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ABSTRACT

This dissertation presents a number of approaches to
computerizing the interpretation of a class of gastric radiograms. This
study was motivated by the need of such facility in mass screéening which
is conducted throughout Japan to fiﬁd people diseased in the stomach and
to reduce the high mortality due to gastric cancer. Since a large
number of gastric radiograms are taken routinely in gastric mass
screening, an increased emphasis has been placed on their automatic
interpretation. Contents of gastric radiograms depend on the dose of
contrast material and the posipion of the subject, and therefore more
than six kinds of radiograms are taken to obtain ‘complementary
information. Among these images, the most important image class is of
the standing position-anteroposterior (SPAP) image. This is because an
SPAP image gives fundamental information in the gastric radiography. 1In
the remaining part of this dissertation, attention is focused on this
image class.

Firstly, a conceptual scheme of diagnostic digital image analysis
is introduced. An image processing technique was developed in order to
detect the -gastric contour by computer, since its detection is a most
fundamental task in computerized interpretation of SPAP images. This
technique is mainly based on a dynamic threshold concept as well as
other methods of binary image processing such as 1labeling, distance
transformation, thinning, and dinverse distance transformation. A
software system was designed for ease of modification by ﬁsers by
installing newly acquired pieces of knowledge and’was implemented both

on a large computer system and on a small one.



Secondly, this dissertation discusses the feature extraction and
the battern classification of SPAP images. For this purpose, two
different approacﬁes were examined, Z.¢., the descriptive method and the
quantitative method. But, the quantitative method 1is discussed in
detail. The discriminant analysis with the feature selection has proved
usefulness of some geometrical measurements and Fourier descriptors
which were obtained from the gastric contour. Combination of several
features attaines best discrimination with 7.5 percent error according
to the leaving-one-out method of the error ‘rate estimation. The
discriminant analysis was also applied to the problem of discriminating
abnormal pattern of the apex region, a portion where diseases are
frequently detected. In this experiment, features were extracted by
two-dimensional orthogonal transforms. Several features were selected
by the discriminant analysis, resulting best discrimination with 6.4
percent error by the leaving-one-out estimation, Distribution of the
samples and the similarity of the features were also inspected by the
clustering. The results of this method supported those of the
discriminant analysis. The two experiments denied the validity of the
principal component analysis in the feature selection, or the

dimensionality reduction of the feature space, for the pattern

classification purpose. -

In conclusion, a promising perspective was obtained by this study

for the computerized analysis of SPAP radiograms of the stomach.
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CHAPTER 1 INTRODUCTION

1.1 Pattern Recognition in Biomedical Image Analysis

It has been more than two decades since the advent of the concept
of pattern recognition by computer with particular interest of its
application in science and technology. In image pattern analysis,
character recognition was a major subject in the early days. Today,
techniques have grown up to handle a variety of classes of image
patterns such as images of industrial parts, human faces, and finger
prints, visual scenes, weather maps, areal photographs, satellite
images, microscopic images, and biomedical images. Approaches to
analyzing most of these 1images are rather different from one to
character recognition. In character recognition problems, an a priori
set of distinct symbols exists for the objective language. These are
source symbols in the sense of Shanon's communication model. On the
contrary, in natural image recognition problems as listed above, the
property of the information source is not well-defined in general. It
is even doubtful sometimes whether there is any definite communication
source. For example, 1in medical image recogﬁition, a major concern is
to identify whether photographed organs or tissue is normal 6r diseased.
However, usually, consistent definition about normal patterns and
diseased ones is not given in advance. There may be even cases that the
distinct boundary between normal patterns and diseased ones is difficult
to define or does not exist. Therefore, it is necessary to analyze the
concerned class of images in order to obtain knowledge for designing a
dedicated system for pattern recognition. The analysis dincludes

inspection of assumable prototypes and features prescribing them.
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Although some kinds of knowledge are known through the analysis
conventional in the related field or understood heuristically, they must
be translated into a form of representation suitable for manipulation by
computer: for example, quantification and symbolic description are
required in the statistical analysis and in the syntactic analysis,
respectively. In order to find an appropriate form of representation,
properties of objective images must be investigated. The study on
~natural pattern recognition inevitably emphasizes the analysis and
understanding of specific properties of the class of objective images.

As for pattern recognition - of biomedical images, more problems
are involved in image analysis:

1. It is difficult to obtain sufficient number of samples for
developing methods. It is particularly obstructive in the study of
pattern recognition that verification of the diagnosis given to
each sample 1is difficult or impossible. This is particularly
claimed for normal samples because live bodies must be tested.

2. Some of the samples may be singular because the samples are usually
obtained at hospitals.

3. The knowledge invoked by physicians 1in the diagnosing process is
almost unbounded with various degree of importance. Methods must
be developed to install such diverse knowledge.

4. Mass screening is a major front of clinical application of pattern
recognition. However, the diagnosis in mass screening depends on
the policy determined by the estimated proportion of the diseases
and the cost of screening and precise examination.

These aspects cause uncertainties in making the framework of each

problem. ‘Multiple phases  of building-and-testing process are required
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to clearly establish the problems by assuming prototypes and features.

1.2

Background and History of the Research

In the last decade, there has been a considerable growth in a

wide range of biomedical image processing[l,2}. Three advantages may be

gained by digital methods in this field:

1.

When the quality of an image is poor, computer can restore a fine

image for better observation.

. Computer can readily present information which is difficult to

obtain or to measure manually.

In mass screening or in examination, computer may be a substitute

for a human worker as an automatic interpreter of images.

Biomedical  images and methods for their analysis can Dbe

classified in a number of ways:

1)

2)
3)
4)
5)
6)
7)

8)

Subject organs or tissue: lung, heart, stomach, bfain, bone, eye-
fundus, cell, liver, kidney, chromosome, bloodcell, etc.

Imaging: X-ray, gamma-ray (RI), microscope, ultrasound, etc.
Content: morphological information or functional one.

Mono frame or multi frames.

Still object or moving object.

Textural differences or those due to contrast.

Purpose: automatic interpretation or interactive analysis.
Approach: data acquisition and display; signal processing for image
restoration and enhancement; or pattern recognition.

. The research for the computerized analysis of gastric radiograms

has been started in Japan because of the high mortality due to gastric

cancer|[3]. Because the most efficient means to reduce the mortality is
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the early diagnosis and the early treatment, mass screening is conducted
throughout the country to find diseased people. Although several
examination techniques exist to detect gastric diseases, the most
powerful and convenient aid in mass screening is indirect radiograms
taken through the fluoroscope. In the usual routine of the indirect
radiography, several images are taken of each individual in various
positions. Combination of more than six different kinds of images is
recommended by the Japanese Society of Gastric Mass Survey, a promoting
society of gastric mass screening[4]. In addition, more than three
million people receive gastric mass screening every year. Therefore,
considerable work load is required of physicians in interpreting the
images, increasingly emphasizing the computerized diagnosis.

From early seventies, attention has been mainly focused on the
standing position—anteroposterior (SPAP) image because of the most
frequent detection of symptomatic changes and because of the simpler
densitometric structure. The gastric contour retains most of the
diagnostic information in this kind of images.

The first concern has been the extraction of the gastric contour
by image processing. A strategy of the computerized interpretation of
SPAP images was conceptualized first by Soma et al.[5,6]. They studied
the contour extraction in a limited portion, the apex, and the
diagnostic feature extraction from manually traced contour samples.

Rather optimistic steps were taken earlier. It was believed that
dedicated hardware would be developed soon on reflection of character
recognition machine. A class of approaches to designing hardware was
the application of a spiral reader, a flying spot scanner controlled to

track the object boundary by detecting abrupt change of image intensity.
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Miyawaki[7] extracted the lesser curvature of a stomach by this method
and depicted it on a CRT. Akatsuka et al .[8] designed a sophisticated
control circuits for a flying spot scanner. This scanner was controlled
by a programmed small computer PDP-12 equipped with a small core memory.
He reported that less than one-kiloword (12 bits/word) storage was
enough to memorize the outline of a stomach with additive information
such as gray levels, if a proper coding like Freeman's coding and
packaging is used.

Mori et al.[9] took another approach to flying spot scanner
design. Their machine incorporated two scanning modes. The main
scanning, a common manner of flying spot scanning, was controlled by a
small computer OKITAC-3400. This main scan accompanied a sub-scanning
controlled by an electronic circuit. In the sub-scanning, the raster
scanned circularly a small disk area by changing the scanning diameter
and yielded a set of digitized samples. This scanner was used to
extract gastric contours using histdgrams of the gray level occurrence
in local regions. They also measured some metrics after compensating
noise such as due to the photomultiplier and to the film granularity by
taking a local average of the gray level. A problem of the dedicated
hardware approaches was the difficulty in incorporating the overall
information in the control in order to prevent the contour tracking
operator from tracking irrelevant misleading edges.

On the other hand, Soma and Fukushima[6] and Fukushima et aZ.,[10]
extracted the shadow of a stomach using a dynagic threshold method and
segmentation techniques before tracking its contour. In their method,
overall property of the gray level distribution was used as well as

local property, thus stabilizing the shadow extraction and the contour
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tracking.

Application of other algorithms for the contour extraction can be
found in a feasibility study by Sugimoto and Uehara[l]. They presented
results of equal level tracing, gradient tracing, thresholding, and
dynamic thresholding which they call a region-divide method. Nakamura
et al.[12] used contour-tracking operators different in various portions
of the gastric contour and detected the contour by local thresholding.

Although a contour detected by these methods may not be strictly
precise, the precision of the contour extraction 1is required only in
certain portions in diagnosing ghe stomach. A requirement in pattern
recognition is that the contour must be represented in é form
appropfiate for machine manipulation, for example, a representation form
from which machine can determine the location of each anatomical
position. One representation may be to depict a contour as omne depicted
in schematic sketches in medical references, particularly, textbooks.
However, the sketches do not always correspond to the photographic
density of a radiogram; they are drawn by also invoking the knowledge of
physicians. Other difficulties in detection of the contour arise from
diverse shgpes of stomachs, the variationlof the background gray level,
noise, non-uniform distribution of contrast material, and the overlap of
shadows of other organs, such as the duodenum and the intestine. Since
useful information is not clearly known for computationally diagnosing a
stomach, the required precision and form in the contour extraction is
not clear, either. Thérefore, the contour extraction study has a close
tie with the diagnosing study.

The computational diagnosis, the second concern of the research,

includes not only determining the best classification rule but also
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finding or identifying numerically tractable features which are useful
in classification. Generally, three benefits can be expected from
computerizing the diagnosis:
1) The improvement of the diagnosing accuracy by measurement and
quantification.
2) The automation of the interpretation process for releasing persons
from routine works.
3) The stable and clear-cut diagnosis excluding the effect of the
psychological fluctuation of human mood.
As for screening gastric radiograms, the second and third benefits are
the most important today.

Some approaches has been taken to the computational diagnosis
problem. They can be categorized either descriptive or quantitative.
The earliest approach 1is attributed to Soma et ql.[5]. They used the
curvature of the gastric contour according to the diagnosing process of
physicians. Later, this method was refined by incorporating a branching
logic based on thresholding[6]. A similar approach was taken by
Akatsuka et ql.[8] and by Sugimoto and Uehara[ll] to describe the
appearance of a contour.

In contrast to the descriptive methods, Mori gt gZ.[9] used three
measurements and designed a classification rule for fishhook shaped
stomachs in order to discriminate diseased from normal ones. The
abnormality. included the shrinking of the 1lesser curvature, the
deformity of the apex, and the profile niche on the lesser curvature.
One of their interesting approach was '"multicontouring" to extract
profile niche on the contour. Sugimoto and Uehara[ll] reported

discrimination of high-tension stomachs from low-tension ones. Hatori
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et ql .[13] studied on pattern classification of the contour in the apex
region using coefficients obtained by the least square approximation of
the contour by polynomials. They also used width patterns and curvature
patterns of the apex. Recently, they used the integrated curvature
function[14], which 1is similar to the cumulative angular function
defined by Zahn and Roskies[15], finding an interesting property of the
function when used for description of the apex contour. They extracted
several features from this function. Fukushima et al.[6] examined five

geomerical measurements and twenty eight Fourier descriptors as
candidate features for abnormality detection of the gastric contour.
They also examined coefficients of two-dimensional orthogonal transforms
of the gray level image of the apex region as candidate features
obtained without prior judgement for the contour extraction.

Although most of the reporés described above claimed promising
results, it is nearly impossible to make comparative discussion of these
methods because the examined data and their points of interest are
different. It is much better, for the present, to examine a variety of
methods rather than to select the best, for more approaches and

examinations are needed in this study.

1.3 Synopsis of the Dissertation

The author has been engaged in the study on the computerized
diagnosis of SPAP images since early seventies. The - study has been
including image processing for extracting the gastric contour; feature
extraction from the gastric contour; and computational diagnosis of
stomachs by descriptive and statistical analyses. This dissertation

describes approaches and results of the study in somewhat chronological
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order.

Chapter 2 briefly introduces the gastric radiography and explains

the reason why SPAP images were selected as an object class of gastric

radiograms. Important observations in SPAP images are also introduced
here. Then, a concepturized scheme for digital analysis of an SPAP
image are introduced to give an overall view of the study. This scheme

was given to meet both the diagnosing process by physicians and pattern
recognition techniques of the days the study began.

Chapter 3 shows some basic properties of an SPAP image and
presents a technique of extracting the gastric contour from an image.
This technique is based on a dynamic threshold method as well as other
fundamental methods for segmentation such as labeling, connected
component extraction, thining, distance transformation, inverse distance
transformation, etc. This technique has two advantages: (1) existing or
established fundamental methods can be used for image processing, and
(2) misleading edges can be eliminated before tracking the contour by
using global properties such as area and structural information. In
this chapter, the concept of the gastric axis 1is also introduced,
although its utilization is discussed later. The final section of this
chapter 1is devoted to constructing a system incorporating the methods
described above. It is emphasized that the work is not and will not be
completed at anytime because new knbwledge and methods will be found by
researchers- as the study grows. Therefore, it is more important to
provide an understandable system than to fix dedicated hardware which
might be even time-and-memory-saving. When a large computer is
available, this requirement can be easily satisfied because the time and

memory problem seldom occurs. For this environment, a system structure
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is proposed. This system was also implemented on a small computer,
taking advantage of a tool system for digital image processing, which
was deﬁeloped in the course of this study. This is briefly remarked.

