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A REGION-ORIENTED IMAGE-ANALYSIS SYSTEM BY COMPUTER

Yu-ichi Ohta

ABSTRACT

In this thesis, we study a region analyzer for color scenes. The
major issues addfessed and described here are the following: (1) the
role of color information in region segmentation; (2) the technique
of partitioning an image into a set of regions; (3) the technique of
managing the regions in a symbolic data structure; and (4) the
modeling and control scheme for obtaining the "best'" match between
the model of a task world and the set of regions obtained from an
input image.

Systematic experiments have been performed to examine the role
of color information in region segmentation. A segmentation scheme,
called "dynamic K. L. transformation", was developed for this
purpose. We have found a new set of color features effective for
region segmentation.

A powerful segmentation program was developed for preliminarily
partitioning an image data into a set of regions. The result of
segmentation i1is organized into a well-structured symbolic data
network, named "Patchery Data Structure", with retrieving facilities.

The knowledge of the task world 1s represented as a set of
rules. Bottom-up control and top-down control are combined in the
rule~-based region analyzer. A plan is generated by the bottom-~up
control as a representation of the rough structures in an input
scene, A symbolic description of the scene is made in the top-down
analysis. The top-down process 1is constructed by using a production
system architecture.

Outdoor scenes including sky, trees, buildings, and roads have

been successfully analyzed by the system.
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Chapter I

INTRODUCTION

An  dimage is a two-dimensional (2-p) projection of a
three~dimensional (3-D) scene. The task of an image analysis system
is to make a description of the scene from its image. A complete 3-D
description of the scene, of course, can not be reproduced from the
image data alone, The information contained in an image is not
sufficient to determine all the '"parameters" necessary for the
reproduction.

In order to make the reproduction actually solvable, we must
reduce the number of the parameters. One way is to restrict the world
of the scene in which the image analysis system works, The restricted
world is called a task. Within the task world, we can find a lot of
"rewriting rules" from the image features to the scene description.
These "rewriting rules are called the “knowledge" of the task world
and they are represented in the model.

This thesis is devoted to develop a scheme for model
representation and control structure for image analysis. As well as
these "higher level" problems dealing with representation and use of
knowledge, we have paid much attention to the "lower level" ones in
the image analysis; such as signal-based region segmentation or

representation of segmented regions,



We employed the region analysis method to organize our image
analysis system. The region analysis technique and the edge analysis
technique are two of the major methods employed in analyzing
pictures; regions and edges are complementary to each other. Yet,
region analysis has not been studied as well as edge analysis.
Recently, the region analysis technique are capturing attentions for
several reasons, One of the most significant reasons is that the
regions can solve some problems which are difficult for the edges.

In this thesis, wé study a region analyzer for color scenes.
Outdoor scenes are mainly used as a task of the analyzer. This is
because the outdoor scenes include such objects as trees, sky, etc.,
which are naturally defined by the properties of regions rather than
of edges. The placement relations among the objects can be dealt with
easily by using the regions. The major issues addressed and described
in this thesis are the following: (1) the role of color information
in region segmentation; (2) the technique of partitioning an image
into a set of regions; (3) the technique of managing the regions in a
symbolic data structure; and (4) the modeling and control scheme for
obtaining the "best'" match between the model of a task world and the

set of regions obtained from an input image.

I-1. Aspects of Region Analysis

A region analysis system covers a wide range of subjects varying
from the digitization of pictures to their semantic interpretation.
In this thesis, we assume that an input color image is given as a set
of digitized intensity arrays corresponding to the red, green, and

blue components of color.



(1) Color Information for Region Segmentation

The subject of color image segmentation might be studied as a
simple extension of the segmentation for black and white images. Many
researchers have recognized the importance of color information in
image segmentation. However, how effectively we can use chromatic
information in the segmentation process and what color coordinate
systems are most appropriate has not been much studied. We have tried
to obtain a solution for these problems in the case of region
segmentation, A set of color features is derived through an
experiment of computing effective color features by means of the
Karhunen-Loeve transformation at every step of segmenting a region.
Comparisons are made among the segmentation results obtained by using
the various sets of color features which are usually used in image
analysis. Probably, this is one of the first systematic experiments
actually performed to search the effective color information in

segmentation. Chapter II describes this issue in detail.

(2) Region Segmentation Technique

The region segmentation is a process which partitions an image
into a set of regions, Each region 1s characterized by some
consistent features such as color or texture, and such regions are
often called "coherent" or "homogeneous" regions. Regions in an image
correspond to surfaces of objects in a real world. The region
segmentation is thus based on the assumption that characteristics of
a surface are usually consistent. The 'coherent" regions are not
always equal to "meaningful" regions in many cases, but they are the
atomic elements for constructing a description of the scene.

Region segmentation  techniques can be divided dinto three
classes: (1) region splitting, (2) region merging, and (3) combined

use of splitting and merging.



The region splitting technique partitions an image into regions
in a top-to-bottom manner., It starts with the entire image and works
toward the set of "coherent" regions, The distribution of image
features in the spectral domain is often used to obtain criteria for
the splitting operation [Tomita et al., 1973; Ohlander, 1975]. The
method is suited to extract global structures in the image, but is
usually weak in detecting detailed ones.

The region segmentation based on region merging operations is
alternatively called region growing. It starts with atomic regionms,
e.g. pixels or tiny square regions, and works toward the set of
"coherent" regions in a bottom-to-top manner. Local spatial features,
such as the contrast at boundaries between regions, are used as
criteria for the merging operation [Brice et al., 1970]. The method
is good in extracting detailed structures in the image, but is rather
sensitive to noise.

 The spatial resolution of segmented regions can be defined as
the ratio of the size of the atomic region to that of the whole
image. The region growing with high spatial-resolution tends to
require a far more computational cost than the region splitting which
achieves the same resolution.

The split—-and-merge method [Horowitz and Pavlidis, 1974] aims to
gain computational efficiency preserving the merits of both the
splitting and merging methods. A pyramidal data structure [Tanimoto
and Pavlidis, 1975] provides a working environment for this
split-and-merge method [Pavlidis, 1979].

If the regions are used as atomic elements for image analysis,
they must have sufficient spatial resolution to evaluate shape
parameters of objects. There are a lot of algorithms to obtain a set
of regions, but actually only a few algorithms can produce the
segmentation of an dmage with satisfactory resolution. The
segmentation algorithm developed in our system is of the splitting
type. It can extract the detailed structures in the image as well as

the global ones with a sufficient spatial resolution. Chapter III



describes this issue.

(3) Symbolic Representation of Regions

A region segmentation process produces as a result a
two-dimensional array which indicates the region numbers: the points
in the same region retain the same number. Any data about the
segmented image can be derived from this array and the original
image. The computation needed for the derivation, however, is time
consuming, because it must deal with the image arrays directly.

When regions, not pixels, are used as atomic elements for
analysis, we can perform the analysis without dealing with the
two-dimensional image arrays at all. The data needed for the analysis
can be described by using the regions as descriptive elements. In
order to support the high-speed retrieval of any kind of data about
the segmented image, the description should be a well~organized data
structure. Various database schema, such as the network model or the
relational model, can provide a model of the data structure., Data
retrieving facilities for the data structure are also essential to
enable the flexible retrieval of pictorial data.

We have defined a structured data network, named "Patchery Data
Structure', together with a set of retrieving functions. Regions,
boundary segments, vertices, etc. are used as the descriptive

elements. This subject is also described in chapter III.

(4) Modeling and Control for Region Analysis

The model in an image analysis system represents the knowledge
of the world in which the system works. Objects and various concepts
are defined in the model by using the similar terms in the real

world. But it must be noted that the knowledge in the model is valid



only in the world given as a task. That is, the objects and the
various concepts in the model are defined within the restricted task
world, and they are not always usable in the unrestricted real world.

It is well known that there are two complementary methods for
model representation: procedural and declarative.

In the procedural method, the knowledge is embedded in the
program which performs the image analysis. The control structure of
the method is defined implicitly in the control of the program. Given
a task, the procedural method provides a flexible scheme to construct
an efficient image analysis system. But the structure of the analysis
mechanism is rather unclear, and a slight change of the task often
demands complete changes of the system. A successful example of the
proéedural method can be found in the face-analysis program developed
by Kanade [Sakai et al., 1972; Kanade, 1977].

In the declarative method, the model is represented as a
collection of the descriptions of properties of or relations between
the objects. The model has a modular structure and the control
structure  is clear, However, it is very &ifficult to develop a
modeling and control scheme in a declarative fashion when the task
world is rather complex.

Recently, rule-based architectures, such as production systems.
[Davis and King, 1975], are often employed to construct expert
systems in Artificial Intelligence. In these architectures, the model
is represented as a collection of simple modules, and the control
structure is also simple. They aim to combine the merits of both the
procedural and declarative methods. We have employed a rule~based
architecture in region analysis.

The control structure in an image analysis system defines the
way to search for the "best" match between a model and an input
image.. In region analysis, the input image is preliminarily
partitioned into a set of "coherent" regions based on intensity
information. If the coherent regions have one-to-one correspondence

with the objects defined in the model, i.e., the coherent regions are



the meaningful ones, it is an easy problem to search for the "best"
match between the regions and the objects. It is almost impossible,
however, to obtain a set of meaningful regions by using only the
"low-level" dimage information (i.e. intensity or color), and the
control structure must search for many-to-one correspondence between
the regions and the objects.

The depth of the search tree in the image interpretation 1is
determined by the number of regions. The branching factor 1is
determined by the number of objects. The search space is prohibitedly
large, but the situation is a little better than the ordinary tree
search in game problems, Scenes have a favorable property which we
call '"locality". By applying this property to the search scheme, it
is possible to reduce the search space drastically,

The details of our modeling and control scheme are described in

chapter 1IV.

I-2. Overview of the Region Analyzer

This section provides the readers with an outline of the region
analyer which we have developed. The main issues and the detailed
descriptions are included in the following chapters. Figure 1-1 shows
two major steps of the analysis mechanism: the preliminary
segmentation and the rule-~based analysis. The s&stem receives
red-green-blue intensity arrays of a digitized image and constructs a

semantic description of the scene,

Preliminary segmentation ---  This step is basically
"nonpurposive", and it can be applied to a wide range of tasks.

The primary objective of the preliminary segmentation is not



the reduction but the structuring of raw image data into usable
information. It segments the input color image into a set of
coherent regions based on the color information. An
Ohlander-type segmentation algorithm [Ohlander, 1975] is
employed with several improvements to extract detailed
structures from the image data. The regions obtained by the
preliminary segmentation are used as the atomic elements to
make the description of the scene. They are organized into a
fully-structured symbolic data network, named '"Patchery Data
Structure", with powerful retrieving facilities. In the
rule-based analysis, all picture-processing operations are
performed on this Patchery Data Structure rather than the raw
image data. This enables the rule-based analysis to have a
clear-cut scheme for modeling and control, and to perform

various picture processing operations in high speed.

(;Eene descriptidﬁ)
4

step 2 rule-based analysisj«——— modeling & control (chapter IV)
A

structured data network
(Patchery Data Structure)

\

+— representation of regions (chapter III)
step 1|preliminary segmentation|¢<— region segmentation (chapter III)

p \ -

- color feature selection (chapter II)

(co]or image )

Figure 1-1. Two steps in region analysis; from an input
color image to the scene description.



Rule-based analysis --- Figure 1-2 shows the schematic diagram
of the rule-based architecture in our system. It employs both
of the bottom-up and top-down control schemes. The knowledge of
the task world is represented by two sets of rules: one is for
the bottom-up process and the other for the top-down process.
The rules for the bottom-up process make a plan as a rough
interpretation of the scene. The rules for the top-down process
make a detailed semantic description of the scene.

An approximate reasoning scheme 1s employed f£for plan
evaluation to deal with the uncertainty which exists in both of
knowledge and pictorial features. The plan manager controls the
evaluation of plan,

The top-down analysis works in the framework of region
growing. But the process is not a simple iteration of the

labeling and merging operations. A scene description is built

BOTTOM-UP TOP-DOWN

segmented
image -

plan rules production

ma r . . agenda
plan manage (property,relation) +.. rules(to-do) :
Avrrr 44 .. ."\, daneasoad
A REETETRT I plan . A AaprAe
eondition .-+ \ image T o’
» T Y 0 AToree
e condition W0 e
)vé PR . RN 0('/
x, . S
.". / : ------- ,." ) .")‘

) "._ q-- scheduling &
approximate -~ K action exec.
reasoning scene <

description
* (if-done)

database

Figure 1-2. Schematic diagram of the rule-based analysis.



as the result of the top-down analysis. The knowledge used in
the top-down process is represented as a set of production
rules. The agenda controls the production system. Each
production rule is a pair of a condition and an action. The
"condition" is a fuzzy predicate [Lee and Chang, 1971}. It
checks the state of the database and  decides whether the
associated action can be executed. Each "action'" describes the
operations to build the scene description. Every executable
action 1is given a score to indicate its priority and is
registered on the agenda. The action with the highest score is
executed at each context of analysis, and as a result the
database is changed. Production rules are activated again to
examine the database. In order to reduce the computation, the
agenda controls the activation of production rules according to
the changes newly made in the database.

The analysis process completes when all regions are

interpreted and assembled into the scene description.

I-3. Related Works

In this section we present a brief survey of analysis systems
for natural scenes. Only complete systems are referred to here. The
works relating to the individual problems such as color
representation, segmentation, and region analysis are mentioned in
the corresponding chapters. A survey of region analysis techniques

in general can be found elsewhere [Kanade, 1978].

a) Barrow and Popplestone [1971] constructed a system which

interpretes isolated simple objects, such as cup, spectacles,
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b)

c)

d)

cylinder, etc. The image data is first partitioned into a set
of regions. The set of regions is then described in the form
of a graph which represents properties of and relations
between the regions., The description is métched against a set
of models which describe typical views of objects. A
limitation of this work is that it requires the regions to be
meaningful ones. However, it is very difficult to obtain the

meaningful partitions based only on pictorial features.

Preparata and Ray [1972] tried to interpret simple outdoor
scenes by using a similar graph matching scheme to that of
Barrow and Popplestone. In their work, the image is manually
partitioned into regions to avoid difficulties in the

automatic region segmentation.

Yakimovsky and Feldman [1973] integrated the segmentation and
interpretation phases., The input image is preliminarily
segmented into coherent regions. Labels of objects are
assigned to each region by using the knowledge of the task
world, and the regions which are assigned with same labels
are merged. The knowledge 1is represented by a set of
probabilities. The interpretation is performed by maximizing
the joint probability that regions have correct labels. They

successfully analyzed road scenes and X-ray images.

Tenenbaum and Barrow [1976] developed a scheme called
Interpretation~-Guided Segmentation to integrate the
segmentation and interpretation phases. 1In their case, the
knowledge is represented as a set of constraints and Waltz's
filtering algorithm is employed to search a globally correct

interpretation.

11



e) Rubin and Reddy [1977] represented the knowledge in the form
of a pixel-level constraint network. All images that are
admissible in a task world are precompiled into the network.,
Given an input imége, the system searches through the network
for a path which corresponds to the "best'" match between the

model and the image data,

f) Bajcsy and Lieberman [1974] analyzed simple outdoor scenes by
using top-down control structure. The knowledge is embedded

in the procedures which extract objects from image data.

g) Sloan [1977] employed a production system architecture to
represent the knowledge of outdoor scenes. Each production
rule is triggered by a certain pictorial feature. It simply
rephrases the facts recorded in the database or tries to
extract some objects from the image data in a top-down

fashion.

h) Freuder [1977] represented the knowledge by a set of modular
procedures and organized them into a semantic network. Each
module has its own duty and it activates other modules when

necessary. A simple "hammer" scene is used as the task world.

i) Riseman et al. [1977] tried to construct a scene analysis
system named VISIONS. The knowledge is represented in a
hierarchical structure with layers, such as objects, volumes,
surfaces, regions, etc, At each level of the hierarchy, a
hypothesis-and-test paradigm 1s used to construct a scene

description from the image data.

There are two complementary control schemes, bottom-up and

top-down, to organize a scene analysis system., We can categolize the

12



systems described above into two groups: a) through e) employ the
bottom-up scheme, and f) through i) the top-down. The first group
relies on a bottom~up control structure together with global
optimization mechanisms. On the other hand, the second group utilizes
a top-down control scheme with or without a bottom-up mechanism to
trigger the top~down scheme. Notice the big difference that the
mechanisms to search for a globally (sub)optimal solution are
included in the first group, whereas the second group searches for
one solution in a depth first manner., Our system described in this
thesis employs both of the top-down control and bottom-up control
schemes with optimizing mechanisms. It aims to combine the merits of

the two complementary control schemes.
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Chapter II

COLOR INFORMATION FOR REGION SEGMENTATION

II-1. The Problems

In color image processing, the color of a pixel is usually given
as three values corresponding to the tristimulus values R (red), G
(green), and B (blue). Various kinds of color features, such as
intensity (D), saturation (S), and hue (H), can be calculated from
{R, G, B} by using either linear or nonlinear transformations. Each
color feature has its own characteristics. For instance, the set
{D, S, H} is convenient for representing the human color perception;
the set {Y, I, Q} is used to efficiently encode color information in
TV signals; and the normalized color set {r, g, b} is convenient to
represent the color plane.

It seems that in computer processing of color images, color
features which were developed for other purposes have been used in
different combinations for different purposes. Nevatia [1976]
extended the Hueckel operator for color edge extraction. He stated
that the result obtained using intensity (D=R+G+B) and normalized
colors (r=R/D and g=G/D) was better than that obtained using R, G,
and B, Ohlander [1975] employed nine redundant color features R, G,
B, Y, I, Q, D, 'S, and H for color image segmentation. He reported

that H was most useful and that Y, I, and Q were rarely used.

15



Kender [1976] presented a very careful discussion of the
behavior of the linear and nonlinear color transformations used to
obtain color features such as hue, saturation, and normalized color
from R, G, and B. His discussion amounts to two points: (1) Nonlinear
transformations such as hue, saturation, and normalized color have
nonremovable singularities, near which a small perturbation of the
input R, G, and B can cause a large jump in the transformed values;
(2) the distribution of the nonlinearly transformed values can show
spurious modes and gaps. For these reasons and from the computational
point of view, he concluded that linear transformations such as Y, I,
and Q would be preferable to nonlinear ones.

It 1is an interesting and important problem to find color
features which are suited for the segmentation of color images by
computer. One way to get such color features is to execute the
segmentation by using various sets of color features and to compare
the results, However, this allows us to examine only predefined sets
of color features. In this chapter we attempt to derive a set of
effective color features by systematic experiments in region
segmentation. An Ohlander-type segmentation algorithm by recursive
thresholding is employed as a tool for the experiments. At each step
of segmenting a region, new color features are calculated for the
bixels in that region by the Karhunen-Loeve transformation of the R,
G, and B data. By analyzing the color features obtained in segmenting
eight kinds of color pictures, we have found a set of effective color
features. The effectiveness of our color feature set is proved by a
comparative study with various other sets of color features which are

commonly used in image analysis.
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II-2. Selection of Effective Color Features

II-2-1., Segmentation Algorithm

First of all, we briefly describe a segmentation algorithm which
is employed in the experiments. The basic scheme is almost the same
as the segmentation algorithm described in chapter III. Figure 2-1
shows a schematic diagram of the segmentation algorithm. The basic
idea of the process 1is as follows: The whole image is first
partitioned into sub-images each of which is a connected region; then
each sub-image is further partitioned 4if it is possible; and this
process iterates., Because of the recursive nature of the algorithm, a
pilcture stack 1is used to store the region masks. A region mask
represents a connected region (the area without hatching in Fig. 2-1)
which is to be examined for segmentation. The arrows with numbers

shown in Fig. 2-1 represent the following operations.

