during tangential 

migration, consistent with the observations in fixed tissues (Figure 3E’, E’’, G). 

Although CDK5-DN induced no obvious morphological change of tangentially 

migrating granule cells, there was a slight but significant reduction in migration speed 

(Figure 3F-F’’, G; see also Supplemental Movie 2). Both the soma and leading process 

of CDK5-DN cells moved more slowly than those of control cells. These results suggest 

that CDK5 activity is involved in regulation of motility but is dispensable for the 

bipolar morphology of granule cells during tangential migration.

CDK5 inhibition causes severe morphological defects in radially migrating granule 

cells

Next, we examined the effect of CDK5-DN on radial migration of granule cells. CDK5 

inhibition caused ectopic localization of granule cells in the ML (Figure 2). Many of 

these ectopic CDK5-DN-transfected cells bore leading processes pointing toward the 
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IGL, suggesting that CDK5-DN did not disturb the transition from tangential migration 

to radial migration. Consistently, the majority of CDK5-DN cells (87.4 ± 1.1%) had left 

the EGL and were located in the deeper layers at P12 (see Figure 2). Thus we focused 

on cell morphology of radially migrating granule cells. During radial migration in vivo, 

normal granule cells had shorter leading processes with less variance in length than 

tangentially migrating cells (Figure 4A, C, D, see also Figure 3A, C, D). CDK5-DN 

expression induced drastic changes in the morphology of radially migrating granule 

cells. We found two distinct types of morphological changes in CDK5-DN-expressing 

cells. The first type had an aberrantly elongated leading process (Figure 4B-D). The 

second type had multiple and/or branched leading processes (Figure 4B’, E). Some cells 

exhibited mixed phenotypes and bore multiple long leading processes (see cells at the 

right side in Figure 4B).

	

 Next, kinetics of radially migrating granule cells was observed by live-cell 

imaging using coronal cerebellar slices prepared at P10 (48 hour after electroporation). 

We confirmed that our slice preparation did not disrupt the architecture of the cerebellar 

cortex (Supplemental Figure S2B). In control, among 52 cells undergoing radial 

migration in the EGL or ML at the onset of observation, 32 cells (61.5%) reached the 

IGL during the recording period of 12 hours (Figure 5A; see also Supplemental Movie 

3). Most cells migrated directly toward the IGL except for 2 cells which moved in the 
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opposite direction. The leading process tip and soma migrated at similar speeds so that 

the leading process remained constant in length during radial migration in contrast to 

that of tangential migration (Figure 5D, D’). This was consistent with the result 

obtained by fixed tissue observation. In CDK5-DN-expressing cells, the migratory 

speed was significantly reduced (Figure 5F) and only 17.0% of granule cells (9 cells out 

of 53 cells) reached the IGL during 12 hours of recording. We also confirmed two types 

of morphological defects seen in fixed tissue samples; some granule cells (13 cells) 

failed to move the cell soma but aberrantly elongated their leading processes (Figure 

5B, E, E’, see also Supplemental Movie 4). Other 16 cells failed to keep single leading 

processes and repeated retraction and elongation of unstable processes (Figure 5C, see 

also Supplemental Movie 5). These two phenotypes were concurrently seen in the same 

cells in 4 cases. These results indicate that CDK5 inhibition severely disrupts the 

kinetics of radial migration of granule cells.

	

 Interestingly, some radial processes of CDK5-DN-expressing cells overshot 

the IGL and invaded into axonal tracts in the white matter at 5 day after electroporation 

(Figure 4F). Some of these ectopic fibers were derived from heterotopic granule cells in 

the ML (Figure 4G). Thus, unlike the leading process of normal granule cells that 

differentiates into a dendrite after completion of migration, the elongated leading 

process of CDK5-DN-expressing granule cells was likely to form an aberrant axon-like 
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fiber in the cerebellar cortex.

CDK5 inhibition does not affect association of the leading process to glial fibers

We next addressed how CDK5-DN affected the radial migration. Cerebellar granule 

cells are thought to move along radial fibers of Bergmann glia during radial migration. 