In chapter 4, another important subject of the study, the feature
extraction and the pattern classification, is discussed. Two kinds of
information are assumed as inputs to classification programs: the
gastric contour and the gray level image of the apex portion of a
stomach. For gastric contours, which were extracted manually, two
approaches were studied: a descriptive approach and a quantitative one.
In the descriptive approach, the curvature of a contour at its every
portion was used as a fundamental feature, which was evaluated by a
branching logic using the gastric axis. In the quantitative approach,
five geometrical measurements and twenty-eight Fourier descriptors were
studied as candidate features. They were examined by the discriminant
analysis based on the leaving-one-out method. By the feature selection,
sets of only a few features were selected from among the candidate
features. It was proved by the leaving-one-out method that contribution
of the selected sets in the classification is compatible with that of
physicians. For gray level images of the apex, two—dimensional
orthogonal transform coefficients were analyzed as candidate features by
the same discriminant analysis. Selected feature sets in this case also
resulted in discrimination accurécy compatible with physicians. A
validation study on the results of the discriminant analyses was made by
the clustering of the samples and the features.

In Chapter 3, goncluding remarks are given on the body ofvthe
research as well as orientation and problems of the research to be

settled in the future.
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CHAPTER 2 GASTRIC RADIOGRAPHY

2.1 Methodology of Radiographic Observation

The radiographic examination of a stomach consists of three
methods: the fluoroscopy, the direct radiography, and the indirect
radiography. The essential part of the examination, the fluoroscopy, is
conducted to survey the motion and to find the deformity of a stomach.
Sometimes, the cine fluorography is conducted to record complete
information. The fluorography is also applied as a guide to make
radiograms in proper view angles and to manipulate the human body.
Direct radiograms are of considerable aid in bringing out deformities in
relatively inaccessible locations, in showing small ulcer craters, and
in giving a permanent record of details observed during the
fluoroscopy[17]. They are taken at precise examination for hospital
visitors and for those who marked suspicious findings at mass screening.
Although the image quality, sharpness and details, is reduced in
indirect radiograms, these are most widely wused 1in mass screening
because of their convenience. In the strategy of mass screening in
Japan, indirect radiograms are the most important tool since a
considerable number of subjects must be examined.

Gastric radiograms include images for observing the fold of the
gastric wall after a small amount of contrast material, wusually the
barium-water mixture, is swallowed; images of a stomach filled with
contrast material and air to expand the gastric wall; double contrast
images, taken after putting aside the bulk of the contrast material, to
observe the texture of the gastric wall whose shadow is enhanced by the

remaining thin layer of the contrast material; and images of a filled
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stomach which is pressed from outside of the subject's body to observe

regions of interest. The position of a subject is also changed on a
movable bed. Images taken in such a variety of ways depict different
aspects and locations of the gastric wall. Gastric diagnosis is made

based on the interpretation of all these images.

In 1974, the Indirect Radiography Standardization Committee of
the Japanese Society of Gastric Mass Survey submitted a recommendation
with respect to the routine examination in mass screeningl4]. The
recommendation prescribed eight kinds of radiograms taken of a subject
in various positions: the prone position-gastric wall image; the
standing position-anteroposterior image; the prone position image; the
standing position-oblique view image; the supine position-double
contrast image taken from frontal or oblique view. The committee
recommended ten methods for taking six images. selected from among those
described above in proper order (permitting same kinds of images to be
taken more than once.) The density and the amount of contrast material
were also prescribed by the committee as well as portions to be depicted
by, and purposes of, taking respective images. Such standardization is
important not only for its primary purpose, the improvement of the
screening efficiency, but also for computerizing the interpretation.

The shape of a stomach and the running pattern of the gastric
wall are quite different from person to person and from time to time,
due to many factors such as the peristalsis of the stomach, the
physique, the age, the sex, and the psycological state of the subject.
Therefore, it is impossible to strictly define the state of being
"normal" on the basis of radiograms. I1f no abnormal findings can be

detected by complete search through the radiograms, the stomach may be
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normal. The abnormal state is implied by a lack of the harmony, in

other words, the inconsistency of curves[18].

2.2 The Task Domain

To begin the research, the statistics on indirect radiograms were
studied for understanding the role of the images and accessible
approaches[5]. The most important image classes are of the SPAP image
and of the supine position-double contrast image. The detection rate by
the SPAP image is about thirty percent which is the highest rate. This
image 1is also fundamental in the radiography, because it shows the
position, the shape, the tonus, and the various deformities of a
stomach. Therefore, two of the ten recommendations by the Indirect
Radiography Standardization Committee[4] state that two SPAP images
should be taken earlier and later instants in the radiography. Other
images can depict diseases directly inaccessible by an SPAP image.
However, since they depict only specific local regions, SPAP images must
be used indispensibly.

The shape of a stomach can be determined from the SPAP image: the
form of the fishhook, of the steer-horn, or of the intermediate. The
fishhook shape shares more than eighty percent of the stomachs of
Japanese people.

Frequent diseases of the stomach include ulcer, cancer, polyp,
and gastritis. Soma et ql.[5] investigated the frequency and the
location of diseases detected by indirect radiograms. Gastric diseases
were located more in the apex, the pyloric antrum, and the lower gastric
body. Thus, most diseases were located in and around the apex region.

Even when the apex was not diseased, 1its shape often indicated diseases
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Fig. 2.1 The anatomical terminology of a stomach
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located in other portions.

They also studied abnormalities observed in indirect radiograms
and their frequency. As a trend, advanced cancer and gastric polyp were
suspected from filling defect; early cancer and ulcer from irregularity,
rigidity, and niche on the gastric contour, deformity of the apex, and

irregular fold.

2.3 Clues for Interpreting SPAP Images

Since SPAP images retain primary information, interpretation of
images of this kind was studied. Because it is very important to know
medical and radiological knowledge on the images, clues for interpreting
the images are described here. Such knowledge may be incorporated in
the design of the computer interpretation system, if possible.

Fig. 2.1 illustrates a pattern of a stomach projected on an SPAP
image and the anatomical terminology.

The following is a summary of Chapter C of Part 3 of Ichikawa
et al.[18]. Most clues may be categorized as either the deformity of
the stomach or the local change of its contour. The pliability of the
gastric wall is also reflected on such findings.

The deformity of the stomach includes the following:

1. Change of the proportion of the entire shape: in many cases, it can
be an initial clue to find various abnormalities. This is because
most diseases cause shrinking of the gastric wall and change the
proportion.

2. Shrinking of the lesser curvature: shrinking of the contour from
the apex to the pylorus, from the apex to the cardia, or of the

whole of the lesser curvature.
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5.

. Deformity of the gastric body.

Deformity of the apex.
Deformity of the pyloric antrum. Recognition of this deformity is
often difficult because of insufficient filling of contrast
material, the peristalsis, and the fold of the gastric wall.

The local change of the gastric contour includes the following:

. Niche: the shadow of the ulcer-like hollow on the wall. It is the
most easily identified £finding. A kind of  niche called
"Shattenplus im Shattenminus" discriminates cancer from ulcer.
Filling defect, caused by fungating or infiltrating of cancer.

. Rigidity.

. Linearization.

Irregularity.

The rigidity, the linearization, and the irregularity are caused by the

projection of a portion which has become rigid due to diseases.

They recommended a procedure of examining an SPAP image:

1. The proportion of the entire shape.

2. The shape of the apex.

3. The contour of the lesser curvature of the body.

4. The shape and the contour of the pyloric antrum.

5. The cardia and the pylorus.

6. The greater curvature and the fundus.
2.4 Computerized Interpretation of SPAP Images

From the discussion leading to this point, a system was

conceptualized for interpreting SPAP images by computer[5]. Fig. 2.2

illustrates major procedures and linkage of the system. The system is
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Fig. 2.2 A conceptual configuration for SPAP image interpretation.

composed of two major tasks: the extraction of the gastric contour from
an 1image; and the interpretation of the contour. Although the contour
extraction may be called preprocessing for diagnosing an image, it is
not a trivial problem: even in those portions where contrast material is
filled, an efficient method must be established; portions such as the
fundus form only dim shadows due to absence of the material, making this
problem more difficult one. Thus, the contour extraction problem makes
an essential part of the system design for finding abnormal changes of
the contour.

Studies on the interpretation of the contour involves
identification of diagnostic features. Three tasks were introduced to

computerize the interpretation: obtaining a smooth pattern of a stomach,
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identifying the apex, and determining the gastric axis. The smooth
pattern was introduced to represent the degree of the inconsistency by
the deviation of a contour from its smooth version.

Importance of identifying the apex is well understood. It plays
an impoftant role in identifying various portions of a stomach because
it is typically observable in SPAP images, particularly pronounced when
the stomach 1is of the fishhook shape. The concept of the gastric axis
was introduced for the first time in order to understand the
correspondence between points on the lesser curvature and ones on the
greater curvature. (It is a problem of the skewed symmetry.) By
introducing the gastric axis, we hoped that abnormal incisures, or
curvatures, could be discriminated from waves caused by the peristalsis:
if two curvatures exist on both sides of the gastric axis in a
symmetrical manner, they may be caused by the peristalsis.

Fig. 2.2 has been a guideline of the study as well as the

recommendation stated lastly in the previous section.

2.5 Summary of the Chapter

- This chapter introduced the methodology of the radiographic
examination of the stomach and the strategy taken in mass screening. An
important role of the SPAP image was described. Frequent diseases of
the stomach were also introduced as well as their radiographic findings.
The apex was noted as an important portion because of the frequent
detection of diseases. Finally, a configuration for computerized
diagnosis was conceptualized as a guideline of the study. In this
configuration, three tasks were postulated for computer interpretation

in addition to those reflecting purely radiological tasks.
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CHAPTER 3 DIGITAL IMAGE PROCESSING OF SPAP IMAGES

3.1 Properties of SPAP Images

Mainly due to the X-ray scatter and the radiographic mottle, the
maximum resolution of the direct radiogram is about 0.2 mm on the image
plane; usually, it is in a range between 0.3 mm and 0.6 mm. Direct
radiograms involves dim stripes of the shadow of the lead grid which is
used to suppress the X-ray scatter. The width between two adjacent

stripes is about the same size. Human eyes also recognize the gastric

(a) (b)

Fig. 3.1 An example of SPAP images.
(a) The original photograph.

(b) Transparency distribution.
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contour to the same precision. Therefore, the desirable sampling pitch
for a direct radiogram is 1less than 0.2 mm in the image plane. The
resolution of the indirect radiogram is five times lower in the object
plane than that of the direct radiogram.

The study began with examination on direct radiograms because
their image quality is more controlled. Fig. 3.1(a) is a typical X-ray
negative of the direct SPAP image. Basically, the image consists of
bright areas, which are made by the shadow of contrast material in the
stomach, and the dark background areas. The backbone and the pelvis
make shadows of intermediate gray levels. Sometimes, particularly in
iméges taken later in radiographic examination, the small intestine and
the duodenum make shadows of the same gray level as the stomach due to
intrusion of the contrast material. The fundus is filled with air,
making a dim shadow of its wall. Therefore, recognition of the entire
contour of a étomach is not as easy as it might be expected. In
Fig. 3.1(b), a measured distribution of the transparency of this
negative is shown. This figure illustrates high contrast at the middle
level of the greater curvature, decreasing transparency in the upper
part of the gastric body, considerable change of the gray 1level
discri&inating the stomach from the background (this change is called
the shading,) and the noisy fluctuatién of transparency. Developing
conditions and scratches of the film also change the image quality.

In order to wunderstand properties of an image, it may be a
shortcut to apply algorithms for digital image processing. In this
study, copied 35 mm 'films of direct radiograms were scanned with a
mechanical image scanner, which digitized the gray level into 256 levels

of the photographic density, or the logarithm of the opacit:y.1 Each of
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the digitized images consists of about 600X500 pixels, thus the
corresponding sampling pitch 1is about 0.54 mm in the original scale of
the direct radiogram. Fig. 3.2 shows a line printer overprinting of the
density distribution of the previous image as well as its cross-
sectional profiles. Properties described above may be well understood
from these profiles.

Fig. 3.3 shows a histogram of the density distribution over the
image. It consists of four major clusters. As shown, they correspond
to the stomach, bones such as the backbone and the pelvis, the brighter
background area, and the darker background area, respectively. However,
this correspondence does not occur exactly, with considerable area of
mixture. Therefore, binarization of the image using any constant
threshold never brings about the gastric contour precisely. On the
other hand, differentiation, a primary operation for edge enhancement,
does not work, either. A result of the Laplacian operation{19] applied
to this image is shown in Fig; 3.4, Although improvement over
thresholding is observed in the greater curvature and in the fundus, the
lesser curvature is collapsed due to noise.

In a small area, thresholding works more preferably than edge
enhancement. It was suggested that thresholding is applicable to
transparency in the apex region, particularly after the transparency
distribution is smoothed[5]. Also in a later experiment about a wider
area over the apex, thresholding resulted better than differentiation.
This area is indicated by a rectangle in Fig. 3.2(a). Fig. 3.5(a) is a

result of a kind of differential filtering defined by a weight pattern

'Effects of the photo-copy process and the photo-electric conversion are
involved in these digitized data.

- 21 -



Fig. 3.2 Density distribution
of an SPAP image.
(a) An overprinting by a line
printer.
(b), (c¢), and (d) Profiles on
the lines KKT, §§T, and

CC' in the overprinting.
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Fig. 3.3 Density distribution of an SPAP image.
(a) The density histogram.

(b) Regions corresponding to respective density clusters.
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shown in the same figure; Fig. 3.5(b) is a

result of thresholding to extract the region
corresponding to the cluster of the brightest

density in the histogram. Advantage of

thresholding over differentiation is clearly

recognized in this example.

