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Abstract

The domestic chicken is an attractive model system to explore the development and function of brain circuits.
Electroporation-mediated and retrovirus (including lentivirus) vector-mediated gene transfer techniques have been widely
used to introduce genetic material into chicken cells. However, it is still challenging to efficiently transduce chicken
postmitotic neurons without harming the cells. To overcome this problem, we searched for a virus vector suitable for gene
transfer into chicken neurons, and report here a novel recombinant virus vector derived from avian adeno-associated virus
(A3V). A3V vector efficiently transduces neuronal cells, but not non-neuronal cells in the brain. A single A3V injection into a
postembryonic chick brain allows gene expression selectively in neuronal cells within 24 hrs. Such rapid and neuron-specific
gene transduction raises the possibility that A3V vector can be utilized for studies of memory formation in filial imprinting,
which occurs during the early postnatal days. A3V injection into the neural tube near the ear vesicle at early embryonic
stage resulted in persistent and robust gene expression until E20.5 in the auditory brainstem. We further devised an A3V-
mediated tetracycline (Tet) dependent gene expression system as a tool for studying the auditory circuit, consisting of the
nucleus magnocellularis (NM) and nucleus laminaris (NL), that primarily computes interaural time differences (ITDs). Using
this Tet system, we can transduce NM neurons without affecting NL neurons. Thus, the A3V technology complements
current gene transfer techniques in chicken studies and will contribute to better understanding of the functional
organization of neural circuits.
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Introduction

The domestic chicken (Gallus gallus domesticus) has provided an

attractive model system to understand the development and

function of brain circuits. The chicks are born with their eyes

open, and can actively explore from the moment they hatch [1].

This is because, as precocial birds, the precise organization of the

functional brain circuits is mostly established during the embry-

onic period [2]. The chick embryo is useful, therefore, to study

how precisely the development of complex brain circuits is

programmed. In turn, postnatal chicks also offer a unique

opportunity to explore the process of memory formation [3]. A

visually naive chick immediately after hatching can easily learn the

visual characteristics of a moving object, and subsequently form a

strong social attachment to it [4–6]. Such imprinting memory has

a great advantage in that the process of memory formation can be

analyzed without interference from previous visual experiences

[3]. To gain a further understanding of brain mechanisms using

prenatal and postnatal chicks, development of sophisticated

techniques for genetic modification of neuronal cells is important.

Currently, electroporation-mediated and retrovirus (including

lentivirus) vector-mediated gene transfer methods are widely used

for chick studies [7–10]. These methods permit genetic manipu-

lation with a relatively high efficiency during the early develop-

mental stage [11,12]. However, it is still challenging to efficiently

and selectively deliver genetic material into chick postmitotic

neurons without harming the cells.

In addition to the gene transfer techniques mentioned above,

adeno-associated virus (AAV) vector is broadly applied to

mammalian studies [13–15]. AAV is a naturally replication-

defective, nonpathogenic single-stranded DNA virus [16] that can

replicate only in the presence of a helper virus such as adenovirus

or herpes virus [17]. The single stranded DNA of the AAV

genome consists of two open reading frames (ORFs), rep and cap

[18], and inverted terminal repeats (ITRs) at both ends of the

DNA strand. The rep and cap ORFs encode four replication

regulatory proteins and three capsid proteins, respectively [19].

The ITRs are the only cis-acting elements necessary for virus

replication, packaging and integration [20]. Therefore, the

recombinant AAV vector can be generated by transfecting host

cells with a plasmid containing a transgene expression cassette

flanked by the cis-acting ITRs and a plasmid expressing the rep

and cap genes in trans, in the presence of helper virus genes

[21].The recombinant AAV vector permits nontoxic transduction

of postmitotic cells and long-term gene expression in neurons [22].
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These properties, which make AAV vector one of the most

attractive and promising vehicles for human gene therapy, also

facilitate research of brain mechanisms. More than 100 variants of

mammalian AAV have so far been identified [23]. Recombinant

vectors made from these mammalian AAVs have been well

characterized, and improved so as to achieve cell type-specific

transgene expression [24–27] and to deliver genetically encoded

tools for visualizing and manipulating neuronal activity [28,29].

Unfortunately, these mammalian AAV vectors are not practical

for chick studies, because transduction efficiencies of these

mammalian AAVs are quite low in avian cells [30]. Recently,

several strains of avian AAV (A3V) have been isolated, and their

genomes were sequenced [30–32]. Because these A3Vs have a

genome structure similar to that of the mammalian AAVs [30,31],

the basic strategy and process of generating recombinant vectors

can be readily adapted from the mammalian counterparts [30,31].

In principle, therefore, if a recombinant A3V vector could

efficiently transduce chicken neurons, advanced technologies

Figure 1. Comparison of transduction properties of A3V, AAV2 and LV. (A) Constructs of A3V-RSV-EGFP, AAV2-RSV-EGFP, and LV-RSV-EGFP.
ITR, inverted terminal repeat; RSV, Rous sarcoma virus promotor; EGFP, enhanced green fluorescent protein; WPRE, woodchuck hepatitis virus post-
transcriptional regulatory element; pA, SV40 polyadenylation signal; LTR, long terminal repeat; psi, packaging signal; RRE, Rev-responsive element;
cPPT, central polypurine tract. (B) A representative example of EGFP-expressing cultured chicken neural cells after A3V treatment. Scale bar indicates
20 mm. (C–E) A3V-treated chicken neural cells, zebra finch neural cells, and 293T cells, respectively. Upper and lower panels represent the DAPI
nuclear staining and EGFP fluorescent images of the same fields of view, respectively. All fluorescent images were taken with the same exposure time.
(F–K) As a comparison, fluorescent images of corresponding cultured cells after AAV2 or LV treatment are shown. All images were taken with the
same exposure condition as in (C–E). Scale bar indicates 100 mm. (L and M) Quantification of overall gene expression and transduction rate,
respectively (n = 4). a.u., arbitrary units. *p,0.05; **p,0.005. The raw data are listed in Tables S1 and S2.
doi:10.1371/journal.pone.0048730.g001
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devised for mammalian AAV vectors could easily be introduced to

chick studies. However, transduction characteristics of recombi-

nant A3V vector in avian brain have been unexplored until now.