It has been suggested that CDK5 is involved in attachment of the leading process of 

migrating pyramidal neurons to radial glial fibers in the cerebral cortex (Gupta et al., 

2003). These observations led us to examine if CDK5 inhibition affected attachment of 

the leading process to Bergmann glial fibers in vivo. In normal cells, EGFP-labeled 

radial leading processes were closely apposed to GFAP-positive glial fibers 

(Supplemental Movie 6). We found that CDK5-DN-expressing granule cells also 

attached their long leading processes to the glial fibers (Supplemental Movie 7). This 

result suggests that migratory defects of CDK5-DN-expressing granule cells are 

unlikely due to abnormal adhesion to glial fibers.

Centrosomal movement is disrupted in CDK5-DN-expressing granule cells

Time-lapse imaging revealed that CDK5 inhibition severely disrupted nuclear migration  

(nucleokinesis) of granule cells especially in radial migration. We have previously  

indicated that nuclear and centrosomal migration involve distinct cytoskeletal controls 

13



and that inhibition of some molecules regulating nuclear migration causes increment in 

the nucleus-centrosome (N-C) distance (Umeshima et al., 2007). We investigated 

whether CDK5 inhibition affected the N-C distance of radially migrating granule cells. 

To this end, a cell volume marker mRFP and a centrosomal marker Centrin-2-EGFP 

were co-electroporated with or without CDK5-DN into P8 mouse cerebellum. Two days 

after electroporation, the brains were fixed, sectioned and stained with DAPI to 

visualize the nuclei of granule cells. The N-C distance was defined as the distance 

between the front end of the nucleus and centrosome (Figure 6A). In 34.4% of granule 

cells the centrosome followed the front end of the nucleus, consistent with our previous 

studies. CDK5-DN did not increase the N-C distance, compared to that in control cells 

(Figure 6B). To further investigate the effect of CDK5-DN on centrosome behavior, we 

carried out time-lapse imaging of the centrosome in a cerebellar slice culture using 

transgenic mice which ubiquitously expressed GFP-Centrin-2 (Higginbotham et al., 

2006). Consistent with the fixed sample data, the centrosome was located close to the 

soma in most granule cells at the onset of time-lapse imaging. In control cells, the 

centrosome migrated forward along with nuclear migration during the recording period 

(Figure 6C and E; see also Supplemental Movie 8). The centrosome in CDK5-DN-

expressing cells failed to undergo constant forward movement but fluctuated within the 

cell soma (Figure 6D, D’ and E; see also Supplemental Movie 9, 10). The speed of 
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forward movement of the centrosome was significantly reduced by CDK5-DN 

expression (Figure 6F). These results indicate that CDK5 inhibition prevents not only 

the nucleokinesis but also the centrosomal migration during radial migration. 
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Discussion

Recent studies have shown that kinetics and molecular mechanisms of neuronal 

migration vary between cell types and migrating modes. Cerebellar granule cells 

provide a beneficial model to investigate mode-specific regulation of neuronal migration 

in the same cells. Migration of cerebellar granule cells has been studied by using 

various primary culture systems of dissociated cells or tissue explants (Edmondson and 

Hatten, 1987; Nakatsuji and Nagata, 1989; Nagata and Nakatsuji, 1994; Guan et al., 

2007). In return for their advantages in accessibility to cells, it is unclear whether 

cultured cells on artificial substrates would reproduce the same migration behavior in 

the laminated cortex in vivo. In the present study, we developed a live imaging system 

for quantitative analyses of tangential migration of cerebellar granule cells within intact 

cell architecture. In conjunction with quantitative analyses of radial migration that we 

previously established, we investigated the relative influences of CDK5 inhibition on 

biphasic migration of granule cells in the cerebellar cortex. We demonstrated that 

inhibition of CDK5 caused severe impairments in radial migration, while it caused only 

moderate decrease in the motility during tangential migration. Our organotypic culture 

systems conserved the cell architecture in the cerebellar cortex  at least during the 

imaging period. Moreover, the cell morphologies observed in live-cell imaging were 

well correlated with those in fixed tissue samples. We thus think that dynamics and 
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mechanics of granule cell migration are recapitulated in the present organotypic culture 

systems. 