Thus, the space-variant property of
the gray level distribution stands as a major

problem in extracting the gastric contour.

3.2 Extraction of the Shadow of a Stomach

In order to overcome the problem of
Fig. 3.4 A result of the shading and noise, the author studied
the Laplacian operation. some methods based on the dynamic threshold
concept. This concept was originally
introduced by Chow and Kaneko[20]. In their method, they assumed the
bi-modality of the histogram of the density distribution in a small
partition of an image. To each histogram, they applied curve fitting by
a mixture function composed of two Gaussian distributions. They
determined local threshold on the basis of the best fit obtained by a
nonlinear optimization technique. We devised some methods because the
bi-modality of histograms does not always hold; and because much time is
consumed by the nonlinear optimization. Three methods are described in
chronological order of development in this section, where the image in
Fig. 3.2 1is refered to as an illustrative example. Results of

application to another example are also shown later. As a result, the

third method was selected and used in the subsequent experiments.
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Fig. 3.5 Processing of the rectangular region in Fig. 3.2(a).
(a) Differential filtering with the weight pattern in (c).
(b) Thresholding by the threshold which is shown in (d) along
‘ with the density histogram.
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3.2.1 Partitioning of the Frame
A primitive means to cope with the varying discriminating level

is to divide the entire image plane into small subregions to determine
thresholds, subregion by subregion. In such a means, subregions
including the boundary between the object and the background must be
identified; otherwise, false boundaries are extracted in subregions
where no meaningful boundary exists. To avoid this malfunction and to
perform meaningful thresholding in subregions where true boundary exist,
an algorithm was developed. This algorithm is based on the knowledge
that the stomach makes the brightest shadow in the radiogram.
Algorithm (see Fig. 3.6):

Step 1l: Divide the entire image plane into -subregions composed of

100X100 pixels. Initialize all entries of a table which indicates

the state of each subregion. The state is "unprocessed,"
_O_
Z # '
H f : density histogram
| $—+_$ _.‘ e
| f/ E :
/A E E
N T
100 : I
L : H h
L100- o Vi Pl V2 P2
(a) (b)

Fig. 3.6 Partitioning of a frame.
(a) Partitioning.

(b) Determination of a threshold.
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"processed," or '"processing required." The initial state is
"unprocessed."

Step 2: Calculate an average density in each subregion and search for
the subregion of the minimum average. Occupancy of the stomach in
this subregion is greater than that in any other subregion. Since
this subregion is probably the nearest to the central portion of
the stomach, it is called the central subregion.

Step 3: Find the mode of the density distribution from its histogram
in each of the central subregion and its eight neighbor subregions.
Set the state of the central subregion to "processing required."
Set the state of each of the neighbor subregions also to
"processing reqired," if its mode density 1s nearly equal to the
mode density of the central subregion. (This means that its
density distribuiion is similar to that of the central subregion.)

Step 4: Determine a threshold for each of the subregions‘which are in
the state of 'processing required." Binarize this subregion and
extract the boundary. If this boundary is connected to any
"unprocessed" subregion, change its state to "processing required."
Change the states of the processed subregions to "processed."

Step 5: Search the table for a subregion in the state of "processing
required." If any one exists, then go to the next step; if no one
exists, then terminate the processing.

Step 6: Determine a threshold, binarize the subregion, and extract the
boundary. If this boundary is connected to any "unprocessed" sub-
region, change its state to "processing required." Go to Step 5.

A threshold is selected from among three candidate values V1, V2,

and (p7+p2)/2 in Fig. 3.6. The values Vi, V2, P1, and P2 are determined
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as densities of wvalleys and peaks of the density histogram of each
subregion. The valleys and the peaks are detected by finding the change

of the sign of

hi+1+l'hi-l’ (3.1)

This quantity dis in proportion to the difference of local averages of

the density histogram

; j=i§1+z 3 j=7z;+z
(21+1) [—(— ho- —m—— h.l ,
21+1 j=i+1—ZJ 21+1 gl |
where 7. is the frequency of the density Je In Step 4, a threshold is
J

determined as V2, the density of the valley next to the hill of the
brightest part. In Step 6, a threshold is selected from the three values
as one which is nearest to the threshold of the central subregion.

This method processes only subregions where detected boundaries
are connected. Therefore, it prevents detection of false boundaries as
well as saves processing time and memory storage. The number of
processed subregions 1is reduced in this
method: for example, only ten subregions
out of thirty were processed for the
example of Fig. 3.2. This result is shown
in Fig. 3.7.

As a disadvantage of this method,
discontinuity might appear at boundaries

between subregions if the shading is

great. This effect may be reduced if the

size of a subregion is reduced. However,

Fig. 3.7 A result of the
the reduction is limited by the number of
frame partitioning method.

pixels contained in each subregion since a
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meaningful histogram must be made from them.
3.2.2 Uni-Directional Partition and Interpolation

As observed 1in Fig. 3.2, the shading effect is more involved in
the horizontal direction than in the vertical direction. Therefore, an
examination was conducted based on the assumption of the uni-directional
shading. In this examination, an entire image is divided into strip-
like subregions which overlap by 50 percent with the adjacent subregion
each other. The subregions have their 1long sides in the same
orientation as the backbone as shown in Fig. 3.8.
Algorithm:

Step 1: Binarize the- entire‘image using one threshold determined by
the mode method[19] applied to the histogram of the entire density
distribution. This threshold is determined as the density where
the first alteration of the sign

REGION 5
of the expression (3.1) occurs

when the histogram is searched
in a direction from the brighter
densities to the darker ones.
Step 2: A subregion is called a
boundary subregion @ if 20-80 .
percent of its pixels have their
densities greater than the

threshold. For each of the

boundary subregions, make the 15
density histogram and find its
valley in the brightest part in Fig. 3.8 Uni-directional

rtition of a frame.
the same manner as Step 1. pa
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Fig. 3.9 A result of the uni-directional partitioning method.

(a) Distribution of the threshold. (b) The binarized result.
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Determine the threshold for its central column as the density of
this valley.

Step 3: Linearly interpolate or extrapolate thresholds for all of the
remaining columns.

Step 4: Binarize the image using the thresholds determined column by
column.

Fig. 3.9 shows the threshold versus the column number as well as
the result of this thresholding applied to the example in Fig. 3.2. The
threshold varies considerably in columns passing through the upper part
of the gastric body. Thus, the precision of the extracted contour is
exellent in this region. Note that the backbone is eliminated because
its shadow makes a kind of horizontal shading with an abrupt change of
the density. A disadvantage observed here is that a part of the shadow
of the pelvis is also extracted. This 1is caused by the vertically
unvarying property of the threshold. What is worse, it is connected to
the stomach. Disconnected components do not bring about any problems
because they can be eliminated by logical operation.

3.2.3 Bi-Directional Partition and Interpolation

The third method is similar to the original version of the method .
of Chow and Kaneko[20]. Their method is summarized as follows.
Algorithm:

Step 1: Partition the entire image into 7X7 subregions which overlap
25 percent or 50 percent with the adjacent subregion each other.

‘Steﬁ 2: Make the density histogram in each of the subregions.

Step 3: Select subregions with large variance of the density distribu-
tion. For each selected subregion, estimate the underlying density

distribution. This estimation is made by curve fitting by a linear
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mixture of two Gaussian functions to the density histogram.

Step 4: Test the bi-modality of the mixture function of the estimated
distribution. For each histogram with appreciable bi-modality,
calculate the threshold from the estimated distribution function by
the method of maximum likelihood.

Step 5: Perform the regionwise interpolation of the threshold.

Step 6: Assign the thresholds to the central pixels of the respective
subregions. Perform the pointwise interpolation by a bi-linear
method to determine thresholds for all of the remaining pixels.

Step 7: Binarize the image.

In applying the method to our problem, the following had to be
taken into account:

l.- The number of subregions in partitioning must be more in order to
cope with the considerable shading.

2. The curve fitting by nonlinear optimization should be avoided, if
possible, to save processing time as well as to let various
distributions be acceptable without incorporating any strong
assumptions about the form of the distribution functiqn.

3. Thresholds should be determined in as many subregions as possible
without the regionwise interpolation in order to minimize the
smoothing effect of the interpolation on the "dynamic" threshold.

The following is the revised method.
Algorithm:

Step 1: Partition the entire image into typically 23X19 subregions as
shown in Fig. 3.10.

Step 2: Calculate the average and the coefficient of variance of the

density in each subregion.

- 32 -



REGION (18,12)

18

19 12 1

Fig. 3.10 Bi-directional partition of a frame.

Step 3: For subregions of small average densities or of large
coefficients of variance, determine thresholds by the mode method.
Disregard those subregions where too large values are obtained.
The subregions are called boundary subregions if their thresholds
are accepted. .

Step 4: Determine the thresholds for the subregions which are not
boundary subregions, by 1interpolation by taking averages of
thresholds of neighbor boundary subregions.

Step 5: Assign the thresholds determined in Step 3 and in Step 4 to
the central pixels of respective subregions. Determine thresholds
for all of the remaining pixels by the bi-linear interpolation.

Step 6: Binarize the image.

In Step 3, a heuristic method was devised. Described below is
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its meaning. In this method, the valley of a histogram is searched for
by evaluating the sign of the expression (3.1). This search is made in
a direction from the brighter densities to the darker ones in order to
find the valley in the brightest side. In order to determine thresholds
which separate the stomach from the background, it is necessary to
recognize whether each subregion includes the boundary of the stomach or
not. This process is carried out as shown in Fig. 3.11(a):

1. If the average density of a subregion is small, this subregion is
almost occupied by the stomach, and the background shares only a
small part. Therefore, the small valley must be detected in the
histogram, between the big hill corresponding to the stomach and
the small hill corresponding to the background. This search is
made step by step by setting I=1 in the expression (3.1) so as not
to lose this wvalley. This search works because, due to the
histogram concentration on a low density (see Fig. 3.11(b),) sample
fluctuation of the histogram is not outstanding. If the value thus
obtained is not too large, it is accepted as the threshold, while
the subregion is recognized as a boundary subregion. Otherwise, it
is very probable that the fluctuating skirt of a uni-modal
histogram has been detected; therefore, the value 1is rejected and
the subregion is denied to be a boundary subregion.

2. If the coefficient of variance is large, a subregion is shared by
the stomach and the background evenly. Therefore, the subregion is
recognized as a boundary subregion. Although great fluctuation
appears 1in the histogram due to less concentration of the density,
the valley itself is large. Thus the smoothing effect in the

expression (3.1) can be set large in this case: the search is

- 35 =



started by wusing rather large 1. Finding any alteration of the
sign of this expression, ! is set smaller and the search is
repeated in the reverse direction, and so forth. It is just like a
rocking chair going to standstill. (See Fig. 3.11(c).)

The coefficient of variance is wused as a criterion of the

boundary subregion because the hills of the darker densities in the

histogram tend to spread widely.

Fig. 3.12 shows recognized boundary subregions and their

thresholds for the example in Fig. 3.2 as well as its binarized result.
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Fig. 3.12 A result of the bi-directional partitioning method.

(a) Thresholds for boundary subregions. (b) The binarized result.
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The original image size had been reduced to 300%X250 by taking a four-
pixel average; each subregion is composed of‘25X25 pixels. Note that
the boundary subregions form the shape of the stomach approximately on
the whole. Mainly due to false recognition of some boundary subregions,
portions of the backbone and the pelvis were also extracted. Scratches
on the film were involved as well as holes caused by noises and
incomplete interpolation of the threshold. These false effects can be
eliminated logically if they are not connected to the stomach.

Processed examples for another image are shown in Fig. 3.13.

3.3 Extraction of the Gastric Contour
For the purpose of extracting the contour of only one figure,
i.e., the shadow of a stomach, irrelevant components should be
eliminated from the binarized image. These components are such as extra
shadows in the background and noises and holes in the stomach. They can
be eliminated without smoothing the binarized image but logically.
Algorithm:
Step 1: Perform labeling[19] to the connected components.
Step 2: Calculate the area of each component by counting the number of
pixels where identical labels have been assigned.
Step 3: Extract the component of the largest area.
(At this point, the extra shadows are eliminated.)
Step 4: Exchange the label of the largest component with that of the
background.
Step 5: Perform Step 1, Step 2, and Step 3.
The resultant image contains only one and simply connected figure. An

intermediate result after Step 3 is shown in Fig. 3.14. Meaning of this
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(b)

(c) (d)

Fig. 3.13 Processed examples for another image.

(a) The original photograph. (b) The result of the frame partitioning
method. (c) The result of the uni-directional partitioning method.
(d) The result of the bi-directional partitioning method.
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method may be well understood if we think of
the fact that we take pictures of interested
objects large. This method is simple but very
useful in extracting a figure from a noisy
image without blurring edges. For extracting
multiple fugures, or for noise filtering,
delete components, whose area is smaller than a
prescribed value, in Step 3[21].

Since the connectivity holds for results

of the thresholding, the gastric contour can be Fig. 3.14 The com-

extracted by boundary tracking. The tracking ponent of the largest
. area.

operator never lose its way because only the

shadow of the stomach exists in the binary image. A typical boundary

tracking operator[19] first finds one boundary point by a TV-like raster
scan. Then, the operator searches for an adjacent boundary point by
circularly scanning the neighbor of this point. This operation 1is
continued successively moving the center of the circle to the new point
until the first point is met again. The boundary can be represented as
an ordered sequence of its points. In implementing the algorithm, the
starting point of each circular search must be changed according to the
previous motion of the operator; otherwise, the operator may be
"trapped" by a spinal portion of the boundary. The author devised an
algorithm for determining the starting point. Let wus define the eight
neighbor elements of a point 4 as depicted in Fig. 3.15(a).
Algorithm:

Suppose that the new boundary point Ai has been detected by searching

the neighbor of the point 4 counterclockwise. The succeding counter-
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<@ START OF NEXT SEARCH

.
%

(a) (b)

Fig. 3.15 Boundary tracking.
(a) Definition of neighbors.

(b) Beginning of circular search.