(0) A mask corresponding to the whole image is placed at the
bottom of the stack.

(1) One mask is taken from the top of the stack. Let S denote
the region represented by the mask (the area without
hatching).

(2) Histograms of color features in the region S are computed.

(3) If any of the histograms shows conspicuous peaks, a pair of
cutoff values which separate the peak in the histogram are
determined at the position of valleys, and the image of the
color feature corresponding to that histogram is thresholded
using the cutoff values; thus the region S is partitioned.
Otherwise, region S is not partitioned further.

(4) Connected regions are extracted. For each connected region,
a region mask 1is generated, and it is pushed down on the

stack.
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Operations (1)-(4) are iterated until the picture stack becomes
empty. In the operation (3), the cutoff values are selected by the
following two criteria: Candidate cutoff values are selected by
evaluating the shape of peaks on the histograms; bad cutoff values
are rejected by verifying in the image the compactness of the spatial
distribution of the pixels belonging to the peak determined by the

pair of cutoff values.

histograms
color image
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Figure 2-1. Schematic diagram of the segmentation algorithm.
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II-2-2, Computation of Color Features Using the K. L. Transformation

At the step (2) in Fig. 2-1, it 4is important to know the
histograms of what color features are to be computed. We could use
features such as R, G, and B throughout the segmentation process.
However, the color feature which has the deepest wvalley on its
histogram and that which has the largest discriminant power to
separate the clusters 1in a given region need not be the same. In
feature selection of the pattern recognition theory, a feature is
said to have large discriminant power if its variance is large. Thus
we tried to derive color features with large discriminant power by
using the Karhunen-Loeve (K. L.) transformation.

More specifically, 1let S be the region to be segmented, and let
L be the covariance matrix of the distributions of R, G, and B in S.
Let A1, X2, and A3 be the eigenvalues of I, and Al > A2 2 A3. Let
Wi=(wRi Vi wBi)t for i=1, 2, and 3 be the eigenvectors of I
corresponding to Ai, respectively., The color features X1, X2, and X3

are defined as

Xi = wpiR+we.*G+wy, B ([[Wi]l =1, 1=1,2 and 3) .  (2-1)
It is well known that X1, X2, and X3 are uncorrelated, and X1 is the
"best" feature in the sense that it has the largest variance (the
value is Al). X2 is the best one among the orthogonal ones to Xl. At
each step of segmenting a region, three new color features X1, X2,
and X3 are calculated for the pixels in that region and used to
compute the histograms. We call this scheme '"segmentation by the
dynamic K. L. transformation".

The eight scenes shown in Fig. 2-2 were used in the experiments.
The names of the scenes are (a) cylinder, (b) building, (c) seaside,
(d) girl, (e) room, (f) home, (g) auto, and (h) face. They were
digitized with 256 x 256 spatial resolution and 6-bit density

resolution for each of R, G, and B. Scenes (a), (b), and (c) in
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Fig. 2-2 were digitized at Kyoto University. (d) is from Southern
California University, and (e) through (h) are from Carnegie-Mellon
University. Scene (a) is a cylinder with color stripes illuminated
from the front. Scenes (e), (g), and (h) are the images which
Ohlander used in his expefiment [ohlander, 1975], except that the
size and density resolution are reduced for our system. Scene (f) is
almost the same as Ohlander's "home" scene except that there are some
clouds in the sky.

Figure 2-3 shows the results of segmentation by the dynamic
K. L. transformation. We can notice that use of the "best" color
features calculated adaptively at each step of segmenting a region
gives satisfying results. In the cylinder scene, for example, the
horizontal color stripes are separated almost completely, and the
vertical cracks which_split the color stripes vertically because of
differences in intensity are relatively few. However, using the K. L.
transformation on the fly requires costly computation and is not very
practical. Our goal is to discover a set of color features with which
we can achieve segmentations as good as those based on the dynamic K.

L. transformation.

II-2-3. A Set of Effective Color Features

Table 2-1 shows the eigenvectors of I for the whole image of
each of the eight color scenes in Fig. 2-2, It is interesting to note
that Wl is approximately (1/3 1/3 1/3)t for every scene. W2 is
dominated by  (1/2 0 -1/2)% or (-1/2 0 1/2)%, and W3 by
(-1/4 1/2 —l/4)t. Then it is possible to say that the three
orthogonal color features, Il=(R+G+B)/3, I2=(R-B)/2 or (B-R)/2, and
I3=(2G-R-B)/4, are important components representing color

information.
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(a) cylinder (b) building

(c) seaside (d) girl

Figure 2-2. Color scenes used in the experiments.
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(e) room (f) home

(g) auto (h) face

Figure 2-2. (continued.)
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(b) building

(a) cylinder

(d) girl

(c) seaside

Segmentation results by the dynamic

Figure 2-3.

transformation.

K. L.
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(g) auto

Figure 2-3.
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(f) home

(h) face

(continued.)



Table 2-1. Eigenvectors of X for a whole image.

Y1 Ye1 Mg "2 Yoz YB2| YRz Y63 YB3
cylinder | 0.269 0.363 0.367| 0.469 0.095 -0.437 | -0.308 0.461 -0.231
building | 0.269 0.340 0.391] 0.479 0.103 -0.418 | -0.296 0.485 -0.219
seaside | 0.258 0.380 0.362 | -0.535 0.056 0.358(-0.176 0.464 -0.360
girl 0.336 0.354 0.309|-0.493 0.193 0.314 | -0.094 0.474 -0.436
room 0.193 0.341 0.467| 0.612 0.079 -0.310 | -0.209 0.507 -0.234
home 0.197 0.328 0.476| 0.492 0.180 -0.328 | -0.313 0.484 -0.204
auto 0.304 0.317 0.378| 0.239 0.309 -0.452 | -0.514 0.450 0.036
face 0.175 0.411 0.414| 0.523 0.128 -0.349 | -0.295 0.416 -0.289

normalized by WGZO, IWR|+|WG|+|WB|=1-

To prove this experimentally, we analyzed the 1linear
combinations of R, G, and B, which are used to find the cutoff values
for thresholding in segmentation by the dynamic K. L. transformation
for the eight scenes. Only those cases are examined in which regions
with an area larger than 1000 are split into regions larger than 200.
The number of 1linear combinations thus gathered is 109 in this

experiment. Those weight vectors are plotted on a w plane as

-W
shown in Fig. 2-4, The weight vectors have been normalzzeg so that
we20 and |WR|+|WG|+|WB|=1. For simplicity, each vector is plotted
with the first letter of the name of the scene for which that color
feature was used. The weight vectors corresponding to {Il, 12, I3},
{v, 1, q}, {x, ¥, 2}, {u, Vv, W}, and {R, G, B} are indicated for
reference. Contour lines are drawn to show equidistance from the
reference pointé I1=(R+G+B) /3, I2=(R-B)/2 or (B-R)/2, and
I3=(2G-R-B) /4. The curves are defined by
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(wR—l/3)2+(wG—l/3)2+(WB-1/3)2 - e (around I1) ,

(=1/2) % w G +1/2)

]

e (around 12) ,

]

(wR+1/2)2+ wG2+(WB_l/2)2 e’ (around 12) ,

e (around I3) ,

(e=1/81, 1/27, 1/9, 1/6). (2-2)

(wai-1/4)2+(wG—l/2)2+(WB+1/4)2

Color features in the first quadrant have weight vectors such
that Wps Wos wB>0. They correspond mainly to the intensity component
and I1=(R+G+B)/3 is the most typical feature of this quadrant. In the
second and fourth quadrahts, LN and L héve opposiﬁe signs, and the
color features in these quadrants represent the difference of the R
and B components. Most color features are in the first quadrant. This
means that the intensity is the most important feature even in color
image processing.

The weight vector of Il is nearly at the center of the weight
vectors in the. first quadrant as shown in Fig. 2-4. 1I2 can be
regarded as béing at the center of the weight vectors in the second
and fourth quadrants. I3 will be a typical color feature in the third
quadrant, Thus, it is possible to assume that every weight vector in
the four quadrants can be approximated by the weight vectors of the
three color features, 1I1, I2, and I3. The numbers of weight vectors
in the first, second/fourth, and third quadrants in Fig. 2-4 are 83,
22, and 4, respectively. So, I1, I2, and I3 are assumed to be

significant in this order.

II-2-4, Segmentation by the New Color Features

We have performed the following experiments to verify the

arguments described above.
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(1) Segmentation by using three color features Il, I2', and I3'

Figure 2-5 shows the results obtained by using the set of three
fixed color features Il, I2'=(R-B), and I3'=(2G-R-B)/2. They seem not
to be degraded compared with those obtained by the dynamic K. L.
transformation. This verifies the argument that the set of three
color features I1, I2', and I3' can approximate all color features
which are calculated as the "best" ones at each important step in

segmentiﬁg the eight color scenes.
(2) Segmentation by using two color features Il and I2'

In Fig. 2-4 the number of color features in the third quadrant
is only four. They are considerably fewer than those in the other
quadrants. Thus the omission of I3' will not significantly affect the
quality of the segmentation. This is verified by the results shown in
Fig. 2-6 which are obtained by using only the two color features, Il
and I2'. A picture indicating the missing boundaries from Fig. 2-5 to
Fig. 2-6 is shown in Fig. 2-7 for the cylinder scene in order to help
visual comparison. - Even in the‘cylinder scene which has two weight
vectors 1in the third quadrant, the results of Fig. 2-5-a and
Fig. 2-6-a are almost the same except that the fifth and sixth color
stripes from top, goldenryelloﬁ and orange, are not separated in

Fig. 2-6-a.

(3) Segmentation by using only one color feature Il

What quality of segmentation can be achieved by using only one
color feature I1, i.e. intensity information? In the case of the
cylinder scene, the fraction of the number of weight vectors in the
first quadrant dis 10 out of 22 weight ' vectors, and there are 10
weight vectors in the second and fourth quadrants. Therefore the
quality of the segmentation for the cylinder scene will be

considerably degraded by omitting the color feature I2'. For the
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(b) home

(a) cylinder

(c) room

I2', and I3'.
B)/2.

R-

bl

g I1

Segmentation results by usin

Figure 2-5.

I3'=(2G-

(R+G+B) /3, I2'=(R-B),

Il=
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Figure 2-6.

Segmentation results by using Il and I2'.

I1=(R+G+B)/3, I2'=(R-B).
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Figure 2-7. Missing boundaries from Fig. 2-5-a to Fig. 2-6-a.

(a) cylinder (b) home

Figure 2-8. Segmentation results by using only I1.
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Figure 2-8. (continued.)

Figure 2-9. Missing boundaries from Figs. 2-5-a to 2-8-a.
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other scenes, - however, only a few weight vectors are in the second
and fourth quadrants and the degradation will not be so significant.
The results obtained by using only Il are shown in Fig. 2-8. Figure
2-9 shows the missing boundaries from Fig., 2-5-a to Fig. 2-8-a.
Separation of the color stripes in the cylinder scene is very poor as
expected. It 1is a natural consequence of losing the
distinguishability of color difference by oﬁitting I2' and 1I3', 1In
the case of the room scene, however, the quality of segmentation is
not so much degraded though there appears to be a 1little
missegmentation, As for the home scene in Fig. 2-8-b, there is no
missegmentation, in the sense that the regions which should be

segmented are all segmented.

II-3. Comparison of Color Features

II-3-1. Segmentation by Various Sets of Color Features

In order to test the effectiveness of the color feature set
obtained in the previous section, the eight scenes used in the
previous experiments were also segmented using seven sets of color
features which are commonly used in image analysis. The sets are
{8, G, B}, {X, Y, z}, {¥, I, Q}, {L, a, b}, {U*, V%, Wk}, {11, S, H},
and {I1, r, g}. R, G, and B are the original tristimulus values. X,
Y, and Z correspond to the C.I.E, X-Y-Z primary color coordinate
system. Y-I-Q is the color coordinate system for television signals.
The L-a-b color coordinate system is designed to agree with the
Munsell color system., U*-V*-W* is designed to obtain a color solid
for which unit shifts in luminance and chrominance are uniformly
perceptible [Platt, 1978]. 11, S, and H are the intensity,

33



saturation, and hue, respectively. r and g are the normalized colors.
Other sets of color features such as {u, v, w}, {s, O, W}, and
{u,-v, V} are not examined because they are similar. to the sets
{x, v, z}, {11, s, H}, and {I1, r, g}, respectively.

{Y, 1, Q} and {X, Y, 2} were calculated from {R, G, B} in our
experiments by

Y\ 0.299 0.587 0.114\ R

1| = [0.500 -0.230 -0.270 . ,
Q 0.202 -0.500 0.298/ \B/ , (2-3)
X 0.618 0.177 0.205\ /R
Y| = |0.299 0.587 0.114 |{ G
Z 0.000 0.056 0.944/\B/ . (2-4)

The transformation matrices are not the standard ones; the weights
for I, Q, X, and Z are rescaled to normalize the range of the
transformed values to be the same as the original R, G, and B.
"{L, a, b} and {U%, V*, W%} are defined as

we = 25(100¥/70)1/3-16 ,

A500[(x/x0)1/3-(Y/Y0)1/3] ,

2000 (v/¥0)/ - (z/20)1/31 ,

U* = 13 (W*) (u-u0) ,.

V& = 13 (W*) (v-v0) ,. v (2-5)

=
1] 1]

where u0=0.199, v0=0.308, u=4X/(X+15Y+3Z), v=6Y/(X+15Y+3Z), and XO,
YQ, Z0 are the X-Y-Z values for the reference white, Normalized

colors, intensity, saturation, and hue are obtained as follows:
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r=R/ (R+G+B), g=G/ (R+G+B), b=B/(R+G+B),

I1=(R+G+B)/3,

S 1-3(min(r,g,b)) , . .

H arctanZ(/g(G-B),(2R—G—B)) . : . (2-6)

]

There are two problems in using these color features for region
segmentation., One is the instability of nonlinear transformations.
Normalized color, U*, V*, and saturation become unstable and
meaningless when R+GHB is small. Therefore, in segmenting a region
they are not used to compute histograms if R+G+B is less than 30, Hue
is unstable when saturation is near zero, and is not used if
S x (R+GH+B) is less than 9. The other problem is caused by the fact
that the input R, G, and B data are digitized. The histograms. of the
transformed values from digital input may have a comb-like structure.
In order to avoid this, the input R, G, and B values -are
"undigitized" by adding a random number uniformly selected from the
unit interval [Kender,1976].. .

Figures 2-10 through 2-16 show the results of segmentation
obtained by using the seven sets of color features. Comparison of

these results will be given in the succeeding section.

II-3-2. Comparison of Color Features

The effectiveness of a set of color features used in the
segmentation process can be evaluated in terms of the quality of
segmentation results and the behavior of the transformation from the
input tristimulus values R, G, and B. '

Evaluation of the quality of segmentation results is very
difficult. No quantative evaluation procedure has been established
for the segmentation of natural scenes. We adopted "eyeballs'" as the

most reliable tool at present. Pictures which indicate the difference
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between a pair of segmentation results are generated to help visual
comparison as shown in Figs., 2-7 and 2-9. We think that the
under-segmentation (failures in splitting the regions that must be
separated) affects later processings more seriously than the
over-segmentation (failures ﬁhich split the regions that need not be
separated) .  So the evaluation criteria are set more severely against

under-segmentations than over-segmentations.
{r, G, B}

. Use of the color feature set {R, G, B} for segmentation requires
no transformation. But, R, G, and B have a strong factor of intensity
and are heavily correlated. Thus, spurious segmentations tend to
occur because of differences in intensity. This tendency is clearly
observed .in Fig. 2-10-a. It is noted that the vertical splitting of
color stripes occurs more frequently in Fig. 2-10-a than in

Fig. 2-5-a which is segmented by using the set of I1, I2', and 13',
{x, v, 2}

The weight vectors of X, Y, and Z are located in the first
quadrant of the Wp—Vp plane as shown in Fig. 2-4; i.e., all have a
strong factor of intensity. This implies that the use of this set
will results in the similar segmentation to that obtained by using R,
G, and B (see Figs. 2-10-a and 2-11-a). The separation of the color
stripes in Fig. 2-ll-a is worse than Fig. 2-10-a, because the weight
vectors of X and Y are closer to the white point (Il) in Fig. 2-4

than those of R and G.
{tv, 1, q}

Y, I, and Q are in the first, second, and third quadrants,
respectively (see Fig. 2-4). The segmentation results obtained by
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(a) cylinder (b) home

Figure 2-10. Segmentation results by using R, G, and B.

(a) cylinder (b) home

Figure 2-11. Segmentation results by using X, Y, and Z.
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(a) cylinder (b) home
results by using Y, I, and Q.

Figure 2-12. Segmentation
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(b) home

(a) cylinder

Figure 2-13. Segmentation results by using L, a, and b.
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(a) cylinder (b) home

Figure 2-14. Segmentation results by using U*, V*, and W*.

(a) cylinder (b) home

Figure 2-15. Segmentation results by using I1, r, and g.
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(a) cylinder (b) home

Figure 2-16.

Segmentation results by using I1, S, and H.
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using {Y, I, Q} (Fig. 2-12) are similar to those by {11, 12', 13'}
(Fig. 2-5). In Fig. 2-12-a the uppermost two color stripes are not
separated, while they are separated in Fig. 2~5-a. The reason is that
the weight vector of color feature I, located at a biased position in
the fourth quadrant, is not a good approximation of the color
features in the second quadrant. A more important difference between
{¥, 1, Q} and {11, 1I2', I3'} is in the calculation of these features
from {R, G, B}. The computation of {Y, I, Q} from {R, G, B} needs
floating-point multiplications. Furthermore, there is the possibility
that spurious combs appear in the histograms of Y, I, and Q. In
contrast, all coefficients of the transformation from {R, G, B} to
{11, 12", 13'} are of the form 1/(integer). This means that a
comb-like structure never appears in the histogréms of Il, I2', and
I3'. The calculation of {I1, I2', I3'} from R, G, B is far simpler
than that of {Y, I, Q}. It can be performed by addition and
subtraction of integer numbers together with shifting or simple

table-lookup operations for scaling.
{L, a, b} and {U*, V¥, wx}

Figure 2-13 shows the result obtained by using the set
{L, a, b}, and Fig. 2-14 is the result by using the set {U*, V&, W},
Both color coordinate systems use cube-root features for luminance as
shown in Eq. 2-5, This results in the good performance in separation
of the color stripes at the left side of the cylinder where intensity
is dark and gradually changes. L, a, and b are based on the Y, (x-Y),
and (Y-Z) color features which are located in the first, third, and
fourth quadrant, respectively. On the other hand, U*, V*, and W* are
based on the u-v-V normalized color coordinate system which is
derived from the U-V-W system, and U, V, and W are all located in the
first quadrant in Fig. 2-4. This causes the missegmentation at the
border of pale-yellow and yellow stripes and the missegmentation at
the border of golden-yellow and orange stripes in the strongly
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illuminated part of the cylinder surface in Fig. 2-l4-a, while in
Fig. 2-13-a all color stripes are separated clearly. 1In the case of
the home scene (and in the other scenes), we do not observe
significant differences among the segmentation results obtained by

these two sets of features and the other sets of features.
{11, r, g} and {I1, S, H}

The set of color features {Il, r, g} produces the result shown
in Fig. 2-15. The use of color features normalized by intensity
results in good segmentation at the dark part of the cylinder scene
as well as the results obtained by using {L, a, b} or {U%, V¥, Wk},
Highly illuminatea part of the border between the pale-yellow and
ygllow stripes is not separated as in the result for {u*, v¥, W&},
Figure 2-16 is the result for.{Il, S, H}. It seems to be degraded
than that obtained by using {I1l, r, g} shown in Fig. 2-15. One reason
is that the hue can be meaningful only in limited cases. From the
computational point of view, these nonlinear transformations incur

far more cost than linear transformations.