	

 We have previously reported that the leading processes utilized for tangential 

and radial migration have distinct molecular properties (Kawaji et al., 2004). The 

leading process for tangential migration expresses axonal proteins and gradually 

elongates to form a parallel fiber axon after completion of migration. On the other hand, 

the leading process for radial migration contains proteins enriched in dendrites and later 

differentiates into a dendritic process. In the present study, extension of the leading 

process for radial migration was tightly coupled with somal movement so that it kept 

constant length, while the leading process for tangential migration elongated 

independently of somal movement. Loss of CDK5 activity disrupted the coupling of the 

leading process and soma during radial migration, resulting in abnormal elongation or 

excess formation of multiple and/or branched leading processes. The aberrantly 

elongated leading processes appeared not to differentiate into dendrites but to form long 

thin processes along axonal tracts in the white matter. Although it was difficult to 

identify expression of axonal proteins in these processes within dense axon fascicles in 

the white matter, their morphology resembled axons. The aberrant elongation of the 

leading process was never seen in the cells defective in radial migration caused by 

inhibition of the LINC complex (linker of nucleoskeleton and cytoskeleton) 

17



(unpublished data, Zhang et al., 2009). CDK5 may thus play important roles in the 

formation and maintenance of the leading process with dendritic characteristics. 

Consistent with this notion, CDK5-deficient pyramidal neurons exhibit severe 

morphological impairments in apical dendrites, while their axons are mostly intact in 

morphology with a slight misrouting defect (Ohshima et al., 2007).

	

 We also asked if CDK5 regulated neuronal migration guided by specific 

substrates. Cerebellar granule cells migrate along glial fibers during radial migration, 

while they migrate along the preformed parallel fiber axons of other granule cells during 

tangential migration. CDK5 inhibition impairs glia-guided locomotion, but has little or 

no impact on glia-independent somal translocation in cerebral pyramidal neurons 

(Hatanaka et al., 2004). It has also been shown that adhesion of leading processes to 

glial fibers is disrupted by deletion of a CDK5 activator p35 in cerebral pyramidal 

neurons (Gupta et al., 2003). In contrast, we found no obvious defect in association of 

the leading process to glial fibers, questioning the role of CDK5 in neuron-glia 

interaction during granule cell migration. Recent studies have indicated that CDK5 

deletion impairs chain migration of neuroblasts along neurites of other neuroblasts in 

the postnatal subventricular zone (SVZ; Hirota et al., 2007). In addition, it has been 

demonstrated that glia-independent tangential migration of cerebral inhibitory neurons 

is moderately affected by p35-deletion (Rakić et al., 2009). Attachment to glial fibers is 
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thus unlikely the principal mechanism regulated by CDK5.

	

 Neuronal migration disorders are often accompanied by increase of the N-C 

distance (Tanaka et al., 2004a). The N-C distance in CDK5-DN-expressing granule cells 

was indistinguishable from that in normal cells. Live-cell imaging revealed that CDK5 

inhibition severely disrupted forward migration of the centrosome and randomized their 

movement. We have previously shown that the nucleus migrates independently of the 

centrosome position and sometimes passes the centrosome (Umeshima et al., 2007). It 

has also been reported that nuclear and centrosome migration is regulated by at least 

partially distinct mechanisms (Tsai et al., 2007). Although the precise mechanisms 

remain elusive, CDK5 is involved in the regulation of both nuclear and centrosome 

migration. 

	

 A number of signaling molecules regulating centrosome migration have been 

identified. Among them, Sema6a-Plexin-A2 signaling is a feasible candidate for an 

upstream regulator of CDK5 that induces phosphorylation of CDK5 (Renaud et al., 

2008). Mammalian homologues of Par proteins in C. elegans, Par6a, MARK2 and 

LKB1 have also been shown to regulate centrosome positioning and migration (Solecki 

et al., 2004; Sapir et al., 2008; Solecki et al., 2009; Asada and Sanada, 2010). Another 

mammalian Par protein, Pard3A triggers radial migration of cerebellar granule cells 

(Famulski et al., 2010). 
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 CDK5 recognizes and phosphorylates many substrates related to neuronal 

migration. Phosphorylation of Ndel1, FAK and DCX by CDK5 is thought to affect 

nuclear migration through regulation of perinuclear microtubule structure (Niethammer 

et al., 2000; Sasaki et al., 2000; Xie et al., 2003; Shu et al., 2004; Tanaka et al., 2004b). 