1 i h i ,
clockwise search begins at the point Az—Z(moduZo 8)

point Ai’ which is the new point 4, as shown in Fig. 3.15(b).

in relation to the

Because the boundary determined by thresholding tends to be biased into
the inside of the stomach (see Appendix A,) the points in the outside of
the extracted shadow are taken as boundary points. This method ignores

scratches cutting into the shadow if their width is of one pixel.

3.4 Structural Information and Its Applications

Soma ¢t gl.[5] introduced the concept of the gastric axis. It
may be useful in understanding the peristalsis of a stomach. It may be
also used as the information on the overall flow pattern of the stomach,
thus enabling recognition and elimination of the shadow of the
intestine, which is often observed when an image is taken after a period
of time since the subject swallows contrast material. In such
application, thinning, distance transformation, and skeletoning are

invoked in order to extract and manipulate structural information of the
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largest shadow in a binary image.
3.4.1 Thinning, Distance Transformation, and Skeletoning

There have been two concepts of thinning. One is a method to
obtain the medial axis of a figure by shrinking it so that it may be
used by computer to recognize the topological structure of the figuref
For this purpose, the connectivity of the medial axis must be guaranteed
for any figure. Hilditch[22] developed a method of obtaining a medial
axis, which is well-defined by the algorithm. To manipulate the medial
axis as a linear graph, a method was also given by Hilditch[23] for
simultaneous labeling to its nodes and branches. In this method, a node
is a terminal or crossing point; a branch is a point sequence connecting
two nodes. An abstract representation of the linear graph was given by
the author{[24]: the linear graph is represented as a table which is a
variant of the node~branch incidence matrix. Its entries are locations,
labels, and degrees of nodes as well as labels of branches connected to
each node. The linear graph becomes a tree in our application because
the given figure is simply connected: as a matter of truth, the purpose
of Step 4 and Step 5 of the algorithm in Section 3.3 is to obtain a
tree—structured medial axis; for the purpose of only extracting the
gastric contour, this algorithm can be terminated at Step 3.

The other concept of thinning is usually called skeletoning[25].
A skeleton is a set of minimal number of points neccessary to preserve
the complete information of the shape of a figure. Therefore, it is a
technique for data compression of a binary image. However, since the

connectivity is not guaranteed for a skeleton, it is not suitable for

!The terms medial axis and gastric axis are wused discriminatingly in
this article. The latter is an axis of a "tube," without branches.
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recognition of the structure of a figure by computer.

Distance transformation, wusually performed as preprocessing for
skeletoning, is a method of calculating distance of any point in a
figure from its boundary. The boundary can be completely restored from
the set of the skeleton points and their distance by inverse distance
transformation.

Montanari[25] and Levi and Montanari[26] mathematically
formalized distance transformation, skeletoning, and inverse distance
transformation for any kinds of distance. Suppose Tij is distance of a
point ({,j) from the boundary; tijkl

(i,j) and a point (k,1). Distance Tij is given as a solution of a

is the distance between the point

functional equation of dynamic programming,

Tijzmin(TkZ+tiij)
under constraint that Tij=0 for any point outside of the figure. A
skeleton point (£,j) is a point where relation

LT tigun
holds for any (k,1)#({,7)- Inverse distance transformation is given as
a process of solving an equation,
Tij=max(0’TkZ_tiij)

They also developed sequential algorithms for efficient implementation
of the distance and inverse distance transformations. The author noted
that, although it is essentially a parallel operation, the skeletoning
is a process of extracting only the skeleton points, thus requiring no
additional image storage[24]. All of the algorithms are based on
neighborhood operations. The type of distance is defined by permissible

paths between pixels in a neighborhood of a pixel. Three primitive

distances were exemplified by Montanari[25], called method 0, method 1,
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and method 2, respectively. Practically, Method 2 may be appropriate in
approximating the Euclidean distance.
3.4.2 Determination of the Gastric Axis

The gastric axis may be established by eliminating extra branches
from the medial.axis. To start the process, a human observer specifies
two terminal points in the medial axis which are the start and end
points of the gastric axis. Then, computer manipulates the table of its
linear-graph representation to eliminate, from the table, entries
related to extra branches by successively deleting the unspecified
terminal nodes, or nodes of degree one, and the branches connected to
these nodes. This operation is repeated until no unspecified terminal
nodes remain. Finally, the nodes and the branches which have no labels
in the table are eliminated from the medial axis in the image plane.
Then, the residual spines are deleted.
3.4.3 Elimination of the Shadow of the Intestine

If contrast material is included in the intestine, it makes a
shadow of the approximately same density as the stomach. If this shadow
overlaps that of the stomach, obviously, anatomical knowledge on the
structure of the image is necessary for discriminating the stomach from
the intestine. It may be permitted for the human operator to estimate
and draw the stomach boundary.A However, this scheme was not adopted,
since one purpose of the study has been to find approaches to machine
manipulation of the structure.

The author devised a discriminating procedure on one premise: in
the medial axis, terminal nodes of the branches corresponding to extra
shadows have been recognized by computer or specified by the human

operator.
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(a) (b)

(d)

Fig. 3.16 Examples of elimination of the shadow of the intestine.
(a) A figure with the shadow of the intestine at its lower left
part and its medial axis.
(b), (c), and (d) The figures reconstructed using the distance
defined by method 0, method 1, and method 2, respectively.
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Procedure:

Step 1l: Delete these terminal nodes and branches from the table of the
graph.

Step 2: Delete them from the image plane using the table.

Step 3: Apply the inverse distance transformation to the tailored
medial axis after associating its points with their distance
obtained by the distance transformation of the original figure.

Examples of the procedure are shown in Fig. 3.16, where three
kinds of distance are used for comparison. Because the medial axis does
not include all "of the skeleton points, reconstructed figures involve
distortion. This effect is reduced as the distance gets closer to the
Euclidean distance.

3.4.4 Understanding the Structure of a Figure

Akatsuka et gl.[8] suggested a method of understanding the
approximate shape of a stomach using a functional relation of the
distance persus the relative location of each point on the gastric axis.
However, they have not discussed what kind of information is represented
by this relation. The eye-observation of wvarious results of the
structural methods may be wuseful in understanding the structural
information of a figure. One shortcut to do this is to reconstruct
corresponding figures using the distance of the points on the (possibly
tailored) axis. The 1inverse distance transformation can be used for
this purpose. The information of any subset of the medial axis may be
examined in this manner of "analysis by synthesis.'" Another shortcut is
to compare the axis with a skeleton, a miniﬁal set preserving the

boundary information. Fig. 3.17 illustrates examples of such approaches.
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Fig. 3.17 Examples of structural information.
(a) Distance distribution. (b) A skeleton.
(c) and (d) Figures reconstructed from the medial axis

and the gastric axis, respectively.
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3.5 A System Configuration for Digital Image Processing
3.5.1 The Basic Concept

The study on the computerized diagnosis of SPAP images of
stomachs involves not only designing the system but also analyzing the
images as in cases of any other biomedical images and, more generally,
natural images. Often, the analysis forms a main part of such a study.
The knowledge and the technique for its implementation are usually
unknown at the beginning; rather, they are acquired with advancement of
the study. Thus, the subject is inevitably open-ended. For such
subjects, it is useful to design a prototype system which can be revised
and improved easily by researchers with a variety of background of
radiology, medicine, and engineering. The following may be required of
such a prototype:

1. Interactive system. It will facilitates flexible installation of
the knowledge and flexible control of the processing flow as well
as quick evaluation of results of such actions.

2. Programming language. A popular and standardized high level
language should be usable so that researchers can commit easily in
revision of the systemn.

3. Changeability to an autonomous sysﬁem. Procedures determined in
the course of the study should be fixed in the system as well as
their control parameters so that the system requires as little
human intervention as possible.

From this point of view, a software system was composed for the
research and development. The strategy taken here are,

1. Separating the system into a set of unit routines executed

individually,
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2. Structuring each program into basic modules,

3. Using FORTRAN, a high level programming language, and

4. Programming attaching more importance to readability than to
processing time and memory size.

Nowadays, the computing cost has been reduced due to the
development of fast and large computers, while software is becoming
larger and larger. Therefore, a high level language should be used even
for practical systems because of its portability, flexibility,
readability, and writability. Thus, the user may obtain intermediate
results of each unit routine, input them into his own programs, or feed
results of his programs to another unit routine. On the other hand, he
may modify any routine or write a new one using the provided module
programs. If he wants to apply a number of routines in series, . he may
make a macro procedure. If such prototypes and their modified versions
are éirculated among different research groups, the researchers may be
able to "talk" with each other using the realized systems as tools just
like mathematical expressions.

As a first step, a system was created for implementation on a
general purpose large computer and was tested.

3.5.2 The System Configuration

The system consists of eleven unit routines R1l, R2, ..., RIll as
depicted in Fig. 3.18. Each routine is a main program which calls the
subroutine modules listed in Table 3.1 successively in a hierarchical
structure; The user may activate individual routines; or he may make a
new program calling the subprogram modules and activate it. Functions
of the respective routines are described below:

Rl. Window specification. It extracts a specified window region with
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Fig. 3.18 A system configuration for SPAP image processing.

pixels of specified apperture from a large image stored on magnetic
tape.! The resolution is reduced by a factor of NXN by assigning
the average density of NXN neighbor pixels to the corresponding
pixel of the window.

R2. Iﬁage,property observation. It displays the density distribution

and its histogram on the line printer. It also calculates and

'For the purpose of developing an algorithm or a software system, it is
recommended that test data are stored in a digital form for reproduc-
ibility. Otherwise, temporary change of the quality of image films and
photo-electric conversion noise disable performance evaluation.
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Table 3.1 Subprogram modules

Name Function

REGNMT reads an image from MT.

GRYIMG prints a gray-level image.

SBLPRT prints a line of symbols for one image line.
HSTGRM prints a density histogram.

STTSTC calculates statistics.

DYNTHR performs dynamic thresholding.

HSTGM1 calculates a regionwise histogram.

STRVLY searches a histogram valley strictly.
FSTVLY searches a histogram valley with smoothing.
REGINT performs regionwise interpolation.

PNTINT performs pointwise interpolation.

BNRYMG prints a binary image.

FRAME1 sets frame edge points to "0."

LBLING performs labeling.

MXCLST extracts the largest connected component.-
SMOCON smoothes a contour in an image area.

INVERT inverts the binary level.

CONTOR extracts a contour.

IMGCLR clears an image area.

SETDTA sets data in an image area.

THINNG performs thinning.

THNLBL performs labeling of thinned lines.

GRAPH1 represents as a linear graph.

FRAME2 sets frame edge and adjacent points to "0."
DSTRFO distance transformation (method 0.)

DSTRF1 distance transformation (method 1.)

DSTRF2 distance transformation (method 2.)

SKLTNO skeletoning (method 0.)

SKLTN1 skeletoning (method 1.)

SKLTN2 skeletoning (method 2.)

INVDSO inverse distance transformation (method 0.)
INVDS1 inverse distance transformation (method 1.)
INVDS2 inverse distance transformation (method 2.)
SELDTA selects data of specified points.

PMNTND specifies permanent nodes.

DELBR1 deletes branches from a linear graph table.
DELBR2 deletes branches from an image area.

DELBR3 deletes residual spines.

BRSRCH searches branching.

CHKBR Searches branching from a branch.

DELSPN deletes spines.

ORGCNT coordinate-system conversion.

RANGE determines the range of a stomach.

WINKEL determines the apex.

PYLORS determines the pylorus.

SMOOTH smoothes a contour.

DEVIAT calculates a deviation curve.

SEIKI normalizes the pixel value.

WGRAPH prints a deviation curve.
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reports statistics such as the average, the standard deviation, and
the coefficient of variance of the density.

R3. Binarization. It biparizes an image by the third version of the
dynamic threshold method in Section 3.2.

R4. Extraction of the largest shadow. It logically eliminates
background shadows as well as noises and holes in the stomach by
the method described in Section 3.3.

R5. Extraction of the contour. It extracts the gastric contour by
tracking the stomach boundary counterclockwise as described 1in
Section 3.3.

R6. Thinning. It performs thinning of a stomach and represents its
medial axis in a tabular form by taking the axis as a linear graph
as described in Section 3.4.

R7. Distance transformation. It performs distance transformation. It
also produces the skeleton of a stomach for compariéon between the
(possibly tailored) medial axis and the skeleton to understand the
loss of information. Montanari's three kinds of distance are
available.

R8. Inverse distance transformation. It performs inverse distance
transformation using one of the three kinds of distance.

R9. Determination of the gastric axis. It determines the gastric axis
as described in Section 3.4. Then, the axis is represented as a
sequence of its points arranged in order from the fundus to the
pyloric antrum. This representation is made by a line tracking;_
residual spines are deleted at the same time.

R10. Deletion of extra branches. It deletes all specified branches

from the medial axis as described in Section 3.4.

- 51 -



R1l. Interpretation of the contour. It extracts features from a
gastric contour and classifies the stomach. The final version of
this routine is described in detail in Section 4.3.

In Fig. 3.18, only the routines specified by the thick arrows are
usually invoked. However, if the intestine or bones make shadows as
Bright as the stomach, the routines specified by the thin arrows should
be also invoked. The flow of processing may be determined as below
after the routine R4. If no background shadows overlap the stomach, the
gastric contour will be passed to the routine R11l after it is extracted
by the routine RS5. On the contrary, if some shadow overlaps the
stomach, the routine R10 deletes branches corresponding to the extra
shadow from the medial axis after this is obtained by the routine R6;
the routine R7 calculates distance of each point; and then, the routine
R8 reconstructs the figure of the stomach using the distance of the
points on the tailored axis. This figure will be processed by the
routine R5, which passes the gastric contour to the routine R1l. On the
other hand, the gastric axis is obtained by the routine R9 from the
medial axis and is also passed to the routine R1l in the both cases.
The flow control itself involves a difficult problem and the human
operator must do it at present. Some control parameters are to be
specified at runtime for convenience of changing their values.