In this study, we demonstrate that the recombinant A3V vector

efficiently transduces neuronal cells, but not non-neuronal cells in

the chicken brain. We show that a single A3V injection into the

postembryonic chick brain allows transgene expression selectively

in neuronal cells within 24 hrs. Such rapid induction of gene

expression raises the possibility that A3V vector can be utilized for

studies of filial imprinting, which occurs during the early postnatal

days [33]. We also found that A3V injection into the lumen of the

neural tube near the ear vesicle can robustly transduce embryonic

neurons in the auditory brainstem and the expression pattern of a

transgene varies dependent on the embryonic stage of injection.

Based upon these observations, we further developed an A3V-

mediated tetracycline (Tet) dependent gene expression system [34]

as a tool for studying the auditory circuit, consisting of the nucleus

magnocellularis (NM) and nucleus laminaris (NL), that primarily

computes interaural time differences (ITDs) [35]. Using this

system, we established a method to selectively transduce NM

neurons without affecting NL neurons. Neurons in the NM-NL

circuit maintain a topographic arrangement [36,37] similar to the

organization of other sensory systems [38], and characteristic

frequency-dependent differentiation and tuning of their cellular

properties start during the embryonic stage [36,39]. Thus,

application of A3V-mediated gene transfer to chick embryonic

auditory brainstem will also be useful to explore the development

and information processing of the auditory system, a truly

remarkable neural circuit that allows the precise computation of

ITDs in the microsecond range.

Results

Efficient A3V Transduction of Postmitotic Neurons
Previous studies have shown that recombinant A3V vector

transfers genes into various types of chicken cell lines and primary

cultured cells [30]. It was, however, unknown whether the A3V

vector could transduce non-proliferative postmitotic neurons. To

test its ability to transduce terminally differentiated neurons, we

constructed an A3V vector that expresses EGFP under the control

of the ubiquitous Rous sarcoma virus promotor (A3V-RSV-EGFP)

(Figure 1A) and applied it to primary dissociated cultures from

chicken embryonic brain. Postmitotic neurons, which are the

majority of cultured brain cells and can easily be identified by their

morphology, began to express EGFP as early as 24 hrs after the

A3V-RSV-EGFP treatment, and EGFP fluorescence gradually

increased up to at least 7 days (Figure 1B). Thus, the A3V vector

can transduce gene expression in non-dividing chicken neurons.

To further evaluate the basic properties of the A3V vector, we

compared its transduction with those of AAV2 and LV vectors,

which are widely used to transduce various types of mammalian

neural cells [40,41]. We made AAV2 and VSV-G pseudotyped

LV vectors that express EGFP under the control of the RSV

promoter (AAV2-RSV-EGFP and LV-RSV-EGFP, respectively)

(Figure 1A) similar to the A3V-RSV-EGFP. Each virus vector was

applied to chicken neural cells, zebra finch neural cells and 293T

cells, at a multiplicity of infection equivalent to 103 genome copies

(GC) per cell. Then, 3 days after infection, cells were fixed and

counterstained with DAPI (upper panels in Figure 1C–E). Overall

gene expression (average EGFP intensity) and transduction

frequency (percent EGFP positive cells) were analyzed

(Figure 1C–M). Quantification of average EGFP intensity

(Figure 1L) and percent EGFP positive cells (EGFP+/DAPI+)

(Figure 1M) revealed that A3V displayed the highest transduction

efficiency in chicken and zebra finch neural cells among these

three vectors, but A3V transduction in zebra finch cells is much

lower than that in chicken cells (Figure 1L and M, and Tables S1

and S2). A3V had no apparent transduction activity in 293T cells

(Figure 1L and M). On the other hand, AAV2 showed almost no

transduction in the avian neural cells (Figure 1L and M). Because

the only difference between the A3V-RSV-EGFP and AAV2-

RSV-EGFP vectors is limited to the specific capsid proteins and

the inverted terminal repeats (ITRs) flanking the gene expression

cassette (RSV-EGFP), transduction efficiency and species-specific-

ity of recombinant AAV vectors should be determined by the

distinct structures of these limited components.

In contrast to the species-specific transduction by these AAV

vectors, the LV vector transduced not only HEK293T cells but

also an appreciable number of chicken neural cells (Figure 1I, K, L

and M). However, the average EGFP intensity and transduction

frequency in chicken neural cells were both much lower for LV

than for A3V treatment (Figure 1L, and M). Furthermore, the

morphology of EGFP-expressing primary cultured chicken cells

appeared more variable in LV-transduced cells than A3V-

transduced ones. Because primary brain culture contains non-

neuronal cells such as astrocytes in addition to neurons, the

differences in cell shape between the A3V- and LV-transduced

cells may reflect their respective transduction selectivity to specific

neural cell types.

As shown in Figures 1C and 1I, the intrinsic EGFP fluorescence

was detectable after A3V or LV infection, but the intensity of the

EGFP signal was quite different from cell to cell. To detect EGFP

expression with high sensitivity and precisely assess transduction

selectivity of the vectors for chicken neuronal and non-neuronal

cells, we performed double immunofluorescence labeling against

EGFP and neuronal marker MAP2, and determined the neuronal

transduction efficiency (Figure 2A and B). EGFP-expressing cells

after LV treatment included a considerable population (59.8%) of

MAP2-negative non-neuronal cells (Figure 2B, Table S3). By

contrast, more than 90% of EGFP-expressing cells in A3V-treated

cultured cells were MAP2 positive (Figure 2B, Table S3),

indicating that A3V efficiently transduces primary chick neurons

in culture, but does not efficiently transduce non-neuronal brain

cells. Because we used the ubiquitous RSV promoter, which is

strongly active in a wide range of cells, the neuron-preferential

transduction of the A3V vector is most likely due to the virus

tropism of the A3V strain. Together, the A3V vector transduces

postmitotic chicken neurons in a highly efficient and selective

manner. These results point to its potential utility in chick studies

in vivo and in ovo.