On the other hand, CDK5 phosphorylates and stabilizes p27kip1, which regulates actin 

dynamics via RhoA-cofilin pathway in migrating neurons in the cerebral cortex 

(Kawauchi et al., 2006). Neurabin-I is another actin regulator phosphorylated by CDK5 

(Causeret et al., 2007). CDK5 would coordinate microtubule and actin dynamics during 

neuronal migration through the phosphorylation of multiple substrates that are 

differentially involved in radial and tangential migration of granule cells. Further 

studies will elucidate the signaling pathway upstream and downstream of CDK5 during 

neuronal migration.
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Materials and methods

cDNA constructs and mice

pCAG-EGFP, pCAG-Venus, pCAG-DsRed-express and pCentrin-2-EGFP were 

described previously (Umeshima et al., 2007; Sasaki et al., 2010). For construction of 

pCAG-CDK5-DN, the full-length CDK5 cDNA was cloned from a P7 ICR mouse 

whole brain cDNA library by PCR using the following primers.

CDK5 forward: CTCGAGGCCGCCATGCAGAAATACGAGAAACT

CDK5 reverse: GTCGACCTATGGGGGACAGAACTCA

Substitution of lysine 33 (AAG) for threonine (ACG) was performed by site-directed 

mutagenesis using the GeneEditor Kit (Promega) according to the manufacturer’s 

instruction (Nikolic et al., 1996). The PCR product was fused with a HA-tag at the N-

terminus and subcloned into pCAGGS.

	

 GFP-Centrin-2 transgenic mice were purchased from Jackson Labs. Mice 

were handled in accordance with the Animal Experiment Committee of the RIKEN 

Brain Science Institute and Kyoto University and were housed in a dedicated pathogen-

free environment with a 12 h light/dark cycle.

In vivo electroporation
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In vivo electroporation into postnatal mouse cerebella was performed as previously 

described (Umeshima et al., 2007). Briefly, P8 ICR mice were anesthetized on ice and 

injected with plasmid DNAs (2.1 µg of each) diluted in 0.7 µl TE buffer in the 

interlobular space between lobule V and VI using a microsyringe with a 33-gauge 

needle connected to the anode. After injection, tweezer-type electrodes connected to the 

cathode were placed on the occipital regions, and electric pulses (6 pulses of 70 mV for 

50 ms-duration with 150 ms-intervals) were applied using a pulse generator, CUY21 

(Nepagene). The pups were revived at 37ºC and returned to the litter.

Time-lapse imaging

For time-lapse imaging of tangential migration, mouse brains were quickly dissected 1 

day after electroporation, and transferred into ice-cold ACSF bubbled with a gas 

mixture of 95% O2 and 5% CO2. The lobes expressing transfected genes were identified 

and isolated under a fluorescent microscope and stripped meninges by forceps. For 

time-lapse imaging of radial migration, cerebella were dissected and embedded in 3% 

agarose 2 days after electroporation, and sectioned into 300 µm-thick coronal slices 

using a vibratome (linearslicer PRO 7, Dosaka EM).

	

 Lobes or slices were placed on a Millicell-CM (Millipore), mounted in 

collagen gel and soaked in culture medium (15% heat-inactivated horse serum, 25% 
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Earle’s balanced salt, 60% Eagle’s basal medium, 5.6 g/l glucose, 3mM L-glutamine, 

1.8 mg/ml NaHCO3, 1mM sodium pyruvate, 5 μg/ml bovine insulin, 5 μg/ml human 

transferrin, 30 nM sodium selenite, 20 nM progesterone). The tissues in Millicell-CM 

dishes were kept at 37ºC in an incubator chamber attached to an upright microscope 

stage (BX61WI) and provided with constant gas flow (85% O2, 5% CO2, 10% air). 