3.5.3 CPU Time and Memory Size

The system was implemented on a general purpose large computer,
FACOM-M190. The approximate CPU time for processing an image of 300%X250
pixels was thirty seconds for the routine Rl; three seconds for each of
the routines R2, R5, R8, RY9, and R10; five seconds for the routine R3;

and ten seconds for each of the routines R4, R6, R7, and R11.! The
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Table 3.2 Examples of CPU time

Routine Example 1  Example 2

R1 30.73 sec. 31.00 sec.
R2 3.51 3.55
R3 5.09 5.29
R4 9.14 9.72
R5 1.92 2.19
R6 9.65 11.89
R7 10.99 10.83
R8 3.64 3.60
R9 2.37 2.40
R10 2.28 2.29
R11 10.13 9.51
Total 89.45 92.27
Average 8.13 8.39

total time was about ninety seconds for one image. Examples are shown
in Table 3.2. The program size of the system is about 3500 FORTRAN
source lines. The working memory was prepared for respective routines
as required: 75 kilo-words for the image; 3 kilo-words for each of the

2

row and column numbers of the gastric contour®, the medial axis, or the

skeleton; and 1200 words for the table of a linear graph.

3.6 Remarks on Implementation on a Small Computer

In conducting this research, the author impressively felt the

'Calculation of Fourier descriptors was not included in the routine R11l
at this time. See also Section 4.2 and Section 4.3.

2Actually, a contour needed less than 2 kilo-words. The Freeman's coding
is not used.

- 53 =



need of designing a flexible system convenient as a tool for image
processing study. Thus, a tool system was actually made and implemented
on a small computer NOVAOl equipped with standard peripherals under its
- operating system RDOS. The hardware also includes an ITV image reader
and a CRT image display but is not flourished with expensive devices
such as image processing hardware. The main strategy of this work was
to develop a root system which can be readily implementable in any
computer system without expensive dedicated hardware, for only such
systems can be acceptable at many laboratories due to financial
problems. This system can be used at two levels: the command level and
the programming level. A beginner can use this system by simply issuing
a command from the console. If a stream of procedures are to be
performed successively, he can also stack the procedures to create a
macro command in advance. While values of many parameters are given in
dialogue with the system, most of them can be also fixed in order to
minimize repetitive and cumbersome operation of specifying identical
values. A more advanced user can modify and append programs appropriate
for his problem. For ease of programming, tﬁe system 1is written in
FORTRAN and a set of virtual array subroutine subprograms is provided
for manipulating large images. The design principle of the system, the
system management, supporting utilities, and processing programs were
published elsewhere[27]. The programs for the gastric contour
extraction were implemented on this tool system. Table 3.3 shows
examples of the processing time for the gastric contour extraction. For
comparison, FFT calculation time is also included. The processing time
grows rapidly as the image size grows. | This is mainly due to the

frequent access to images resident on magnetic disk, through the buffer
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Table 3.3 Examples of process time

Image size

Routine 64%X64 128%x128 256%256
Rl 0.4 min. 0.9 min. 2.3 min.
R2 0.6 1.9 6.8
R3 1.7 4.3 40.6
R4 3.2 10.6 51.2
R5 0.2 0.5 1.3
R6 1.5 - 13.9 134

R7 0.2 1.0 3.6
RS 0.6 2.7 11.1
R9 0.8 2.7 7.3%
R10 0.8 2.7 5.1%
Total 10.0 41.2 263

FFT 1.6 8.5 43.5
FFT on NOVA3/D 0.8 4.1 19.0

* includes about 1.7 minutes for human intervention.

memory of the small size. Therefore, the time will be reduced if recent
computer with fast and large main memory and quick access disk are used.
The reduction 1is estimated to be by a factor of two or three from an

implementation experience of the tool system on a small computer NOVA3D.

3.7 Summary of the Chapter

This chapter has been devoted to extraction of the gastric
contour from an SPAP image by digital image processing. Athough it is
called preprocessing from a conventional point of view in pattern

recognition, it forms an important part of the computerized
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interpretation: the precision of the extracted contour is crucial in
analyzing the image. 1In this chapter, after preliminary examination on
the property of the images, binarization techniques have been developed
based on the dynamic threshold concept. | As postprocessing of the
binarization, logical filtering by labeling is used to eliminate shadows
separate from the stomach; while methods of handling the structural
information are used to eliminate shadows connected to the stomach.
These techniques were arranged to make a prototype system which was
implemented on a large computer. ihis system requires at most two kinds
of human intervention: the flow control according to existence of extra
shédows and specification of some nodes. The gastric contour extracted
by this system may be useful in diagnosing the deformity of a stomach
and in extracting the gastric contour more precisely. In order to
detect fine changes on the gastric contour, more sophisticated methods
must be developed to attain precision. This system was also implemented
on a small computer in its general purpose image processing software

which was made to realize some requirements as described in Section 3.5.
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CHAPTER 4 FEATURE EXTRACTION AND PATTERN CLASSIFICATION

4.1 General Approaches

Approaches to classifying samples into pattern classes, or
pattern recognition, may be categorized to be either descriptive or
quantitative, Descriptive approaches wuse syntactic methods for
inference, for example, based on the formal language theory. A famous
example of descriptive approaches is found in Ledly[28] in the
chromosome analysis. He described contours of chromosomes using
primitives selected as different types of curve segments; then, he
applied the formal language theory for classification. On the other
hand, quantitative approaches use statistical methods known as the
multivariate analysis, particularly, the discriminant analysis and the
clustering. These statistical methods are also called supervised
pattern recognition and unsupervised pattern recognition; respectively.
Quantitative approaches have been used for a long period in biology and
in medicine. In biology, a main concern has been to classify many
variants of species 1in natural ways. This 1is called natural
classification. In medicine, a main concern has been to classify
findings and symptoms from a standpoint of human interest to know
whether they are of a normal state or of a diseased state.

In the both approaches, the first étep is to extract features
from samples. The features are, however, of a somewhat different
property. In descriptive approaches, features are primitives, or
element patterns. They are identified by template matching. On the
other hand, in quantitative approaches, features are measurements and

transforms of measurements. Sometimes, the primitives are identified by
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quantitative evaluation; a number of primitives thus obtained for
different observations are summarized by a descriptive approach in order
to give a final decision. Therefore, the difference between the two
approaches comes from the level they are used: if a main concern of a
research is to identify primitives, it appears as a quantitative
approach; if it is to analyze relations of primitives, it appears as a
descriptive approach. Selection of the approaches depends on the way a
researcher recognizes the world of objectives: whether an objective
should be recognized as a whole or by analyzing the context of its
primitives. Therefore, primitives may be called local features, while
measurements may be called global features. The remaining part of this
chapter is devoted to description and quantification of a gastric

contour; and quantification of an image of the apex region.

4.2 Description of a Gastric Contour

In order to describe the appearance of a contour, the deviation
curve and the gastric axis are introduced.
4.2.1 The Deviation Curve

As mentioned in Chapter 1, abnormalities are recognized on the
basis of a 1lack of harmony of the shape of a stomach; in other words,
inconsistency or discontinuity of the local property of curves of its
contour. Such concepts are ambiguous but lead us to an didea of
examining the curvature. In fact, when physicians inspect gastric
radiograms, they draw an ideal contour for each stomach in their minds.
The deviation of a real shape from its ideal one give them hints about
symptoms. This deviation is related to the curvature of the contour.

The ideal shape differs person by person as does the shape of a
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stomach. The author has used a smoothed contour of each stomach as its
ideal one, or its standard pattern. It is obtained by the moving
average method. This method is applied to the original contour which is
represented as a sequence of points in the Cartesian coordinate system.
Then, deviation from the smoothed contour is calculated for any point on
the original contour. The sign of the deviation is defined to be
positive if the original point exists outside of the smoothed contour;
and negative if inside. Actually, the sign is determined by a 1local
property of the contour: the side of the smoothed point with regard to
the tangent line of the original contour at the point corresponding to
the smoothed point. This method is valid if the original contour is not
extremely irregular. 1In this way, a deviation curve is formed, which is
assumed as the original contour stretched along its smoothed one. Thus,
a two-dimensional figure is reduced to a one-dimensional wave form.
4.2.2 Interpretation of a Deviation curve |

Interpretation of the deviation at any location of the contour
involves identification of feature points, establishment of the gastric
axis, and judgement on the deviation.
4.2.2.1 Identification of feature points

It is difficult to define anatomical feature points of a stomach
because a stomach is just a deformable tube. It has no fixed points nor
angles of fixed morphology; it has no bulbs of particular shapes.
However, in radiograms, three portions may be identifiable: the cardia,
the apex, and the pylorus. These portions are more frequently observed.
in SPAP images than in other kinds of images. Unfortunately, the cardia
is not clearly observable; and the pylorus 1is often occluded by the

shadow of the pyloric antrum even in SPAP images. On the contrary, the
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apex 1s often observable unless the peristalsis dis prominent. In
addition, its pathological importance in diagnosis has been recognized
as described in Chapter 2. The experiment in this section referred to
the apex and the uppermost points of both the fundus side and the
pyloric antrum side. Details about the identification of various
portions are described in Section 4.3.

4.2.2.2 Establishment of the gastric axis

Physicians always imagine the three-dimensional structure of a
stomach on the basis of their anatomical knowledge and can draw the
axial path from the cardia to the pylorus on the radiogram. The concept
of the gastric axis was introduced to let computer understand the two-
dimensional shadow of a stomach as a projection of a three-dimensional
tubular container. The peristalsis may be distinguished from abnormal
incisures by the symmetry about the gastric axis.

A method of establishing a gastric axis has been introduced in
Section 3.4, where the axis was determined from the binarized shadow of
a stomach by thinning.

The author also devised another method.! It establishes the axis
from a delineated figure, the gastric contour. For a fishhook—shaped
stomach, middle points of horizontal slices of the stomach are
successively connected in the portions above the level of the apex;
below the apex level, middle points of radial slices centered on the
apex are successively connected. For a steer-horn shaped stomach,
middle points of vertical slices are successively connected in the

portion in the lefthand side of the apex. In the both cases, if a slice

1Historically, this method was examined first[5].
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gives more than one line segment due to winding of the contour, the
point nearest to the center is considered. After the entire axis is
obtained, it is smoothed in its excessively discontinuous portions.
4.2.2.3 Local feature description of a contour

A variety of features may be calculated from the deviation curve.
The author has used the depth and the width of each curve segment whose
both ends are two adjacent zero-crossing points. This means that the
deviation curve is manipulated as a boxcar wave form. In a boxcar, the
signed hight and the length correspond to the extremum value and the
width of the curve segment, respectively. If a ségment includes more
than one extremum, one of the greatest magnitude is adopted. Symptomatic
changes on the contour may be put into certain descriptions of boxcars.

1. Linearization: the boxcar is long and of small magnitude.

2. Niche: the boxcar is short and of large magnitude.

3. Abnormal incisure: the boxcar is long and of large.magnitude; and
no similar incisures exist 1iIn a symmetrical position on the
curvature 1in the opposite side about the gastric axis in the
contour geometry.

4. Irregularity: many extreme points appear in an interval of the
deviation curve; in other words, the average interval between the
extreme points is short.

If none of these conditions holds, the corresponding curve segment of
the contour may be regarded as normal.

This logic 1is depicted in Fig,. 4.1. Actually, some noise
thresholds were incorporatéd. For example, thresholds 6 _, and GL
(0<68<<6L) were used instead of the zero 1level for the boxcar

interpretation. Each point of the deviation curve corresponds uniquely
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Fig. 4.1 A logic for description of a gastric contour.

to some one of the original contour. Therefore, dinterpretation of the
deviation curve can be represented in terms of the original contour.

An example of description by this procedure is shown in Fig. 4.2
along with its deviation curve. It should be noted that, in spite of
the rather simple 1logic, some symptomatic changes were properly
described. For example, profile niche near the apex is represented by
the context "4C+" in Fig. 4.2. However, interpretation of the local
features in the context of their topological and geometrical relations

is difficult in general.
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Fig. 4.2 An example of the description of gastric

contours and its deviation curve.
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4.3 Quantitative Analysis of Gastric Contours and Apex Images

This section describes two approaches to the feature extraction
from SPAP images and their evaluation. A particular interest is placed
on the deformity of the apex, because symptomatic changes tend to appear
in this region. One approach 1is the extraction of features from a
gastric contour. As proposed in a study on computational analysis of
heart diseases[29], some geometrical measurements and Fourier
descriptors were examined as candidate features. The other 1is the
extraction by a two-dimensional orthogonal transform of a gray level
image of the apex region. In the both approaches, the validity of
individual features and sets of features was evaluated using the same
methods. Therefore, in this section, the evaluation methods are
described first, and then the feature extraction and the results of the
respective approaches are shown. A two-class problem and a three-class
problem are postulated. These are referred to as N/A (normal/abnormal)
classification; and N/U/C (normal/ulcer/cancer) classification.

The sample set used in the experiment is composed of eleven
samples of gastric cancer, twenty-four samples of ulcer, and twenty
normal samples. Diseases were limited to those located in the apex
region. Diagnoses of the diseased samples had been verified through
pathological examination; the normal samples through diyect radiography
and endoscopy. The experiment analyzed their indirect radiograms taken
in mass screening.

4.3.1 Methods for Evaluation of Discriminating Features

As a premise in pattern classification, patterns are expected to

be separable to some extent in the feature space even if not

completely.l To prove the separability, the following may be examined:
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1. To get insight of the distribution of sample patterns through
inspection of scattergrams by eyes.
2. To make a discriminant function and evaluate its discriminating
performance by the discriminant analysis.
3. To group the sample patterns into clusters by the clustering and
inspect those contained in the respective clusters.
Inspection of scattergrams is a most convenient means, particularly when
the distributing property is unknown. However, the dimension of feature
spaces is limited to at most two. The discriminant analysis is a direct
method to evaluate the discriminating performance of a classifier. The
third method is applied without assuming g priori classes. It is useful
in 1inspecting the distributing property in feature spaces whose
dimensionality is high, particularly, higher than two.