A3V-mediated Gene Expression in Postnatal Chick Brain
Because young chicks can actively explore and rapidly learn

from the moment they hatch, these precocial chicks have been

considered as an attractive model to study neurobiological

processes underlying memory formation [3,4]. However, practical

and efficient gene manipulation techniques in postnatal chick

brain have not yet been established. To assess the utility of A3V

vector, we characterized the transduction of A3V-mediated gene

delivery to the chick brain after hatching. We injected 0.5 ml of a

serially diluted A3V-RSV-EGFP viral stock (a total of 56107,

56108, and 56109 GC) into the unilateral striatum at post-hatch

day 5 or 6 (PHD5 or 6), conducted immunofluorescence labeling

of EGFP, and analyzed the effects of the transductions 7 days after

injection. As shown in Figure 3A–C, administration of a fixed

volume with increasing concentration of A3V particles to the

striatum led to a commensurate increase in the EGFP expressing

area. A strong EGFP signal was observed around the needle

A3V-Mediated Transduction of Chicken Brain
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injection site after administration of 56107 GC (Figure 3A and

3D, Table S4), but was progressively more widely distributed

throughout the forebrain after administration of 56108 and 56109

GC (Figure 3B, C, and 3D, Table S4). To examine neuronal

transduction of A3V in vivo, we performed double immunofluo-

rescence labeling for EGFP and the neuronal marker NeuN. As

shown in Figure 3E, transduced cells around the injection site were

almost 100% NeuN-positive (100.060.0% at 56107 GC,

98.260.8% at 56108 GC, and 100.060.0% at 56109 GC,

n = 4). This indicates that the A3V vector can efficiently and

selectively transduce chicken neurons not only in vitro but also

in vivo.

Establishment of memory underlying filial imprinting is limited

within the early postnatal days [33]. Therefore, rapid induction of

gene expression is essential for the application of A3V-mediated

gene transfer to studies of imprinting memory in these avian

species. To address whether the A3V vector can allow gene

expression within relatively short periods, we injected A3V-RSV-

EGFP in the intermediate medial mesopallium (IMM), which is

involved in memory for visual imprinting [42], at PHD0 and

analyzed EGFP expression 24 hrs after injection. As shown in

Figure 3F, EGFP fluorescence was observed in a considerable area

(5.562.0 mm2, n = 4) within 24 hrs. To examine the transduction

selectivity of A3V for neuronal cells in the IMM, we also

performed immunofluorescence labeling for NeuN. All the EGFP-

positive cells in the IMM expressed NeuN (100.060.0%, n = 4),

indicating that A3V selectively transduces neurons in the IMM.

These results demonstrate that A3V technology can become a

powerful tool to study memory formation in filial imprinting that

occurs during the early posthatch period.

Gene Transduction in the Embryonic Auditory Circuit
Animals utilize binaural interaural time differences (ITDs) in the

microsecond range as a cue for localizing the sound source [35]. In

avian species, NM and NL neurons in the brainstem form a

primary circuit that computes ITDs (Figure 4A) [35,43]. NM

Figure 2. Neuron-preferential transduction of A3V vector. (A) Primary cultures of chick neural cells after A3V or LV infection were immuno-
labeled with antibodies against EGFP (green) and the neuronal marker MAP2 (red). Arrowheads indicate MAP2-negative, LV-transduced cells. Scale
bar indicates 20 mm. (B) The neuronal transduction rates of A3V and LV are represented as the percentage of MAP2 and EGFP double-positive cells
within 100–200 EGFP-positive cells (n = 4). *p,0.005. The raw data are listed in Table S3.
doi:10.1371/journal.pone.0048730.g002
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neurons receive monaural input from ipsilateral auditory nerve

fibers and in turn project to bilateral NL neurons (Figure 4A) [36].

To calculate ITDs, NM axons provide the delay lines (Figure 4A)

[37] and NL neurons precisely detect the coincidence of binaural

synaptic inputs (Figure 4A) [35]. In addition, the NM-NL circuit is

tonotopically organized [35] and the morphological and electro-

physiological properties of both NM and NL neurons are

specialized at each frequency [36,39]. Previous studies have

shown that such frequency dependent tuning in the ITD detection

circuit has already started and has almost been established before

hatching in the precocial birds [36,39]. Thus, the chick embryonic

auditory brainstem offers an elegant preparation in which to study

mechanisms involved in the precise organization of functional

brain circuits.

Because the embryonic central nervous system contains various

types of neural cells in different differentiated states, transduction

efficiency and neuronal selectivity of A3V may depend on the

embryonic stage. We therefore examined how the transgene

expression pattern in the embryonic auditory brainstem varies,

dependent on the injection timing, and addressed whether A3V

selectively transduces neurons in the developing auditory brain-

stem. A3V-RSV-EGFP was injected into the lumen of the neural

tube near the ear vesicle at E1.5, E2.5, E3.0, E3.5, and E4.5, and

EGFP expression in the auditory brainstem was assessed at E17.

A3V injection at E1.5 scarcely induced EGFP expression in these

auditory nuclei (data not shown), whereas injection at E2.5 to E4.5

resulted in persistent EGFP expression in the auditory brainstem

nuclei until E17 (Figure 4B–E). To quantify transduction

efficiency, we performed immunofluorescence labeling using

anti-NeuN antibody and determined the frequency of EGFP-

expressing NeuN positive cells (EGFP+ NeuN+/NeuN+) in the

following auditory brainstem nuclei: NM, NL, nucleus angularis

(NA), and superior olivary nucleus (SON). As summarized in

Figure 4F (raw data in Table S5), the transduction efficiency of the

individual auditory nuclei varied dependent on the injection

timing. As a case in point, although NM and NL are very closely

located in the early embryonic stage, these neighboring NM and

NL showed quite different temporal profiles of transduction

efficiency. NM neurons were transduced most efficiently at E2.5

(85.265.9%), and the transduction efficiency was considerably

preserved untill E3.5 (59.268.2%). In contrast, EGFP expressing

NL neurons were rare in the E2.5 injected samples (0.560.7%),

and the maximum efficiency was obtained at E3.5 (38.4612.9%).