2
11
three components of a color image represented in the I1-I2-I3 color
2 2_
+013 =100 for each

for every color

Table 2-2 shows the variances, ’ 0122, and 0132, of the

space. The variances are scaled so that @ 2+0
2Il 212

color image. We notice a relation of 011 >012 >013
image. This relation corresponds to the fact that (the number of
color features in the first quadrant) > (the number of color features
in the second/fourth quadrant) > (the number of color features in the
third quadrant) in Fig. 2-4., Thus, it can be said that color features
with larger variance are more useful in region segmentation of a
color image.

Our experiments also say that chromatic information is not
always . important for the segmentation process even in case of

colorful scenes which have large variance in the chromatic
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Table 2-2. Variances of Il, I2, and I3 images.

0112 0122 °132
cylinder 92.4 6.5 1.1
building 97.0 2.8 0.1
seaside 80.6 17.0 2.4
girl 85.8 10.4 3.8
room 75.2  22.7 2.2
home 76.7 19.5 3.8
auto 89.9 6.4 3.7
face 87.7 9.6 2.8

scaled by oy %40 %40 2=100 .

components, We think that the usefulness of a color feature 1is
greatly influenced by the structure of the color scenes to be
segmented, For instance, the variance of I2 1s only 6.5 in the
cylinder scene where I2 plays an important role in segmentation,
while the variance of I2 1is 19.5 in the home scene which was
segmented well by using Il alone. This phenomenon can be explained by
the difference in the structures of the cylinder and home scenes. The
cylinder scene consists of a curved surface, while the home scene
includes mainly planar objects. The intensity gradually changes on
the curved surfaces, and does not work as a useful feature for
segmenting the color stripes across 1it. This causes the chromatic
information was used frequently in the segmentation of the cylinder

scene,
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1I-4. Two Component Representation of Color Images

Table 2-3 shows the eigenvalues, Al, A2, and A3, of the
covariance matrix I obtained for the R, G, and B data in the whole
image of each color scene. The values have been scaled such that
A1+A2+A3=100., A3 is very small for every scene; the maximum value is
3.6. This implies that each color image can be approximated by two
features X1 and X2 with a mean-square error of 3.6 at maximum: X1 and
X2 are the linear combinations of R, G, and B with weights Al and

A2, respectively, We tried to compose color images from only two
features X1 and X2 by using the imcomplete inverse of the K. L.

transformation.

Table 2-3. Eigenvalues of L for a whole image.

Al A2 A3
cylinder 94.0 5.3 0.7
building 99.2 0.7 0.1
seaside 82.3 16.7 1.0
girl 86.0 11.7 2.3
room 81.8 16.1 2.1
home 84.2 12.1 3.6
auto 90.7 7.7 1.7
face 97.4 2.2 0.4

scaled by A1+ A2+ A3 =100.
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(a) reproduced image (b) original image

(c) image of X1 (d) image of X2 - (e) image of X3

Figure 2-17. Reproduction of color images by using X1 and X2:

Example 1. Cylinder.
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(a) reproduced image (b) original image

(c) image of X1 (d) image of X2 ‘' (e) image of X3

Figure 2-18. Reproduction of color images by using X1 and X2:

Example 2. Girl.
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(a) reproduced image (b) original image

(c) image of X1 (d) image of X2 (e) image of X3

Figure 2-19. Reproduction of color images by using X1 and X2:

Example 3. Room.

47



(a) reproduced image (b) original image

(c) image of X1 "' (d) image of X2 (e) image of X3

Figure 2-20. Reproduction of color images by using X1 and X2:

Example 4. Home.
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Let W be the 3 x 3 matrix for the K. L. transformation of a

color image.

(x1 x2x3)" =w reB)t . (2-7)
Of course this transforma;ion is reversible and

®ReB" =wlx x2x)t . (2-8)

Now suppose we fix X3 to be M3 throughout the image, since the
variance of X3 is small. Here, M3 is the mean value of X3 for the
whole image. Then we can consider a reproduced color image by this
inverse mapping from the two features X1, X2, and constant M3 for X3.

The color components of each pixel are given by
R' 6¢' B")" = wlx1 x2 m3)t . (2-9)

We compared the color images defined by R', G', and B' with the
original color images. Figures 2-17 through 2-20 show the results of
the experiments, 1In each figure, (a) is the reproduced color image
and (b) is the original color image. Images (c), (d), and (e)
represent X1, X2, and X3, respectively. The following two facts were
observed: (1) Although the  R'-G'-B' color images are composed by
using only two spectral features, they are good reproductions of the
original color images. (2) The clarity of color in a small area in
the color image tends to be heavily degraded. The first fact means
that the color information in the scenes we have used is almost two
dimensional. The second fact can be explained by examining the images
corresponding to X3, The remarkable low contrast is due to its small
variance, However, there exist noticable small areas with different
gray value from the average. These areas have vivid colors, and they
can not be fully represented by the two principal features X1 and X2.

Thus, their colors are spoiled by neglecting X3, To sum up, color
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images .can be represented by using only two spectral = features at the
cost of spoiling the clarity of the colors of small areas. The
experiments by Land [Land, 1959] tells us that the colors in natural
- images are ''perceptually" almost two dimensional; - our eyes can
perceive full colors by mixing two spectral stimuli in the context of
natural images. The experiment describeéd here shows. that the color in

natural scenes are "physically" almost two dimensional.

II-5. Conclusion

We have considered the role of color information in the region
segmentation process. By means of systematic  experiments in region
segmentation, we found ‘a set of effective color features
I1=(R+G+B) /3, 12'=(R-B), and I3'=(2G-R-B)/2., The three features are
significant in this order and in many cases good segmentations can be
achieved by using only the first two. The transformation to derive
them from the R, G, and B data is simple and it does not behave badly
even when digitized input is used.

Comparisons are made experimentally between various sets of
color features which are commonly used in image analysis. The
characteristics .of each set can be observed through the comparative
experiments. The difference among sggmentation results clearly
appears in the case of the cylinder scene in which the separation of
the color stripes is difficult. The color feature sets {L, a, b} and
{11, 12', 13'} give good results in our experiments. But, in many
other scenes, no significant difference is observed among the results

obtained by using the eight sets of color features. This seems to be
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closely related to the fact that the color information in natural
scenes 1is almost two dimensional (intensity and one chromatic
feature), which was shown in the experiment of color image
reproduction by using only two color features. That is, every set of
color features can represent the color information for many scenes
with a fairly large margin and therefore can provide enough
information for region segmentation., When different sets of color
features make little difference in segmentation of a scene, the
calculation involved in the coordinate transformation from the R-G-B
system becomes an important factor to consider the effectiveness of
the color coordinate system for region segmentation. The set of color
features derived in this chapter is good in this point as well as in
the segmentation result., We think that it is a useful color feature
set for color image segmentation.

In this chapter, the effectiveness of color feature set was
discussed in the framework of region splitting., The results will be
valid in other domains of color image processing such as edge

extraction,
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Chapter III

PRELIMINARY SEGMENTATION OF COLOR IMAGES

III-1. The Problems

ITI-1-1. Nonpurposive Segmentation

We describe two topics in this chapter. One is the segmentation
of a color image into a set of regions based on spectral information.
The other is the organization of the segmentation result into a
symbolic data structure. ‘

Generally speaking, two processes are necessary for analyzing
image patterns: (1) The low-level process which performs segmentation
of input image and extraction of useful features from the segmented
image; (2) the higher-level process which performs semantic analysis
of the image patterns based on the featurés extracted in the
low-level process. In order to achieve good performance in the
segmentation, it has been recognized as being~useful to import task
specific knowledge into the low-level processing. For this, we can

consider the following four schemes.
(a) Basic scheme

Figure 3-1-a illustrates the basic scheme,. First, segmentation

and feature extraction are performed on an input image. Secondly, the
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(image features) (image features)
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(a) basic scheme (b) top-down scheme
(scene description) (scene description)
A
| matching ———) matching
image features) image features
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| st P ——
(input image) (structured description of image )
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nonpurposive
segmentation
(input image)
(c) feedback scheme - (d) nonpurposive segmentation scheme

Figure 3-1. Four schemes impdrting knowledge into image analysis.
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extracted features are matched with the models which describe the
knowledge about the patterns to be analyzed. The task specific
knowledge is used only in the higher-level matching process. When the
patterns to be analyzed are complex, it is difficult to obtain a
"correct"  segmentation, and the feature extraction becomes

unreliable.
(b) Top-down scheme

The task specific knowledge is imported into the low-level
process as well as the higher-level process as shown in Fig. 3-1-b,
The segmentation process can be tuned up to the patterns to be
analyzed. This scheme works well when variation of input patterns is
limited. But, some defects are inevitable. First; the segmentation
algorithms in this scheme are special purpose ones and they often
turn out to be powerless when applied to the task slightly different
from the one for which the algorithms were originally designed.
Secondly, it is defficult to apply this scheme to the tasks in which
sufficient a priori knowledge about input patterns is not available.

(¢) Feedback scheme

When the input patterns are very complicated or noisy, a simple
top-down scheme cannot cope with them. It is difficult to extract the
features necessary for the analysis all at once. -The feedback scheme
shown in Fig. 3-1-c has been developed to overcome this difficulty.
The results of partial analysis are fed back to the low-level process
to guide it in searching for more detailed features. This scheme
works effectively when important features which determine the overall
structure of input patterns can be extracted rathér easily at the
initial stage of analysis. Otherwise, the costly operations which
deal with the raw image data are apt to be iterated wastefully due to

the trial-and-errors between the higher and lower level processes.
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(d) Nonpurposive segmentation scheme

The feedback scheme tries to extract the features directly from
the flood of data, the raw image, by the top-down control. If the
feature extraction can be performed on a well-organized database, the
inefficiency of the feedback scheme will be fairly improved. One way
to construct such a database is to segment the input image into a set
of edges or regions and to organize them dinto a structured
description. It keeps in a symbolic manner rich information extracted
from the signals, the raw image. Figure 3-1-d illustrates this idea.
The merits of making such descriptions are:

1) It is convenient to manipulate the descriptions by high-level
language such as Lisp or FORTRAN, This helps in implementing
the higher-level process.

2) The picture processing functions can be executed in high speed
without dealing with the raw image.

Once we take this view, the main role of the segmentation is not
necessarily to "reduce" the amount of data but to "structure" the
data into usable information. Furthermore, the algorithm must be a
"nonpurposive" one; it must be applied to a wide range of tasks,
Marr's "Primal Sketch" [Marr, 1975] is one way of making such a
"nonpurposive" symbolic description of image data. He extracted edge
segments in the image by means of various kinds of local filtering
and organized them into a set of symbols.

We-have.developed an image analysis system based on this scheme.
Regions are employed to make the description of image daﬁa. The

description is named "Patchery Data Structure".

III-1-2., Specifications for Segmentation and Symbolic Description

An image of the scene is given as red, green, and blue intensity
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arrays. The 'nonpurposive" symbolic description of the image is
constructed by two processes: the segmentation process and the
description process. The segmentation process extracts the structural
information of the image by partitioning it into coherent regions
using the spectral information. The description of the segmented
image must be organized to facilitate flexible retrieval of pictorial

information,

We have settled the following specifications on the
segmentation.
(a) It deals with color images of 256 x 256 pixels.
(b) It must extract the detailed structures as well as the
global structures in the image . |
(¢) It should apply to a wide range of tasks; i.e., it must be
"nonpurposive".
(d) Segmentations based on texture differences are not
considered.
(e) The textural areas should be kept from being broken into too
many tiny fragments.
(f) The partition must be performed such that we can assume a
single region does not span over more than one object in the
scene. That is, the partition may go to the state of the

"over-segmentation".

As for the description, the following specifications are
settled.

(g) The description is to be constructed using regions,
boundaries, vertices, etc. as the descriptive elements. The
relationships between the regions must be described.

(h) High-speed derivation of the pictorial information from the
description must be possible.

(1) The storage size necessary for the description should be

small.
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(j) The features explicitly included in the description should
be limited to the basic ones. Other features are derived

from the described ones when they become necessary.

III-2. Region Splitting Using Multihistograms.

I1I-2-1. The Algorithm

We adopted an algorithm which wuses multihistograms of one
dimension to find the features to be used for region splitting. The
basic idea of the algorithm is as follows: The whole image is first
partitioned into sub-images each of which is a connected region; then
each sub-image is further paftitioned if it is possible; and this
process iterates. This algorithm has been applied by Tomita et al.
[1973] to the segmentation of artificial texturallpatterns. Ohlander
[1975] applied it to the segmentation of color scenes.

Because the algorithm uses the histograms to find the cues for
segmentation, 1t is suitable for the extraction of global structures
in input images. On the other hand, it is weak in detecting the
detailed structures. Some .improvements are needed to realize a
segmentation process which satisfies thevSpecifications described in
the previoﬁs section,

Figure 3-2 shows a schematic diagram of the segmentation
algorithm using multihistograms. = Because of the recursive nature of
the algorithm, a pilcture stack is used to store the region masks., A
region mask represents a connected region (the area without hatching
in Fig. 3-2) which ié_ to be examined . for segmentation. The

segmentation is performed as follows.
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Figure 3-2. Region splitting using multihistograms.

The textural areas are first extracted (see III-2-2), A mask
corresponding to the un-textural area is placed at the
bottom of the stack. —-- The arrow 0 in Fig, 3-2.

If the stack is empty, the algorithm stops. (Segmentation is
finished.)

One mask is taken from the top of the stack. Let S denote
the region represented by the mask (the area without
hatching). --- The arrow 1 in Fig. 3-2.

If the region S is small (i.e., the number of the pixels in
S is less than a threshold T1), no splitting is tried to S
further, S is memorized as a resultant region.

GO To 2.

Histograms of color features in the region S are computed.
—-- The arrow 2 in Fig. 3-2,

If all histograms are monomodal, the algorithm skips to 9.

I1f any of the histograms show conspicuous peaks, a pair of
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cutoff wvalues which separate the peak in the histogram are
determined at the position of valleys, and the image of the
color feature corresponding to that histogram is thresholded
using the cutoff values; thus the region S is partitioned.
——— The arrow 3 in Fig. 3-2.

8. Connected regions (with area greater than a threshold T2)
are extracted. For each connected region, a region mask is
generated, and it is pushed down on the stack. =—-- The arrow
4 in Fig, 3-2.

GO TO 2.

9. If the area of the region S is not large (less than a
threshold T3), the region S is memorized as a resultant
region, and GO TO 2. v

10, Extraction of detailed structures in the region S is tried

" by the window scanning method (see III-2-5). If it succeeds,
the region S is partitioned, GO TO 8. Otherwise, the region
S i1s memorized as a resultant region. |
GO TO 2.

The threshold Tl is determined to avoid exhaustive trials for
splitting small regions. The threshold T2 is used to reject noisy
regions and to prevent meaningless fragmentation. The threshold T3 is
determined in connection with the size of the small windows. In the
case of segmenting color images with 256 x 256 pixels, the thresholds
Tl, T2, and T3 are set to 50, 8, and 1536, respectively. Admitting
the slight over-segmentation; the quality of the segmentation results
is not significantly influenced by the change of the threshold

values.,
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(a) Laplacian operator (b) 9 x 9 window operator

Figure 3-3. Laplacian operator and 9 x 9 window operator.

III-2-~2. Pre-extraction of Textural Parts

The textural parts (busy parts) in input images are apt to be
divided into a lot of meaningless fragments, In order to prevent
this, the textural parts are first extracted from the image and the
segmentation process is applied only to the parts without textural
property. The extraction of the textural parts is performed by the
following steps.

(1) The Laplacian operator (Fig. 3-3-a) is applied to the green
image to produce a Laplacian image. Thresholding is executed
at a cutoff value T to yield an edge image. The green image
is used because it is the most similar to the
black-and-white image among the three component images. The.
cutoff value T d1s determined from the mode value and the

standard deviation of the histogram for the Laplacian image.

T = (mode value) + (standard deviation) x 1.4 (3-1)
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(2) Utilizing the 9 x 9 window, shown in Fig. 3-3-b, on the
binary picture, if more than 8 of 9 subwindows (3 x 3) have
at least one "1", the central pixel is considered to be
textural, The textural pixels which form connected regions

with large area are determined to be textural parts.

This method detects the areas with scattered edge segments. It
is not sensitive to the sharp edges at the boundaries between
objects., Figure 3-4 shows the sequence of textural parts extraction.
Fig. 3-4-a is an input image, Fig. 3-4-b is the edge image, and

Fig. 3~4-c shows the textural parts extracted.

I1I-2-3. Selection of Cutoff Values Using Histograms

A pair of cutoff values used to partition the image at step (7)
of the segmentation algorithm are selected from the positions of
valleys in the histograms.

- After a smoothing operation all peaks and valleys in the
histograms are detected and a score is calculated for each peak (see
Fig. 3-5).

score = ((2P-Va-Vb)/2P) x ((W-Np/P)/W) , (3-2)
where, Np is the number of pixels contained in the peak.

The first term represents the relative depth of the valleys and the

second the sharpness of the peak. The deeper valleys and the sharper

peak are more desirable. The best three peaks are selected through

all the histograms and the positions of their valleys are used as the

candidate cutoff wvalues.
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Figure 3-4. An example of textural parts extraction.
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Figure 3-5. Score for a peak in a histogram.

III~2~-4, Verification of Cutoff Values by Spatial Evaluation

A pair of cutoff values with a high score does not necessarily
produce a partition with good quality; an accidental partition may
occur. It 1is necessary to test the quality of the partitions that
will be obtained by using the candidate cutoff values selected in the
histograms and to reject bad partitioms.

We define "looseness" of a binary mask which represents the

regions extracted by the thresholding.
2 2
looseness = ((NF-NO)/NO)“ + ((NO-NS)/NO)“ , (3-3)
where, NO is the number of 1's in the binary picture,

NF is the number of 1's after "fusion" operation,

NS is the number of 1's after "shrinking' operation.

64



Roughly speaking, the looseness is related to the ratio
of boundary points at which 1's neighbor with 0's,
number of 1's; but it can be calculated faster than the

The way to calculate the looseness is illustrated in

of the number

to the fotal
strict ratio.
Fig. 3-6. For

each partition, the looseness is calculated for both binary pictures.

The partitibn which has the smallest sum of the looseness values is

selected as the best.

(NO) (NF)
F 1

1 F1F 111
11 FI1F 1111
111 FI11F 11111
111 FIT11F 111111
11111 fusion F11111F . 111111
111111 ™ F111111F — 111111
111 111 FIT1F111F 111111
11111111 FITT111111F 111111
11111111 FITTI11111F 111111
11111111 FITT11111F 111111

shrinking FFFFFFFF 11111
gs (NS)
S1S 1
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S11S1S o 11 1
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Figure 3-6. Calculation of "looseness" for a binary mask.