In addition to these examinations, the effectiveness of features
and discrimination methods is determined in comparison with the
discriminating performance of human experts.
4.3.1.1 The discriminant function

For the discriminant analysis, many kinds of discriminant
functions have been developed such as 1linear classifiers, piecewise
linear classifiers, and nonlinear classifiers([30,31]. The classifiers
may be parametric or nonparametric. TFor simplicity, a linear classifier
obtained by a parametric method was used in this study. In this
section, a brief description of this classifier is given.

For a two-class problem, a Bayes' classifier is given by

131 < p
h(x)——{x -m, ) Zl (z-m, )- (x _m )TZ2 (z-m )+_lnlzll sl xe{class 1

2

1The terms classification and discrimination are synonymously used in
order to match the terminology of both the pattern recognition and the
discriminant analysis.

- 65 -



if the normal distribution is assumed for each class. In this
expression, & 1is a pattern vector; m, and m2 are the mean vectors, 2
and 22 are the variance-covariance matrices, and Py and P, are g priori
probabilities of the class 7 and the class 2, respectively. The

function A(x) denotes the Bayes' discriminant function.

When zl=22=z, it becomes a linear classifier

—(m o T5-1 1, Te-1  To-1 < Py class 1
h(w)=(my-m )"} +50m ] m =y} m2)>1n5+ wel oo (4.1)
Rewriting this rule, an expression
Ty-1 To-1 <, P3 class 1
(x—ml) ) (x—ml)-(x-mg) ) (z-m,) >Zn5-+ xE{cZass 9 (4.2)

is obtained. The expression (x_mi)TE‘J(x_mi) is squared Euclidean
distance between the pattern vector  and the prototype pattern veptor
mi after whitening of the distribution. This distance is called the
Mahalanobis' distance. That is, a Bayes' linear classifier is a

Mahalanobis' distance classifier. When p.=p L »
1%2 2

(w-m ) T (wemy) $ (o) TY T (womy) > me(00088 1
This gives a decision boundary which is the perpendicular bisector of
the line joining the prototype pattens p_ and p_ in the whitened space.
This is called the minimum Mahalanobis' distance classifier. The Bayes'
classifier is the optimum classifier under the Fisher's criterion
F=IE{h(x) |1} -E{R(x) | 2}1%/Var {h(z) | 1}+Var(h(z) | 2}]

where E{h(x)|i} and Var{h(x)|i} are the conditional expectation and the
conditional variance of J(z) in the class 4. This criterion is a
measure of the inter-class distance compared with the intra-class
distance. When 21=22, the solution maximizing this criterion is given
by the rule (4.2). Therefore, the discriminant function of this rule is

also called the Fisher's discriminant function.

When the classification risk,

- 66 -



cij=COSt associated with deciding xeclass j when xeclass <
is considered, a minimum-risk Bayes' classifier is given by exchanging
—c in (4.1) and in (4.2).

p, with (¢ and Py with (02

1271173 17%22°P;
In the discriminant analysis which follows, the minimum
Mahalanobis' distance classification rule is used. This means that the
assumption is
1. the class distribution is normal with an identical variance-
covariance matrix and
2. the minimum risk Bayes' classifier is used with
(e197¢11/P1=(Cg1mCp0)Py -
The mean vectors and the variance-covariance matrix are estimated

on the basis of the design sample set:
ne
1

where n, is the number of samples in the class ©; g is the number of

classes; xij is the j-th sample vector of the class <=

estimated mean vector; and z is an estimated variance-covariance matrix.

: ﬁi is an
These estimates can be shown to bg unbiased.
4.3.1.2 Methods of the discriminant analysis

The discriminant analysis includes the estimation of the error
classification rate and the feature selection.
Error estimation. In designing a classification rule, its goal is to
minimize - the loss due to false classification of samples which are
unknown to the classifier. Since the wunderlying distribution 1is
partially or completely unknown in general, the loss must be estimated

on the basis of a 1limited number of samples. It is known that the
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samples used in designing a classifier are well discriminated by this
classifier. This discrimination test is called the replacement method.
Thus, the estimate by the replacement method is biased optimistically.
This bias 1is a monotonically increasing function of‘the ratio of the
number of features to the number of samples. To reduce this bias, the
number of the samples must be much more than the number of the
features[32]. To obtain an unbiased‘estimate, the test sample set must
be independent of the design sample set. If a large number of samples
are available, the independence can be achieved by partitioning the set
of all samples into the design set and the test set. Unfortunately,
however, in many cases including studies on medical diagnosis, it is
difficult or impossible to obtain a large number of samples whose true
classes are known. The jack-knife test[29] and the leaving~one-out
test[31] are reasonable selection for problems in such situations.
Usually, once a useful set of features and a form of the discriminant
function are found according to such methods, the discriminant function
is finally designed on the basis of all available samples in order to
use as much information as possible. 1In the jack-knife test, a fraction

of all the samples are excluded from the design set and tested by the

designed classifier. Changing the excluded samples, this design-test
cycle is repeated. The error rate is estimated by totaling the results
obtained in all repetitions. The leaving-one-out test is a variant of

the jack-knife test. In this test, a discriminant function is designed
on the basis of the sample set from which one sample is excluded at each
repetition. The unbiased property of the leaving-one-out estimate has
- been proved experimentally([33].

Feature selection. Typically, the discriminant analysis also includes
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the selection of the best set of features. The purpose of the feature

selection is twofold. One purpose comes from the "principle of
parcimony'": to save cost for computation. The other is much more
important[32]. In designing a 1linear discriminant function, the

coefficients for respective features must be estimated on the basis of a
set of available samples, Z.e., the design set. Since such samples are
limited in number, the estimation involves statistical error. Such
error is accumulated linearly in calculation of the discriminant for any
test sample. The more the features are used in the discriminant
function, the more the erroneous terms becone. Therefore, the
discrimination accuracy becomes worse even if meaningful features are
included. If meaningless features are included, the discrimination is
violated more. If the discriminant function is piecewise linear or
nonlinear, equivalently it involves more features. Therefore, a harder
situation occurs. Thus, the feature selection 1is eséential in the
desién of a discriminant function.

The strict means for selecting a best feature set is to examine
the discriminating performance for all combinations of candidate
features. However, this exhaustive search is not feasible in reasonable
computation time if there are many candidate features. For such a case,
sequential search procedures are known to give suboptimal solutions[33].
Let us consider selection from 3 candidate features. In the backward
sequential search, the cadidates are discarded one by one. At the
beginning of the k-th step, n-k+] features are selected, while other k-1
features are discarded. At this step, one feature is excluded from the
selected set; and the performance of discrimination by other n-%k

features is evaluated. This evaluation is made for each feature of the
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selected set. Then, a feature 1is discarded if it results the best
performance when excluded. At the end of this step,.n-k features are
selected. On the contrary, in the forward sequential search, the
candidates are selected one by one. At the beginning of the k-th step,
k-1 features are selected, while other n-k+I1 features are not. At this
step, one of the unselected features is appended to the selected set;
and the performance of discrimination by this augmented set is
evaluated. This evaluation is made for each of the unselected features.
Then, a feature 1is selected if it results the best performance when
appended. At the end of this step, k features are selected. In the
both search procedures, the best feature set is selected by comparing
the discriminating performance at each step. The computation time is
less in the forward search, while a better feature set is obtained by
the backward search.

In this study, the error rate was estimated by the replacement
method and the leaving-one-out method. For the feature selection, the
forward sequential search was applied. It is known that, in the course
of the forward search, the error rate decreases first and then increases
again as the number of features increases[33]. Therefore, in most cases
examined, minimal feature sets giving a local minimum of the error rate
were adopted in order to save time for calculation.
4.3.1.3 The clustering

The clustering is a method of grouping given samples = into
assumable number of clusters in a "natural"” way. It is useful in
inspecting the distribution of samples, particularly when the feature
space is of high dimensionality. The clustering is also applied to the

feature selection. When a set of features are clustered into groups of
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similar features, representative features are selected one by one from
respective feature clusters.

The principle of the clustering is to gather samples which are
located near in the feature space or which have a high similarity in
some sense[34]. The nearness is measured by the inter-sample distance

such as the Mahalanobis' distance,

T ¢-1

(@ = )" 17" (z -z )

where xr and xs are sample patterns, and Z denotes the variance-
covariance matrix. (This variance-covariance matrix is not of
respective classes but of the entire distribution, because true classes
are assumed unknown.) The Euclidean distance is generally not
applicable becduse measuring units of respective features are different.

The measure of similarity is given by the correlation coefficient

between samples,

14 Lxrk—xr)(xskuxs) - 1 g x,
T .- T .-
jog vd Vi Ted e

where p 1s the number of the features and xrj is the j-th feature of the
r—th sample.

Methods  of the clustering are either hierarchical or
nonhierarchical. 'The hierarchical method begins by assuming that each
sample forms one cluster. Similar clusters are merged step by step to
give a chart like a tournament diagram, which is called the dendrogram.
Depending on the definition of the measure of the inter-cluster
distance, various methods have been developed such as described below.
The non-hierarchical method begins by assuming a number of seed samples.
Then, splitting and merging of clusters are iterated until a prescribed

convergence criterion 1is satisfied. Typical non-hierarchical methods
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are the K-mean method and the ISODATA method.

In this study, hierarchical methods were applied. Because of the
unknown distributing property assumed in the clustering, all sorts of
existing hierachical methods were used. These methods differ in the
definition of the distance (or the similarity) between samples and
between clusters. As to the inter-sample distance, the normalized
Fuclidean distance, the Mahalanobis' distance, and the inter-sample
correlation coefficient were examined; as to the inter-cluster distance,
the nearest neighbor method, the farthest neighbqr method, the centroid
method, the mode method, the median method, the group average method,
the flexible method, the Ward's method, and the WPG method were
examined[35].1 In this section, only the results supporting those of the
discriminant analysis are given. The cluster property of the samples is
shown not only in a form of the dendrogram but also in forms of the
confusion matrix and the error classification rate. For the latter
forms of representation, a name of a cluster was determined as the name
of the majority of the samples classified into that cluster.

The hierarchical methods were also used for inspecting the
property of the features with regard to the feature selection. This
inspection was made after exchanging the samples with the features.
That is, a set of m-dimensional n samples was manipulated as.a set of n-—
dimensional m samples after transposing the data matrix[33].

4.3.2 Feature Extraction from a Gastric Contour and Its Evaluation

Physicians examine the proportion of the entire shape of a

stomach at an earlier stage in inspecting its still radiogram.

1Only the first four methods were applied when the inter-sample correla-
tion coefficient was used as a measure of the inter-sample distance.
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Therefore, some features of this kind may exist, although difficulty may
arise in quantification of the shape due to its change through the
peristalsis. Such features may represent the first impression when a
physician sees a radiogram.

This section describes a method of extracting such features from
a gastric contour. The features are calculated automatically without
human intervention when a contour is given to computer. Experimental
results are shown on the separability of the samples in some feature
spaces.
4.3.2.1 Feature extraction

A gastric contour 1is assumed to be given as a simply-connected
closed curve. Some geometrical measurements and Fourier descriptors
were examined as candidate features.

Geometrical measurements. The following quantities were calculated on

p T T
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p L ] 4
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(a) ¢:))

Fig. 4.3 Points detected for the measurement.
(a) Points detected.
(b) Determination of the limits.
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the basis of the feature points shown in Fig. 4.3.

/\/\
GMI = TSWPS/PZWundTZ

TN ——
GM2 = WPS/’WWund

GM3 =/ T WP

GMd = @ /’r“ni/;
GMS = AJ/A2
where Al is area of the region surrounded by the straight line ﬁ;?; and
the curvature ;;;E;; A is area of the rectangle E]P PP . The
s 2 qu rs
quantities GM¢ and GM5 are calculated only for fishhook-shaped stomachs.
The measurements were devised to meet the expertise knowledge of
physicians and radiologists: the quantities GMI, GM2, and GM4 are
related to the shrinking of the lesser curvature; the quantities GM3 and.
GM5 are related to the deformity of the apex. Note that GMI, GM2, GM4,
and GM5 are normalized quantities which are independent of the size of
the stomach. The feature points are defined by an algorithm as follows.
a) The apex: The apex W is determined by a counterclockwise search of
the gastric contour. This search starts from the uppermost point T
and finds a point where the gradient to the vertical axis
{w(+1)-x(-1)} / {y(§+1)-y(§-1)}
exceeds a threshold etw for the first time. The search is iterated
from roughly smoothed contours to moderate ones, and then finally
to the original, in order to avoid false detection of any point on
irregular portions of the contour. At each iteration, the search
begins with a neighbor of the point detected by the previous
search. Validity of the obtained point is further checked as to

its relative position in the  circumscribing rectangle of the

. gastric contour. Suppose that the position of this point is

- 74 -



b)

c)

d)

Crw,yw) and that “min and “maz denote the minimum and the maximum
of the coordinate values of the contour points. Then if

(y Yy~ mzn)’/(y ymin)>ewy
that point is rejected and the search is further continued; if

(- mzn)’/(xmax_xmzn)<9wx
that point is rejected and, instead, a point straight above the
lowermost point B is selected. The former check is to avoid
detecting points in irregular portions of the surface of contrast
material; the latter allows for steer-horn shaped stomachs. The
apex determined by this algorithm agrees well with one identified
by physicians.
The points h%, Wb, and Wﬁnd: Each of these points is specified on
the greater curvature, having its position (x,y) satisfying either
L=, O y=y, .
The cardia limit fzfz} This line is established at'the level where
abrupt change more than ecZ occurs in the number of the contour
points contained in a horizontal slit (see Fig. 4.3,) as the slit
moves upwards at intervals of five points, starting from the middle
level between the apex ¥ and the uppermost point 7. The length of
the narrow side of the slit is 25 points; the length of its long
side 1is virtually adjusted to cover only the gastric body at each
level of the slit. (Actually, this is equivalently done by
counting the contour points of the gastric body.)
The antrum limit fzfz; If the stomach is of the fishhook shape,
this line is established at the level where abrupt change more than

eaZ occurs in the number of the antrum contour points included in a

horizontal slit, as it moves upwards starting from the middle level
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between the apex ¥ and the point P which is located uppermost on
the curvature between the apex and the point R - located on the
extreme left. If the stomach is of the steer-horn shape, a
vertical slit is used: it moves similarly but to the left, locating

the points P, and Ps on the both sides of the point R.