Such differences in temporal profiles of transduction rate may be

because the individual NM neurons are sensitive to viral infection

during a longer period than the NL neurons. We therefore

examined whether successive A3V injection at different times can

transduce the same NM neurons. We injected the A3V vector that

expresses red fluorescent protein mCherry (A3V-RSV-mCherry)

at E2.5 and then injected A3V-RSV-EGFP at E3.5 (Figure 4G,

Figure 3. A3V gene transduction in post-hatch chick brain. (A–C) EGFP expression 1 week after A3V injection (a total of 56107, 56108, and
56109 GC, respectively) was analyzed by immunofluorescence labeling of parasagittal sections. Arrowheads indicate injection sites in the striatum.
Scale bars are 1 mm. (D) Gene transduction after LV or A3V injection was quantified by measurements of EGFP-expressing area in the parasagittal
sections containing injection sites (n = 4). The raw data are listed in Table S4. (E) A3V-treated striatal cells were visualized by double
immunofluorescence labeling for EGFP (green) and neuronal marker NeuN (red). Scale bar indicates 50 mm. (F) EGFP expression 24 hrs after A3V
injection (a total of 56109 GC) into the intermediate medial mesopallium (IMM) was analyzed by immunofluorescence labeling of coronal sections.
The arrowhead indicates the A3V injection site. Scale bar is 1 mm.
doi:10.1371/journal.pone.0048730.g003
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upper). As shown in Figure 4G, a considerable number of NM

neurons expressed both mCherry and EGFP. Together, these

observations suggest that the neighboring NM and NL may have

quite different cellular properties in early on in embryonic stages.

Next, to assess transduction selectivity of neuronal cells in the

prenatal auditory brainstem, we analyzed the NeuN positive cell

frequencies in the transduced cells (EGFP positive cells) in the

NM, NL, NA, and SON. The NeuN positive cell frequencies

Figure 4. A3V-mediated gene transfer into the embryonic chick auditory brainstem. (A) Schematic of a primary ITD detection circuit
composed of NM and NL neurons. The ipsilateral NM axons provide a simultaneous input to the dorsal side of the NL neurons, whereas the longer
delay lines of contralateral NM axons project to the ventral side of more lateral NL neurons. Because NL neurons function as a coincident detector of
binaural synaptic inputs, NL neurons in more lateral positions respond maximally to sounds originating in far contralateral space. (B–E) A3V-RSV-EGFP
(0.5–1.5 ml, 161012 GC/ml) was injected into the neural tube at E2.5 (B), E3.0 (C), E3.5 (D), and E4.5(E), and EGFP signal at E17 was analyzed by
immunofluorescence labeling of coronal sections. Scale bar indicates 200 mm. (F) A3V transduction rates in the embryonic auditory nuclei were
quantified as the percentage of EGFP-expressing cells within total NeuN-positive cells in each nucleus (n = 6). The raw data are listed in Table S5. (G)
A3V-RSV-mCherry and A3V-RSV-EGFP (0.5–1.5 ml, 161012 GC each) were injected at E2.5 and at E3.5, respectively. Spatial pattern of A3V transduction
at E17 was analyzed by double immunofluorescence labeling for EGFP (green) and mCherry (red). Scale bars indicate 200 mm.
doi:10.1371/journal.pone.0048730.g004
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(NeuN+ EGFP+/EGFP+) were almost 100% in these four nuclei

(100.060.0% at NM; 99.261.9% at NL; 99.760.5% at NA;

97.663.0% at SON, n = 6), indicating that the A3V vector can

transfer genetic material efficiently to neurons in the embryonic

auditory brainstem.

A3V-mediated Conditional Gene Manipulation
Because NM axons serve as neural delay lines for ITD detection

(Figure 4A) [37], the axonal conduction of NM neurons must be

strictly regulated. To study the regulatory mechanisms and

functional role of the axonal conduction of NM neurons, selective

gene delivery to NM neurons without affecting the functional

properties of NL neurons is useful. To achieve such selective

expression of reporter genes, we exploited the difference in their

sensitivity to A3V infection during the embryonic period (Figure 4F

and G). We adopted a co-infection strategy to control gene

expression in our A3V vector system. We constructed two A3V

vectors comprising a tetracycline (Tet) dependent gene expression

system (Figure 5A). One vector is A3V-RSV-rtTAV16, which

expresses a recombinant transcriptional activator protein

(rtTAV16) consisting of a modified Tet repressor [44] and a

modified VP16 activation domain [34]. The other vector is A3V-

TRE-EGFP, which expresses EGFP under the control of an

inducible promoter composed of Tet response elements (TREs)

and the cytomegalovirus (CMV) minimal promoter [45]. In this

system, gene expression is activated only in the doubly infected

cells as a result of Tet-dependent binding of the rtTAV16 protein

to TREs located within the inducible promoter of A3V-TRE-

EGFP.

First, to examine the sustained effect of a single injection of the

Tet analogue doxycyclin (Dox), we performed A3V-TRE-EGFP

and A3V-RSV-rtTAV16 injection into the neural tube at E3.0,

applied Dox in the yolk at E6.0, and performed immunofluores-

cence labeling at E20 (n = 2 embryos) and E20.5 (n = 2 embryos)

(Figure 5B). As shown in Figure 5C, a strong EGFP signal was

observed in the NM-NL circuit at E20.5, indicating that gene

induction after a single Dox injection can be sustained for more

than 14 days. Furthermore, these results indicate that A3V

injection at the early embryonic stage (E3.0) can lead to persistent

gene expression through the late embryonic stage (E20.5) just

before hatching. In the NL local circuit, only a few NL neurons

expressed EGFP in their cell bodies (Figure 5C, arrowhead);

EGFP expression was absent in the cell body portion of the

majority of NL neurons, and enriched in their bipolar dendritic

portion where the NM axons form synaptic contacts (Figure 5C).

To examine the origin of the EGFP signal in the NL dendritic

portion, double immunofluorescence labeling against EGFP and

dendrite marker MAP2 was conducted. As shown in Figure 5D,

EGFP immunofluorescence was clearly separated from MAP2

signal, indicating that the EGFP-labeled structures are NM axons,

not NL dendrites.

To more selectively transduce NM neurons in the NM-NL

circuit, we next performed A3V-TRE-EGFP injection into the

neural tube at E2.5, followed by A3V-RSV-rtTAV16 injection at

E3.5, and then applied Dox in the yolk (Figure 6A). As shown in

Figure 6B, EGFP-positive neurons were observed in NM, while

none were observed in NL. In addition, EGFP expression was

strongly suppressed in NA. Thus, the A3V-mediated Tet inducible

expression system is useful to efficiently and selectively introduce

genetic material into NM neurons without affecting NL neurons.