After the tissues were allowed to settle for 2-4 hours, time-lapse images were obtained 

with a laser scanning confocal microscope (FV1000, Olympus).

	

 For time-lapse imaging except for centrosome imaging, Venus YFP was 

utilized in place of EGFP. Centrosome kinetics were viewed through a 60x water-

immersion objective (numerical aperture 1.10, Olympus). All other images were viewed 

through a 20x water-immersion objective (numerical aperture 0.50, Olympus). Ten to 

twenty optical Z sections at 10 μm (20x objective) or 2 μm (60x objective) steps were 

obtained and stacked to acquire whole images.

Immunofluorescence and image acquisition

To obtain images of tangentially migrating granule cells in fixed tissue samples, 

cerebellar lobes were isolated and fixed by 4% PFA. For radially migrating cells, brains 

were fixed in 4% PFA and sectioned into 50 µm-thick sagittal slices with a vibratome. 

For immunostaining of lobe/slice cultures, samples were fixed after recording in the 
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stage-top incubator. Lobe cultures were cryoprotected in 20% sucrose/PBS, and then 

sectioned into 20 µm-thick transverse slices with a cryostat (CM1900, Leica). 

Immunofluorescence of cerebeller sections was performed as previously described. The 

following antibodies were used; anti-GFAP (1:1000, rabbit polyclonal, Chemicon); anti-

Calbindin D-28K (1:1000, mouse monoclonal, Swant). For secondary detection, 

Alexa568- or 633-conjugated anti-rabbit or mouse IgG (1:400, Invitrogen) were used. 

Image acquisition was carried out with a laser-confocal microscope Fluoview FV1000 

(Olympus) using a 40x objective (numerical aperture 0.95, Olympus) and a 100x oil-

immersion objective (numerical aperture 1.4, Olympus). Optical Z sections were 

obtained and stacked to acquire whole images.

Statistical Analysis

Statistical analyses were performed with Excel (Microsoft) and R (http://www.r-

project.org). Normality was assessed by the Shapiro-Wilk test, and where data were not 

normally distributed, statistical differences between data sets were tested by Wilcoxon 

rank sum. As for normally distributed data, the equality of variance between data sets 

was assessed by F-tests. Data sets with equal variance were compared by two-tailed 

unpaired Student t-tests whereas data sets with non-equal variance were compared by 

two-tailed unpaired t-tests with Welch’s correction.
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Figure captions

Fig. 1. Time course of migration of EGFP-labeled cerebellar granule cells in vivo

Granule cells in the EGL were electroporated with a pCAG-EGFP plasmid on P8. 

Brains were fixed at 24, 48, 72, 96 and 120 hours after electroporation and sectioned 

into 50 µm-thick sagittal slices. (A) EGFP-labeled granule cells (green), all of which 

were located in the EGL at P9 (24 h), started radial migration at P10 (48 h) and almost 

finished immigration into the IGL at P12 (96 h). Each layer was identified by 

counterstaining with DAPI (blue in right panels). Scale bar represents 50 µm. EGL; the 

external granular layer, ML; the molecular layer, PCL; the Purkinje cell layer, IGL; the 

internal granular layer. (B) The percentages of total EGFP-labeled granule cells located 

in each layer at indicated time points. Data were obtained from 12 slices of 3 brains 

(>300 cells) in each stage. The IGL was subdivided into upper (IGL1) and lower (IGL2) 

halves. Error bars represent standard deviations.

Fig. 2. Inhibition of CDK5 disrupts granule cell migration in a cell-autonomous 

manner

Granule cells in the P8 mouse EGL were electroporated with either pCAG-EGFP alone 

(control), or pCAG-EGFP and pCAG-CDK5-DN. Sagittal sections were made 6d after 

electroporation. (A) In contrast to control granule cells that were mostly located within 
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the IGL, the cells overexpressing CDK5-DN failed to reach the IGL but accumulated in 

the ML and PCL . Each layer was identified by counterstaining with DAPI (blue in right 

panels). Scale bars indicate 50 µm. (B) The percentages of granule cells transduced 

with/without CDK5-DN located in each layer. The ML and IGL were divided into upper 

and lower halves. Data were obtained from 24 slices of 3 brains (>1000 cells) for each 

condition. Error bars indicate s.e.m. *p < 0.001, Student’s t-test. 