[

e) The point Pf: the intersection between the elongation of the line
?Zf; and the lesser curvature.

Although the cardia and the pylorus may be used as feature points
in order to represent the shape of a stomach numerically, the cardia is
not clearly observable and the pylorus is often occluded by the shadow
of the pyloric antrum in radiograms. Therefore, in this case, positions
of these points must be estimated or some subsidiary points must be
used. One approach is to measure only a portion which is filled with
contrast material. The purpose of establishing the two limits described
above 1is to avoid, in the measurement, the influence of the irregular
surface of contrast material in this approach.

In order to determine the shape of a stomach, the level of the
point P is examined: if

(yp—yw)’/(yw_ymin)>esh 2
then the shape is of the fishhook; otherwise, it is of the steer-horn.

In the present version of the program, etw=1'732 (60 degrees,)
ewy=0.75, ewx=0'2’ ecZ=25 points, eaZ=10 points, and esh=0°15'

Fourier descriptors. A plane closed curve can be represented by a set
of trigonometric functions by the Fourier expansion, a method of
functional approximation of periodic functions. Fourier descriptors are

defined on the basis of this expansion. Two typical sets of the Fourier

descriptors are one for the cumulative angular function[15] and one for
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the complex-domain representation[36]. The latter was used here, which
is related to the concept of Lissajous' figure.

A plane curve can be represented in a complex plane by
3(t) = x(t)+y(t)y/-1 » where ¢ 1is the path length from an arbitrarily
chosen starting point of the curve; x(t) and y(t) denote the position of
a point in a real Cartesian coordinate system; and z(¢) denote that in a
complex Cartesian coordinate system. If the curve 1is closed, the
complex function z(#) is periodic and

2(t+T) = z(t)

Therefore, it can be expanded into a Fourier series, thus

z2(t) = ) e, exp(jnwot)

N=-o0
where
-1 3
e, =7 J'T 2(t) exp(-gnwet) dt
and Wo= %; . In a discrete system,
N-1 an
2(1) = | e(k) exp(j—p— ki)
k=0
N-1
e(k) ==Y 2(1) exp(-g-21 k1) , k=0,1,2,...,0-1,
N 1=0 N

where c(k) and z(1) correspond to e, and z(to+lAt), with At being the
sampling length along the path. The coefficients ¢(k)'s represent
proportion and phase shift of the sinusoidal waves of respective
frequencies. ‘By selecting a limited number of coefficients, the closed
curve  is approximated by a set of sinusoidal waves. A class of Fourier
descriptors is defined on the basis of this expansion[36]. In this.
experiment, Fourier degpriptors were defined by

FDk = |e(k+1) /e(1)| , k=1,2,...,28,

where c(k) is the coefficient of the K-th harmonic. To exclude the
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effect of the location and the size of a stomach, the zero-th order
harmonic was not used and the other harmonics were normalized by the
first order harmonic.
4.3.2.2 Analyzed data

Gastric contours of the sample radiograms were traced by persons
without medical training. This means that we assumed the precision of
the contour which would be recognized without expertise on the gastric
radiography. (1t shopld be noted that the gastric contour can not
always be recognized clearly. The precision assumed here is a reasonable
goal of the contour extraction, if it is to be performed by computer.)
Each of the tracings were represented as a point sequence in a digital
coordinate system. This representation is the same as one directly
obtained by counterclockwise boundary-tracking in digital image pro-
cessing. The interval between vertically or horizontally adjacent pixels
is about one millimeter in the scale of a direct radiogram (which is of

about the same scale as a real

body.)

UNFILLED

Two types of gastric contours
may be traced from a radiogram: the
contour of the gastric wall and that
of contrast material. These are
distinctly recognized, particularly,

in portions of the upper body and of

the pyloric antrum, because contrast

material is not filled completely in
these portions. The both types were Fig. 4.4 Types of the

. . . gastric contour.
traced, if possible, in order to see
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Fig. 4.5 The error rate in classification of the type-I
contours using each of the discriminating
features. The features GM4 and GM5 were
evaluated for only the fishhook shaped stomachs.
(a) N/A classification. (b) N/U/C classification.

the sensitivity of the classification error to the precision of the
contours. The portion of the fundus was not traced, because its
contrast 1is weak and also because it is truncated by the frame of a
radiographic film. Hereafter, a contour of the gastric wall is called
the type-I; one of contrast material is called fhe type-II. (See Fig..
4.4.) It seems very difficult for computer to extract type-I contours.

Forty-six type-I contours and forty-seven type-1I contours could

be traced as closed curves from indirect radiograms of the fifty-five
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Table 4.1 The error rate in classification of the gastric contours

using the most discriminating feature set

(a) Both the fishhook shaped and the steer-horn shaped stomachs

Cases
Contour type I 1 11 II
Sample size 40 40 44 44

Classification N/A N/U/C N/A N/U/C

Candidate features

31v *%7.5 4 *%%25.0 7 22.7 % 36.4 %
8PC of 31V 12.5 27.5 25.0 34.1
28FD (12.5) (25.0) (25.0) (40.9)
8PC of 28FD 15.0 30.0 31.8 45.5

6 M.D.s 11.3 29.2

(b) Only the fishhook shaped stomachs

Cases
Contour type I I II I1
Sample size 36 36 40 40
Classification N/A N/U/C N/A N/u/c

Candidate features

33v 8.3 % 25.0 7 10.0 7 30.0 7
8PC of 33V 11.1 27.8 22.5 37.5
Notes:

1. The first column denotes sets of candidate features
for the feature selection: the candidate features
are GM1, GM2, GM3, and the Fourier descriptors (31V);
the first eight principal components (8PC); the
Fourier descriptors (28FD); GM4, GM5, and 31V (33V).

(Continued on the next page.)
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Table 4.1 (Continued.)

The result of classification by six physicians is
shown in the row denoted by "6 M.D.s."

2.'The best cases are indicated by asterisks: the
features are FD10, FD1, GM2, and FD19 (**); FD10
and GM2 (*#*%),

3. Parentheses indicate that the order of selecting
features was determined by the replacement method
in order to save time for calculation. (The number
of features composing the best set and the error

rate were determined by the leaving-one-out method.)

samples which were available. Forty type-I contours and forty-four
type~-I1I contours were analyzed which satisfy an assumption of the
feature extraction program: the highest point of the contour is located
in the side of the fundus rather than of the pylorus. The two types
were analyzed separately.

4.3.2.3 Results

Seattergrams. Distribution of the samples was examined through its
projections onto some two-dimeﬁsional feature spaces including ones
composed of principal components of the features. The projections
implied feasibility of separation of the diseased samples from the
normal ones by a linear classifier.

Discriminant analysis. Fig. 4.5 shows error rates of more
discriminating features obtained in classification of the type-1

contours, when the features were used individually. Table 4.1 shows
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error rates attained by best sets of features. These features were
selected, in the N/A classification, from.among those whose error rates
were less than forty percent when used individually; or, in the N/U/C
classification, less than 56.7 percent. Table 4.1 includes other cases
of the feature selection: from the first eight principal components of
all features, from only the Fourier descriptors, and from the first
eight principal components of the Fourier descriptors. The type-I1
contours were also inspected by six physicians independently, who were
experienced or less experienced. This result is also included. Table
4.2 shows confusion matrices estimated by the leaving-one-out method and
by the replacement method in classification by the selected feature
set; while Table 4.3 shows actual confusion in classification by the
physicians.

Clustering - The samples were clustered in a wvariety of merging
processes depending on the methods. However, separation was recognized
between the normal samples and the diseased ones through most
dendrograms; separation between the cancer samples and the ulcer samples
was not clear. As shown in Table 4.4(a), the error rate in the best N/A
classification was 22.5 percent for the set of the type-I contours
containing both the fishhook shaped and steer-horn shaped stomachs, in
the original 31-feature space; Fig. 4.6(a) shows the dendrogram in this
case. For the set of only the fishhook shaped stomachs, the error rate
was 13.9 percent in the original 33-feature space. However, smaller
values were obtained when the clustering was performed in reduced
feature spaces composed of features selected by the discriminant
analysis; the error rate was approximately ten percent as shown in Table

4.4(b). In this case, separation of the clusters was more apparent as
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shown in the dendrogram of Fig. 4.6(b). The separation of the type-II
contours was generally worse. When the steer-horn shaped stomachs were
included, the error rate was 27.3 percent in the selected feature space;
for only the fishhook shaped stomachs, it was 12.5 percent. The error
rates all agreed well with those obtained by the discriminant analysis.

For the type-I contours, the clustering of the features resulted
in a dendrogram shown in Fig. 4.7. As pointed out by Toriwaki
et al.[33], the features selected through the discriminant analysis
tended to belong to different clusters. This property was clearly
recognized in the N/A classification and supports the validity of the
selected features.
4.3.3 Feature Extraction from an Apex Image and Its Evaluation

This section decribes another approach to the feature extraction,
which is rather mathematical than pattern-based: no decision is made as
preprocessing such as feature point detection. ThHe underlying concept
used here is pattern matching. The hypothesis was that pattern matching
works in classification of certain local regions even if the shape of a
stomach changes as a whole due to the peristalsis. Lower sequency or
frequency components of a two-dimensional orthogonal transform of an
apex image were used for the purpose of discriminating abnormal changes
of the apex.
4.3.3.1 Feature extraction

Assume that an image 1is represented as a matrix [F] whose
elements are gray levels of corresponding pixels. A two-dimensional
orthogonal transform, or wunitary transform to be precisely, of this
image is given by

(el = WITIF1V] (4.3)

- 83 -



Table 4.2 Confusion matrices of classification
of the type-1 contours of both the
fishhook shaped and the steer-horn
shaped stomachs by the discriminant

analysis

Assigned classes

N A Error
Verified N 14 2 12.5 %
diagnoses A 1 23 4.2
Overall error classification 7.5
Sample size = 40

Feature set (FD10,FD1,GM2,FD19)

Assigned classes

N U C Error
Verified N 12 2 2 25.0 %
diagnoses U 1 9 3 30.8
C 1 1 9 18.2
Overall error classification 25.0
Sample size = 40
Feature set = (FD10,GM2)

Note: Identical matrices were obtained by both
the leaving-one-out method and the

replacement method.
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Table 4.3 Confusion matrices of classification
of the type-1I contours of both the
fishhook shaped and the steer-horn

shaped stomachs by six physicians

Assigned classes

N A Error
Verified N 88 8 8.3 %
diagnoses A 19 125 13.2
Overall error classification 11.3

Sample size = 40%6

Assigned classes

N U C Error

Verified N 88 5 3 8.3 %
diagnoses U 13 56 9 28.2
6 34 26 60.6
Overall error classification 29.2

Sample size = 40%6
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Table 4.4 Confusion matrices of classification
of the type-1 contours of both the
fishhook shaped and the steer-horn

shaped stomachs by the clustering

(a) Clustering in the 31-feature space

Assigned classes

N A Error
Verified N 9 7 43.8 %
diagnoses A 2 22 8.3
Overall error classification 22.5
Sample size = 40

(GM1,GM2,GM3,FD1, . .,FD28)

The farthest neighbor method with the

fl

Feature set

inter-sample correlation coefficient

measure.

(b) Clustering in the selected feature space

Assigned classes

N A Error
Verified N 12 4 25.0 %
diagnoses A 1 23 4.2
Overall error classification 12.5
Sample size = 40

(FD10, FD1,GM2,FD19)

The Ward's method with the normalized

Feature set

Euclidean distance measure.
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Fig. 4.6 Dendrograms of the clustering of the type-I contours.
(a) Clustering in the 31-feature space. Feature set = (GMl,
GM2, GM3, FD1,...,FD28). Method: the farthest neighbor
method with the inter-sample correlation coefficient measure.
(b) Clustering in the selected feature space. Feature set =
(¥D10, FD1, GM2, FD19). Method: the Ward's method with the

normalized Euclidean distance measure.
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Fig. 4.7 A dendrogram of the clustering of the contour features.
The marks indicate the selected best features.
Samples: the type-I contours of both the fishhook shaped
and the steer-horn shaped stomachs. Method: the flexible

method with the Mahalanobis' distance measure.

where the matrices [U] and [V] are unitary matrices deduced from

complete sets of orthogonal functions of the transform. Let us define

[U]=(u0,u1,...,uN_1)
and
[V]=(vo,v1, . .,vN_J),
where the column vectors UgsUyse=sly and vO’”l""’”N—l are

sampled version of the orthogonal basis functions. Rewriting the
expression (4.3), we obtain an expansion of the original image into a

set of the basis images:
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(F1=1T) [a] (V1T

or
NilNil

[Fl= O.. .UV,

i=0j=0 *J * Y

where aij's are the components of the matrix [a], and the bar over the

T

matrices indicates the complex conjugate. If the basis functions are
arranged in ascending order of the frequency or sequency, the
coefficients represent proportions of respective basis images uiva in
order of roughness, <.e., from rough appearances to modifying details.
The meaning of the feature extraction by an orthogonal transform can be
better understood by interpreting the extraction of lower frequency or
sequency components as approximating the original image by a 1limited
number of basis images of the transform. Its visual meaning is to take
a vague or unfocused observation of the image. Therefore, the method
may extract features representing a first impression of a physician when
he sees the image. The dinformation retained by lower sequency
components is proportions of more monotonous basis images, which form a
blurred version of the original image.

In order to see the sensitivity of the classification error to
the type of the 'transform, two types were examined: the slant
transform[37,38] and the TFourier transform({39]. These were chosen
because they are commonly used or suboptimal in data compression of
gray-level images. The both were programmed according to the fast
algorithms in ordered form[40,41]. The Fourier transform was applied to
both original images and images preprocessed by the Hanning window,
which is often used to reduce the spectrum leakage. The spectrum
leakage 1is a phenominon caused by limiting the space band, or the

window, for calculation of the transform. In order to reduce this
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effect, various windows with tapered outskirts have been developed[42].