During the embryonic stage, neurons in the NM and NL form

tonotopically organized connections and show remarkable diver-

sity in morphological properties depending on the characteristic

frequency of sound. For morphological analysis of neural circuits,

sparse and robust labeling of cells, such as Golgi staining, is useful.

When diluted A3V-RSV-EGFP was injected, the EGFP signal in

the auditory brainstem became sparse but weak (data not shown).

To allow sparse and strong transgene expression in the NM and

NL neurons, we employed the A3V-mediated Tet-inducible

expression system. We injected A3V-TRE-EGFP and A3V-

RSV-rtTAV16 at E3.5, followed by Dox administration at E6.5,

and then EGFP expression was assessed at E9 and E17 (Figure 7A).

As shown in Figure 7B (upper panel), without Dox administration,

no apparent EGFP signal was detected at E17. In contrast, a single

Dox treatment at E6.5 induced sparse and robust EGFP

expression at E9, and the strong EGFP expression persisted until

E17 (middle and lower panels in Figure 7B). As shown in

Figures 7C–F, we could easily observe the morphological changes

in the NM-NL circuit using EGFP; NM neurons showed extended

ramifying processes at E9 (Figure 7C), while they lost their

processes at E17 (Figure 7D); NL neurons were uniformly

immature-appearing at E9 (Figure 7E), and displayed a charac-

teristic bipolar shape at E17 (Figure 7F). Thus, the A3V-mediated

Tet-inducible system permits us to introduce sparse and robust

gene expression in developing NM and NL neurons in a

temporally controlled fashion. Modifications allowing co-expres-

sion of an shRNA for gene knockdown or a mutant cDNA using a

bicistronic construct could further elucidate the molecular

mechanisms underlying tonotopic differentiation and organization

of the ITD-detection circuit.

Discussion

In this study, we characterized recombinant A3V vector-

mediated gene transduction in chicken brain cells. In comparison

with AAV2 and LV vectors, A3V showed highly efficient, selective

transduction of differentiated neurons. A single injection of A3V

vector into postembryonic chick brain induced gene expression

selectively in neuronal cells within 24 hrs, suggesting that A3V can

be applied as a gene delivery tool to study imprinting memory,

which becomes established in a relatively short period of time after

hatching. We also applied A3V technology to the primary neural

circuit that computes binaural ITDs, and engineered a method to

transduce NM neurons without affecting NL neurons during the

formation of the ITD detection circuit.

A3V belongs to an AAV group (or Dependovirus) that is a

naturally replication-defective DNA virus that can replicate only in

the presence of a helper virus such as adenovirus or herpesvirus

[17]. Because A3V has a genome structure that is common to all

the other known mammalian AAVs, the basic strategy and process

of generating recombinant vectors can be shared with mammalian

AAVs [30,31]. In fact, we could efficiently generate high-titer A3V

vectors (up to 1014 GC/ml) based upon the standard protocols for

mammalian AAV vectors (see materials and methods). Future

advanced technologies devised for other AAV vectors could also

easily be introduced to the design and production of the A3V

vectors.

In contrast to the similarity in basic genome structure,

transduction efficiency in avian neural cells was quite distinct

between A3V and mammalian-derived AAV2 (Figure 1L and M).

The only difference between A3V-RSV-EGFP and AAV2-RSV-

EGFP is limited to their specific capsid proteins and ITRs,

indicating that the different species-specificities between A3V and

AAV2 are determined by the distinct structures of these two

components. It may be possible that the ITRs of each respective

virus strain could interact differently with intracellular mechanisms

of the host cells. But as previously reported by Boissis et al., it is

more likely that virus transduction is directly mediated by the

A3V-Mediated Transduction of Chicken Brain
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capsid proteins that bind to cell surface molecules on the host cells

[30]. The presumed exterior surfaces of AAV capsids have several

divergent regions [30], and these divergent regions of A3V may

exclusively recognize avian-specific cell surface molecules. The

molecular mechanisms of AAV infection are not fully understood,

but previous studies suggest that several different cell surface

Figure 5. A3V-mediated Tet inducible expression system. (A) Tet inducible A3V constructs: rtTAV16, reverse tetracycline-controlled
transactivator variant 16; TRE, tetracycline response element. (B) A3V-RSV-rtTAV16 and A3V-TRE-EGFP (0.5–1.5 ml, 161013 GC/ml each) were injected
at E3.0, and Dox was administered at E6.5. Immunofluorescence labeling was conducted at E20 (n = 2 embryos) or E20.5 (n = 2 embryos). (C) Anti-
EGFP immunofluorescence on a coronal section of the NL-NM circuits at E20.5. The EGFP signal was not detected in the cell bodies of the majority of
NL neurons, but strong EGFP signal was observed in the cell bodies of some NL neurons (arrowheads). Scale bar indicates 100 mm. (D) A magnified
view of NL neurons at E20.5, visualized with double immunofluorescence labeling for EGFP (green) and dendrite marker MAP2 (red). The
immunofluorescence of EGFP was clearly separated from that of MAP2 in the NL dendritic portion. Scale bar indicates 20 mm.
doi:10.1371/journal.pone.0048730.g005
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molecules are thought to collaboratively function as receptors for

AAV infection [46–48]. The difference in A3V neural transduc-

tion between chickens and zebra finches may be determined by

the difference in receptor molecules between these two species.

In addition to efficient transduction of avian cells in culture, the

A3V vector showed neuron-specific transduction in the chicken

brain (Figure 2 and 3E). Cell type specificity of gene expression is

determined by the promoter and/or viral tropism. Because we

used the ubiquitous RSV promoter that is strongly active in a wide

range of cell types [49], the neuron-selective transduction of the

A3V vector is probably due to the tropism of this A3V strain. In

this study, we have demonstrated that A3V can transduce neurons

in various brain structures, including striatum (Figure 3A–C),

cerebral cortex (Figure 3F), and brainstem (Figure 4B–E).

However, we did not determine whether A3V can infect all

neuronal cell types. A previous report demonstrated that

mammalian AAV vectors display subtype-specific tropism even

within a restricted brain structure [50]. Therefore, A3V may also

have such subtype specificity in neuronal transduction. A full

understanding of the A3V tropism will require further studies

focused on the diversity of cell types within each local circuit.