Fig. 3. Inhibition of CDK5 does not affect morphology and kinetics of granule cells 

during tangential migration

Granule cells were electroporated with either pCAG-EGFP alone (control) or pCAG-

EGFP and pCAG-CDK5-DN at P8 and the transfected lobes were isolated and fixed 

after 24 hours. (A), (B) Granule cells undergoing tangential migration were observed 

through the superficial layer of granule cell precursors. Both control cells (A) and cells 

overexpressing CDK5-DN (B) showed bipolar morphology with leading processes of 

variable length. Scale bars indicate 10 µm. (C), (D) Distribution of the length of leading 

processes. (C) The length of leading processes is represented along the x axis and the 

percentages of total cell number in each bin are represented along the y axis. (D) Data in 

boxplots are represented as 25%-75% quartiles (boxes) and median (lines). Lower and 

higher whiskers indicate the lowest and highest data within 1.5 interquartile range (IQR) 
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of the respective quartiles. Outliers are represented by circles. There was no significant 

difference in the length (Wilcoxon rank sum test, p = 0.6423, n = 195 cells, control, n = 

263 cells, CDK5-DN). (E)-(F’’) Time-lapse imaging of tangential migration of control 

cells transfected with Venus YFP alone (E-E’’; see also Supplemental Movie 1), and 

cells overexpressing CDK5-DN (F-F’’; see also Supplemental Movie 2). Leading 

processes gradually elongated during tangential migration in both control and CDK5-

DN cells. CDK5-DN did not halt somal movement. Images were taken 20 min interval 

for 8 hours. Arrows and arrowheads indicate leading process tips and cell soma, 

respectively. Tracings of the cells indicated by arrows and arrowheads are shown in 

right panels of (E) and (F). Times are indicated in min. Scale bars represent 20 µm. 

Displacement of leading process tips and cell soma (E’ and F’), and length of leading 

processes (E’’ and F’’) of the granule cells shown in (E) and (F) are plotted against time, 

respectively. (G) The average speed of cell soma and leading process tips (cell soma: n 

= 50 cells, control, n = 63 cells, CDK5-DN; leading process tips: n = 31 cells, control, n 

= 35 cells, CDK5-DN). *p < 0.05, **p < 0.001; Welch’s t-test.

Fig. 4. Inhibition of CDK5 disrupts morphology of granule cells during radial 

migration

Granule cells were electroporated with either pCAG-EGFP alone (control), or pCAG-
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EGFP and pCAG-CDK5-DN at P8 and analyzed in sagittal sections at 48 hours of 

electroporation. (A) Control granule cells undergoing radial migration had leading 

processes with constant length. (B), (B’) CDK5-DN expression disrupted granule cell 

morphology and caused aberrantly longer leading processes (B) or multiple and/or 

branched leading processes (B’). Scale bars indicate 10 µm. (C) The length of leading 

processes is represented along the x axis and the percentages of total cell number in 

each bin are represented along the y axis. The longest leading process was counted for 

the cells with multiple leading processes. (D) Data in boxplots are represented as 

25%-75% quartiles (boxes) and median (lines). Lower and higher whiskers indicate the 

lowest and highest data within 1.5 IQR of the respective quartiles. Outliers are 

represented by circles. Leading processes of cells expressing CDK5-DN were 

significantly longer than those of control cells. (n = 467 cells, control, n = 375 cells, 

CDK5-DN). *p < 0.001; Wilcoxon rank sum test. (E) The percentages of radially 

migrating granule cells with the indicated number of leading processes. (F and G) 

Granule cells expressing CDK5-DN elongated long and thin processes into the white 

matter (WM) after 5 days of electroporation. Dotted lines in (F) indicate borders 

between the WM and IGL. Each layer was identified by counterstaining with DAPI. 