NO is the number of 1's in the mask,

NF is the number of 1's after "fusion" operation,
NS is the number-of 1's after "shrinking" operation.
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III-2-5. Detection and Extraction of Detailed Structures

The segmentation algorithm uses histograms to detect the
structures in a region to be examined. In the case of large regions,
sometimes no valleys can be detected in any histogram even when the
region contains some structures. This is because small valleys in a
histogram are veiled by dominant peaks or because many small peaks
overlap with each other. To cope with such cases, regions with area
greater than a threshold are scanned using a window, and it is tested
whether the histograms for each window have valleys. This operation
is illustrated in Fig. 3-7. The window size is set to 32 x 32 when
the image size is 256 x 256.

large-region mask

(a)
histograms
f f2 f3
shift histograms

(b)

Rt
N

k
PP

smal1-window mask
Figure 3-7. Schema of the window-scanning method.
(a) In large regions sometimes no valley can be detected in any
histogram even when the regjon contains some structures.

(b) Large regions are scanned by a small window and the
histograms for each window are tested.
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This method works well in detecting the detailed structures in
large regions, but the partition should be performed with caution.
Strictly speaking, the cutoff values selected from the histogram for
a particular window are valid only for the local area in the window.
If the cutoff values are applied to the whole region, wundesirable
partitions may happen as illustrated in Fig. 3-8. In order to avoid
this, after applying the cutoff values to the whole region, only the
extracted segments which intersect the window corresponding to the

histogram are picked up and partitioned.

large
region

small
window

histogram

fn

fn

!
!
|
I
!
|

cut-off value

accidental
partition

Figure 3-8. Simple application of a threshold obtained by the
window-scanning method may cause accidental partitions.

The value of the feature fn smoothly changes in the left part of
the region, while it changes abruptly in the right part. If the
cutoff values selected on the histogram for the window in the
right part is applied to the whole region, an accidental
partition may happen in the left part.

67



III-3. Representation of Segmented Image
III-3-1. Patchery'Data Structure

The regions obtained as the result of segmentation are recorded
as a two dimensional image array. The role of the symbolic
description is to arrange the -segmentation results into a
well-organized data structure which allows easy derivation of
pictorial features related to the properties of and the relations
between the regions. The data structure is named '"Patchery Data
Structure".

Few works have been reported yet on a structured description of
image data for thé purpose of retrieving the pictorial information.
Kunii et al, [1974] reported a system which uses the relational model
to represent the pictorial information, The primary aim of their
system is to build an image database with an ability to retrieve
images by specifying their contents., In our case, the primary aim is
to retrieve features of an image based on regions. Relationships
among regions must be represented by ordered sets with wvariable
mumber of elements; for example, a set of boundary segments forms the
contour of a region. These relations are conveniently expressed by
using pointers. Regions, boundary segments, and vertices are the
descriptive elements in the Patchery Data Sturcture, and various
kinds of pointers are used to describe relations between the
elements,

We define regions, boundary segments, and vertices as
illustrated in Fig. 3-9. The connectedness of each region is
considered by 4-neighbors. The boundary segments are defined on the
mesh placed on the interval of the pixels. Each boundary segment
corresponds to the border between two regions and it is represented
by chain codes (with 4 directions) from the start vertex to the end
vertex. Each vertex is a start or end point of a boundary segment

between two regions. A vertex is the corner point at which three or
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four regions encounter.

Holes and line segments are also the descriptive elements. A
hole is a group of regions which is surrounded by another region. A
line segment corresponds to a linear section of a boundary segment.
The iterative end-point fits method [Duda and Hart,1973] is used to
fit line segments to the chain code of a béundary segment. Figure
3-10 illustrates the line fitting operations.

III-3-2. Primary Features and Secondary Features

The description must support high-speed derivation of various
kinds of features when they become necessary in the analysis process.
One possible scheme is that every feature needed in the analysis
process is calculated.beforehand and entered in the description. But
this is infeasible for the following two reasons: (1) It is wasteful
to calculate the features which may not be used in the analysis
process; (2) a large amount of storage is necessary to store all the
calculated features.

Features used in the image analysis can be divided into two
classes: primary features and secondary features. The calculation of
a primary feature deals with the image arrays directly, and,
generally, it is time consuming. On the other hand, the secondary
features, such as compactness of a region, can be calculated from a
set of primary features, and their calculation can be performed in
high-speed. Based on such considerations, only the primary features
are entered in our description., The secondary features will be
calculated from the primary features of the descriptive elements and

their relationships when needed in the analysis process.
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Figure 3-9. Regions, boundary segments, and vertices.

— Boundary segment
first fit

— — —- second fit

——— third fit

Figure 3-10. The iterative end-point fits method.

A and B are the end-points (vertices) of the boundary
segment. The line AB is initially fit to the boundary.
The distances from each point on the boundary to this
line are computed, and if all the distances are less
than a threshold the process is finished. If not,

the point C, furthest from the line AB, is found and
the line AB is broken into two new lines AC and CB.
This process lterates.

70



II1I-3-3. Description of Properties

The properties of regions, boundary segments, vertices, holes,
and line segments are described in each descriptive element., Table
3-1 shows the features used for the description as the properties of
descriptive -elements. For a region, the following features are
described (Fig. 3-11).

(1) Area -——~ The number of pixels included in the region.

(2) Mean intensities of R, G, and B data.

(3) Degree of texture ——— The mean value of the operatdr in Fig.
3-3-b.

(4) Contour lengh -—-- The total length of the boundaries which

surround the region.

Table 3-1. Primary features for each descriptive element.

descriptive . £

element primary features

region area; mean intensities of R, G, and B;
degree of texture; contour length;
position of the mass center; number of holes;
scatter matrix of pixel positions;
minimum bounding rectangle (MBR).

boundar . '

segmenty chain codes; 1length; contrast.

vertex position; number of boundary segments.

hole contour length.

line . distance from origin (p); orientation (0);

segment s .
length; positions of end points.
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(5) Position of.the mass center --- The position vector M=(MX,

MY) of mass center of a region is computed as follows:

N
M= (1/N) } Pi, : (3-4)
i=1
where, N is the number of pixels in the region,

Pi i1s the position vector of i-th pixel.

-(6) Minimum bounding rectangle (MBR) --- The MBR is defined as a
set of four figures XMIN, XMAX, YMIN, and YMAX. They are the
maximum and minimum values of the X and Y coordinates of the
pixel positions in the region.

(7) Scatter matrix --- The scatter matrix represents the
elliptical area which approximates the shape of the region.
It is more useful than the minimum bounding rectangle. The

scatter matrix C of a region can be calculated as follows:

N
. . t .
C = (1/N) } (Pi-M) (Pi-}M) . (3-5)
i=1
where, N is the number of pixels in the region,
Pi denotes the position vector of i-th pixel,

-+ M denotes the mass center of the region.

Figure 3-12 illustrates the features described for boundary
segments. The contrast is the mean difference of R, G, and B values
across the boundary segment.

Figure 3-13 shows the features for line segments. The polar
coordinates system (p-0 system) is used to represent a line segment.

The p-0 system is convenient to aggregate co-~linear line segments.
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II1-3-4. Description of Relations

III-3—4—1.ATopologica1 Relations

The topological felations among regiomns, boundéry segments,
vertices, holes and iine segments are expressed by the pointers
between each descriptive element. Figure 3-14 41illustrates the
pointers used in the Patchery Data Structure. The meaning of the
pointers will be clear from the figure. The boundary segments which
form the contour of a region or a hole are ordered counter-clockwise.
According to the considerations in section III-3-2, only the "primary
relations" are explicitly represented. Other relations can be derived
from the primary ones when they become necessary. For example, the
set of regions touching a certain region can be obtained as follows:
(1) The set of boundary segments surrounding the kfegion is first
derived; (2) the regions on the left side or-the right side of each

boundary segment are gathered as the objective set.

left side
right side meet at

uTP3UO0D

Figure 3-14. Description of topological relatioms.
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I11-3-4-2, Color Relations

It is useful to describe the relationships among the regions
which have similar colors. The basic operation of the segmentation
algorithm using multihistograms, which we employed in our system, is
to extract regions with a similar spectral property. A segmentation
tree which records the history of segmeﬁtation can be used to
describe the color relations among the regions. Figure 3-15 is an
example of the segmentation tree. Each node in the tree corresponds
to a region. The root-node corresponds to the whole image and the
leaf-nodes correspond to the elementary regions obtained as the final
result of the segmentaion. Every node except the leaf-node has its
child-nodes which correspond to the regions obtained by splitting the
region corresponding to that node. There are two kinds of child-node:
sons and daughters, The sons correspond to the regions which are
extracted by the cutoff operation from the parent region. The

daughters correspond to the remaining regions. The cutoff values used

Figure 3-15. Description of color relations.
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to separate the region is recorded in the corresponding node.

The distance between two nodes in the segmentation tree is
defined as the path length between them. The regions which are near
in the segmentation tree have similar colors. But it can not be said
that distant nodes have very different colors. Furthermore, the color
relation represented by the entire segmentation tree depends on the
color features which are used for the segmentation process; i.e., the
segmentation tree created by using R, G, and B is different from that
created by using Y, I, and Q. In spite of such difficulties, we think
that the segmentation tree will be a useful tool for retrieving the

regions based on the similarity of color.

I1I-4, Manipulation of the Patchery Data Structure

III-4~1., Merging of Regions

In region-oriented image analyses, it is often necessary to
merge several regions into one. In such a case, the features in Table
3-1 of a new region should be calculated from the ones of old regions
without dealing with the image arrays. In our system, it can be

performed as follows.

(1) Mean intensities of R, G, and B data, degree of texture,
position of mass center --- The feature f of the new region

can be calculated by the weighted average.

N N '
£ = (F fiesi)/ } Si » (3-6)
i=1 i=1

where, Si and fi denote, respectively, the area and

the feature of the i-th old region.
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(2) Minimum bounding rectangle (MBR) --- The MBR (XMIN, XMAX,
YMIN, YMAX) of the new region can be obtained as the MBR of
the MBRs of old regions.

XMIN
YMIN

min {XMINi}, XMAX
min {YMINi}, YMAX

max {XMAXi},
max {YMAXi}, (3-7)

It
]

where, (XMINi, XMAXi, YMINi, YMAXi) denotes the MBR
of the i-th old region. '

(3) Scatter matrix --- Let Ci, Mi, and Si (i=l...n) denote
individually the scatter matrix, the position vector of the
mass center, and the area of the i-th old region. Let M
denote the position vector of the mass center of the new
region, which is calculated by Eq. 3-6. Then the new scatter
matrix C can be obtained as follows:

N

N
C= () si-(Ci+Qui-M) Mi-M) "))/ T si . - (3-8)
i=1 i=1

ITI-4-2, Derivation of Various Features

Various kinds of features are used in region analysis systems to
represent the properties of and the relations between the regions.
Table 3-2 shows the typical features which we used. We will show how
we can derive those secondary features easily from the primary ones
entered in the Patchery Data Structure. The computational time
necessary to derive them from the data structure 1is shorter than

computing them directly on the image arrays.
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(1) Normalized colors (r, g, and b), intensity, hue, and

saturation of a region --- They can be calculated from the

mean intensities of R, G, and B of the region.

r = R/(R+G+B), g = G/(R+G+B), b = B/ (R+G+B),
intensity = (R+G+B)/3,
saturation = 1-3+*min(r,g,b) »

hue = arctan2(v/3(G-B), (2R-G~-B)) . , (3-9)

(2) Compactness of a region --- It can be calculated from the

area and the contour length of a region.

compactness = 4mearea/(contour length)2 .- (3-10)

(3) Crude shapesb of a region such as vertically-long or

horizontally-long --- They can be defined based on the

VH-ratio which is computed using the scatter matrix.
VH-ratio = log(Cll/C22) , (3-11)

where, Cll and C22 are the diagonal components of

the scatter matrix C.

(4) Effective width and effective MBR of a region --- The

effective width and the effective MBR are both computed from
the scatter matrix. When the scatter matrix of a region is

(Cll 012) , the effective MBR (XMIN, XMAX, YMIN, YMAX) is a
C21 Cc22

rectangle which has a scatter matrix (Cll 0). And the
0 c22

effective width (XW, YW) is the width of the effective MBR.
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Table 3-2. Secondary features which can be derived
from the primary ones.

features. normalized colors;

of a region intensity; saturation; hue;
compactness; VH-ratio (crude shape);
effective width; effective MBR.

features contrast of the border;

between two regions orientation of the border;

Tinearity of the border;

T-ratio (touching ratio);

O0-ratio (overlapping ratio);

placement relations (above, below, etc.).

W = 2/3-C11, W = 2V/3-c22 ,
XMIN = XC-XW/2, XMAX = XC+XW/2,
YMIN = YC~YW/2, YMAX = YC+YW/2, (3-12)

1]
]

where, (XC, YC) is the mass center of the region.

(5) The contrast at the border of two regions --- It can be
computed by averaging the contrast of the boundary segments
included in the intersection of the contours of the two

regions,

(6) The degree that a region touches another region (T-ratio)
-—— The T-ratio of region-l to region-2 is calculated £from
the length of the border between the two regions and the

contour length of the region-1.

T-ratio = (border length)/(contour length of region-1).
(3-13)
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(7) The degree of a region being surrounded by another region

(8)

9

(0O~ratio) ~-- The O-ratio of region-1 to region-2 is
computed as the ratio of the overlapped area of the MBRs of
the. two regions to the whole area of the MBR of the

region-1,

O-ratio = (overlapped area)/(whole area). (3-14)

The linearity and the orientation 6f the border between two
regions =-- These can be derived from the set of line

segments included in the boundary of the two regioms.

Positional relationships between two regions such as above,
below, left, or right -—- These can be derived by using the
mass centers and the MBRs of the two regions. Let (XCl, YC1l)
and (XC2, YC2) be the mass centers of region-l and region-2,
respectively. Let (XMIN1, XMAX1, YMIN1, YMAX1l) and (XMIN2,
XMAX2, YMIN2, YMAX2) be the effective MBRs of the two
regions illustrated in Fig. 3-16. Then the reiation

"region-1l is above region-2" is defined as follows:
XMIN1<(XMIN2+XC2)/2 A XMAX1<XC2 A YMIN2<YC1<YMAX2. (3-15)
Actually, we defined "above" as a fuzzy predicate; the truth
value is affected by the degree that YCl is out of the range

[YMIN2, YMAX2]. The other relations are defined in the same

way.
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Figure 3-16. Two effective MBRs to define ''above'.

IIT-4-3, Retrieving the Regions

When the analysis is performed by means of a top-down strategy,
it is necessary to retrieve regions out of the image data by
specifying the properties they should have; for example, '"fetch all
the regions that are vertically long and have a yellow one on their
left". The computation for such a retrieval is usually very large.
Only a well-structured symbolic description can allow such a function
to be of practical use. In our system, the following three primitive
functions are for this purpose (cf. Table 4-3 in P.-126).

ALL-FETCH (<to-set>, <from-set>, <fuzzy-predicate>) ,
THERE-IS (<region>, <from-set>, <fuzzy-predicate>) ,
T-FETCH (<to-set>, <region>) .

ALL-FETCH selects from a set of regions, which is specified by
<from-set>, all the regions that satisfy the condition described by
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<fuzzy-predicate>, and assigns them to <to-set>, THERE-1S,
existential fetch, selects only one region first found. Nested use of
these functions realizes arbitrarily complicated retrievals. T-FETCH
selects all the regions that are touching <region>. This function, of
course, can be realized by using ALL-FETICH, but T-FETCH is faster
because it utilizes the relational pointers in the Patchery Data
Structure, Figure 3-17 illustrates a function defined by using
ALL-FETCH and THERE-IS to perform the retrieval of the above example,
"fetch all the regions that are ...".

(ALL-FETCH *TO-SET *REGIONS
(AND  (VERTICALLY-LONG *TO-SET)
(THERE-IS *Y-RGN *REGIONS
(AND (YELLOW *Y-RGN)
(LEFT-OF *Y-RGN *T0-SET)))))

Figure 3-17. The function to "fetch all regions that are vertically
long and have a yellow one on their left'".

III-5, The Results

The segmentation process and the structuring process described
in this chapter have been applied to a lot of colof scenes, and
produced successful results. This section presents the results for
two scenes for dllustration. Other results can be seen in the
appendix.

Figure 3-18-a 1is an outdoor scene. The input picture is
digitized with 256 x 256 size and 5-bit demsity resolution for each
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(c) straight line segments (d) reconstructed color image

Figure 3-18. Result of preliminary segmentation: Example 1.
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(a) digitized color image (b) result of segmentation

(c¢) straight line segments (d) reconstructed color image

Figure 3-19. Result of preliminary segmentation: Example 2.
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R, G, and B data., Figure 3-18-b shows the result of segmentation. R,
G, and B are used as the color features for histogramming in the
segmentation algorithm, The detailed structures, such as the windows
of the building, are extracted successfully. The fragmentation of the
textural part like trees is suppressed. Conceivably, the quality of
this segmentation is sufficient as the "nonpurposive" segmentation.
Figure 3-18-c shows the straight 1line segments fit on the boundary
segments, Figure 3-18-d is a color image reconstructed from the
structured description finally obtained. Mean intensity values of R,
G, and B are assigned to each region. In this example the number of
regions is 339, the number of boundary segments is 914, the number of
vertices is 612, the number of holes is 37, and the number of line
segments is 268. The storage ' necessary for this data structure is
about 90 kilo-bytes.

Figure 3-19 shows the result of another color scene. In this
case, the input picture is digitized with 256 x 256 size and 6-bit
density resolution.  Three color features (R+G+B)/3, (R-B), and
(2G-R~B)/2 are uséd in the segmentation process, The numbers of
regions, boundary segments, vertices, holes, and line 'segments are
391, 1121, 742, 11, and 368, respectively,

ITI-6. Conclusion

In this chapter, a system which makes a structured description
of a color image based on regions is described. A powerful
segmentation process has been developed by improving the segmentation

algorithm which uses multihistograms to obtain the cues for splitting
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a region, The segmentation  results are organized into a structured
symbolic data network. It contains rich information of the input
image and supplies the analysis process with the pictorial

information in a tractable form,

The features of the system are as follows.

As for the segmentation process:

(1) It can deal with color images.

(2) The global structures in the input image are effectively
extracted by using the histograms as the cues for
segmentation,

(3) The detailed structures can be extracted. by the
window-scanning method.

(4) The meaningless fragmentation of the textural area in the
input scene is avoided by the pre-extraction of that area.

(5) It works well for various kinds of images.
As for the structured description:

(6) Because it is region-based, the properties of surfaces such
as colors or textural features can be described in a
natural way.

(7) The features entered in the description are limited to the
primary ones. This realizes a compact description,

(8) Various kinds of features can be derived in high speed from
the description.