During the embryonic period, the developing nervous system

contains undifferentiated neural cells along with postmitotic

neurons. A3V vector injection at E2,5 to E4.5, however, resulted

in neuron-specific transduction in the auditory brainstem. Such

neuronal selectivity in the embryonic stage may be different from

neuronal tropism observed in cultural neural cells or post-natal

brain. Because A3V is a non-integrating virus [51], neuron-

selective expression during the embryonic period may be partially

due to a dilution effect on viral DNA copy number in actively

proliferating undifferentiated neural cells. We also found that the

gene expression pattern in auditory brainstem was dramatically

altered dependent on the embryonic stages of A3V injection

(Figure 4B–E). Although NM and NL are spatially very close to

each other in the early embryonic stage, these neighboring NM

and NL displayed quite different temporal profiles of A3V

transduction efficiency (Figure 4F), indicating that NM and NL

neurons have distinct properties in the early embryonic stage [52].

Based upon this observation, we successfully developed a method

to introduce genetic material into NM neurons without affecting

neighboring NL neurons, using our A3V-mediated Tet-inducible

expression system. The fundamental role of the binaural auditory

system is to localize sound sources by comparing the differences

between the sound waves arriving at the two ears. NL is the first

site that receives bilateral auditory information through the NM

[35], and the NM-NL circuit functions as the primary detector of

ITDs [43]. Because the axons of NM neurons function as the

neural delay [37], axonal conduction of NM neurons should

precisely be regulated to allow NL neurons to detect coincidently

bilateral synaptic inputs. A three-dimensional reconstruction of the

chick NM fibers suggests that both axonal diameters and

internodal distances, as well as the axonal length, play a

fundamental role in creating the proper neural delay [53]. A3V-

mediated gene manipulation of NM neurons without affecting NL

neurons (Figure 6) will be a powerful tool to study the delay tuning

mechanisms for ITD-detection. We also applied this A3V-

mediated Tet-inducible system to robustly transduce a sparse

population of NM and NL neurons in a temporally controlled

fashion (Figure 7). In addition to fluorescent reporter genes such as

EGFP, we may co-introduce shRNA for gene knockdowns using a

bicistronic Tet-inducible construct [54]. This would be helpful to

further determine the molecular mechanisms underlying tonotopic

differentiation and organization of the ITD-detection circuit.

In this study, we describe a novel virus vector system that

efficiently delivers genetic material into prenatal and postnatal

chicken neurons. The A3V technology will complement current

gene transfer techniques in chick studies and will contribute to a

better understanding of functional organization of neural circuits

during and after the embryonic stages. In addition to overexpres-

sion or silencing of a gene of interest, A3V-based vectors can

introduce genetically encoded tools into neurons for visualizing

and manipulating activity, which has already been achieved with

mammalian AAV vectors [55–58]. This will provide an excellent

platform to address important issues in neuroscience.

Materials and Methods

All procedures were in accordance with the National Institutes

of Health Guide for the Care and Use of Laboratory Animals and were

approved by the Institutional Animal Care and Use Committee of

Kyoto University.

Cell Culture
Human embryonic kidney 293T cells (RIKEN BioResource

Center, Tsukuba, Japan, Cell No. RCB2202) were maintained at

37uC with 5% CO2 in Dulbecco’s modified Eagle’s medium

(DMEM) supplemented with 10% fetal bovine serum (FBS;

Figure 6. NM-selective transduction in the ITD-detection
circuit. (A) Single doses of A3V-TRE-EGFP and A3V-RSV-rtTAV16 (0.5–
1.5 ml, 161013 GC/ml each) were injected at E2.5 and at E3.5,
respectively, and Dox was administered at E3.5. (B) Double immuno-
fluorescence labeling for EGFP (green) and NeuN (red) was performed
on coronal sections at E17. EGFP signal was observed in NM, but not in
NL or NA. NA is outlined by the dotted line. Scale bar indicates 200 mm.
doi:10.1371/journal.pone.0048730.g006
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Biowest, Paris, France), 100 units/ml penicillin, and 100 mg/ml

streptomycin.

Primary cultures of chicken and zebra finch brains were

prepared essentially by the methods described earlier [59,60]. The

forebrain from embryonic day 7.5 (E7.5) chick or post-hatch day

0–1 (PHD0-1) zebra finch were dissected out and incubated in

PBS containing 30 U/ml papain (Nakarai tesque, Kyoto, Japan)

and 57 U/ml DNase I (Sigma-Aldrich, St. Luis, MO, USA) for 30

minutes (min) at 37uC. After rinsing three times in PBS, tissues

were gently triturated with a 5 ml pipette 15 times, followed by a

1,200 ml filtered long tip 15 times. Then dissociated cells were

passed through a cell strainer with a 40 mm nylon mesh (BD

Falcon, Bedford, MA, USA), suspended with Neurobasal medium

(Life Technologies, Grand Island, NY, USA) supplemented with

0.5 mM L-glutamine (Wako Pure Chemicals, Kyoto, Japan), 2%

B-27 supplement (Life Technologies), 100 units/ml penicillin, and

100 mg/ml streptomycin. Cells were plated on 24-well plates

coated with poly-L-lysine (105 cells/well). The medium was

refreshed 1 hr after plating to remove excess debris. Half of the

medium was changed after 3 days in vitro (DIV3).