Arrowheads in (G) trace a long radial process elongated into the WM from a granule 

cell in the ML. Scale bars indicate 50 µm in (F) and 20 µm in (G). 
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Fig. 5. Time-lapse imaging reveals that inhibition of CDK5 disrupts kinetics of 

radial migration of granule cells

Time-lapse imaging of radially migrating granule cells, expressing either Venus YFP 

alone (control; A, D and D’, see also Supplemental Movie 3) or Venus YFP with CDK5-

DN (B, C, E and E’; see also Supplemental Movie 4, 5). (A) Leading process tips and 

soma of control cells migrated at the same speed so that the leading processes remained 

constant in length. (B), (C) CDK5-DN expression halted somal movement and caused 

abnormal elongation of leading processes (B) or repeated extension and retraction of 

multiple leading processes (C). Panels are oriented the pial side up, with the white 

matter side down. Arrows and arrowheads indicate leading process tips and cell soma, 

respectively. Numbers attached to arrows represent the same processes among the 

sequential images. Tracings of the cells indicated by arrows and arrowheads are shown 

in lower panels of (A), (B) and (C). Images were taken 20 min interval for 12 hours. 

Times are indicated in min. Scale bars indicate 20 µm. (D-E’) Displacement of leading 

process tips and cell soma (D and E), and length of leading processes (D’ and E’) of the 

granule cells shown in (A) and (B) are plotted against time, respectively. (F) The 

average speed of somal movement (n = 52 cells, control, n = 53 cells, CDK5-DN). 

Displacement toward the pial surface was defined as a negative value. Data in boxplots 
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are represented as 25%-75% quartiles (boxes) and median (lines). Lower and higher 

whiskers indicate the lowest and highest data within 1.5 IQR of the respective quartiles. 

Outliers are represented by circles. *p < 0.001, Wilcoxon rank sum test.

Fig. 6. Inhibition of CDK5 impairs centrosome migration during radial migration

(A), (B) Statistical analyses of the centrosome position in granule cells electroporated 

with pCAG-DsRed-express and pCentrin-2-EGFP (control) or pCAG-DsRed-express, 

pCentrin-2-EGFP and pCAG-CDK5-DN(CDK5-DN) at 48 hour after electroporation. 

The nuclei were visualized by DAPI staining and the distance between the centrosome 

and leading pole of the nucleus (N-C distance) was measured. (A) The distance from the 

leading pole of the nucleus (point 0) to the leading process (plus; right) and the soma 

(minus; left) are represented along the x axis and the percentages of total cell number in 

each bin are represented along the y axis. (B) Data in boxplots are represented as 

25%-75% quartiles (boxes) and median (lines). Lower and higher whiskers indicate the 

lowest and highest data within 1.5 IQR of the respective quartiles. Outliers are 

represented by circles. There is no significant difference in the N-C distance between 

control cells and cells expressing CDK5-DN (0.7 ± 3.7 µm, n = 93 cells, control, 0.6 ± 

2.5 µm, n = 90 cells, CDK5-DN, mean ± s.d., p = 0.7313, Wilcoxon rank sum test). (C)-

(D’) Time-lapse images of centrosome movement during radial migration. Granule cells 
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in GFP-Centrin-2 mice were electroporated with pCAG-DsRed-express alone (C; see 

also Supplemental Movie 8) or pCAG-DsRed-express with pCAG-CDK5-DN (D and 

D’; see also Supplemental Movie 9, 10). Images were taken 5 min interval for 2-3 

hours. Sequential images of 10 min are shown. Centrosomes labeled with GFP-

Centrin-2 (green) are indicated by asterisks. Panels are oriented the pial side up, with 

the white matter side down. Scale bars indicate 5 µm. The centrosome was located close 

to the soma in most granule cells at the onset of time-lapse imaging (the distance 

between the centrosome and centroid of the soma: 8.5 ±  4.2 µm, control, n = 15 cells vs 

