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Introduction 

Fluid turbulence is a typical and important example of chaotic dynamical systems, and some aspects of turbu­
lence have been studied from this point of view by several researchers. However, it is not well understood how 
and what sort of properties of dynamical systems are related to physically important properties of turbulence 
including the Kolmogorov scaling laws and the intermittency. 

Hyperbolicity is one of the fundamental properties of dynamical systems. A dynamical system is called to 
be hyperbolic if the tangent space of the phase space can be decomposed into the stable and unstable directions 
(Oseledec decomposition), i.e. the stable and unstable manifolds intersect at nonzero angles. 

It is an important problem in the dynamical system theory whether the system is hyperbolic or not, and 
so several studies have revealed the hyperbolic parameter regions of some dynamical systems. Kuptsov et 
al. (2009) performed a parameter survey of the one-dimensional coupled Ginzburg-Landau equations [2] using 
the covariant Lyapunov analysis (mentioned below), and argued that the system becomes non-hyperbolic at a 
certain parameter value, demonstrating an extensive spatiotemporal chaos after the hyperbolic-nonhyperbolic 
transition. However, little is known about the hyperbolicity of fluid systems governed by the Navier-Stokes 
equations. Here, we investigate numerically the hyperbolicity of a fluid system (Kolmogorov flows) and its 
relations to physical properties. We here focus our attention on behaviors of the time-correlation function of 
vorticity as one of the fundamental physical properties. 

Methods of analysis 

Kolmogorov flows are fluid flows governed by the two-dimensional incompressible Navier-Stokes equation on the 
two-dimensional torus T 2 ((x, y) E [0, 21r] x [0, 21r]) and the vorticity equation which we solved numerically is 

Ot( + u · V ( = ~ ( ~( - n3 cos ny), (1) 

where u = u(x, y, t) = (u, v) is the velocity, ( = ((x, y, t) = OxV- ayu the vorticity, R the Reynolds number, 
and n the wavenumber of external forcing (n = 2 in this paper). The governing equation (1) possesses a steady 
solution ( = -n cos ny which we call the trivial solution and we denote by Rcr( = nJ2) the critical Reynolds 
number beyond which the trivial solution becomes linearly unstable. 

Direct numerical simulations of the vorticity equation (1) were performed by means of the standard 2/3 
dealiased spectral method on the periodic domain T 2 = [0, 27r] x [0, 27r] and the 4th order Runge-Kutta method. 
For the covariant Lyapunov analysis, we used the data set of the Fourier coefficients in the period from t = 

1.00 x 104 tot= 17.0 x 104 where the solution is well within the attractor. 
Degree of hyperbolicity is estimated quantitatively along the solution orbit by measuring the angle between 

the local stable and unstable manifolds by the use of the covariant Lyapunov analysis recentry proposed by 
Ginelli et al. (2007) [1], which gives Lyapunov vectors tangent to the local stable and unstable manifolds. 

Results 

Kolmogorov flow becomes chaotic at the Reynolds number R/ Rcr c:::: 18.2, at which a positive Lyapunov exponent 
arises. We are interested in the degree of hyperbolicity of the chaotic Kolmogorov flows and its relations with 
physical properties, and employ the covariant Lyapunov analysis in the range of 20.0 ::; R/ Rcr ::; 24.0 where 
positive Lyapunov exponents are observed. 

Degree of hyperbolicity 

We numerically obtain the probability density function (PDF, P(O)) of the angles between the local stable 
and unstable manifolds along the solution orbit. Figure 1 shows close-up (0 ::; 0 ::; 0.1[rad]) of the PDF P(O) 
at R/Rcr = 20.0, 21.0, 22.0, 23.0, 24.0 from top to bottom (linear-log plot). At the small Reynolds number 
(R/Rcr c:::: 20.0) the angle 0 is bounded from below by a certain small angle, which indicates that the attractor 
is hyperbolic. However, as the Reynolds number is increased, smaller angles appear and probability density of 
e increases near e = 0. And at a certain Reynolds number (R/Rcr '::::'. 23.0) the distribution is observed to reach 
the zero angle, which implies that the attractor is non-hyperbolic. 
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Figure 1: Close-up (0:::; ():::; 0.1[rad]) ofthePDF P(B) 
of the angles between the local stable and unstable 
manifolds at R/Rcr = 20.0, 21.0, 22.0, 23.0, 24.0 from 
top to bottom (linear-log plot). 

Figure 2: The time-correlation function p( r) (linear­
log plot). Inset is an close-up of the time-correlation 
function in 0 :::; r :::; 10 (the arrow indicates increase 
of the Reynolds number). 

Time-correlation function 

We compute the time-correlation function of vorticity 
for several Reynolds numbers across the hyperbolic/non-
hyperbolic transition point. Figure 2 shows the ensemble 
averaged time-correlation function p( r) of vorticity in the 
range of 20.0 :::; R/ Rcr :::; 24.0 (inset is an close-up of 
the time-correlation function in 0 :::; r :::; 10). The time­
correlation function p( r) for r ,:S 10 is almost the same in 
the whole of this range of Reynolds number. However, the 
long-time asymptotic form of the correlation function (p( r), 
T 2: 100) changes at R/ Rcr = 22.0 rv 23.0. 

In the range of 23.0 ,:S R/ Rcr ,:S 24.0 the correlation 
function has an exponential· tail p( r) c:::: e -TIT, while in the 
range of 20.0 ,:S R/ Rcr ,:S 22.0 the correlation changes its 
sign. We employ the least-square method to fit the corre-
lation function with p(r) = ae-T/T coswr via three fitting 
parameters (a, T, w) in long-time region 100 :::; r :::; 700. 
While the fitting parameters a and T are found to be almost 
independent of the Reynolds number, the fitting parameter 
w depends strongly on the Reynolds number, as shown in 
Figure 3. Apparently, the value of the fitting parameter w 
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Figure 3: Dependence of the fitting parameter w 
on the Reynolds number (19.0 :::; R/ Rcr :::; 25.0). 
Error bars indicate the standard errors in least­
squares method. 

shows a clear transition from finite (w c:::: 0.002) to 0 at R/ Rcr c:::: 22.0. The qualitative change of the long-time 
correlation of vorticity occurs at R/ Rcr c:::: 22.0 close to that of the hyperbolic/non-hyperbolic transition, which 
suggests that the time-correlation function reflects the transition to non-hyperbolicity. 
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