(9) The region fetch functions which retrieve regions
satisfying certain properties from the input image can be

. realized on the description for practial use.
(10) The merging operation of the regions can be performed on

the description without referring to the image arrays.,
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There are a few unsolved problems, First, our description cannot
support the splitting operation of regions. This problem, however,
can be almost avoided by over-segmenting the image in the
segmentation process, Secondly, the segmentation process takes a lot
of time. This point will be fairly improved by employing the special
purpose hardwares which can perform high-speed parallel computation

for low-level operations such as histogramming and thresholding.
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Chapter 1V

- A BOTTOM-UP AND TOP-DOWN REGION ANALYZER

IV-1, The Problems

The region analysis technique 1s often employed in analysis
systems for natural scenes. Regions are better than edges in dealing
with the properties of the surfaces and in obtaining the global
structures in the scenes. A region analyzer tries to segment an input
image into meaningful regions and assigns object labels to each of
them. The term "meaningful" means that each region corresponds to a
surface of the objects in the input scene. The homogeneity of color
or texture is used as the criteria to divide the image into regions.
A meaningful segmentation, however, 1s hardly achieved by using only
such image pr0perties. Various kinds of additional constraints have
to be employed to obtain the meaningful regions. There are several
attempts for this, '

Brice et al. [1970] segmented block-world scenes by the region
growing technique. ~ They employed the 'phagocyte" heuristic in
addition to the "weakness" heuristic which evaluates the similarity
of brightness, Even if the boundary between two regions 1s weak, they
are joined only if the resulting boundary does not grow too fast.
Thus, the phagocyte heuristic constrains the region growing process
to obtain well-shaped regions. It worked well for the block scenes.

For more complex scenes such as outdoor scenes, it is necessary
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to introduce more task-specific constraints into the segmentation
process. Yakimovsky et al. [1973] incorporated the interpretation
process with the segmentation pfocess, and analyzed road scenes which
include sky, roads, grass strips, trees, and cars. The input image is
preliminarily divided:-into small' fragments based on the similarity of
color. Every fragment is interpreted by using the properties of and
the relations between the fragments. The fragments which are assigned
an identical interpretation are merged as a meaningful region. Their
scheme utilizes the restrictions on the kinds of objects in the task
world as the constraints to guide the segmentation. Tenenbaum et.al.
[1976] analyzed a room scene by a method which they call
"Interpretation-Guided Segmentation". These two methods are usually
called "semantic region analysis".

The semantic region analysis systems have succeeded in analyzing
road scenes and simple room scenes. But, they cannot deal with the
scenes which contain objects for whose recognition a certain
structure has to be identified. For example, it is difficult to deal
with a set of regions, such as windows of a building, which are
located separately, but which are to be identified as a whole
according to some placement rules. The evaluation of shapes
comprising several regions is also hard. The reason for this
difficulty can be understood as follows. The semantic region analysis
has been developed as an improvement of the region growing technique.
Thus, it still relies entirely on the bottom-up control scheme of the
region growing, and the semantic information is used in the same way
as the local pictorial information. In consequence, even though the
segmentation is evaluated by a certain score, the usable features
which evaluate the semantic constraints are limited to local ones:
e.g. .color, orientation of a boundary segment, crude shape of a
boundary segment, etc. Such a problem stems from the fact that the
semantic region analyses so far developed are based on the bottom-up
control scheme,

In order to 7resolve the problenm, a model-driven top-down
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approach seems essential., It is well known that, when the structure
of the input scene is known, the top-down control scheme provides an
efficient and reliable. :analysis. -Under the top-down' control, it
becomes possible to deal with a set of regions located separately in
the image such-‘as windows of ‘a building. But when the structure is
not known, * the top-down. scheme is powerless. - In contrast, the
bottom-up .control is,usually not so efficient, but.it is more robust;
it works well even when ' the structure . of the input image is not
known. We think that we.can build a powerful analysis mechanism by
combining the merits of the two complementary control schemes in the
following way: (1) The bottom-up control scheme extracts information
about the crude structure of the input scene. (2) Based on the
information provided by the bottom—up analysis, the top-down control
scheme performs an efficient analysis by focussing its attention.

The task world selected is campus scenes qf Kyoto University;
the scenes include sky, trees, buildings, roads, windows of

buildings, and cars on roads.

IV-2. A Bottom-up and Top-down Region Analyzer

IV-2-1. Patches and Regions

Figure 4-1 shows the outline of our region analyzer. An input
color 1image is first partitioned into a set of coherent regions
according to the color information., The partition is performed to the
state of over-segmentation, that is, we can assume a single region
does not span over more than one object, but one object might be

divided into multiple regions. The segmented image is organized into
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a structured data network which is called Patchery Data Structure.
Regions, boundary segments, vertices, holes, and (straight) line
segments are used as the descriptive elements. This process is called
the preliminary segmentation.

In this chapter, the regions obtained in the preliminary
segmentation are denoted by the term "patches". The term "regions" is
used only for the regions which are obtained by merging the patches
according to a certain criterion. The patches are the atomic elements

used to make a scene description in our system.

('scene description)

mode] siproduction
A system

—_—
top-down
process

analysis
-
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generation
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structured data network
(Patchery data structure)
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Figure 4-1. Outline of the region analyzer.
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IV-2-2, Bottom-up Control and Top-down Control

Deciding where to locate the interface between the bottom-up and
top-down processes is an important problem., In Fig. 4-~1, the part
enclosed by dotted lines is performed under bottom-up control in our
system. A '"plan" is generated in the bottom-up process as a
representation of the crude structure of the input scene. The plan is
a set of object 1labels and their degree of correctness assigned to
each of the large patches in the preliminarily segmented image. The
plan provides the top-down process with the clues concerning what
knowledge can be applied to what part of the scene.

The top-down process fixes the interpretation for the large
patches referring to the plan generated in the bottom-up process.
Also, it analyzes the detailed structures of the scene by
interpreting small patches in the context of the large patches which
have been already interpreted. When the top-down process makes a
significant decision (such as the position of the scene horizon)
which might have an effect on the interpretation of the whole scene,
the decision is fed back to the bottom-up process and the plan is
re-evaluated. In this way the bottom-up process and the top-down
process work cooperatively to achieve the semantic description of the

scene.,

IV-2-3. Rule~based Analysis

The knowledge of the task world is represented by two sets of
rules in our region analyzer: one is used in the bottom-up process
and the other in the top-down process. Figure 4-2 illustrates the
control mechanism of the region analyzer. Because the knowledge is
reﬁresented as a collection of modular rules, it is easy to add or

modify the knowledge in our system. This is a useful feature in
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Figure 442. Contfol mechanism of the rule-based analysis.

organizing an analysis system for complex scenes, such as outdoor
scenes, which include various kinds of objects.

Each rule for the bottom-up process has a fuzzy predicate which
describes properties of or relations between objects. It also has a
weight which indicates the uncertainty of the knowledge it relies on.
The plan 'manager controls evaluation of the rules and performs an
approximate reasoning based on the fuzzy truth-values.

The top-down process is organized as a production system. Each
rule is a pair of a condition and an action. The condition is a fuzzy
predicate which examines the situation of the database. The action
includes operations to make the scene description. The agenda manages
the activation of production rules and schedules the executable

actions.
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IV-2-4, Plan Generation by Bottom-up Analysis
IV-2-4-1, Plan Image

In order to generate the plan, patches with large area are first
selected from the preliminarily segmented image. It is reasonable to
assume‘that‘most of them correspond to large parts of objeECS'in the
scene and that they can be extracted from the image data rather
stably in the segmentation process. Webcall those patches keypatches.
It should be possible to-grasp the rough structure of the»scene by
assigning the object 1labels to the keypatches. The labels have
multiple values, and a score indicating the degree of correctness is

assosiated to each label value; for example,
label-of-a-keypatch = [(sky=0.5) (building=0.2) (tree=0.2) (road=0.1)].

The score 1s computed by evaluating the properties of and the
relations between the keypatches,

Small patches in the preliminarily segmented image may disturb
the ‘evaluation of the relations between the keypatches. Thus, we
tentatively merge all the small patches to one of the keypatches. We
call the resultant image a "plan image". The "plan" is the labeled
plan image; that is, each region in the plan image are assigned with
labels.

Figure 4-3-b shows the plan image generated from the segmented
image in Fig. 4=-3-a, It must be noted that the plan image is
represented symbolically on the Patchery Data Structure, and thé
image (2-D array) in Fig. 4-3-b is generated only for the purpose of
display.

No semantic information is used in the merge operation., When a
small patch touches more than two keypatches, a score is computed for
each keypatch based on the similarity of color and the compactness of
the region which would be obtained if the small patch and the

keypatch are merged. The compactness criterion guldes the merging
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(a) result of preliminary (b) plan image generated
segmentation from (a)

Figure 4-3. Generation of plan image.

operation to obtain regions with smooth boundaries: In order to
evaluate the global relations between regions, the smooth boundaries
are rather convenient. The keypatch which obtaines the highest score
is selected. The merge operation is, of course, performed by

manipulating the Patchery Data Structure.

IV-2-4-2, Rules and Plan Manager

Each rule used in the plan generation process has a fuzzy
predicate which describes a property of a certain object or a
relation between objects. When it is applied to a region to check
whether the region can be labeled as the object, it examines
pictorial features of the region and produces a fuzzy truth-value

which indicates the degree of satisfaction of the property. The
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predicate can also examine the scene description which is constructed
in the top-down process., In this way, the information extracted in
the top-down process, such as the position of the scene horizon, can
be reflected in the plan generation process.

In order fo evaluate the plan, the plan manager activates every
rule to examine every region in the plan image. For every combination
of rules and regions, the plan manager receives a fuzzy truth-value.
Based on the set of fuzzy truth-values, the plan manager assigns
object labels to each of the regions and computes their degree of
correctness,

An approximate reasoning scheme is employed for evaluation of
the plan to deal with the wuncertainty existing in both of the
knowledge and the pictorial features. Detailed description of this

scheme is included in section IV-3.

IV-2-5. Top-down Analysis of Patches
IV-2-5-1. A Production System Architecture

The top-down analysis process 1is constructed by using a
production system architecture. A production system consists of a set
of production rules, a database, and a control structure, A
production rule is the unit of knowledge representation, and the
database records the facts about the input image. Each production
rule is a pair of a condition and an action, and is "watching" the
database. Whenever the predicate in the condition part is satisfied,

the system evaluates the action part and modifies the database.
As illustrated in Fig. 4-2, the database stores

(1) the preliminarily segmented image and the plan image represented

on the Patchery Data Structure,
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(2) the plan, and

(3) the scene description so far obtained.

There are two types of production rules in our system: to-do
rules and if-done rules. They correspond to the consequent and
antecedent theorems of PLANNER [Hewitt, 1968], respectively. A to-do
rule performs basic operations in the region growing  process. It
examines each patch which has not been interpreted yet in the
segmented image by the fuzzy predicate in its condition part and
determines whether the associated action can be executed for it. The
executable actions are added into the agenda with a score indicating
their priority, whose computation will be explained soon. The agenda
controls the production system. It manages actions which are
executable in a context of analysis through their attached scores.
The action with the highest score 1s executed, and, as the result,
the agenda is updated.

An if-done rule is a demon. It is triggered by the execution of
a certain action of to-do rules.

In the production system architecture, interactions of the to-do
rules and if-done rules as modifying the. database embody a
heterarchical control structure. This enables the top-down analysis
process to have a flavor of data-driven control so that the order of
analysis is determined according to the reliability of the
interpretation of each part of the image, which is given as the plan

generated by the bottom-up analysis.

IV-2-5-2, Structure of Scene Description
How to describe the analysis result is essential, especially to

realize a top-down control in the analysis, because the system has to

grasp the present context of the analysis exactly in order to control
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Figure 4-4. Structure of the scene description.
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it according to the status of the results so far obtained. Figure 4-4
illustrates the structure of the scene description which is built as
the result of the top-down analysis in our system. Scene, object,
region, sub-region, patch, and pixel are the important concepts which
constitute the structure of the description. The patches are the ones
obtained as the output of the preliminary segmentation. They are the
atomic elements in the rule-based analysis. The scene represents the
whole image being analyzed. The objects stand for the objects
extracted in the scene. The regions represent the main parts of
objects such as the walls of buildings, and they are obtained by
merging the patches which are given the same interpretation. The
sub-regions are much the same as the regions, but they correspond to
the subjective parts of objects such as the windows of buildings. The
difference between (sub-)regions and patches is that the former are
the entities given consistent semantic interpretation, whereas the
latter are the entities having consistent pictorial properties. All
descriptive elements are organized into a hierarchical structure by
the "part-of'" relations. Relations between the objects such as
"adjacent" or "occluding" are described between corresponding

regions.
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IV-3, Modeling and Control Structure for Plan Generation

IV-3-1, Model Representation
IV-3-1-1. Knowledge Block Organization of Model

In a computer vision system, a model which describes the
properties of and the relations between the objects is the most
important knowledge representation about the task world. In our
system, the model is organized as a semantic network as illustrated
in Fig. 4-5. Each node of the network is called a knowledge block in
our model. It holds a chunk of knowledge about an entity in the
world; for instance, object '"sky", material "concrete", property
"blue", relation "linear-boundary", etc. A knowledge block for an

object or material includes a set of rules which describe properties

SCENE

BUILDING

ceontain

WINDOW

LINEAR-
BOUNDARY,

defined-by

(INTENSITY)(SATURATION) (HUE)

Figure 4-5. A semantic network for knowledge organization.
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it must satisfy and relations it has with other blocks, and a set of
production rules which belong to it. A knowledge block for a property
or relation includes its definition.

The most valuable advantage of our representation over an
ordinary semantic network is that it has a mechanism to represent
both the universal knowledge, such as property inheritance from
material to object, and the "active" rules, such as the production
rules, that the interpretation process can use in a specific context

of analysis.

IV-3-1-2. Rules Describing Properties and Relations

The knowledge block for an object or material holds the
description of the properties which must be satisfied by a region
éorresponding to that object or material. It also holds the
description of the relations which must be satisfied between the
regions corresponding tb that object and other objects. The
properties and the relaltions are represented as a set of declarative

rules of the following formats.

property: [(<type><fuzzy-predicate><weight>) (<var-list>)]
relation: [(<type><fuzzy-predicate><weight> FOR <label>) (<var-list>)]

The <fuzzy-predicate> defines the property or the relation
itself, Its syntax is as much the same as the form in Lisp language.
Figure 4-6 shows the syntax defined by the BNF notation. Some
explanatory examples are given later in this sectionm.

The <var-list> is a list of external variables used in the fuzzy
predicate. There is exactly one variable in the <var-list> of

property rules and two in relation rules, The control program binds
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each of the external variables to the regions (or patches) which must
be examined by the predicate.. The fuzzy predicate evaluates the
property of the region or the relation. between the two regions, and
returns a fuzzy truth-value. _ ;

The <weight> is a dotted pair of two figures (W1l.W2). It
indicates the uncertainty of the knowlegde the rule relies on. Let A
be the property represented by the rule, and let X be the object to
which the rule belongs. Then the first figure Wl corresponds to the a
priori probability P[A] that a region satisfies the property A. W2
corresponds to the conditional probability P[AIX] that a region known
to be the object X satisfies the property A.

The <type> discriminates types of knowledge the rule relies on.
There are two types: GEN (GENeral) and STR (STeReotyped). The
GEN-type rule corresponds to a general type of knowledge, such as
"sky is blue or grey". The STR-type rule represents the knowledge
about a stereotype, such as '"the region which touches the lower side
of the picture frame may be a part of road"; of course, we cannot say
that a‘region is not a part of road unless it touches the lower side.
The difference between the two types is not very essential. But, this
taxonoﬁy is helpful in making the rules and in determining the weight
values.,

The <label> specifies the object with which the relation should
hold.

The following are typical examples of the property rules and the

relation rules.
(a) A property rule in the knowledge block "sky";

knowledge: The sky is blue or grey.
rule ¢ [(GEN (OR (*BLUE *SK) (*GREY *SK)) (1.0 . 0.2)) (*SK)]
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(b) A relation rule in the knowledge block "building";
knowledge: The boundary between the building and the sky has a
lot of linear parts, and the building is not on the
upper side of that boundary.
rule : [(GEN (AND (*LINEAR-BOUNDARY #*BL *SK)
(NOT (POSITION UP *BL *SK)) )
(1.0 . 0.5) FOR SKY) (*BL #SK)]

<fuzzy predicate>::=<constant>|<variable>|
(<function name><arguments>)

<arguments ::=<empty>|<argument><arguments>

<argument>::=<fuzzy predicate>

<function name>::=<block name>|<subroutine name>

<block name>::=*<letter><letters>

<subroutine name>::=<letter><letters>

<variable>::=<block name>

<constant>::=<letter><letters>|<number><numbers>|
<number><numbers>.<number><numbers>

<numbers>::=<empty>|<humber><numbers>

<1etters>::=<empty>|<1etter><1etters>|<number><1etters>

<npumber>::=0|1{2]...

<letter>::=A|B|C]|...

Figure 4-6. Syntax of fuzzy predicates.

A <block name> used as a <argument> is a <variable>.

A <letter><letters> used as a <argument> is a <constant>.

A <block name> used as a <function name> corresponds to a
<fuzzy predicate> whose definition is described in the model.
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IV-3-1-3. Definition of Fuzzy Predicates

We defined various pictorial properties such as "green", "grey",
"textural”, etc. as fuzzy predicates in the model. Those predicates
are defined by using the corresponding pictorial features. For
instance, '"green" is defined by the feature "hue", ''grey" by
"saturation", and "textural" by "degree of texture". We use three
functions, FUZZY1l, FUZZY2, and FUZZY3, to map the pictorial feature
values onto the fuzzy truth-values. Figure 4-7 illustrates the
mapping schemes. FUZZY1l and FUZZY2 have four arguments. The first one
is the pictorial feature, The second and third ones are the
thresholds Tl and T2 which are shown in Fig. 4-7. Pictorial features
taking values between Tl and T2 are mapped onto fuzzy truth-values
between the minimum and maximum truth-values. The fourth argument is
used to reflect the uncertainty of the pictorial feature to the fuzzy
truth-value. Let us consider the fuzzy predicate *GREY for ''grey".
When the color of a region is very dark, its saturation is
unreliable. In such a case, the fuzzy truth-value must be 0.5, which
means "nothing is said about the property 'grey'", regardless of its
saturation. Then FUZZY1l and FUZZY2 adjust their maximum and minimum

truth-values according to the fuzzy truth-value given in its fourth

argument.

0.5+(value of the fourth argument)/2 ,
0.5-(value of the fourth argument)/2 . (4-1)

maximum truth-value

minimum truth-value

When the fourth argument is omitted, the maximum and minimum
truth-values are defaulted to 1.0 and 0.0, respectively. The function
FUZZY3 has two more arguments: the thresholds T3 and T4 (see
Fig. 4-7).
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Figure 4-7. Three functions to define truth-value of
fuzzy predicates from the feature value.
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The followings are explanatory examples of fuzzy-predicate
definitions.

textural: [(*X) (FUZZY1l (TEXTURE-DEGREE *X) 1.0°4.0 (*BRIGHT *X))]
grey: [ (*X) (FUZZY2 (SATURATION #X) 0,05 0.15 (*BRIGHT *X))]
green: [(*X) (FUZZY3 (HUE *X) 0.5 1.0 2.5 3.0 (NOT (*GREY *X)))]

IV-3-2, Evaluation of Plan

The evaluation of the plan means the evaluation of the degree of
correctness of the labels assigned to each region in the plan image.
In order to evaluate the plan, the plan manager activates the rules
for plan generation to examine the regions in the plan image. Three
kinds of figures are used to compute the degree of correctness of a
label assigned to a region. They are (1) the a priori probability of
the label, (2) the results of the property rules evaluated with the
region, and (3) the results of the relation rules evaluated between
the region and other regions; these figures are used in this order.
The a priori probability given in the model for each object label is
used as the base value of the degree of correctness.. First, the
property rules are used to revise the correctness values. Then, the
relation rules are used for further revision. This is because the
evaluation of a relation can take place only after the labels of the

partner regions are assigned with some confidence.