3.5 ±  1.4 µm, CDK5-DN, n = 16 cells, mean ± s.d.). (E) Representative traces of 

displacement of the centrosome in cells expressing either pDsRed-express alone 

(control), or pDsRed-express with CDK5-DN (CDK5-DN) during a recording period of 

3 hours. Red circles and red squires indicate the position at the onset and end of 

recording, respectively. In contrast to the centrosome in control cells which constantly 

migrated forward, the centrosome of CDK5-DN cells fluctuated within the soma and 

failed to undergo constant forward movement. (F) The average speed of forward 

movement of the centrosome. Data in boxplots are represented as 25%-75% quartiles 

(boxes) and median (lines). Lower and higher whiskers indicate the lowest and highest 

data within 1.5 IQR of the respective quartiles. Individual data are plotted by circles. 

CDK5-DN expression significantly reduced the forward movement of the centrosome 
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(5.9 ± 1.5 µm/h, n = 15 cells, control; 2.3 ±  0.6 µm/h, n = 16 cells, CDK5-DN, mean ± 

s.e.m.,*p < 0.01, Wilcoxon rank sum test). 
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Supplemental Materials

Figure S1. A schematic illustration of tangential migration in isolated cerebellar 

lobes

Cerebellar lobes transduced with fluorescent genes were isolated and maintained in an 

incubator chamber attached to an upright microscope stage. Images were acquired 

through the superficial layer of the cerebellar cortex. Many granule cells elongating 

their processes along the longitudinal axis were clearly visualized. 

Figure S2. Lobe/slice cultures maintain the architecture of the cerebellar cortex

(A, B) Lobe cultures (A) and slice cultures (B) transfected with EGFP (green) were 

fixed after 6-hour incubation in a stage-top incubator. Lobe cultures were cryosectioned 

into 20 µm-thick transverse slices. Samples were immunostained with antibodies 

against GFAP (glial fibers; magenta) and Calbindin (Purkinje cells; yellow), and then 

counterstained by DAPI (blue). Each layer of the cerebellar cortex (the EGL, ML, PCL 

and IGL) was clearly distinguishable in both lobe and slice cultures. Bergmann glial 

fibers and Purkinje cell dendrites appeared to be intact in the ML. Tangential migration 

of EGFP-labelled granule cells was seen in the lower part of the EGL (A, B), and 

radially migrating cells were detected in the ML (B). Scale bars indicate 50 µm.
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Movie 1

Tangential migration of the control granule cells depicted in Figure 3E. Images were 

acquired at 20-min-intervals for 8 hours; playback rate is 8 frames per s.

Movie 2

Tangential migration of the granule cells expressing CDK5-DN depicted in Figure 3F. 

Images were acquired at 20-min-intervals for 8 hours; playback rate is 8 frames per s.

Movie 3

Radial migration of the control granule cells depicted in Figure 5A. Images were 

acquired at 20-min-intervals for 12 hours; playback rate is 8 frames per s.

Movie 4

Radial migration of the granule cells expressing CDK5-DN depicted in Figure 5B. 

Images were acquired at 20-min-intervals for 12 hours; playback rate is 8 frames per s.

Movie 5

Radial migration of the granule cells expressing CDK5-DN depicted in Figure 5C.
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Movie 6

Sagittal sections of cerebelli electroporated with pCAG-EGFP (green) were 

immunostained with anti-GFAP antibody (magenta). Optical Z sections were obtained 

and 3D-reconstructed images were rotated every 30 degrees.

Movie 7

3D-reconstructed images of the granule cell expressing CDK5-DN. Images were rotated 

every 30 degrees.

Movie 8

Centrosome kinetics in the control granule cells depicted in Figure 6C. Images were 

acquired at 5-min intervals for 3 hours; playback rate is 8 frames per s.

Movie 9

Centrosome kinetics in the granule cells expressing CDK5-DN depicted in Figure 6D. 

Images were acquired at 5-min intervals for 3 hours; playback rate is 8 frames per s.

Movie 10
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Centrosome kinetics in the granule cells expressing CDK5-DN depicted in Figure 6D’. 
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