The Hanning window is a weighting function given by

w..= [0.5-0.5 cos{ani / (N-1)}1[0.5-0.5 cos{2nj / (N-1)}]

1d

Its visual meaning is to emphasize the central portion of an image.

Moduli

of lower sequency components were examined as candidate

features: 1in the case of the Fourier transform, thirty-five components

contained in

semicircle centered on the zero-th component which was

shifted to the center of the transformed matrix; in the case of the

slant transform, thirty components contained in a quadrant centered on

(0,3) (1,3)_
(1,3 (o, 2)-
1. o) |
(1,4>-
{0,0)
(1, 2)
(0,4
(0,3)
L5 ) —
0 50 . 100 . 0 67~ 100
(a) (b)
Fig. 4.8 The error rate in classification of the apex

images using each of the discriminating features
obtained by the Hanning window-Fourier transform
operation. The numbers in parentheses represent
the spatial frequency of a feature as '"(the
vertical frequency, the horizontal frequency)."

(a) N/A classification. (b) N/U/C classification.
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Table 4.5 The error rate in classification of the apex images

using the most discriminating feature set

Classification N/A N/U/C

Candidate features

35FT 14.9 % 34.0 %
8PC of 35FT 17.0 - 36.2
35H.FT *%6.4 *%%21.3
8PC of 35H.FT 10.6 23.4
308T 12.8 31.9
8PC of 30ST . 19.1 34.0
M.D. 2.1 - 21.3 % 19.1 - 36.2 %

Sample size = 47

Notes:

1.

The first column denotes sets of candidate features
for the feature selection: the candidate features
are the Fourier transform features (35FT); the
first eight principal components (8PC); the

Hanning window-Fourier transform features (35H.FT);
the slant transform features (30ST). The result of
classification by one physician is shown in the row
denoted by "M.D." Two figures in both sides of a

hyphen represent a range of his error rate.

. The best cases are indicated by asterisks: the

features are Ial,ql, Ia_1,o|, and |ag,o|(**); |a1,3|,
IG-—I;O]s |0‘0’0]9 |0.3,2|, |a-1a'+[, and |(X-1,2| (***)'
lai’jl denotes a feature whose spatial frequency is

(2,4).
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Table 4.6 Confusion matrices of classification
of the apex images by the

discriminant analysis

Assigned classes

N A Error
Verified N 18 2 10.0 %
diagnoses A 1 26 3.7
Overall error classification 6.4
Sample size = 47

Feature set = (|o1,4],]0=1,0],]C0,0])
Hanning window-Fourier transform.

Leaving-one-out/replacement method.

Assigned classes

N U C Error
Verified N 19 1 0 5.0 %
diagnoses U 2 10 4 37.5
1 2 8 27.3
Overall error classification 21.3
Sample size = 47

(|a193ls|a—1a0|,la0,011

IOL3,2|,|O(.-1,u|,|G._1,2|)

Feature set

Hanning window-Fourier transform.

Leaving-one-out method.

(Continued on the next page.)
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Table 4.6 (Continued.)

Assigned classes

N U C Error

Verified N 19 1 0 5.0 %
diagnoses U 11 3 31.3
0 2 9 18.2
Overall error classification 17.0

Sample size = 47

(lox,s],la-1,0]5l20s0],
logsa |y |omt,ul, [amrs2])

Hanning window-Fourier transform.

Feature set

Replacement method.

the zero-th component.
4.3.3.2 Analyzed data

The sample radiograms were enlarged, and their printed positives
were read into the computer through a vidicon TV camera. Only the
region of the apex was digitized. Each of the digitized images consists
of 64X64 pixels; the gray ievel was quantized into about one hundred
actual levels. The positives were placed in a fixed position in order
to avoid the shading effect of the TV camera. Ambiguous images had been
discarded, and therefore, the analyzed images totaled forty-seven. Gray
levels of the input images were linearly normalized so that the minimum
and the maximum values would become constants.
4.3.3.3 Results

Seattergrams. Distribution of the samples was examined through its
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projections onto some two-dimensional spaces composed of principal
components of the features. The projections implied feasibility of
separation of the diseased samples from the normal ones by a 1linear
classifier;

Diseriminant analysis. The samples were best classified when the
Fourier transform was applied to the Hanning-windowed images. Fig. 4.8
shows error rates of more discriminating features in this case, when the
features were used individually. Table 4.5 compares error rates
attained by best sets of features which were selected in the same way as
the best sets of the contour features. The printed positives of the
samples were inspected also by an'experienced physician. His judgement
was given with a certainty index as 1in the common manner of medical
diagnosis. Table 4.5 includes also the error rate of the judgement,
which is represented by a range obtained by optimistic and pessimistic
assessment of the judgement. In the pessimistic assessment, a judgement
was classified to be correct only if he 1is certain of it; in the
optimistic assessment, a judgement was classified to be correct even if
he 1is wuncertain. Table 4.6 shows confusion matrices estimated by the
leaving-one-out method and by the replacement method in classification
by the selected feature set; while Table 4.7 shows actual confusion in
classification by this physician.

Clustering. The trend of the clustering of both the samples and the
features was similar with the trend in the case of the gastric contours.
Although the samples were clustered in a variety of merging processes,
separation was recognized between the normal samples and the diseased
ones through most dendrograms; separation between the cancer samples and

the ulcer samples was not clear. The error rate in the N/A
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classification was 10.6 percent in the original 35-feature space in the
Hanning window-Fourier transform case (see Table 4.8(a)); Fig. 4.9(a)
shows a dendrogram in this case. In the space composed of the features
selected by the discriminant analysis, the error rate was obtained as
shown in Table 4.8(b). These values agree well with the result of the
discriminant analysis. As shown in Fig. 4.9(b), separation was
recognized more clearly ' in the dendrogram obtained by the clustering in
the selected feature space than in the dendrogram of Fig. 4.6 for the
gastric contours.

The clustering of the Hanning window—fourier transform features
resulted in a dendrogram shown in Fig. 4.10. Here again, the selected
features tended to belong to different clusters. This trend was also
recognized in the clustering oflthe slant transform features.

4.3.4 Discussion

Some similarities were noted between the reéults of the

experiments on the gastric coptours and on the apex images:
a) The error rates in classification by the best feature sets were
comparable to those by the physicians. |
b) The samples were separable both in the discriminant analysis and in
the clustering, similarly: the normal samples and the diseased ones
were clearly separable, while the cancer samples and the ulcer
samples were not.
Since the . experiments were conducted to prove the feasibility of
classification, no sophistication was made about its method. We may
expect better accuracy of classification by elaborating the form of the
discriminant ‘function and the method of the feature selection.

Moreover, some papers also reported successful results in classification
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Table 4.7 Confusion matrices of classification

of the apex images by a physician

Assigned classes

N A Error
Verified N 20 0 0.0 %
diagnoses A 1 26 3.7
Overall error classification 2.1

Sample size = 47

Optimistic assessment.

Assigned classes

Nv A Error
Verified N 18 2 10.0 7
diagnoses A 8 19 29.6
Overall error classification 21.3

Sample size = 47

Pessimistic assessment.

(Continued on the next page.)
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Table 4.7 (Continued.)

Assigned classes

N U C Error

Verified N 20 0 0 0.0 %
diagnoses U 0 13 3 18.8
c 1 5 5 54.5
Overall error classification 19.1

Sample size = 47

Optimistic assessment.

Assigned classes

N U C Error

Verified N 18 2 0 10.0 %
diagnoses U 2 11 4 31.3
c 6 5 1 90.9
Overall error classification 36.2

Sample size = 47

Pessimistic assessment.

Note: It was permitted for the physician to assign
more than two classes to one sample when it
was impossible to make definite judgement.
Thus, the error rate here is defined by

1-(correct classification rate).
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Table 4.8 Confusion matrices of classification
of the apex images by the clustering
using the Hanning window-Fourier

transform features

(a) Clustering in the 35-feature space

Assigned classes

N A Error
Verified N 19 1 5.0 %
diagnoses A 4 23 14.8
Ovefall error classification 10.6
Sample size = 47

Feature set (35 features)
The centroid method with the inter-

sample correlation coefficient measure.

(b) Clustering in the selected feature space

Assigned classes

N A Error
Verified N 18 2 10.0 %
diagnoses A 4 23 14.8
Overall error classification 12.8
Sample size = 47

Feature set = (lal,ul,la-l,ol,lao,gl)
The centroid method with the inter-

sample correlation coefficient measure.
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4.9 Dendrograms of the clustering of the apex images using

the Hanning window-Fourier transform features.

Clustering in the 35-feature space. Method: the centroid method
with the inter-sample correlation coefficient measure.
Clustering in the selected feature space. Feature set =
(|a1,q|, |a_1,o|, |ao,o|). Method: the centroid method with

the inter-sample correlation coefficient measure.
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Fig. 4.10 A dendrogram of the clustering of the Hanning window-
Fourier transform features. The marks indicate the
selected best features. Method: the median method with

the Mahalanobis' distance measure.
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of the apex pattern[9,14]. Therefore, the N/A classification of the
apex will be one of the most feasible tasks in the computerized
interpretation of gastric radiograms. (Remember that the apex is easily
detected by computer.) However, when applying a discriminant method to
mass screening, the g priori probability and the loss function must be
incorporated into the discriminant function. Thus, the method should be
based on, for example, the Bayes' classification rule.

The apex images were discriminated a 1little better than the
gastric contours. This may be because of limiting‘the abnormalities to
those of the apex. A few more properties were noted in the respective
cases. As to the gastric contours,

a) the type-I contours were classified better than the type-II1
contours, and

b) each of the features (the five geometrical measurements and some of
the Fourier descriptors) was discriminating.

As to the apex images, the following were noted:

a) The error rate did not depend much on the type of the orthogonal
transform. However, the Hanning window was very useful.

b) The same discriminant analysis was applied to another class of
gastric radiograms of the same samples: the prone position images
of the stomachs filled with contrast material. The classification
accuracy was worse than that of the SPAP images. The error rate
was 27,5 percent 1in the N/A classification; 43.1 percent in the
N/U/C classification. The same physician who examined the SPAP
images resulted the error rate of 7.8-29.4 percent in the N/A
classification; 21.6-41.2 percent in the N/U/C classification.

Therefore, this class of gastric radiograms contains subsidiary
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information. This may be because the natural shape is deformed in
taking the radiograms. Details of this examination are described
-in Appendix C.

As to the feature selection, the experiments resulted in a trend

similar to one reported recently[33], particularly, in the N/A

classification which was successful:

a) The feature selection from the original features was compared with

b)

that from their first eight principal components. The result
favored the former. 1In addition, in the latter case, the order of
selecting the features was not 1in order of the principal component
sequence. Therefore, the principal component analysis 1is not
appropriate in the feature selection, or in the dimensionality
reduction of the feature space.

The selected features tended to belong to the different feature
clusters. This means that these features were mnot similar in a
sense of the clustering; and that they were selected in a
complementary manner regardless of the discriminating capability of
the respective features.

In the clustering, two specific properties were found. These

properties are noted here for documentation.

a)

b)

Among the hierarchical methods, the nearest neighbor method and the
mode method resulted -much confusion. This may be due to the
chaining effect and the dispersion of the samples, respectively.

Better separation was realized in the clustering of the samples,
when the inter-sample correlation coefficient was used as a measure
of similarity. Probably, this means that the samples are

dispersing on both sides of a hyperplane in the feature spaces
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rather than forming spherical clusters.

Although the estimated error rates agfeed well with those of
physicians, a problem must be noted lastly. That is, more samples must
be examined in order to evaluate the generality of the results,
particularly, the bias of the sample distribution from the natqral
distribution. tThe bias in the error rate eétimation is expected to be

minimum, because the leaving-one-out method was used.)

4.4 Summary of the Chapter

This chapter has been devoted to the feature extraction and the
classification of a stomach, In the descriptive approach, 1local
properties of a gastric contour were examined to describe its
appearance. The gastric axis was established to discriminate abnormal
incisures from the peristalsis. Contextual interpretation of the
description 1is still an open problem. In the quantitative approaches,
the statistical analyses were applied to a set of confirmed samples. By
the discriminant analysis based on the minimum Mahalanobis' distance
classification rule, the geometrical measurements and some of the
Fourier descriptors have been proved of their wusefulness in
classification of gastric contours. The error rate was estimated by the
leaving-one-out method, and then the best sets of discriminating
features were selected by the forward sequential search. In the best
N/A classification, the estimated error ratelwas 7.5 percent; in the
best N/U/C classification, it was 25 percent. By the same method of the
discriminant analysis, usefulness was also proved for features obtained
by two-dimensional orthogonal transforms of the apex images. Particu-

larly, the Hanning window-Fourier transform application was noted of its
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discriminating contribution. The selected best feature set for N/A
classification attained the error rate of 6.4 percent; the best feature
set for N/U/C classification attained that of 21.3 percent. The figures
agreed well with the results of the clustering and inspection by
physicians. The selected features tended to belong to different clusters
of. the candidate features. This may be a support of the feature
selection. Computational feasibility was  thus confirmed as to
classification of the deformity of the apex, a portion of medical
importance.

A computer program has been designed for analyzing a gastric
contour. It was called the routine R11 in Section 3.5. Its final
version has been implemented on a small computer. Given a contour, it
detefmines the feature points, makes the deviation curve, calculates
quantitative features, and displays intermediate results on CRT. It
also calculates specified coefficients of the forward Fourier transform
of a contour as well as calculates the inverse Fourier transform for
specified coeffiéients.1 A synthesized figure is displayed on CRT,
giving a useful means in analyzing the information relevant to the

specified harmonics by visual inspection of the figure.

!Care must be and was taken in calculation of the Fourier ‘descriptors
by the fast Fourier transform (FFT) algorithm. See Appendix A.2.
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CHAPTER 5 CONCLUSION

This dissertation discussed an overall view on approaches to com-
puterizing the interpretation of SPAP images, an dimportant class of
gastric radiograms. The goal of this study has been mainly to construct
a system for screening gastric diseases. A configuration of the diag-
nosing system was conceptualized for the first time through this study,
where two major tasks were postulated: the extraction of the gastric
contour and its interpretation