RBAFZWERY KT b %
Al

KURENAI

Kyoto University Research Information Repository

STABILITY ANALYSIS AND STABILIZING CONTROL

Title | 5F POWER SYSTEM( Dissertation_[ 0 )
Author(s) | Hiyama, Takashi
Citation Kyoto University (0 O 0O 0)
Issue Date | 1980-01-23
URL http://dx.doi.org/10.14989/doctor.r4054
Right
Type Thesis or Dissertation

Textversion

author

Kyoto University




STABILITY ANALYSIS AND STABILIZING CONTROL
OF POWER SYSTEM

Takashi HIYAMA

1979 August




STABILITY ANALYSIS AND STABILIZING CONTROL
OF POWER SYSTEM

Takashi HIYAMA

This thesis is submitted for the degree of

DOCTOR OF ENGINEERING of KYOTO UNIVERSITY.

1979 August

DOC

1979




ACKNOWLEDGEMENTS

The author wishes%ﬁgﬁgzigii§\§h§gkjDr. Muneaki Hayashi, Professor of
Kyoto UniversityCZand Dr. Takeshi Suyama, Professor of Kumamoto University,
for their kind guidances and eﬁcourégementsin carrying out the work and
for theirvimmense helps in summarizing this work.

He also wishes to thank Dr. Chikasa Uenosoﬁo, Professor of Kybto

University, for his guidance and useful advice in the prepafation of the

thesis.



- ii -

LIST OF SYMBOLS

d, ¢

D, e
Wo
w
Fo
§
Vd
R
WVed, Vieg
Xffd,Xkrd,Im
Xfxd
Xod, Xag
X2
Xag
Xiedg, X g
Xd, X3
x4, X
Ysd
v
Yid, Yig
lfgca, 144
Tid, Lig
Vi, v
{d, 13
U‘D; .'J.R

ib; i&

e e oo o .o o e e .

‘direct and quadrature axes of reference frame of individual

synchronous machine

direct and quadrature -axés of rotating common reference frame
synchronous angular velocity (=21tf,) (rad./sec.)
instantaneous angular velocitj (rad./sec.)

nominal frequency (hz)

angular displacement between d,q axes and D,Q axes (rad.)
field flux linkage |

direct and quadrature axes armature flux linkages

d- and q-axis damper circuitsflux linkages

total reactances in field and d~ and q-axis damper circuits
mutual reactance between field and d-axis damper circuits
stator-rotor mutual reactancesin d- and q-axis circuits
field leakage reactance

armature leakage reactance

leakage reactancesin d- and q-axis damper circuits

d- and q-axis synchronous reactances

d- and q—axié transient reactances

fieldAresistance

armature resistance

d- and q~axis damper circuitsresistances

field circuit voltage and current

d- and q-axis damper circuitscurrents

d- and g-axis terminal voltages

d- and g-axis terminal currents

D- and Q-axis terminal voltages

D~ and Q-axis terminal currents
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LRU it : terminal voltage and current

i; ¢ load current at generator terminal

Egd : voltage behind gq—-axis reactance

Eaq, E% : d- énd gq-axis internal induced voltagesin steady state
de Eé : d- and g—axis internal induced voltages in transient staté
13;,1}é : d- and q-axis transient time constants (sec.)

Esd : excitation voltage refered to armature circuit (=Vsa-Xad / Y54 )
J : inertia constant (= We-M ) (sec.) |

M : angular momentum

P ¢ active power output at generator terminal

¢ reactive power output at generator terminal
P} : air gap torque

o

electrical output of generator

damping coefficient

&

mechanical input to rotor

=
G

voltage regulator open loop gain

voltage regulator open loop time constant (sec.)

parameter of exciter

o

exciter time constant (sec.)

a

derivative stabilizing gain of voltage regulator

"derivative stabilizing loop time constant (sec.)

reference voltage

=
op

governor gain

ey

governor time constant (sec.)

=

time constant representing turbine delay (sec.)

o

m
N
O

deviation of excitation voltage

S

voltage regulator output

b

derivative stabilizing signal of voltage regulator

AF%

deviation of governor opening position
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A, B,C
6, N
R, P
K, 1L
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Tr(-)

short circuit transfer admittance matrix between the j-th bus
and the k-th bus

short circuit transfer conductance between the j—-th bus and the
k~th bus

short circuit transfer suseptance between the j-th Lus and the
k-th bus

conductange and suseptance of‘shunt impedance load at generator
terminal

time (sec.)

differential operator ( d/dt )

state variable vector

control signal vector

output variable vector

non-linear functional vector

coefficient matrices

‘positive or positive semi~definite matrices

positive defiﬁite matrices

solution matricesof matrix Riccati equation or Lyapunov's matrix
equation

feedback gain matrix

Jacobian matrix of non-linear functional vector

unit matrix

sum of diagonal elements of matrix (.)

In this thesis, the subscript j denotes the j-th machine, the subscript

0 denotes the steady state value and A denotes the deviation from the

steady state value.
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CHAPTER 1 INTRODUCTION

Section 1-1. General

The dynamic stability and the transient stability of electrical power
system have been major subjects of theoretical and practical interests
for some twentj years, and they continue to_grow in impo.rtance'today as
generation and transmission equipments éie being applied witﬁ high
reactances and correspondingly lower stability margin. In view of the
increasing complexity of presenﬁ—day power systems, their design‘and
operation require a more detailed analysis of possible performance mode
that may achieved by available computer programs. Owing to the progress
of digital computers with great memory capacity and quick processing ability
, many excellent works on dynaﬁic and transient stability of electrical
power systems have been done recently.

Furthermore, extensive growth of electrical p&wer éystems and the
developement of high-voltage long distance transmission systems separating
from loads have accentuated the importance of increasing tﬁe dynamic and
transient stability limits of generators. Due to the decrease of stability
margin inherent in the design of present-day generations and increasing
tendency toward higher power factor operating conditions,>more emphasis is
being placed recently on the developement of compeﬁsating controllers for

the required system stabilization.

Section 1-2. Scope of Studies

In this thesis, the developement of compensating controllers for the
required system stabilization will be mainly considered.

In chapter 2, the mathematical representations of synchronous machine,
excitation control system, speed governing control system and transmission

network are described in the form of a mathematical model on a general



purpose digital computer in order to simulate the electrical power systems.