IV-3-2-1, Calculation of Revision Factor

According to the Bayes rule of conditional probabilities, the
following Eq. 4-2 holds. Let P[Xm] be the a priori probability that a
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label Xm matches with a region. Let P[XmlA] be the a posteriori
_probability that a label Xm matches with a region after a property A
is observed with the region. Let P[A] denote the a priori probability
that a region satisfies the property A. Let P[AIXm] be the
conditional probability that a region with the label Xm satisfies the
property A.

P[Xm|A] = P[Xm] + P[A|Xm]/P[A] - (4-2)

In our region anélysis, Equation 4-2 can be interpreted that when a

region Qi satisfies a fuzzy-predicate-A in a property rule Rmk
[(<type> fuzzy-predicate-A <weight>) (<var-list>)],

the correctness value of the label Xm for the region Qi can be

P[A|Xm]/P[A] times reinforced. Recall that the figures P[A|Xm] and

P[A] are given as the <weight> in the rule Rmk.

Let Timk be the fuzzy truth-value of the fuzzy-predicate-A in
the rule Rmk evaluated for the region Qi. Timk takes a value of the
range [0, 1]; Timk equalvto 1 or 0 means that the fuzzy predicate is
or is not satisfied totally; Timk between 0 and 1 means that the
satisfaction is ambiguous; Timk equal to 0.5 means that nothing is
said about the existence of the property. Then, it is necessary to
adjust the revision of the correctness value Cim according to the
value of Timk, For this purpose, a revision factor Fimk is derived
from the P[A|Xm], P[A], and Timk. The Cim is revised by multiplying
Fimk in stead of P[A|Xm]/P[A]. Figure 4-8 shows the relation of
revision factor vs. fuzzy truth-value.

For the GEN-type rule when the fuzzy truth-value Timk is 1 or O
(i.e., the property either does or does not exist totally), the
correctness value Cim becomes P[AIXm]/P[A] or P[K]Xm]/PfK] times
reinforced or weakened. When Timk is 0.5 (i.e., nothing is said about
the property), the Cim does not change at all (Fimk=1). For the
STR-type rule, the correctness value Cim is kept unchanged when the

property is not recognized, i.e, Fimk=1 for Timk £ 0.5.
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Figure 4-8. Relation of the revision factor vs. the
fuzzy truth-value.

IV-3-2-2, Evaluation of Property Rules

In general, there are plural property rules describing the
properties which must be satisfied by a region with label Xm. Let Km
be the number of the property rules for the label Xm. The computation
of a correctness value is performed sequentially; it is revised as
the rules are evaluated one by one. Let Fimk (k=1...Km) be the
revision factor obtained'by evaluating the k-th property rule Rmk for
a region Qi. Let Cig) be the correctness value of the label Xm for
the region Qi after evaluating all the property rules (the relation
rules have not been used yet). Then Cig) is calculated by
Km M Km

= (P[Xm]+ T Fimk)/ )} (P[Xm]e I Fimk) , (4-3)

(0
m k=1 m=1 k=1

where, P[Xm] is the a priori probability of the label Xm.

Notice that Eq. 4-3 includes the normalization of Cio) such that
v (0) i
LC

im - 1, where M is the number of labels (objects) in the model.

m=1
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IV-3-2-3, Evaluation of Relation Rules

0)
im
relation rules Rmnk (k=l...Kmn) which describe the relations between

The correctness value C is now revised by e&aluating the
a region with label Xm and another region with label Xn. Let Timjnk
be the fuzzy truth-value obtained by evaluating the k-th rule Rmnk
for a region Qi with the label Xm and a region Qj with the label Xn.
Then the correctness value Cim of the label Xm for the region Qi can
"be revised by multiplying the revision factor Fimjnk which is
calculated from Timjnk and the weight of the rule Rmnk. But the
situation is a little different from the case of property rules. The
correctness value Cjn of the label Xn in the region Qj must be
considered. Actually, Cjn takes a 0O-to-1 value. When Cjn is near O,
the evaluation of the rule Rmnk between the regions Qi and Qj makes
no sense. Then, the revision factor Fimjnk must be adjusted'according
to the value of Cjn, as well as Timjnk, when revising the correctness
value Cim. Equation 4-4 defines the computation of Cim.
NI (/) B A P .
Cim = C; °'H I I {(Fimjnk - 1)*Cjn + 1} , (4-4)
j=1ln=1k=1
where, J is the number of regions in the plan image,
N is the number of labels in the model,.
Kmn is the number of relation rules described
between the labels Xm and Xn.

The revision is performed for all pairs of the region Qi and other
regions Qj in the plan image, for all labels Xn in Qj, and for all
relation rules between the labels Xm and Xn. The Cjn in the right
side of Eq. 4-4 is also revised by evaluating the relation rules.
Then we would need to solve J x N equations to obtain the exact
values of Cim (i=l...J and m=l...N). Here, we employed the relaxation

(h)

method to solve the equation approximately. Let Ci is the value

of Cim after the h-th iteration. Ciz)'s are computed by the
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successive use of Eq. 4-5.

J N Kmn
Cgh) = C(O) I O 1 {(Fimjnk - 1)- C
m j=1n=1k=1

(h l)+ 1} ’

(i=1ou.J and m=1¢.oN) . (4"5)

The initial values for C(h D are C( ) which are the correctness

values obtained by usingjthe propertyjrules. When Cio) or ng—l)
is small, the values of Fimjnk are not sufficiently reflected to the
revision of the Cim. This means the evaluation of relation rules to
obtain Fimjnk's in such a situation does not pay much from the
computational point of view. In our system, Fimjnk is evaluated only

when C(O) 2 0.1 and Cj(h L

2 0.5, Consequently, the number of
relation rules which need to be actually evaluated is rather small,
and the computation of Eq. 4-5 becomes feasible., Two or three
iterations of Eq. 4-5 are enough to produce approximaté solutions of

Cim,

IV-4. A Production System for Region Growing

IV-4-1, Representing Knowledge by Production Rules

When we import the production system architecture to image
analysis, it is an important problem to determine the "size" of
knowledge which can be represented by one production rule. An example
of "large" knowledge size is a system in which each production rule
corresponds to one object to be extracted and has whole knowledge

about the object. This enables the performance of skillful analysis
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according to the characteristics of each object. On the other hand,
the rules become 1large and complex, which makes it difficult to
manage them.

In our system the size of knowledge represented by a single rule
is ‘fairly small, Each rule describes a combination of basic
operations in region growing: selecting a patch which has not been
interpreted yet from the segmented image, assigning a label to it,
and assembling it into the scene description. This scheme has the
following merits: Each rule is simple and easy to write and modify;
the interaction among rules can be performed in a clear way because
the access method to the database is uniform.

On the other hand, the patch-by-patch analysis in our scheme
gives rise to a certain difficulty in dealing with global constraints
such as object shapes or relations among objects. We took three steps
to resolve this difficulty. First, we generate a plan as a rough
interpretation of the input scene. The plan is put into the database
and each production rule can freely see it, This enables the
production rules to catch information about global structures of the
scene, Secondly, a set of patches can be dealt with at one time, as
well as individual patches, and it becomes possible to extract an
object which is defined as a combination of mutually constrained
patches such as windows of buildings or a car on roads. Lastly, we
have devised special rules which extract dinformation from the
segmented image without sticking to the patch-by-patch analysis.
Typically, this kind of rule is used to extract the shape of a
building.
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IV-4-2, Control Structure
IV-4-2-1, Scene Phase and Object Phase

Conceptually, each production rule in the production system
architectures concurrently checks the sﬁatus of the database, and
executes the associated action when its condition 1is satisfied.
Actually, however, the control program examines one by one every pair
of production rules and patches which have not been interpreted yet.,
The pair which seems to give the most reliable interpretation 1is to
be selected for execution, An agenda is used to schedule the
executable pairs at any moment in the analysis. The agenda must be
updated whenever the database is changed. Roughly speaking, the

number of tests to be done each time is estimated as

number of tests = (the number of un-interpreted patches)

x (the number of production rules), (4-6)

which become several thousand. Testing them all is computationally
unfeasible, |

It 1is necessary to reduce the number of the patches and
production rules which must be actually examined at a time. For this,
the structure of scenes must be considered,

A scene usually has two different properties from the view point
of image analysis: "Globality" and "Locality"., Results of analysis
such as the determination of scene horizon or the detection of
objects can have significant influence on the analysis of the overall
structure of the scene. This property is called "Globality". On the
other hand, results of analysis in a small part of an object scarcely
have influence on the analysis of other parts in the scene. This
property is called "Locality".

These two properties are effectively wutilized in the control

structure of our scene analyzer. In accordance with the two
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properties, the control program works in two phases: scene phase and
object phase. The scene phase is for analyzing the overall structure
of the input scene without sticking to details, Since, it is almost
meaningless to examine small patches in this scene phase, only the
keypatches are examined. Whenever a keypatch is labeled, the agenda
activates the scene‘ phase and all keypatches that have not been
lébéled yet are re-examined. In the object phase, the analysis of -
detailed structures proceeds under the context of the results in the
scene phase. When a patch which belongs to an object is labeled, - the .
agenda activates the object phase corresponding to that object, and
those patches touching the patch just labeled are examined. or
re-examined. A

The set of production rules can be divided into subsets to be
used in the scene phase and the object phase. The production rules
for the object phase are further divided into subsets corresponding
to each object. In each phase, only the production rules in

appropriate subsets are activated by the agenda to examine the

patches which have not been interpreted yet.
Consequently, the number of tests to be done at a time is

reduced to several 10's.,

IV-4-2-2, Control Structure ‘

The control structure of our production system is simple. -

Basically, the analysis iterates the following three steps.
1. An executable action registered on the agenda is selected and

executed. A patch or a set of patches is interpreted, and the

database is modified.
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2. If a keypatch 1is interpreted in step 1, the control program
enters into the scene phase. The production rules for the
scene phase, which are described in the knowledgé block
SCENE, are activated to (re-)examine the keypatches not yet
interpreted. The agenda is updated.

3. The control program enters into the object phase
corresponding to the object as which the patch(es) has been
just dinterpreted 1in step 1. The production rules in the
knowledge block of the object are activated to (re-)examine
the patches touching the patch(es) just interpreted. The
agenda is updated.

GO TO 1.

This simple control scheme is an important outcome of the
production system architecture; each production rule independently
checks the database and modifies it whenever the condition is
satisfied. However, two problems need to be considered to make this
mechanism actually work: scheduling or focussing of attention (a
method to direct the analysis to a goal) and conflict resolution (a
method to resolve conflict among executable actions which are

inconsistent with each other),

IV-4-2-3. Conflict Resolution

In a production system architecture, it is an imporgant and
difficult problem to resolve the conflicts between the modules
(rules) which work concurrently and independently to modify the
database. In our system, each production rule individually tries to

assign a label to a patch whenever the patch satisfies the condition
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attached to the rule. Then it is usually the case that a patch
simultaneously satisfies the conditions of several production rules
whose associated actions try to assign different labels to the patch.

Since the basic operation which changes the database in our
system 1s assignment of an object label to a patch, the detection of
the inconsistent actions is quite straightforward. Our solution for

the problem of conflict resolution is as follows.

(1) Actions which are determined to be executable are registered
on the agenda., The agenda schedules the. execution of the
registered actions by the scheduling method which will be
explained next.

(2) Whenever a patch is interpreted by executing an action,
every action which is going to give a different
interpretation to the patch 1is decided to be inconsistent

and deleted from the agenda.

IV-4-2-4, Scheduling

Every executable action in our system is registered on the
agenda with its score, and the action which has the highest score is
executed to actually change the database. Thus, the score plays an
important role in directing the analysis toward the goal. The score
given to an executable action 1is calculated as the sum of a base
value and a premium value.

The base value is a constant given to each production rule., It
plays a role in specifying the order of analysis, In the outdoor
scene analyzer, the base value of each rule is determined so that the
analysis basically proceeds according to the following order: (1)

detection of objects in the scene, (2) determination of exact
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boundaries between objects and analysis of detailed structures of the
objects, (3) analysis of occlusion.

The premium value depends on the degree of satisfaction of the
condition part of the production rule when the action part was
determined to be executable. It plays a role in guiding the analysis
toward the correct interpretation. The fuzzy truth-value of the fuzzy
predicate in the condition part and the correctness value of the
label on the plan is often used as a premium value,

To sum up, the analysis proceeds toward the goal, guided by the

premium values following the strategy specified by the base values.

IV-4-3. Description of Production Rules

IV-4-3-1. Knowledge Blocks and Production Rules

The model in our system is described as a network of knowledge
blocks which define the objects, materials, and concepts in the world
given as a task. As well as the rules for the plan generation, the
production rules are arranged and stored in the network of knowledge
blocks. The production rules are divided into subsets according to
the role they play in the analysis process. Each subset is stored in
a particular knowledge block corresponding to its role; for instance,
the subset for the scene phase analysis is stored in the knowledge
block SCENE, the subset to analyze the "sky" in the object phase is
in the knowledge block SKY, and so on. This enables the agenda to
pick up and activate only the appropriate and effective production

rules according to the phases in the analysis process.
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IV-4-3-2, Format of Production Rules

The production rules in our system have the following format.
[(ACT <fuzzy-predicate> (THEN <action-list>)) <var-list>]

The ACT indicates that the rule is a production rule. The
<fuzzy-predicate> is the condition part of the production rule. It
examines the database and produces a 0-to-l1 fuzzy truth-value. Its
syntax is the same as that of fuzzy predicates in the GEN- and
STR-type rules used for the plan generation.

The (THEN <action-list>) is the action part of the production
rule, The <action-list> 1s a set of actions to manipulate the
database to build the scene description. Each action is described as
a form in Lisp, i.e., a list of a function name and its arguﬁents.
The <action-list> of to-do rules includes a function to calculate the
score to be associated to the action.

The <var-list> is the list of external variables to be used in
the fuzzy predicate and the actiomns. Before evaluating the fuzzy
predicate, the control program binds those external variables to
regions or patches to be examined by the rule. The number of
variables in the <var-list> is 0, 1, or 2. The <var-list> in the
to-do rules for the scene phase analysis has exactly one vafiable,
and a keypatch is assigned to it. The <var-list> in the to-do rules
for the object phase has two variables; the first variable is bound
to a patch which has not been interpreted yet, and the second one to
a region belonging to the object corresponding to that phase. In the
case of if-done rules, the variables, if any, are bound to the same
patch or region that is examined by the to-do rule which triggered

the if-done rule.
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IV-4~3-3, Description of Actions

The action part of a production rule includes a list of actions
which manipulate the scene description. The manipulation is a

combination of several simple operationms.

(1) Patch-level operation
A patch is assigned with a label --- (P-LABEL <label>).

(2) Region-level operation
The patch is merged with a region —-- (R-MERGE <region>).
If the description of the region has not been created yet, a
new region 1s created --- (R-CREATE).

(3) Object-level operation
When a new region is created at the region-level operation,
the region is associated with an object. A pointer
representing a relation between the region and other regions
belonging to that object is set ~-- (O-MERGE WITH <relation>
<region>).
If the description of the object has not been created yet, a
new object is created and the region is associated with it
--- (O-CREATE).

(4) Scene-level operation
When a new object is created at the object-level operation,

the object is registered to the scene --- (S-MERGE).
When a patch is interpreted, one of the following three combinations
of actions actually takes place.
(a) P-LABEL & R-MERGE ,

(b) P-LABEL & [R-CREATE] & O-MERGE ,
(¢) P-LABEL & [R-CREATE] & [O-CREATE] & [S-MERGE] .
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The actions enclosed by [] are defaulted and they are not explicitly
described 1in the model. In the action-list of a production rule,
those actions are described as the arguments of the functiomns which
register them on the agenda. We use two funcfions for this purpose:
CONCLUDE and MUST-BE. The function CONCLUDE registers the action
specified in its arguments on the agenda with a score which is
calculated by the SCORE-IS function in the action—iist. The function
MUST-BE registers an action which must be executed when the action
registered by CONCLUDE in the same action~list is executed. The
MUST-BE function allows defining an operation which manipulates a set

of patches at a time (see the next section for an example).

IV-4-~3-4, Examples

Figure 4-9 shows a to-do rule'to be used for the scene phase
analysis. It has responsibily to detect a keypatch corresponding to
"sky", and to assemble it into the scene description. The fuzzy
predicate in the condition part is a fuzzy logical~-product of two
predicates PROBABLY and NOTFOUND. The predicate PROBABLY refers the
plan and examines the correctness value of the label SKY for the

keypatch which 1is assigned to the external variable *PCH, The

[(ACT (AND (PROBABLY SKY *PCH)
(NOTFOUND SKY))
(THEN (CONCLUDE P-LABEL SKY.)
(CONCLUDE 0-CREATE)
(SCORE-IS (ADD 4.0 (CONFIDENCE-VALUE *PCH)))))
' (*PCH)]

Figure 4-9. A to-do rule for '"sky'" detection.
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predicate NOTFOUND produces 1.0 (i.e. true), if the description of
the object SKY has not been included in the scene description yet,

The action~list of the rule contains two actions: labeling the
patch, and creating the description of the object SKY. The function
SCORE-IS calculates a score attached to the action to be registered
on the agenda. The'baée value is 4.0 and the premium value is the
degree of confidence of the label SKY for the'keypatch *PCH.,

Figure 4-10 illustrates another example. It is a to-do rule to
be evaluated in the object phase to analyze an object "building". It
has the responsibility of interpreting "windows", a substructure of
the "building”. In order to interprete the "windows", it is necessary
to assign the label "window" to the all patches that are of rectangle
shape and are arranged in a particular way within the area which has
been interpreted as "building" (see Fig. 4-10-a). This operation is
described by the rule in Fig, 4-10-b. The functions, GET-SET,
ALL-FETCH, and THERE-IS, employed in the rule actively fetch a region
(patch) or a set of regions (patches) from the database.

The control program binds a patch not yet interpreted to the
external variable *PCH, and a region interpreted as a "building" to
the external variable *MRGN. The fuzzy predicate in the condition
part of the rule takes two roles: (i) It examines the status of the
patch *PCH, and (2) it fetches a set of patches which match the
condition specified in the predicate. The meaning of each part of the

predicate is as follows:

(1) The predicate IS-PLAN checks whether the patch *PCH is
included in the plén region of *MRGN. The predicate
*VERTICALLY-LONGiexamines the crude shape of the patch *PCH,

(2) The function.GET-SET fetches all the patches that are merged
into the plan region corresponding to the region *MRGN. As
the result, a set of patéhes which are included in the area
around *MRGN 1s assigned to the variable *PLSET.