Plasmid Constructs
AAV transfer vector plasmids (pA3V-RSV-EGFP, pA3V-RSV-

mCherry, pA3V-RSV-rtTAV16) were constructed by replacing

the b-galactosidase gene of pA3V-RSV-b-Gal [30] (kindly

provided by Dr. J. Chiorini, NIH, Bethesda, USA) with the

EGFP cDNA of pEGFP-N1 (Clontech, Mountain View, CA,

USA), the mCherry cDNA of pmCherry-N1 [61] (kindly provided

by Dr. R. Tsien, University of California, San Diego, CA, USA),

and the rtTAV16 (described below), respectively. The AAV

transfer vector plasmid pA3V-TRE-EGFP was constructed by

replacing the RSV promotor sequence of pA3V-RSV-EGFP with

the TRE promoter of pTRE-Tight (Clontech). The rtTAV16 was

generated by introducing V9I, G12S, F67S, F86Y, R171K, and

A209T mutations into the rtTA2S-M2 gene of pTet-On advanced

vector (Clontech) so as to increase the sensitivity for doxycycline

(Dox), as previously reported [34]. pAAV2-RSV-EGFP was

constructed by inserting the fragment containing the RSV

promoter and the EGFP cDNA of pA3V-RSV-EGFP into the

multi-cloning site in pAAV-MCS (Agilent Technologies, Santa

Clare, CA, USA). The woodchuck hepatitis virus post-transcrip-

Figure 7. A3V-mediated Tet-inducible system robustly transduced a sparse population of NM and NL neurons. (A) A3V-TRE-EGFP and
A3V-RSV-rtTAV16 (total 0.5–1.5 ml, 561011 GC/ml each) were injected at E3.5, and Dox was administered at E6.5. (B) Double immunofluorescence
labeling for EGFP (green) and NeuN (red). No apparent EGFP signal was detected at E17 in the Dox (2) preparation (upper), while strong EGFP signal
was observed both at E9 (middle) and E17 (bottom) in Dox (+) embryos. Scale bars indicate 100 mm. (C and D) Higher magnification views of EGFP-
expressing NM neurons at E9 and E17, respectively. Scale bars indicate 20 mm. (E and F) NL neurons at E9 or E17, respectively. Scale bars indicate
20 mm.
doi:10.1371/journal.pone.0048730.g007

A3V-Mediated Transduction of Chicken Brain

PLOS ONE | www.plosone.org 10 November 2012 | Volume 7 | Issue 11 | e48730



tional regulatory element (WPRE) of the pFUGW (kindly provided

by Dr. D. Baltimore, California Institute of Technology, Pasadena,

CA, USA) was then inserted before the SV40 polyadenylation

signal (SV40 pA) in these AAV transfer vector plasmids. pLV-

RSV-EGFP was constructed by replacing the ubiquitin promoter

and GFP cDNA of pFUGW with the RSV promoter and the

EGFP cDNA of the pA3V-RSV-EGFP.

Generation of Recombinant Viral Particles
For the production of AAV2 and A3V, 293T cells were plated

at 66106 cells per 15 cm dish the day before transfection. The

medium was replaced with fresh medium 1–2 hrs before

transfection. 293T cells were co-transfected with transfer vector

plasmid, rep/cap-expressing plasmid and helper plasmid (rep/cap-

expressing plasmid for A3V, provided by Dr. J. Chiorini; for

AAV2, purchased from Agilent Technologies) by calcium phos-

phate precipitation (100 mg each for 12 dishes). The medium was

replaced with DMEM containing 2% FBS 16–20 hrs after

transfection. Cells were harvested 48 hrs after transfection, and

pelleted by centrifugation at 1,1006g for 5 min. The pellets were

lysed in 2.5 ml of 150 mM NaCl, 100 mM Tris-HCl pH 8.0 by a

triple freeze-and-thaw procedure. The cell lysate was treated with

250 U/ml of benzonase (Merck, Darmstadt, Germany) for 30 min

at 37uC and centrifuged at 7,9006g for 60 min. The virus-

containing supernatant was further purified by iodixanol (Opti-

Prep; Axis-Shield, Oslo, Norway) step gradient ultracentrifugation

[62]. After ultracentrifugation in a Beckman SW41 rotor at

40,000 rpm for 3 hrs, about 1.5 ml of the 40% iodixanol step was

collected. Then the buffer was exchanged by dialyzing three times

against PBS containing 0.001% Pluronic F-68 (Sigma-Aldrich) and

the solution was concentrated down to 120 ml using a Vivaspin 20

(100,000 MWCO, Sartorius Stedim Biotech, Aubagne, France).

The viral solution was clarified by centrifugation at 18,5006g for

5 min and stored at 4uC until used. Because there are no

appropriate cell lines for measuring functional titers of both the

A3V and AAV2 vectors, we did not determine their actual

infectious titers, which are usually lower than genome titers by a

factor of 10 to 1000 [30,50,63]. The DNase-resistant viral genome

titers [64] were determined by quantitative real-time PCR (qPCR)

using the following primers and a probe specific for the WPRE

sequence: forward primer, 59-CCGTTGTCAGGCAACGTG-39;

reverse primer, 59-AGCTGACAGGTGGTGGCAAT-39; probe,

59-FAM-TGCTGACGCAACCCCCACTGGT-TAMRA-39

[65,66]. The yield of A3V and AAV2 was approximately 1013–

1014 genome copies (GC)/ml.

VSV-G-pseudotyped lentivirus particles were produced basical-

ly as previously described [67,68]. 293T cells were co-transfected

with 133 mg of pLenti-RSV-EGFP-WPRE, 87 mg of pMDL,

47 mg of pVSV-G and 33 mg of pREV (provided by Dr. D.

Baltimore) for 12615 cm dishes by the calcium phosphate

precipitation method. The medium was replaced with DMEM

containing 2% FBS and 10 mM sodium butyrate (Wako Pure

Chemicals) 16–20 hrs after transfection. Forty-eight hrs after

transfection, the culture supernatant was harvested, clarified by

centrifugation at 4,2006g for 5 min and filtered through a 0.45-

mm filter (Corning, NY, USA). Then the sample was concentrated

using a Vivaspin 20 (100,000 MWCO) and pelleted by ultracen-

trifugation in a Beckman SW41 rotor at 25,000 rpm for 2 hrs

through a 20% sucrose cushion. The viral pellet was resuspended

in 120 ml of PBS and stored in aliquots at 280uC until used. The

viral RNA titers were determined by one-step qPCR with the

primer/probe set for the WPRE sequence. The range of RNA

titers was 1012–1013 GC/ml.