The model éystem contains an arbitrary number of synchronous machines
and transmission networks of arbitrary topological form including impedance
loads. The whole system is expressed with Park's quantities using the
mathematical representations. Furthermore, the large signal performance
of the power systems can be described by the non—linear.firét order
differential equations and the small sigﬁal performance of the power
systems can be described by the linearized equations of the non-linear
equations around the steady state operating point.

In chapter 3, various mathematical methods will be sﬁown in order to
analyze the power system performénce, i.e. the dynamic stability and the
transient stability. And the applications of these methods to the model
power systems will also shown.

In chapter 4, the problem of optimization of the synchronous machine
performance by minimizing the quadratic performance index both the output
variables and the control signals is considered for the cése of transient
involving small-disturbances. In this approach, the linearized equations
are considered and the control law consisting of constant feedback
coefficients of all the state variables of the system. And the improvement
of the dynamic stability of the model system applied with the above
controller is also invesﬁigated.

In chapter 5, the controller using only the difectly measurabie output
variables is derived using the techniques of the model reduction. Further-
more an application of thé direct method of Lyapunov to the control problem
of the linear system is also considered. And the improvement of the
dynamic stability of the model system applied with the above controller is
investigated.

In chapter 6, an application of Lyapﬁnov's direct method to the control

problem of the non-linear system is considered. The controller of the



of the model system is determinied using the energy function as the
Lyapunov function of the model system under the several assumptions. And
the possibility of obtaining the controller of the non-linear system will
be demonstrated.

In chaptgr 7, in order to improve the overall stability of the systém,
i.e. the dynamic stability and the transient stability, the controller of
the system is derived using the Lyapunov‘function of Krasovskii under
consideration of theoretical results in former chapters. Furthermore, a:
method to construct the controller using the only measurable states of the
system is also considered. And the effectiveness of the controller will
be shown by the numerical analeis of the model systems.

In chapter 8, the results of the work described in this thesis are

summarized.



CHAPTER 2 REPRESENTATION OF POWER SYSTEM

Section 2-1,., Description of Synchronous Machine (I)

Complete description of the dynamic behaviour of a synchronous machine
requires consideration of its electrical and mechanical‘characteristics
as Qell as those of associated control systems. The necessary mathema-
tical statements are summarized here. Throughout this paper, only those
modes of operation that do not require zero-phase variables are considered.
The equations describing the balanced 3-phase performance of a synchro—
nous machine are derived in several references and are summarized by
(1),(2)

Shackshaft in the following form:

Direct-axis flux linkages

Yod = Xgparigd- Xad-id + Xgxd ind | (2-1)
Vi = Xad-igd- Ia‘-ia+ Xad *Lxd (2-2)
Ved = Xfed-igd - Xad'ld + Xuxd-ixd (2-3)

Quadrature—axis flux linkages

% =- Xg-lg + Xag-ixg (2-4)
Vg = - Xag-ig + Xiewp Lip (2-5)
Direct-axis voltages
Usa =—,l—,;-‘p‘4§ca + Ygdo1§d , Ega= xaa-trf'd /Ysa (2-6)
Vi =dpp¥a- v -ia-2.y; (2-7)
0 =T1)':’Pl{/;d+ Yid - 1 1d (2-8)
Quadrature-axis voltages
Gt Y S
0 = p¥gr Yiglg (2-10)

3),¢4
These equations are of per-unit form.

)
In the per—unit system voltages,
fluxes, currents and impedances are all expressed as the ratio of their

- actual values to the selected base values. The base values chosen are such

that all per-unit mutual inductances between rotor and stator circuit in



each axis are equal to one énother. On this basis the following relations

between self-, mutual~, and leakage-reactances pertain:

Assd = HKad + Xf2
Xd = Xad + Xat , ALg = Xag + Lar  (2-11)
Xuxd = Xad + Xudb Xy = xa.g,. '*‘ X gt

In addition, time is scaled in real time.

o

Fig.2-1-1 - Schematic layout of the windings

of a synchronous machine

In eqns.(2-1)-(2-5) the self- and mutual-reactances are dependent on
the fluxes in the machine due to the saturation of iron circuits. A state-

ment of this relationship is therefore necessary. The following assumptions

are made in order to obtain an expression for the variation of the machine

reactances with iron saturation:

(1) The leakage reactances of all windings are independent of the state

of iron.

(2) The leakage fluxes do not contribute to the iron saturation, which



is therefore determined by the mutual flux.
(3) The mutual reactance between the two direct-axis rotor circuits is
equal to the mutual reactance between these éircuits and the armature.
As a consequence of this first assumption, only the mutual reactances change
with‘saturation, and leakage reactances are.not significantly affected.
The three assumptions indicate that Xad peéd only be replaced by K:iﬁk&,
and xa.g,-by K;xagoin the developed machine equations:
Xod = Ks* Lado Xag = s Xago - (2-12)
where Xado and Xage aré the unséturaﬁed values of vx“" and Xag ,
respectively
Knowing the open-circuit magnetization curve, the saturation factor K?‘may
be determined.

In this thesis, the saturation factor K: is asummed to be:equal t; uni;y,
namelyv the unsaturated values Xado aﬁd Xage are used as Had and Xag , but
the saturation factor PGf » which may be obtained experimentally, can be
. easily introduced into the representation of the mutual reactances Xad and Xag
as shown in eqn. (2-12).

Thevfollowing equations are nécessary to complete the description of a
synchronous machine. |

Electrical torque at air gap

B o= Yitd - Yig | | (2-13)
‘Reactive power at terminal »h _
Q = Upid - Uarig (2-14)
Terminal voltage , .
U = CUF + U3 )" (2-15)
Mechanical equations of motion '
pd = AW . (2-16)
Mpow= Py - Ty - Pa-ow (2-17)



Section 2-2. Description of Synchronous Machine (II)

In order to obtain the simplified equations of.a synchronous machine
shown in section 2-1, further assumptiongnare made;
(1) Direct-axis damper circuit is neglected, i;e. Vid = ixd = 0.0
(2) The armature electrical transients created by terms.ﬁqu and pU@ are
neglected, assuming that the electrical transients are much faster
than the electromechanical transients, i.e. qu = P#%.==0.0
(3) The term w/weo is equal to unity, assuming that the deviation of
angular velocity from synchronous angular velocity is.very small.
By these assumptions the equations of synchronous machine described in
séction 2-1 are rewritten as follows:

Direct-axis flux linkages

V4
L2

Quadrature-axis flux linkages

Xtfd+i4d = Xod-1d (2-18)

Xod-1fd - Xd-1id (2-19)

%3. = kag’ikg—_ XG.g'ig. : (2-20)
Y

Direct-axis voltages

Xog-leg~ Xg-13 . (2-21)

Vsd =71—);'P21’§<a + Y4 14d o (2-22)

Vg ==-Y-la - | (2-23)
Quadrature~axis voltages »

Ug =-VY-ig + Yy (2-24)

0 =LY+ Vepring (2-25)

From eqn. (2-18)-eqn. (2-25), the time rate of the flux variations in direct-

and quadrature-axis rotor circuits are expressed by the following two equa—

RG]
tions:

PEq
pE4

{Esa - By - ( xa-xd )-id}/Tae  (2-26)
[ - Ed+(xp-2)1e}/ T 27

il



Furthermore, the direct- and quadrature-axis voltages become as follows:

Vs =-Y-la + X5+ Ed
. ’ . ’ (2"_28)
U =-T-13 - -4+ Eg :
where
Bi= Ba+ (- iy, Ep= Ep+ (oxa-xi)id
Ed=-xa%'ikg, s E3_= Xad'i,:f-d
Bi = - Xag Vig / Loy . Ep= Xad-Ypda/x4s4
9(5 = Xd - dez/xffd > xg = Xg - Ia;/xnfc;
Ta; = XAf4d /}’fd - We s Txo’ = Ixx;/n‘;’ Wo

Egqa= Xad- VUsd/ved
If the machine is a salient-pole type machine, it has ho quad_rature—axis
circuit, so that %g R ik; , Ed and EJ are all equal to zéro, and eqn. (2
-26) need not be considered. To complete the description of a synchronous
machine the following equations are alsd necessary: |

Active power at terminal

Pe = Usid + Up i, | (2-29)
Reactive power at terminal

8 = Upid - Va-ig | . (2-30)
Terminal voltage | | | |

Ve = (UF o+ V; )Y (2-31)
Mechanical equations of motion

pd = aw - | (2-32)

M-pow = Pr— Pe — Pi-aw (2-33)

Section 2-3. Description of Excitation Control System

' 3}
The effect of AVR ( automatic voltage regulator ) must be included in
the study of dynamic behaviour of power system. Simple models of AVR and

their mathematical representations are given in this section.



The voltage regulator and excitation system fitted to a usual synchro;
nous generator may be classified into three types, i.e. (1) the magnetic
aﬁplifier type or rotary amplifier type, (2) the differential type, (3) the
SCR type.

The mathematical model of type (1) or type (2) regulator must be expre-
ssed by.the differential equations of 6 to 7 order. A typical block diagram

of this type is shown in Fig.2-3-1

"'Ut' | 2 4 E
Vi K, +§‘ Ko +§_ Ks K 4

| + TP I+TP I+TaP
voltage error sensing power amplifier
transformer element
Ks-P
| +T5-P
amplifier stabilizer
| Ke-P
I+ TeP

exciter stabilizer

Fig.2-3-1 Block diagram of automatic voltage regulator

It may therefore be rather inadequate to represeﬁt such regulators with a
simple time lag. However, in the case of dynamic‘étability studies, it is
possible because of the following restrictions are generally satisfied: (1)
The variation of the signal to AVR is small enough not to cause any satura—
tion in excitation system. (2) The frequency of the signal is low enough.
Then the models can be simplified as shown.in Fig.2-3-2. .

The type (3) regulator consists of semiconductive eleﬁents and does not
have any rotating parts. Therefore, the time lag is so small as some 10 ms..
This type of regulator may be expressed by a simple time lag as shown in
Fig.2-3-2, assuming that the saturation of rectifier is negliegible.

Hereafter, AVR is expressed by the simplified models shown in Fig.2-3-2
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in this thesis. The mathematical representations of these simplified

models become as follows:

K+

(a) AE 44 =T+_T,<.;"( Ve = U + U ) (2-34)
(ORISR f%-ﬂ Ve = U - Vs + U ) (2-35)
Vs =—‘-K_%%AE-}J |
© Vo =g (K Vem B -V W) 2036)
b Esd =‘T_:_Te.p’\/a YA =—]K—j'.’[’.—s;-AE+a

In eqn.(2-34)-eqn.(2-36), 1l is anadditional control signal to AVR.

u, ' U, ' :
V.r—-1f1=+ga Ks AE4 Vi—U: T, Y AEs
|+ TP o I
@ b
a
Ks'?
[+ TP
W (b)

A Efcl

V.- b+ | Ky [Va| |
— K ”gb_— [+T5P | +TeP
v 4

Ks'P
(c) LA TeF

Fig.2-3-2 Simplified model of veltage regulator

Section 2-4, Description of Speed Governing Control System

A typical block diagram of the hydro governor and that of the steam
governor are shown in Fig.2-4~1 under the following assumptiongzﬂs)
(1) There are no time lag among the movement of all elements, such that
between the main shaft and the governor sleeve movement.
(2) Under steady conditions, the operation of the governor is such that

the steam or the water admitted to the turbine is linear function of

the speed of the turbine.
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(3) Every amplifier can be expressed by a simple time lag.
(4) The condition of the steam source or the water source never change.
Under the similar restrictions to those of AVR, the simplified models as

shown in Fig.2-4-2 are used in this thesis. The mathematical explanations

of those models are described as follows:

AP - —Ke L _ewo | sy
(a) AR = e (-0 *+ Uz2) (2-37)
3 Ks aw
(®) 4P, = — Ts_p-(— o, T Uz2) (2-38)
I S
AR = I + Twap aby

In eqn.(2-37) and eqn.(2-38), W, is anadditional control signal to the

governor, Ko P
|+TP
K, R Ka K+
acceleration 1+ Ts-P P
detector speader governor valve

Q%F——— KsP

Ke
|+ Te-P
. dashpot

(a) water governor

high bressure

. turbing
: ~K| ‘ i
l'—mw_%— | _ Kaf
acceleration “*q;P}a+q;P) | . '<
detector governor '+1§4’
] low pressure
{b) steam governor turbine
Fig.2-4-1 Block diagram of governor
aw Ks AP, 40 e Ks__[2R | aR
wo ? |+7Ts-P w, i 1+ T3P 1+Te-P

u,  (a) Us (b)

Fig.2—4—2 -Simplified model of governor
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Section 2-5. Description of Transmission System (I)

In this section, the interconnecting network and the local impedance
loads are stated in terms of the three-phasequantities with respect to a
stationary reference frame. But each individual synchronous machine is
described by Park's quantities in the frame fixed to its fotor as shown in
section 2-1 and section 2-2. Then, at the nodes where the synchronous
machines are connected to the transmission ﬁetwork, the three-phasequantities
must be related to Park's quantities by axis transformation in order to
deséribe the whole system using Park's quantities.