(3) The function ALL-FETICH fetches all the patches that have not
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[(ACT (IF (AND (IS-PLAN *PCH *MRGN)
(*VERTICALLY-LONG *PCH)) _
(THEN (GET-SET *PLSET (PLAN *MRGN) PATCHES) tesecss (3)
(AND (ALL-FETCH *WLIKE *PLSET S eeseceses (3)
(AND (IS (LABEL *WLIKE) NIL) _
" (*VERTICALLY-LONG *WLIKE)))"
(ALL-FETCH *WIND *WLIKE secceccces (4)
(THERE-IS *WK *WLIKE
(*W-RELATION *WIND *WK))))))
(THEN (CONCLUDE P-LABEL B-WINDOW).
(FOR-EACH *WIND (AND (MUST-BE *WIND P-LABEL B- WINDOW)
(DONE-FOR *WIND)))
(SCORE-IS (ADD 2.1 (DIV (NUMBER OF *WIND) 100.0)))))

(*PCH *MRGN)]

oeessvsesve (1)

(b) listing of the to-do rule for "window" detection

Figure 4-10. A to-do rule for "window" detection.
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been interpreted yet and whose shape satisfies the predicate
*VERTICALLY-LONG. The patches are fetched out of the set
*PLSET, and the selected patches are assigned to *WLIKE.

(4) The function ALL-FETCH fetches all the patches that have at
least one partner patch within the set *WLIKE with which the
relation #*W-RELATION holds. The predicate  *W-RELATION
examines the placement relation whicﬁ is illustrated in
Fig. 4-10-a. A set of patches are fetched out of the patches
in the set *WLIKE and assigned to the variable *WIND.

The action part includes the following actions. The funqtion
CONCLUDE registers P-LABEL action on the agenda to assign the label
B-WINDOW to the patch *PCH. The function MUST-BE also registers on
the agenda the labeling operation to the patch in the set *WIND.
Further operations to assemble them into the scene description are
described by if-done rules in the knowledge-block B-WINDOW. The
function SCORE-IS calculates the score for the action. The premium

value is the number of patches which are extracted as the "window".

IV-5. Experiments

IV-5-1. Implementation

The analysis scheme described in the preceding sections is
applied to obtain meaningful segmentations of outdoor scenes. Each
scene 1is a shot in the campus of Kyoto University. Ordinary 35mm

color transparency films are used to take the photographs. A color
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flying-spot-scanner is used to digitize the photographs. The
digitization is perforﬁed by 256 x 256 size with 5-bit or 6-bit
density resolution for each of the red, green, and blue components of
color,

The systems for the preliminary segmentation and the rule-based
analysis are implemented in FORTRAN which is augmented with specially
designed functions for image manipulation and list processing.

The facilities for image manipulation enable the users of the
FORTRAN system to deal with the image arrays on the disk files as if
they were on the 2-D arrays defined in FORTRAN programs.

The facilities for list processing enable the users to write
programs in the same fashion as the "program feature" in Lisp.
Pointers are manipulated as integer variables in FORTRAN. Elementary
Lisp functions such as CONS, CAR, CDR, RPLACA, RPLACD, etc. and list
I1/0 functions are implemented as FORTRAN functions. Moreover, our
FORTRAN system allows the recursion in function calling. Thus we can
easily implement a system which needs to handle list structures such
as the model and the scéne description in the framework of FORTRAN.

The objects "sky", "building", "tree", and "road" are defined in

the model. The "window" of buildings is also defined as the

Table 4-1. Number of rules in each knowledge block.

SCENE SKY TREE | BUILDING ROAD | material® total

property - 5 21 4 3 6 20
relation - - 2 0 2 3 0 7
production (to-do) 8 3 2 4 4 - 21
(if-done) 2 1 1 5 0 - 9

total 10 11 5 15 10 6 57

* material: CONCRETE, TILE, etc. (cf. Fig. 4-5 in p.101)
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substructures of the "building". The "car" and its "shadow" are
defined as the substructures of the "road". The "concrete", '"brick",
"tile", '"asphalt", and "leaves'" are defined as the materials of the
"building", "road", and "tree'". The number of rules described in each
knowledge block is shown in Table 4~1. Table 4-2 presents the fuzzy
predicates defined and used to describe the rules. The number of
predicates for properties is 19, and that for relations is 15.
Predicates which examine the plan and the scene description are also
used. Table 4-3 shows the functions to derive pictorial features from
the image represented on the Patchery Data Structure. The table also
includes the functions which are defined to retrieve information from
the plan and the scene description. A complete listing of the model

is included in the appendix.

IV-5-~2. Results

Figure 4-11-a is a digitized input scene. Figure 4-11-b shows
the result of preliminary segmentation. The patches with area greater
than 300 are selected as keypatches. Figure 4-1l1-c is the plan image.
Figure 4~12 illustrates the plans generated during the analysis of
the scene. The brightness of each region indicates the degree of
correctness of the labels, SKY, TREE, BUILDING, and ROAD, for that
region in the plan image. Figure 4-12-a is the plan evaluated by
using only the property rules. Notice that the region corresponding
to this side of the building is assigned accidentally a high
correctness value for SKY because its color is grey and very bright.
Figure 4-12-b shows the plan revised by using the relation rules. The
same region now obtains a high correctness value for BUILDING by

means of the rules which represent the relation between the
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Table 4-2. Fuzzy predicates being used to describe the model.

property color *DARK, *BRIGHT, *SHINING, *GREY, *VIVID,

*RED, *BLUE, *GREEN, *YELLOW 9
position *UPPER, *MIDDLE, *LOWER 3

shape *HORIZONTALLY-LONG, *VERTICALLY-LONG
*MANYHOLE, *MANYLINE, *HOLELINE 5
texture *TEXTURAL, *HEAVY-TEXTURE 2
relation - color *SAME-COLOR, *LOW-CONTRAST, *DARKER 3

position *WITH-IN, *CONTACT, TOUCHING,
FACING (HORIZONTALLY, VERTICALLY),
POSITION (up, pown), ABOVE, BELOW, BETWEEN,

*W-RELATION, SAME-ZONE, DIFFERENT-ZONE 11
shape *L INEAR-BOUNDARY 1
description PROBABLY, MAY-BE, NOTFOUND, IS, IS-PLAN 5

Table 4-3. Functions being used to describe the model.

property color INTENSITY, SATURATION, HUE,
RED-VALUE, GREEN-VALUE, BLUE-VALUE,
CONTOUR-CONTRAST 7

position MASS-CENTER-X, MASS-CENTER-Y, V-ZONE,
MBR-UP-SIDE, MBR-LOW-SIDE, MBR-LEFT-SIDE,
MBR-RIGHT-SIDE 7

shape AREA, CONTOUR-LENGTH, VH-RATIO, COMPACTNESS,
WIDTH-X, WIDTH-Y, HOLE-NUMBER,

LINE-DEGREE, HOLE-LINE-DEGREE 9
texture TEXTURE-DEGREE 1
relation color R-G-B-DIFFERENCE, CROMATIC-DIFFERENCE,
BOUNDARY-CONTRAST 3
position DISTANCE, ANGLE-DIFFERENCE, 0-RATIO 3
shape BOUNDARY-LENGTH, BOUNDARY-LINE-DEGREE,
T-RATIO 3
description ALL-FETCH, THERE-IS, T-FETCH, GET-SET,
OF, LABEL, REGION, OBJECT, PLAN, MASTER,
ASK-VALUE, CONFIDENCE-VALUE 12
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, (a) digitized input scene (b) result of preliminary
segmentation

(c) plan image (d) result of meaningful
segmentation

S: sky, T: tree, R: road,
B: building, U: unknown.

Figure 4-11. Result of the rule-based analysis: Example 1.
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BlLill DI pC j=

(a) first plan obtained by
using only the property
rules

|

< horizon - |

(c) after extracting the horizon
by the top-down analysis

(b) after using the relation
rules

(d) outlines of the building
extracted by the top-down
analysis

Figure 4-12. Plans generated for the scene of Fig. 4-11.
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(a) digitized input scene (b) result of preliminary
segmentation

(c¢) plan image (d) result of meaningful
segmentation

S: sky, T: tree, B: building
R: road, C: car,
CS: car shadow.

Figure 4-13. Result of the rule-based analysis: Example 2.
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(a) first plan obtained by (b) after using the relation
using only the property rules
rules

<+ horizon -

BlLI1L D0 plls

(c) after extracting the horizon (d) outlines of the building
by the top-down analysis extracted by the top-down
analysis.

Figure 4-14. Plans generated for the scene of Fig. 4-13.
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(a) digitized input scene (b) result of preliminary

segmentation

(¢) plan image (d) result of meaningful
segmentation

Figure 4-15.

S: sky, T: tree, B: building,
R: road, C: car, U: unknown,
CS: car shadow.

Result of the rule-based analysis: Example 3.
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(a) first plan obtained by
using only the property
rules

(c) after extracting the horizon
by the top-down analysis

(b) after using the relation
rules

(d) outlines of the building
extracted by the top-down
analysis

Figure 4-16. Plans generated for the scene of Fig. 4-15.
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"building" and the "sky". Figure 4-12-c is the plan revised after the
scene horizon was detected by a production rule. The position of the
extracted horizon is indicated in the figure. Figure 4-12-d
illustrates the outlines of the "building" extracted by an if-done
rule which was activated when the object "building" is created.
Figure 4-11-d is the final result of segmentation. It plots the
contours of the regions and sub-regions in the scene description
created through the analysis. The "windows" of the building are
successfully - analyzed. Note that the images in Figs. 4-11-b, c, d,
and 4-12 are generated only for visualization. In our region analyzer
all data included in those images are recorded symbolically in the
database.

Figure 4-13 shows another example. The scene in Fig. 4~13-a
includes a car on the road. Figure 4-13-b 1is the result of
preliminary segmentation. Figure 4-13-c shows the plan image and
Fig. 4-13-d shows the segmentation finally obtained. The car and its
shadow were successfully analyzed. Figure 4-14 illustrates the plans
generated for the séene in Fig. 4-13.

Figures 4~15 and 4-16 show the result for another scene which

also includes a car on the road.

IV-6. Conclusion

In this chapter, we have described a rule-based region analyzer
which can deal with rather complex scenes including objects with
substructures. Outdoor scenes in our university campus were analyzed

by the system.
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We have achieved the following results.

(1) The top-down control scheme was ‘applied to the region

(2)

- control scheme. It is effectively combined with the top-down

(3)

(4)

(3)

growing method. This enables the region analysis to deal
with the detailed structures in the scene, such as the
windows of a building, which has been difficult for the
so-called semantic region analysis.

The plan of the input scene is generated by the bottom-up

analysis implemented by wusing the production system
architecture. As the result, a data-driven control mechanism
can be realized to improve reliability of the analysis; the
portions in the scene which will be analyzed with high
confidence are analyzed before other portions with low
confidence.

We have developed a scheme for approximate reasoning to
handle the four kinds of uncertainty existing in (a)
pictorial features, (b) property definitions, (c) object
descriptions, and . (d) interpretation- results. Fuzzy
predicates are used for the uncertainty in (a) and (b). The
fuzzy truth-values and the uncertainty in (c) and (d) are
all dincorporated into the computation of the revision
factors used for the plan evaluation.

The region growing method has a clear control structure:
selecting a region which has not been interpreted yet,
assigning'an object label to it, and assembling it into the
scene description. By applying this structure together with
the basic control scheme of the production system
architecture, we have achieved a simple and clear knowledge
representation scheme for image analysis.

We have utilized the production system architecture in image
analysis. Several problems were addressed and solved

concerning the modeling, computation, scheduling, etc.
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Especially, in order to reduce the computation,

two phases
(scene phase and object phase) have been

established in the

control structure based on the two opposite properties

(globality and locality) of the scene.
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Chapter V

CONCLUSION

We have studied a region analysis system for color scenes. In
the system described here, the input image is once converted into a
structured data network, and the knowledge to be used in the
higher-level analysis 1is coded as a set of rules which work on this
network,

A wide range of issues have been dealt with in this thesis from

signal domains to semantic ones.
Color Information

In chapter II, we have discussed about color information in
region segmentation. Systematic experiments have been performed to
examine the role of color information. A segmentatibn scheme, called
the "dynamic K. L. transformation", was developed for this purpose.
We have found a set of color features that can approximate all the
color features used in segmenting various color images by the dynamic
K. L. transformation. The effectiveness of the color features was
verified by a comparative study with various sets of color features
from the view point of segmentation and computation. An experiment
showing that the color in natural scenes is physically almost

two-dimensional was also presented in this chapter,
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Signal-level Segmentation

In chapter III, we have presented a system for = preliminary
segmentation. A powerful segmentation program was developed based on
the algorithm which uses multihistograms to find the cutoff values
for partitioning. Schemes which are developed to improve the quality
of segmentation include.a scheme for avioding the fragmentation of
textural parts and a scheme for extracting the detailed structures

veiled by dominant ones.
Symbolic Data Structure for Segmented Images

The result of segmentation is organized into a well-structured
symbolic data network with powerful retrieving facilities. It
includes the properties and relations of regions and supports'the
merging operation of regions., Only the "primary" features are
described in the network. The "secondary" features can be derived
easily from the primary ones when they become to be neccessary. The

system has been applied to various color images.
Rule-based Region Analysis for Interpretation

Chapter IV describes a rule-based region analyzer. - Bottom-up
control and top-down control were effectively combined in the
framework of region growing. The system generates a plan by the
bottom-up control as a representation of the rough structures in
input scenes. A scheme of approximate reasoning was developed to
handle the uncertainty contained in the knowledge and the pictorial
data.

A symbolic description of the input scene is made in the
‘top-down analysis., The top-down process was made by wusing a
production system architecture. Employing the region growing as the

basic control structure of the production system, we have achieved a
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simple and clear knowledge representation scheme for image analysis.
In order to reduce the computation needed to manage the production
system, two phases (scene phase and object phase) have been
successfully established in the control structure utilizing the two
opposite properties (globality and locality) of scenes.

Successful analysis of outdoor scenes including sky, trees,

buildings, and roads have been demonstrated.
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APPENDIX-A
SUPPLEMENTARY RESULTS OF PRELIMINARY SEGMENTATION
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(a) digitized color image (b) result of segmentation

(c) straight line segments (d) reconstructed color image

417 regions, 1156 boundary segments, 763 vertices,
477 line segments, 25 holes.

Figure A-1.
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(a) digitized color image (b) result of segmentation

(d) reconstructed color image

(c) straight line segments

415 regions, 1174 boundary segments, 773 vertices,

328 line segments, 15 holes.

Figure A-2.
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(a) digitized color image

(c) straight line segments (d) reconstructed color image

487 regions, 1374 boundary segments, 908 vertices,
504 line segments, 21 holes.

Figure A-3.
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APPENDIX-B
COMPLETE LISTING OF THE MODEL.

*SCENE knowledge-block—-of—-scene

(OBJECTS (*SKY *TREE *BUILDING *ROAD *UNKNOWN)
SUB-OBJECTS (*B-WINDOW *xCAR *C-SIIADOW) ‘
KEY-PATCH-~1S [(GREATERP (AREA *PCH) 300) (xPCH)1

PLAN-IMAGE-GENERATION [(DIV (BOUNDARY-LENGTH *PCH *KPCH)
(MULT (R-G-DB-DIFFERENCE *PCH *KPCH)
(BOUNDARY-CONTRAST *PCH *KPCil)))
(xPCH *KPCH)]

IT-PLAN-1S-MODIFIED (IF-DONE (

rule—~for-horizon—detectlion
[(ACT (IF (IS (OF HORIZON (SCENE)) NIL)
(ALL-FETCH *HRCN *PLAN-REGIONS
(IF (AND (NOT (PROBABLY ROAD *HRGN))
(NOT (TOUCHING *HRGN LOW-SIDE))
(ALL-FETCH *WRGN *PLAN-REGIONS
(IF (AND (MAY-BE ROAD :*xWRGN)
(ABOVE *HRGN *WRGN)
(NOT (*SAME-COLOR *HRGN *WRGN))
(FACING HORIZONTALLY *HRGN *WRGN))
(MULT (SUB (FACING HORIZONTALLY *HRGN *WRCN)
0.3)
(SUB (MIN (ASK-VALUE ROAD *WRGN) 0.6)
(ASK-VALUE ROAD *HRGN) )))))
(VALUE *WRGN *WRGN) )))
(THEN (MEMO (SCENE) ROAD-ZONE
(WITHH (MBR-LOW-SIDE *HRGN) 2536 1 256))
(MEMO (SCENE) HORIZON (MBR-LOW-SIDE *xHRGN))
(EXECUTE PLAN-EVALUATION) )) 1 ))

P-SELECT (TO0-DO (

rule~-for-initial-start
[C(ACT (AND (PROBABLY BUILDING *PCH) (NOTFOUND BUILDING))
: (THEN (CONCLUDE P-LABEL BUINDING)
(SCORE-IS (ADD 4.0 (CONFIDENCE-VALUE *PCl))))) (*PCI)]
[(ACT (AND (PROBABLY ROAD *PCH) (NOTFOUND ROAD))
(THEN (CONCLUDE P-LABEL ROAD)
(SCORE-IS (ADD 4.0 (CONFIDENCE-VALUE *PCH))))) (xPCI) 1]
[(ACT (AND (PROBABLY SKY *PCH) (NOTFOUND SKY))
(THEN (CONCLUDE P-LABEL SKY)
(SCORE~IS (ADD 4.0 (CONFIDENCE-VALUE *PCH))))) (*PCI)1]
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[(ACT (AND (PROBABLY TREE *PCH)
(ROT (THERE~IS *1R *REGIONS
(ARD (1S (LABEL *TR) TREE)
(OR (TOUCHING (PLAN *PCH) (PLAN *TR))
C*WITH-IN2 (PLAN *PCH) .
(V-ZONE2 30 (PLAN *TR))))))))
(THEN (CONCLUDE P-LABEL TREFE)
(SCORE-IS (ADD 4.0 (CONFIDENCE~VALUE *PCH))))) (xPCH)1

rule-for-adjacent-wall-of-bullding
[(ACT (AND (MAY-BE BUILDING *PCH)
CTHERE-1S *BL *REGIONS
(AND (IS (LABEL *BL) BUILDIKG)
(NOT (IS (OF SHAPL VIEW (OBJECT *BL)) 1))
(IS (OF ADJACENT (OBJECT *BL)) NIL)
(DIFFERNT-ZONE #PCH *BL))))
(THEN (CONCLUDE P~LABEL BUILDING)
(CONCLUDE O-MERGE (WI'TH ADJACENT *BL))
(SCORE~1IS (ADD 5.0 (ASK-VALUE BUILDING *PCH))))) (*PCH)]

rule~for-bullding-occlusion
[(ACT (AND (MAY-BE BUILDING *PCH)
(THERE~IS DL *REGIONS
(AND (IS (LABEL *BL) BUILDING)
(SAME-~ZONE *PCH *BL)
(+*SAME-COLOR #PCH *BL)
(THERE~1S *TR *KEYPATCHES
(AND (BETWEEN *TR *PCH *BL)
(OR (1S (LABEL *1TR) TREE)
(ARD (IS (LABEL :*1R) BUILDING)
(ROT (IS (OBJECT *BL)
(OBJECT *TR))>)))>)))))
(THEN (CONCLUDE P-LABEL BUILDING)
(CONCLUDE O-MERGE (WITH OCCLUDE *BL (REGION *TR)))
(SCORE-IS (ADD 1.0 (ASK-VALUE BUILDING *PCH))))) (*PCH)]

rule—-for—-tree—occlusion
[(ACT (AND C(*DARK *PCH) (xUPPER *PCH)
(O (TOQUCHING *PCH UP-SIDE) (IOUCHING *PCH SIDE))
(THERE-1S *TR *REGIONS
(AND (1S (LABEL #TR) 'TREE)
(ABOVE xPCH *TR)
(TOUCHING *TR SIDE)
CKWITH-IN2 #PCH (V-ZONE *TR)))))
(THEN (CONCLUDE P-LABEL 'TREE)
(CONCLUDE O-MERGE (WI'TH OCCLUDE *TR FRAME))
(SCORE-1IS 1.0))) GxPCH) ]

rule~for-tree—garbage
[ (ACT (FROBABLY TREE *I'CH)
CI'HEN (CONCLUDE P-LABEL TREF)
(SCORE-IS (ASK-VALUE TREE *PCH))))(*PCH)]1 ))