Analysis of Transgene Expression in vitro
A single dose of 108 genome copies (GC) of each virus vector

was added to cultured neuronal cells at DIV3, or 293T cells soon

after plating on 24-well plates at a density of 105 cells/well. For the

quantitative analysis of virus transduction, cells 3 days after viral

infection were fixed with 4% paraformaldehyde in 0.1 M

phosphate buffer (pH 7.4) for 30 min. To measure average EGFP

intensity, fluorescent images of 3 random fields per well were taken

with the same exposure using a 106objective and a BZ-9000

fluorescence microscope (Keyence, Osaka, Japan). The back-

ground fluorescence was subtracted from each image using NIH

ImageJ software (National Institute of Health, Bethesda, MD,

USA) [69] and average fluorescence intensity per pixel was

calculated. To examine transduction efficiency of neuronal

transduction, we performed immunofluorescence labeling. Cells

were permeabilized and blocked with PBS containing 10% normal

goat serum and 0.1% Triton X-100 at room temperature for

60 min, and washed once with PBS. Cells were then incubated

with primary antibody at 4uC overnight, and subsequently with

secondary antibody at room temperature for 60 min. After

washing three times in PBS, cells were counterstained with DAPI

(49,6-Diamidino-2-phenylindole; Dojindo Laboratories, Kuma-

moto, Japan) to identify cell nuclei. Fluorescent images were

obtained using a 406objective and a BZ-9000 fluorescence

microscope and a 636objective and a TCS-SP5 confocal

microscope system (Leica, Wetzlar, Germany). For the analysis

of infected cell ratios, the number of EGFP-positive cells was

counted using a BZ-II Analyzer software (Keyence). For the

analysis of neuronal transduction, the number of MAP2 and

EGFP double-positive cells within the total number of EGFP-

positive cells was counted manually. The primary antibodies (Abs)

used were polyclonal rabbit anti-EGFP Ab (1:1000; Life Tech-

nologies) and monoclonal mouse anti-microtubule-associated

protein 2 (MAP2) Ab (1:1000; Millipore, Bedford, MA, USA).

The secondary Abs used were Alexa 488-conjugated goat anti-

rabbit IgG (Life Technologies) and Alexa 555-conjugated goat

anti-mouse IgG (Life Technologies) at 1:500.

Virus Administration to Embryonic and Post-embryonic
Chicks

Fertilized eggs of Barred Plymouth Rock chicken (n = 55) were

obtained from a local supplier (Shimizu Laboratory Supplies,

Kyoto, Japan) and incubated in a humidified incubator at 37.5uC
to desired stage [70]. Prior to viral injections, a small window was

cut in the shell directly above the embryo. Viral solution (0.5–

1.5 ml) containing 0.05% Fast Green (Nakarai tesque) was injected

into the lumen of the neural tube near the ear vesicle using a sharp

glass pipette attached to a Toohey Spritzer pressure system IIe

(Toohey Company, Fairfield, NJ, USA). After injection, the

window was closed with cellophane tape and embryos were

incubated at 37.5uC. For the induced gene expression, 0.5 ml of

Dox solution (0.1 mg/ml in PBS) was injected into the yolk sac

using a syringe equipped with a 31-gauge needle. Embryos were

harvested from eggs at specific stages. Whole brains were dissected

and fixed with 4% paraformaldehyde in 0.1 M phosphate buffer

for 3 days. The coronal sections including the middle regions of

NL along the rostral-caudal axis were used for immunofluores-

cence studies.

For the striatum infection studies, we used White Leghorn

chicks (Takeuchi Farm, Nara, Japan) at PHD5–6 (n = 12). For the

IMM studies, we used Barred Plymouth Rock chicken (n = 3).

Newly hatched chicks were used within several hrs after hatch.

The chicks were deeply anesthetized with ketamine (15 mg/kg

body weight, Daiichi Sankyo, Tokyo, Japan) and xylazine

A3V-Mediated Transduction of Chicken Brain

PLOS ONE | www.plosone.org 11 November 2012 | Volume 7 | Issue 11 | e48730



(7.5 mg/kg body weight, Wako Pure Chemicals), and fixed on

stereotaxic apparatus. Stereotaxic coordinates for the striatal

injection were as follows: 6 mm anterior from the bregma; 1.8 mm

lateral from the midline; 5 mm ventral from the pial surface [71].

And for the IMM injection: 3 mm anterior from the bregma;

1 mm lateral from the midline, 2.5 mm ventral from the pial

surface [71]. The viral solutions were injected over 5 min using

Toohey Spritzer pressure system IIe.

Immunofluorescence Study
After 24 hrs or 7 days from viral infection, chicks were perfused

intraventricularly with 4% paraformaldehyde in 0.1 M phosphate

buffer under deep anesthesia. Whole brains were dissected and

post-fixed overnight. The fixed brains were cryoprotected with

30% sucrose in PBS overnight and embedded in O.T.C.

compound (Sakura Finetek, Torrance, CA, USA). Frozen brains

were cut into 40-mm-thick sections on a freezing microtome

(CM1850; Leica) and processed as free-floating for immunofluo-

rescence labeling as follows. The sections were permeabilized and

blocked with PBS containing 10% normal goat serum and 0.3%

Triton X-100 for 60 min at room temperature, and incubated

with rabbit anti-EGFP (1:1000; Life Technologies) and mouse

anti-NeuN (1:500; neuronal marker, Chemicon, Temecula, CA,

USA) or rat anti-EGFP (1:1000; Nakarai tesque) and rabbit anti-

DsRed to visualize mCherry (1:200; Clontech) in PBS containing

10% normal goat serum and 0.3% Triton X-100 overnight at 4uC.

Following three washes with PBS, sections were incubated with

Alexa Fluor 488-conjugated anti-rabbit IgG and 555-conjugated

anti-mouse IgG or 488-conjugated anti-rat IgG and 555-conju-

gated anti-rabbit IgG (all 1:250; Life Technologies) in PBS

containing 0.5% normal goat serum and 0.1% Triton X-100 for

1 hr at room temperature. After three washes with PBS, sections

were counterstained with DAPI, and mounted onto glass slides

with Fluor Save mounting media (DAKO, Glostrup, Denmark).

Images were obtained using 106and 406objectives with a BZ-

9000 fluorescence microscope, and a 636objective with a TCS-

SP5 confocal microscope system. To quantify the EGFP-positive

area per section, images through the section containing the

injection site were tiled together using a BZ-II Analyzer. The tiled

images were saved as 8-bit TIFF files (fluorescence intensity range

0–255) and the pixels (fluorescence intensity .99) were summed

over the EGFP-positive area using NIH ImageJ software. The

immunoreactive cells were counted manually.

Statistical Analysis
Results were presented as mean 6 SD. Statistical comparisons

were performed with a two-tailed Student’s t-test. Results were

considered to be statistically significant when p,0.05.
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