. . 9,100, 011),5¢12)
Axis transformation

The axis transformation used here is mainly based on Park's transforma-
' va) - .
tion and its inverse transformation. The angular position of the j~th

machine rotor with respect to a stationary reference frame is expressed by

©; as follows:

8; = wet + §; | (2-39)
w; = PO = W, + pS; (2-40)
Sij = 6.~ 6; = 8¢ - 8 - (2-41)

where Wo is the synchronous angular velocity.

tet Weaj be the column.vectdr 6f thethfeephasgquantities at the j-th
bus and \NQ;; be the column vector of their Park's quantities with respect
to the rotating frame fixed to the i-th machine rotor. Then the relation-

ships between Wa; and Waj;; become:

Waii= P85 ) Way | (2-42)
-1
Waj= P 6;) Waj (2-43)

A combined transformation matrix and its derivative are introduced as:

Te8s)= Peod- Pee;) (2-44)
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,S.‘_'=—B . = . ._a_. ¥ . _-
T( i) a&;mg‘*) H’(@L)WLP(G,) (2-45)

The elements of the foregoing transformation matrices are shown in Table

2-5-1. The application of the transformation matrix 'ﬂ—(élj) to Wd;;

gives:

Wag = T (8- Way; | | (2-46)

By using this set of axis transformations, the three-phase quantities are

projected onto the every rotating frames.

Table 2-5-1 Transformation matrices

P(G})"zb cose} cos(9; -120°)] cos( g; +120°)| T(&;)=[ cos&;] sindy;

0
-SIN §; |-SIN( §; -120°)|-SIN( 6; +120°) SINS;| cosé:;| o
1/2 1/2 1/2 0 0 1
~1 . ’
Pe)= [cose; -SIN 6; 1 Ti5)={ sin8y]=cos 5] o
Cos( 83 -120 )| -SIN( §; ~120 )| 1 -cos &yl sindy| o
cos( §; +120 )| -SIN( §; +120 )| 1 : 0 0 1.

Network equations

Any interconnecting network éan be transformed into the equivalent
circuit that has the simplest form of the Lagrangian tree, as shown in Fig.
2-5-1. All nodes, to which no shunt loads nor power sources are connected
may be eliminated, and only those nodes that should be formulated in nece-
ssary set of equations may remain in the equivalent circuit.

A shunt load consists of a resistor, an inductor and a capacitor, as
shown in Fig.2~5-2, and conventionally includes the.capacitance between the
transmission lines and the ground.

Choosing the n-th node as a voltage reference node, the equivalent

circuit of Fig.2-5-1 yields the following set of equations::

Con-t o,
UZ.; Vi = kgl ( R;K + I—;KP ) Lax (2-47)
oo
1 a’j ) (2-48)
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° .’U;}o'

. __E_i‘; _ﬁ, ) . éa T
OF e
iﬂi . iLa}l iqql ém;l
% Lig 62 G—
mE J)

Fig.2-5-1 Equivalent circuit of Fig.2-5-2 Local shunt load

Lagrangian tree form

An additional shunt load at each bus may be expressed as:

°

Laj

o

o/ -] 4
Laj + Riaj + Tcaj + Lgaj ‘ (2-49)

. o o o
where Ljp o™ Vai 5 Leay=C3-PVaj 5 gaj= G;-Va;

The application of the axis transformation above described to eqn.(2-47)-

eqn. (2-49) gives:

a1 , ’
Vg = M) V3= KZ; [{ R C8jx) +wy l._?‘;{-"-(é}';()}. $ ik

+ L TCS00- p Tk ) » (2-50)
n o/ .
2T (S ) gy = 0 (2-51)
=1 : .
o o/ [ [ ° .
0d; = Ty; +liay + Leg; + Tag; (2-52)

where 'Wj'l-j'_'r,( 0 )'ELJ;+~ L;-TCo )'Pi:.df Ug;
Ty =Wy G0 ) Uy + G-TCo)pUy
iqa; = G; - Vy;
Now eqn. (2-50)~eqn. (2-52) form a set of first order differential equations

describing the behaviour of the balanced phase transmission system.

Their transient solution, by the definition of uJé as the angular velocity
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of the j-th machine, depends on the transient performance of the 'rotor.

These equations contain zero-phasé equations, but becausé the model
system is restricted to the case of balanced phase condition, their extra
complexity is omitted from the analysis. Therefore the order of all vectors
and transformation matrices [ ( cﬂ-_é ) and 'ﬂ_,( 5‘.‘,}) are reduced by one.
Further, the transient occurring on the pfansmission syétem and on the shunt
loads is much faster than the electromechanical transient of synchronous
méchine and their duration is short in comparison with even the shortest
lived transients occurring in the machine windings. Therefore, their

(14),(15)

transient solution may be neglected for the purpose of obtaining a boundary

condition here and the transmission system equations (2-50)-(2-52) become

as follows:

n-1

Vi = T (& Vi =2 R (S +w LT (S a 259

n o s . _ , |
2 My ly= 0 (2-54)
=

| | "l",aé = Tqg; + Yj( w; )f?fdg. | (2-55)
where Y}( u)j,) = GJ, . l/wi"Li - ‘*’i'ci
—l/u)é-L&+ wi -3, G;

It is evident fhat some of the transmission sy‘stem parameters equal to
zero allow eqn. (2-53)-eqn.(2-55) to be used to describe the performance of
several transmission systems of simpler form. Let N = 2, R}'x= G} = l/Lj,=
C; =0, ana the 2-nd node be the infinite bus, then the familiar equations

for a one machine infinite bus system may be given:

Uy | = cos &z, sinSizf{ 0 | + wy-Lnfo,-1][14, (2-56)

U -SIN &1z , €0s Sz [ Vi 1, 0ffigs

/
For the convinience in later manipulation of equations, let Y (uu;) be

introduced as:



Y;( w; ) =S?:>‘,'Yi‘ wi;)=| O , -1/w}L§- Ci|  (2-57)

—1/w;~L5 + Cj

Section 2-6. Description of Transmission System (IL)

In this section, the interconnecting network and the local impedance
loads are expressed in the relation between the busbar voltages and busbar
currents in the common reference frame fixed to the rotor of an imaginary
machine rotating with synchronous angular velocity W, ( = 27111 ), then
at the nodes where the synchronous machines are connected to the trans-
mission network, these quantities in the common reference frame must be
related to Park's'quantities by axis transformation in ordef to‘describe
the entire system using Park's quantities.