P-LABEL (1F-DONE ¢
if-done-rule—~to-be- uctlvatcd—when—keypatch—is-labeled

[C(ACT (NOT (IS (OF PLAN *PCIt) NIL)) _
(THEN (EXECUTE PLAN-~EVALUATION)))(¥PCH)1 )) )
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*SKY knowledge-block-of~sky

(PROPERTY-RULES ¢ , ‘ ]
[(GEN (NOT C*LOWER *RGN))(1.0 . 0.,6)) (+RGN)]
[(GEN (*SHINING *RGN)(1.0 . 0.2)) (3RCN)]
((GEN (OR (*BLUE :*RGN) (xGREY *RGN) ) (1.0 . 0.2)) (*RGN) 1
[(GEN (NOT C*TEXTURAL *RGN))(1.0 . 0.7)) C*RGN) 1
[(STR (T'OUCHING *RGN UP-SIDE) (0.7 . 0.2))(xRCN)1 )

RELATION-RULES (
[(STR (AND CxLINEAR-BOUNDARY *RGN *RGNZ) .
(1F *LINEAR~BOUNDARY (POSITION DOWN *RGN *RGN2)))
(0.0 . 0.3) FOR SKY) (*RGN *RGN2)1
[(STR C(IF (NOT (IS (OF BUILDING-ZONE (SCENE)) NIL)) ,
(FUZZY1 (O-RATIO *RGN (OF BUILDING~ZONE (SCENE))) 0.5 0.9))
(0.0 . 0.3) FOR SCENE) (:RGN) 1)

P-SELECT (

TO-DO ¢«
[(ACT (MAY-BE SKY #*PCH)
(THEN (SCORE-IS (ADD 2.0 (ASK-VALUE SKY *PCH))))) (xPCH) 1
[C(ACT (AND C(IS-PLAN *PCH *MRGN) CKBRIGIT *PCH))
(THEN (SCONRE-IS 3.0)))(xPCH *MRGN)]
[CACT (¥BRIGHT *PCH)(THEN (SCORE-1S 0.05))) (¥PCH)] )

IF-DONE ¢
[(ACT *T* (THEN (CONCLUDE P-LABEL SKY)
(CONCLUDE R~MERGE (MASTER *PCH)))) (*PCH)1 ))

APRIORI-VALUE-IS 0.1)

*TREE  knowledge-block-of-tree
(MADE~OF (XLEAVES)

PROPERTY-RULES ¢

[(GEN (+MIDDLF *RGN)(0.6 . 0.3)) CXRGN) ]

[(STR (*HEAVY-TEXTURE *RGN)(0.8 . 0.2)) (*RCN)]1 )
P=-SELECT (

TO~DO (
{(ACT (MAY-BE TREE *PCI)

(THEN (SCORE-1S (ADD 2.0 (ASK-VALUE TREE *PCH) ))) ) (*xPCH) 1
[CACT (AND (IS-PLAN *PCI *MIGN) (NOT CxSHINING *PCH)))

(THEN (SCORE-1S 3.0)))(xPCH *MRGN) 1]

IF~DONE ¢
[C(ACT *T* (THEN (CONCLUDE P-LABEL TREE)
(CONCLUDE R~-MERGE (MASTER *PCU)))) (*xPCH)] ))

APRIORI-VALUE-1S 0.2)

*BUILDING knowledge~block—of~building

(MADE-OF (OR *CONCRETE *TILE *BRICK)
SUB-OBJECTS CkB-WINDOW)
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PROPERTY-RULES (

{(CEN C:MIDDLE *RCN)(0.6 . 0.8)) CkRGN)]
[(STR CKMANYIOLE *NGN)(0.8 . 0.2))(*RGN)]
[(STR (*MANYLINE *RGN)(0.4 . 0.2)) (xRGN)]
[(CGEN CXHOLELINE *RGN)(0.9 . 0.5))(*RGN)1 )

RELATION-RULES (
[C(CGEN (AND (*LINEAR-BOUNRDARY #*RGN *RGN2)
(IF *LINEAR-BOUNDARY (NOT (POSITION UP *RGN *RGN2))))

(0.8 . 0.4) FOR SKY)(*RGN *RGN2)1
[(STR (IF (NOT (IS (OF BUILDING-ZONE (SCENE)) NIL))

(AND (O-RATIO *RGN (OF BUILDING-ZONE (SCENE)))
(*MANYLINE *RGN)))

0.9 . 0.8) FOR SCENE) GXRGN)1 )
P-SELECT ¢ )

TO-DO (
[CACT (AND (MAY-BE BUILDING *PCIi) (SAME-ZONE *PCH *MHGN))
(THEN (CONCLUDE P-LABEL BUILDING)
(CONCLUDE R-MERGE *MRGN)
(SCORE-IS (ADD 2.0 (ASK-VALUE BUILDING *PCH)))))

(*PCH *IMRGN) ]
[ (ACT (AND (NOT (IS-PLAN *PCH *MHGN)) (SAME-ZONE #*PCH *MRGN)

(MAY-BE BUILDING (PLAN *I'CH)))
(THEN (CONCLUDE P-LABEL BUILDING)
(CONCLUDE R-MERGE *MRGN)
(SCORE-IS (ADD 1.95 (ASK-VALUE BUILDING (PLAN *PCH))))))
C(kPCH *MRGN) ]
rule-for-window—extraction
[(ACT (IF (AND (IS-PLAN *PCH *MRGN) (SAME-ZONE *PCH *MRGN)
(XVERTICALLY-LONG *PCH) (xCONTACT *PCH (PLAN *MRGN)))
(THEN (CET-SET *PLSET (PLAN *MRGN) PATCHES)
(AND (ALL-FETCH *WLIKE *PLSET
(AND (1S (LABEL *WLIKE) NIL)
(SAME~ZONE *VL1KE *MRGN)
(xVERT1CALLY-LONG *WLIKE)
CGXCONTACT *WLIKE (PLAN *MRGN))))
(THERE-IS *WK *WLIKE CkW-RELATION *PCH *WK))
(ALL-FETCH :*®WIND *WLIKE
(THERE-1S *WK *WLIKE
CGEW-RELATION *WIND %WK)>)))))
(THEN (CONCLUDE P-LABEL B-WINDOW)
(FOR-FACH *WIND (AND (MUST-BE *WIND P-LABEL B-WINDOW)
(DONE-FOR *WIND)))
(SCORE-IS (ADD 2.1 (DIV (NUMBLR-OF *WIND) 100.0)))))
. (kPCH *MRGN)]
[(ACT (AND (1S-FPLAN *PCH #MRGN) (SAME~ZONE *PCH *MRGN))
CITHEN (CONCLUDE P-LABEL BUILDING) '
(CONCLUDE R-MERGE *IMRGN)
(SCORE—-1S 2.0))) (*kPCl *MRGN)]

O-MERGE (IF-DONE ( '

[ (ACT *T* (DESCRIBE-BUILDING (REGION *PCH)))(¥PCH)1 ))
O-CREATE. (IF-DONE (¢

[ (ACT #*T* CTHEN (EXTRACT~BUILDING-SHAPE (REGION *PCH))

(DESCRIBE-BUILDING (REGION *®PCHD)
(EXECUTE PLAN-EVALUATION))) (xPCH)1 ))

APRIORI~VALUE-IS 6.2)
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*ROAD knowledge-~block-of-road

(MADE~-OF (OR *ASPHALT *CONCRETE)
SUB-OBJECTS (*CAR *C-SHADOW)

PROPERTY-RULES (

[(GEN (*LOWER *RGN)(0.8 . 0.4))(+RGN)]

[ (GEN (*HORIZONTALLY-LONG *RGN)(0.7 . 0.2)) (*RGN)] .
L(STR (TOUCHING *HRGN LOWER-SIDE)(0.9 . 0.2))(*RGN)1 )

RELATION-RULES ¢
[(STR (AND C(xSAME-COLOR *RGN *RGN2) (TOUCHING *RGN *RCN2))

(0.9 . 0.2) FOR ROAD) (*RGN *RGN2)]
((GEN (IF (NOT (IS (OF HORIZON (SCENE)) NIL))
(0O-RATIO *RGN (OF ROAD-ZONE (SCENE))))
(1.0 . 0.3) FOR SCENE) (*RGN)1
[(STR (IF (NOT (IS (OF HORIZON (SCENE)) NIL))
(NOT (GREATERP (ADD (MER-UP-SIDE *RCN) 10)
(OF HORIZON (SCENE)))))
(0.0 . 0.5) FOR SCENE) (*RGN)1)

P-SELECT (

TO-DO ¢
[CACT (IF (PROBABLY ROAD *PCH)
(THEN (AND (*LOW~CONTRAST (PLAN *PCH) (PLAN *MRGN))
(NOT (OR (ABOVE *PCH *MRGN)

(DELOW *PCl *MRGN))))))
(THEN (CONCLUDE P-LABEL ROAD)

(CONCLUDE R-MERGE :MRGN)
(SCORE-IS (ADD *PREDICATE-VALUE 2.9)))) (PCH *MRGN)]

rule—-for-car~-extraction
[(ACT (IF (MAY-BE ROAD *PCH)
(THEN (AND (*HORIZONTALLY-LONG *PCH)
(kDARK *PCH)
C(:xDARKER *PCH *MRGN)
(POSITION UP (PLAN *PCH) (PLAN *MRGN))
(THERE-1S *CLIKF *KEYPATCHES
(AND (IS (LABEL *CLIKE) NIL)
(NOT (IS *CLIKE *PCH))
(*HORIZONTALLY~LONG (PLAN *CLIKE))
(XWI'TH~IN (PLAN *CLIKE)
(V=-ZONE (PLAN *PCH)))
(POSITION UP (PLAN *CLIKE)

(PLAN *PCH))))> )))
(THEN (ALL-FETCH *WK *KEYPATCHES
(AND (IS (LABEL *WK) NIL)
(NOT (IS *WK *PCH))
(*HORIZONTALLY-LONG (PLAN *WK))
(*CONTACT2 (PLAN *WK) (PLAN *CLIKE))
(*LINEAR~BOUNDARY (PLAN #*WK) (PLAN *CLIKE))
(*SAME-COLOR *WK *CLIKE)
(XWITH-IN (PLAN *WK)(V-ZONE (PLAN *PCH)))))
(CONCLUDE P-LABEL C-SHADOW)
(GET-SET *PLSET (PLAN *PCH) PATCHES)
(FOR-FACH *PLSET
(1IF (NOT (18 *PLSET *PCl))
(THEN (MUST-BE *PLSET P-LABEL C-SHADOW)
(MUST-BE *PLSET R-MERGE *PCH)
(DONE~FOR *PLSET))))
(GET-SET *PLSET (PLAN *CLIKE) PATCHES)
(FOR-FEACH *PLSET
(AND (MUST-BE *PLSEl' P-LABEL CAR)
(MUST-BE *PLSET R-MERGE *CLIKE)
(DONE-FOR *PLSET)))
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(FOR-EACH *WK
(AND (GET-SET *PLSET (PLAN *WK) PATCHES)
(FOR~EACH *PLSET '
(AND (MUST-BE *PLSET P-LABEL CAR) |
(MUST-BE *PLSET R-MERGE *CLIKE)
(DONE-FOR *PLSET)))))
(SCORE-IS 2.95))) (*PCH *MRGN)]
[ (ACT (MAY-~BE ROAD *PCH)
(THEN (CONCLUDE P-LABEL ROAD)’
(CONCLUDE R-MERGE *MRGN)
(SCORE-1S (ADD 2.0 (ASK-VALUE ROAD *PCH))))) (*PCH *MRGN)1]
L CACT (AND (IS-PLAN *PCH *MHGN)
(OR C(xDARK *PCH) (*GREY *PCH)))
(THEN (CONCLUDE P-LABEL ROAD)
(CONCLUDE R-MERGE :*IMRGN) »
(SCORE~1S 3.0))) (xPCH *MRGN)1 ))

APRIORI-VALUE-1IS 0.1)

*UNKNOWN knowledge-block~for-unknown-object
(APRIORI-VALUE-IS 0.1)

*B-WINDOW knowledge-block-of-windows—of-building

(P-LABEL (IF-DONE (
L CACT (AND (T~FETCH *WK *PCH)
(THERE~-1S *WIND *WK (IS (LABEL *WIND) B-WINDOW)))
(THEN (CONCLUDE R-MERGE *WIND))) (xPCH)] )))

*CONCRETE
(PROPERTY-RULES (
((GEN (AND (*BRIGHT *RGN) (*GREY *RGN))(0.6 . 0.2))CGxRGN)1 ))

*ASPHALT
(PROPERTY-RULES (
[(GEN (AND (*DARK *RGN) (*GREY *RCN))>(0.6 . 0.2))(*RCN)1 ))

*TILE
(PROPERTY-RULES ( :
[(GEN (AND (*YELLOW *RGN)(NOT (*VIVID *RGN))) (0.6 . 0.2))(¥RGN)1 ))

*BRICK
(PROPERTY-RULES (
[(GEN (*RED *RGN)(0.6 . 0.1))(*RGN)1 ))

*LEAVES

(PROPERTY-RULES (
[(GEN (OR (*GREEN *RGN)(XYELLOW *RGN))(0.9 . 0.4))(¥RGN)]
[(GEN C(*TEXTURAL *RGN)(0.7 . 0.4))(*RGN)1 ))

*UPPER
(PROPERTY-DEFINITION ((*X){(FUZZY2 (MASS—-CENTER-X *X) 50 150)))
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*

*MIDDLE
(PROPERTY~DEFINITION

*LOWER
(PROPERTY—DEFINITION

*DPDARK
(PROPERTY-DEFINITION

*BRIGHT
(PROPERTY-DEFINITION

*SHINING
(PROPERTY—DEFINITION

*TEXTURAL
(PROPERTY-DEF INITION

*HEAVY-TEXTURE
(PROPERTY-DEFINITION

*GREY
(PROPERTY-DEFINITIOR

*VIVID
(PROPERTY-DEFINITION

*RED
(PROPERTY-DEFINITION

*BLUE
(PROPERTY—DEFINITION

*GREEN
(PROPERTY-DEFINITION

*YELLOW"
(PROPERTY-DEFINITION

*HORIZONTALLY-LONG
(PROPERTY~-DEFINITION

*VERTICALLY~LONG
(PROPERTY-DEFINITION

*MANYHOLE
(PROPERTY-DEFINITION

*MANYLINE
(PROPERTY-DEFINITION

*HOLELINE
(PROPERTY-DEFINITIOR

*SAME~COLOR
(PROPERTY-DEFINITION

¢ (*X) (FUZZY3 (MASS-CENTER-X *X) 0@ 100 150 230)))

¢ (*X)(FUZZY1 (MASS~CENTER-X *X) 130 220)))

C(xX) (FUZZY2 C(INTERSITY *X) 30 50)))

¢ (%X) (FUZZY1 C(INTENSITY *X) 25 45)))
( (xX) (FUZZY1 (BULE-VALUE *X) 50 60)))
( (*xX) (FUZZY1 (TEXTURE-DEGREE #*X)

1.0 4,0 (kBRIGHT *X))))

¢ (*X) (FUZZY1 (TEXTURE-DEGREE *X)
5.0 7.0 (*BRIGHT *X)))) o

€ (kX)) (FUZZY2 (SATURATION *X)
0.03 0.135 CxBRIGHT *X))))

( (xX) (FUZZY1 (SATURATION *X)
0.1 0.2 CkBRIGHT #*X))))

((*xX) (FUZZY3H (HUE *X)
5.0 5.5 0.1 0.6 (NOT (xGREY *X)))))

( (*X) (FUZZY3 (HUE *X)
2.5 3.0 4.5 5.0 (NOT (*CREY *X)))))

¢ (*X) (FUZZY3 (HUE *X)
0.5 1.0 2.5 3.0 (NOT CtGREY *X)))))

( (*xX) (FUZZY3H (HUE *X)
5.8 0.0 1.0 1.5 (NOT CxGREY *X)))))
¢ (xX) (FUZZY2 (VH-RATIO *X) -1.5 1.5)))
¢ (kX)) (FUZZY1 (VH-RATIO *X) -1.5 1.3)))
€ (xX) (FUZZY1 (HOLE-NUMBER *X) 0 10)))

( (¥X)(FUZZY1 (LINE-DEGREE *X) 0.2 0.5)))

((xX)(IF (GREATERP (HOLE~NUMBER *X) 2)
(FUZZY1 (HOLE~LINE-DEGREE *X) 0.2 0.5))))

(kX *Y) (FUZZY2 (CROMATIC-DIFFERENCE *X *Y) 0.015 0.035)))

*WITH-IN

(PROPERTY-DEFINITION ((*X *Y)(FUZZY1l (O-RATIO *X *Y) 0.5 0.7)))

*WITH-IN2

(PROPERTY-DEFINITION ¢ (*X *Y)(FUZZY1 (O-RATIO *X *Y) 0.0 0.1)))
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*LINEAR-BOUNDARY
(PROPERTY-DEFINITION
(kX *Y) (IF (TOUCHING *X *Y)
(FUZZY1 (BOUNDARY-LINE-DEGREE *X *Y) 0.2 0.5
(FUZZY1 (BOUNDARY-LENGTH *X *Y) 10 30)))))

*CONTACT
(PROPERTY-DEFINITION ((*X *Y)(T-RATIO *X *Y)))

*CONTACT2
(PROPERTY-DEFINITION (CkX *Y)(FUZZY1 (T-RATIO *X *Y) 0.1 0.3)))

*LOW-CONTRAST
(PROPERTY-DEFINITION :
C(xX *Y) (FUZZY2 (BOUNDARY-CONTHAST *X *Y) 1.0 2.0)))

*DARKER
(PROPERTY-DEFINITION
( (xX *Y)(FUZZY1 (SUB (INTENSITY *Y) (INTENSITY *X)) -10 10)))

*W-NRELATION
(PROPERTY-DEFINITION
(X ®*Y)(IF (AND (NOT (IS *X *Y))(NOT (TOUCHING *X *Y)))
(OR (AND (FUZZY3 (ANGLE-DIFFERENCE *X *Y 90)
-30 -10 10 30)
(FUZZY3 (DISTANCE *X *Y)
O (MULT (WIDTH-X *X) 2.0)
(MULT (WIDTH-X *X) 4.0)
(MULT (WIDTH-X *X) 6.0)))
(AND (FUZZY3 (ANGLE-DIFFERENCE *X xY
(OF SHAPE HL THETA *MRGN))
-45 -195 15 45)
(FUZZY3 (DISTANCE *X *xY)
9 (MULT (WIDTH-Y *X) 2.0)
(MULT (WIDTH-Y *¥X) 4.0) .
(MULT (WIDITH-Y *X) 6.06)))))))

NIL
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