. . e, m
Axis transformation

The axis transformation usgd in this section is almost same to that
described in section 2-5.

Let ﬁA/pj be the column vector of quantities at the j-th bué expressed
in the common reference frame rotating with synchronous sﬁeed, and \A/d}
be the column vector of their Park's quantities with respect to the rota-
ting reference frame of the j-th machine. Balancé& conditions exist in the
system, allowing the zero-sequence quantities to be neglected, so that the
vector \Aﬁﬁ, and \Aﬁq. become second order column vectors. The phasor
relation between two reference frames is shown in Fig.2-6-1. Then the

relationship between Whpj and Wuy; becomes:

Wy = P8 W (2-58)
~1
Wei= P (850 Wa; (2-59)
where, 5} is the displacement angle of the j-th machine rotor from the

~{
rotating common reference frame, and H?( 5} ) and H? ( 5} ) are the trans-



formation matrices whose elements are shown in Table 2-6-1.

a“"”‘s
ay
‘Sd' ' Q-axis ] w
. A v
%?L‘ . ) Table 2-6-1 Transformation matrices
(2] () )
21 NS |
2 |-"& % (8= cos §; | s §;
cH PSR ] s &
31 e % -siN &3 | cos &3
o % % 1
" 0 S L3 R .
: o P (8))=[ cos &; [-siv §;
"7 Y sIN &3 | cos §;
o | % %.
7
Wi

Fig.2-6-1 Phasor relation between

two reference frames

The displacement angle J} is expressed as follows:
t

t ) .
& = jo( Wi - wWe )T+ o =J;Awa-Jt+ o (2-60)

where 6} is the initial value of J}

In the transient state w; , sWw;, and é} all change owing to the un-
balanced torque, and:
P& = (wWj-w,) = 4w; - (2-61)

Network equations“éb(”)

The interconnected network and the impedance loads are stated in the
relation between the busbar voltages and currents in the common reference

- us)
frame.. The relationship between the voltages and the currents becomes:

n

l%—nj = zgz’ ij‘va (=1~n) ‘ (2-62)

where, the vector EE& and ipj » respectively, express the voltage and

current of the j-th bus and Yﬁx is a second order matrix consisting of a
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short circuit transfer conductance ij and suseptance Bjx between the
(-}

j—th bus and the k-th bus, and Lpj » EG& and ‘%;n are described as
follows:

° .

(—',Da'. = LDJ» ’ %} = U.'D) > Y}K = GJK s B;'K (2-63)

laj Uej Bk , G;x

Because of the balanced condition of the system, the zero-sequence quanti=

ties is neglected here. By the axis transformation described above, eqn. (

5-62) becomes as follows:

h ’
Y Yo Vu (2-64)

K=1

(=3
Ld;
where,Athe vector Qh} and idi » respectively express the voltage and

current of the j-th bus in the frame fixed to the j~th machine rotor, and

4
wﬁ} is a second order matrix, and they become:
° . ¢ -1
B = (1| > Y= |Vsi| » Y= P (5 YeP(So (269
3% Vii

The equivalent circuit of the transmission system need not be altered
if the frequency diviation of the system is only affected by the system
disturbance. For convenience in later manipulation, it is assumed that the
equivalent circuit of the transmission system ié not affected by the system

frequency deviations.

Section 2~7. Description of Entire Power System

After botﬁ sets of equations, i.e. synchfonous machine equations
connected with controllers equations and transmission éystem eduations; are
obtained, the quantities of-the transmission network are projected into the
- frames fixed to the machines rotors as shown in section 2-5 and section 2-6.
This axis transformation enables the entire power system to be expressed: by
Park's quantities.

The entire power system is descrived in vector form as follows:
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PX = F(x)+ B-U : (2-66)
where, I : vector of state variables of the system
jf(mt ) ¢ nonlinear functional vector
U : vector of additional control signals to automatic

voltage regulators’ and governors

B : coefficient matrix

In the small signal dynamic stability analysis, the system disturbances
are assumed sufficiently small, so the eqn.(2-66) can be rewritten by the

following linearized equation around the operating point.

PAN A-ax + B-U (2-67)

where, /A

Jacobian matrix of ff(:x ) at the operating point
T

(=3F/ s | i)

X o= Me+tax , f)=0 LU =0

%, : the value of state variables vector at the operating

point



CHAPTER 3 MATHEMATICAL METHOD OF STABILITY ANALYSIS

The dynamic stability and transient stability analysis of electrical
power have been subjects of méjor theoreﬁical and praétical'interests for
some fwenty years, and they continue to grow in importance'foday as gener-
ation and transmission equipments are being applied with high reactances
and correspondingly lower stability margin. In view of the increasing
complexity of present-day power systems, their design‘and operation requireé
a more detailed stability analysis that may be achieved by available computer
programs. Owing to the progress of digital computers with great memory
capacity and quick processing ability, many excellent worﬁgbésndynamic and
transient stability of electrical power systems have been done.

In this chapter, the mathematical methods of stability analysis used in
this thesis are summarized, and the applications to model systems are shown,
where the additional control signals to automatic voltage regulators and

governors are not considered.

Section 3-1. Mathematical Method of Dynamic Stability Analysis

From eqn.(2-67), the small signal performance of the entire power system

is described by a set of linearized differential equations of the form:
PAX = A.ax a - (3-1)

where, the additional control signals are not considered, i.e. U = O
The construction of matrix A involves an equivalent circuit of a
transmission network; some reference frames and an axis transformation. And
it also involves power flow calculation for initial conditions. Once the
matrix A is obtained, standard computer programs may be used for dynamic

stability analysis of power system.
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3-1-1. Root-locus Analysis

After forming the matrix A , the characteristic equation of the

(21),(22)
system is described as follows:

dget| A-pL| = o (3-2)

And the eigenvalues of the system described by eqn.(3-1) may be found by
solving the characteristic equation (3-25.

The eigenvalues of a,iinear dynamical system correspond to its natural
mode of response, with each real part giving the reciprocal decay time
constant or damping coefficient of a mode, and.each real pair of imaginary
parts giving natural frequency.

The necesséry andAsufficient condition for dyﬁamic stable is that all
the eigenvalues have negative real parts. Thus, the‘dynamic stability may
be directly checked with the real parts of the eiggnvalues. Further, a
form of quantitative information on the relative stability of the system may
be obtained by plotting the variation of the eigenvalues as system conditions -

» for instance bus voltages, power factors, are varied.

3-1-2. Time Domain Analysis

The system is described in the time domain by the state space equation
(3-1) with a constant matrix A , then the state space formulation can be
used to caluculate the numerical solution of eqn.(3-1).

(23)
The exact solution of eqn.(3-1) is represented as follows:

t
AX(t) = €% ax(o ) (3-3)
whefe, EAt is the state transition matrix of the.system.

The recursive formulas for digital computation may be derived from eqn.

(3-3) as follows:
AX [(n+1)-at] = E’Mt- AX (n-at) (3-4)

where, At is an increment of time.
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at
The state transition matrix QA may be obtained by the following infinite

matrix series:

o kK 1K
EA'At = Z —/AK—?t s Ao = T : unit matrix (3-5)

K=0

Since the matrix series of eqn.(3-5) is uniformly convergent in any finite
interval, the transition matrix EA'At can be evaluated within prescribed
accuracy from eqn.(3-5).

| The systém stability is checked by the numerical solution of eqn.(3-1),
i.e. if the solution curves converge. to zero, the system becomes stable, and
the convergence is fastef, the system becomes more stable.

3-1-3. Lyapunov's Direct Method

The basis of Lyapunov's direct method used in this thesis is the solution

(23) .
of the following Lyapunov's matrix equatiog of the system (3-1):
AN-K+ KA =-@& (3-6)

where, matrix ® is a positive definite or positive semi-definite symmetric
matrix and matrix K is the symmetric solution matrix of eqn. (3-6).
It is known that;

(1) When the matrix @ is positive definite, eqn(3-6) will yield a'>
positive definite matrix H(_ » 1f, only if, .the system described by
eqn. (3-1) is asymptotically stable. |

(2) 1If the system is asymptotically stable and the matrix WK dis.positive
definite or positive semi-definite, then thé following relationship

is satisfied:

e 2]
T - JATDCT-Q-A:DC dt = ax™ K- ax|, ., (3-7)
o
In eqn.(3-7), the value of L can be considered as some kind of performance
4
index éf the system (3-1). Eqn.(3-7) emphasizes the dependence of the value
of I on both the solution of Lyapunov's matrix equation (3-6) and the

initial values of the state variables AX(0) .



In order to use this performance index to represent the stability
measure of the system, it is usually necessary to eliminate this dependence
on the initial state A(0). Mathematically, a simple way to eliminate the
dependence'on the initial state is to average the performance index T
obtained for a linearly independent set of initial states. This is equivalent
to assuming the initial state 4X(0) to be random variables uniformly distri-
buted on the surface of the unit sphere. In this case, the averaging value

of I , which is designated the expected value of ] , becomes:

‘E o v
= —.tr 3-8)
v T (K ) (
A ' : :
where, I : expected value of 1 s N : order of state variables .

Tr(.) : sum of the diagonal elements of the matrix contained in (.)
From eqn. (3-8), Tr( KK ) can be considered as the stability measure of the

system described by eqn.(3-1), and for the smaller value of Tr( K ), the

system become more stable.

Section 3-2. Application to a 3-machine Problem

‘A multi-machine power system contains an extraordinary amount of system
parameters. It would be confusing to study all these effects. Hence, a
simple model of a 3-machine system as shown in Fig.3-2~1 has been studied

to demonstrate the effects of the load flow and the local shunt loads on the

dynamic stability.

No.1 Z. ) No.3
Gen. v : Gen.

: Zs

Z . ~ No.2

C Ly B Gen.

Fig.3-2-1 Model of 3-machine system
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In the model system, No.3 machine is equipped with neither voltage regu-
lator nor governor. The simplified models shown in Fig.2-3-2(a) and Fig.2-
4-2(a) are used for the control systems of the other machine, but the addi-

. tional control signals Us and W, are not considered here.

3-2-1. Linearized Equations of Model System

In this section, the mathematical representations of synchronous machines
and transmission network described in section 2-2 and section 2-5 have been
used in order to obtain the linearized equations of the model system.

The machine equations are rewritten for small perturbations for the case of -

the j-th machine described below.

From eqns. (2-26), (2-27), (2-29) , (2-32) and (2~33):

paEg; = { aBp; - 4y = (3= Xaf) ataz )/ Tugg (3-9)
PaEsi= [ -aEd; + (25 - K35 ) ai3i }/ Toop - (310
padin= AW; — AWn (3-11)
PAW; = (aPy; - Paj-aW;i ~ Uyjo-ala; - Vgjo- alg; . (3-12)

_ —idéo'AUdj,—ig}O'Avg})/M}
" From eqn..(2-28):

AVy;

- Y- Al4; + fX‘;’é-Aig} + AEQ;’ _ (3-13)

AUgi= - Yi Aty - Xaj-8ig; + aEy (3-14)

Similarly, the control systems equations are rewritten as follows.

From eqn.(2-31), eqn.(2-34) and eqn.(2-37):
PABf= — (8Es43 + Kej-aVy; )/ T+ ' (3-15)
pak; = - (aPei + Ksi-awj/we )/ T3 ' ' (3-16)
where, AV =(Vije-aVi;+ lf;,'o-AU;p/w;, , W= U, =0.0

Further, if desired, any other model for voltage regulator or speed governor

can be easily introduced.
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From eqn.(2-53)-eqn. (2-55) the network equations for the perturbed motions

become as follows:
A UA; - -“-(Si,no)' AUy, + T,(Sjno)'vdno'éxg}n.

n-1 , ) |
= KX_Z' [{ Rik: T (&) + We- L k- T(S10)} 2 P+ { (3-17)
~Rite T (Gje) + Wo L T(Sjna) Lo~ 483 + Lyt TESjxa)-§ -85

I ’ ' ’
§1 { T(8nio)- ald; — T8njo)- £4j0 adnp} = 0 (3-18)
] 7 : v
Ady;= 4 'Z',dj + Y-;(u)o)-A Vs + Y;I(wo)'Ua;o- aw; (3-19)
vhere, Alg=[alsy] , ady=[aiy)] , avy =[avy
aig LR PH AVy;

Finally a set of equations (3-9)-(3-19) are rearranged to give the matrix

equation of the system. Let a pair of vectors A X and AY be defined as:

/ / .
AKX = [AS(3)AE2|;AE4|, AEza1, aW1, APy, a ;3,AE32, (3-20)
4 ’
: AEdz, AEJ»Jz)A(L)z,) APtz,AEx;, AEJj, ALU,-)]T

. - - L4 .r
oY = [aVn, avy, aiay, aigs, <o, 808, 8V, dias, a1,] (3-21)

where, the order of AKX becomes 15 and the order ofdY becomes 12 for the
- given model system.

Then from eqn.(3-9)-eqn.(3-12) and eqn.(3-15)-eqn.(3-16):
PAK = Ay-aX + A,-aly | (3-22)
From eqn. (3-13), eqn.(3-14)and eqn.(3-17)-eqn. (3—.19)‘=.:
A= Ag-nly . (3-23)

From above two equations in vector form, the linearized equation. of the
model system becomes of the form shown in eqn. (3-1), and the matrix A

becomes as follows:
. -1 ‘
A = At + Az AL As (3-24)

where, the components of the matrices A; , Az , A; and A, are shown

in Table A-1. ( see appendix )



3-2-2. System Parameters and Initial Conditions

The parameterg of the model system are shown in Table 3—2—1. The data
for the machines are taken from Kimbaré? The equivalent circuit of the
transmission network yields the impedance mafrix of the order 2X 2 as shown

in Table 3-2-2, where the bus D .of the model system is considered as the

voltage reference.

Table 3-2-1 System data Table 3-2-2 Impedance matrix of
equivalent circuit
machine No.! No.l No.2 ' No.3 : '
o & 1.10  1.10 1.10 -
’
p & 0.23 0.23 0.23 ' . Bus A  Bus B
o 1.08 1.08 1.08 : )
x4 0.23  0.23 0.23 Bus A | 0.0L + j0.261 0.01 + j0.126
Y 0.05 0.05 0.05 Bus B | 0.0L + j0.126 0.01 + §0.439
. . . . .
Tee 9.5 9.5 9.5
’ - .
Tso 1.7 1.7 1.7
J(w.M| 5.0 5.0 5.0
- - -6
P4 10.6° 10.6° 10.6
K¢ | 40,0 40.0 -
T 4.0 4.0 -
Ky 3.0 3.0 -
Ts 1.0 1.0 -

Zi= 0.0 + j0.25, Z;= 0.0 + 30.25
Zy= 0.02+ 30,252, Z,= 0.02+ j0.502

Before the dynamic stability of the model system is studied, it is nece-

ssary to find the initial values of the pertinent variables. Prior to a

disturbance, either the active power output and the terminal voltage, or the
reactive power output are known for each machine of the model system. After
load flow calculatiog? the operation angle é}o js éetermined according to

the phaser diagram as shown in Fig.3-2-2. Once the angle 5} is known, the

initial values of the other variablesmay be determined and transformed into

the rotor-pole axis of every machine in the model system by the axis trans-

formation described in section 2-5.



Fig.3-2-2 Phasor diagram for initial values

3-2-3. Stability Margin

For the numerical calculation of the dypamic stability analysis of the
model system, the root—locus analysis described in section 3-1-~1 has been
used . For the inclusion of a étability margin in the analysis , the eigen-
values are restricted sé that all of them may lie on the left half plane
apart from the imaginary axis, which corresponds to the dominant mode in the
performance of the disturbed system is forced to fall within the left half

_un,u2)
domain restricted by the line & = 1/TD s as shown in Fig.3-2-3.

\Q :

I mag.

//E%dzli Real
7, i

' /////// |

RY,

Fig.3-2-3 Domain of eigenvalues restricted by
.O(=1/Tb ’
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By the restriction of the area of the eigenvalues, the critical condition
of the operation contains the dominant mode whose decay time is [p sec.
at longest.

3~2-4, Numerical Results

Here, the underexcited or leading power factor operating points.have
been chosen for the operating conditions of No.l machine. They are the
conditions where the small.signal performance are of most interest.

Table 3-2-4 shows a typical listing of the eigenvalues for the model
system and their corresponding values in second or in hz are shown in bra~
ckets. The eigenvalues associated with the slow permanent droop action of
the governors and with the rotor oscillations appear first in this list.

The other group of the rapidly damped high frequency modes is associated
with the electrical circuits.

Fig.3-2-4 shows the loci of two dominant eigenvalues as the power out-
put of No.l machine, W)= P, + jCll, is varied. Either of the two eigen—
values approaches to the imaginary axis as f-QJ increases, consequently the
model system becomes less stable. On the otherhand, its frequency rises as
Pi ~increases.

The domainsof operation allowing fof the margin. proposed in section 3-2
-3 have been obtained against the various values of Tp as shown in Fig.3-2
~5. The boundafy of the domain takes rather diverse shapes depending on the
value of Ip» . This fact poiﬁts out the difficulty of finding some physical
meaning in the widely used margin, which is specified only with the pritical
power output Pmax and the operating point output P, as followgg) Ke = (
Prax - B )/ Prax . Fig.3~2-6 shows the similar domains of operation while
the active power output of No.2 machine is varied.

Holding all the parameters fixed, only the shunt load at the terminal

of No.l machine is varied to know its effect on the stability.
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P,=0.25 ~ .
. . P=a+jg “

{To = Ssec, Tsoc 10ssc. 25seckis
O T T I Real
0.05 9 ax0? (Vfad)

Fig.3-2-4 Loci of two dominant eigenvalues as

Wi varies ( Wi =.Py+ jQ; )

Table 3-2-3 Typical listing of eigenvalués for model system

Real roots Complex conjugate roots
-0.1961 (75.10 sec.) -0.1699 + j0.5402 (-5.89 sec. , 0.08 hz)
" =0.7742 (-1.29 sec.) -0.2006 + jO.8696  (-4.99 sec. , 0.14 hz)
-0.9647 (-1.04 sec.)' -0.2836 + J12.6485 (-3.53 sec. , 2.02 hz )
-1.0140 (—0.99 sec.) -0.3983 + 313.7333 (-2.51 sec. , 2.19 hz )
-1.3884 (-0.72 sec.) ~0.4987 + 30.3844 (-2.00 sec. , 0.06 hz )
Operating pdint: point A in Fig.3-2-4
machine No. No.l1 No.2 No.3
Active powver (P ) | 0.35 "0.25 -0.593
Reactive power (@) -~0.55 0.456 0.285
Terminal voltage ( VU) 0.89 0.12 1.0
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Fig.3-2-5 Domain of operétion as margin Tp varies

. ' o : . Active Power' -
0.0 - 0.5 . O 27 0 7 R
. r TANV/4

7/ /

-05
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x
o
(-9
To=
S ——=—— To= 25sec,
o
o
o«
3

.Fig.3-2-6 Domain of operétion as P vériesv

The power factor (>cos? ) and the percent consumption ( p.c.) of the 1oéd
with respect to the absolute value of the power output from No.l machine are
varied at the operating point A, B and C in Fig.3-2-4., Fig.3-2-7 shows the
loci of the two dominant éigenvalues as the shunt load varies as described
above. It is clear that the leading power consumption at No.l machine ter—
minal, which is feeding the leading power to the system, makgs the system
‘less stable, and that the excess lagging reactive power consumption also

makes the system less stable.
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Fig.3-2-7 Loci of two dominant eigenvalues as shunt impedance
' load varies 4 '

Here, the alternative methods described in section 3-1-2 or in section

3-1-3 are not used to investigate the dynamic stability of the model system,

but these methods are used in later chapters to investigate the small signal

performance of power systems.



Section 3-3. Mathematical Method of Transient Stability Analysis

From eqn. (2-66), the large signal performance of the entire power
system is described by a set of non-linear differential equations of the

form: _
pxX = F () (3-25)

wﬁere, the additional control signals are not considered, i.e. L = 0 .

The construction of the non-linear functional vector jf(jf ) also in-
volves an equivalent circuit of transmission network, some reference frames,
an axis transformation and power flow calculation for the initial conditions
described in section 3-1.

The transient stability of the system may be inQestigated by solviném)
the eqn.(3-25) of the system for a given initial condition, and the solution
curves converge to their steady state values, ;hen the system becomes transi-
ent stable for the given initial condition. On the other hand, the solution
curves diverge, then the system is ‘transient unstable.

The integration m;thod of eqn.(3-25) adopted im this thesis is a fourth
order Runge Kutta Gill procedurg? in which four evaluations of the rate of
change of eqch differential variables are made at specific interval within

the time duration of the integration step, giving a truncation error that

~is approximately proportional to ‘the fifth power of the step intervals.

Section 3-4, Application to a 3-machine Problem

A simple model of a 3-machine system as shown in Fig.3-4-1 has been used
in order to investigate the transient stability of this model system. In
this model, No.3 machine is conventionary used to represent a large scale
power system: it represents a machine which is equivalent to about 10
machines connected to bus No.3. Also, it is assumed that the internal'pOWer

consumption of this large scale power system is equivalent to the power
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which is consumed at the shunt impedance load at bus No.3. For the control
systems of each machine of the model system, the simplified models shown

in Fig.2-3~2(c) and Fig.2-4-2(b) are used.

L . : |
Zn Z H
) . —l
1tz ZZ .
No.2 Impedance Impedance -

Gen. Load Zu Load Z L2

Fig.3-4-1 Model of 3-machine system

3-4-1. Non-linear First Order Differential Equatiohs of Model System

In this sectiah, the mathematical representations of synch?onous machines
and transmissioé network described in section 2-2 and section 2~6 have been
used in order to obtain the non-~linear differential equations of the model
system. ~For the case of the j~th machine, the machine and control systems
equations which represent the large signal performance are given as follows.

From eqn. (2-26), eqn.(2-27), eqn.(2-29), eqn.(2-32) and eqn.(2-33):

PEg; = { Esaj - Egj- (K- Xd5)- 19 }/Tao; (3-26)
PE‘;?? = { - Eg+ (9(2&‘ %si)- 135}/ Tgoi (3-27)
Péy = Aw; | | (3-28)
PoW; = ( Pej - Pej - Pay- aw;)/M; (3-29)

where, Egi; = Eqdjorabpj, Pry =PrjotaPey, Poj=Usyy-laz+Uss-iy;

From eqn. (2-36), ‘the voltage regulator action of j—-th machine becomes:
PVaj=—K-fj-( Kj-AU};} + Vsj )/Tf} - Vaj /T_J,j. (3-30)

paEj = (Vaj - aE43 )/ Tej (3-31)
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PVsi = (Ksj- PAEsa; = Vs; )/ Ts; (3-32)

where, Utj =/U'a;+ U‘g; , AU't'}= Uij - Vy-j, » W3i=0

From eqn.(2-38), the governor action of j—th machine be.comes:
PaRi= (= Ky awji/w, - aPvi)/ Ts; (3-33)
PaR;= (aPvy; - 4P )/ Th (3-36)

The terminal voltages and currents required for the connection with the

network are described in vector form from eqn.(2-28) as follows:

By = Vg - X - 10 | (3-35)
where, UQ} = Udé’ s id} = ld; s )Xg,; = Y, Xg;‘
Vit L3} ~Aep, ¥

The behaviour of the entire power system is expressed by one such set of
equations described above for each machine together with the terminal
- constraints imposed by the interconnected network. The interconnected net-—

work is described as follows from eqn. (2-64).
° n ’ ' .
Lay = 2 Wi Vi (3-36)

From eqn.(3-26)-eqn. (3-36), the behaviour of the model system is described
*in vector form shown in eqn.(3-25), where the state variable vector X and

the non-linear functional vector f‘(K)- become as follows: . o

.8

’ 4 ’
[SU‘W" Egi s Edi, Vas, Esdi,Vs1, aPui, aPei, - (3-37)
’ T
ey b, AWy, Eés,Eds, Vas, E4ds, Vss, aPvs, 4 Pts_] '

F(x)

[fr,fo, Fs oo - , Tas, T, fm]T (3-38)
P& L h=pawr , f=pE , Fu=pEal
- PVar T, PEsar » F=pVer , Fy,= paPu
paber , Fo= p& L F = paw, , .= pES

s
i
it

5
oo



Tis = PEa |, Fium pVar , Fis= piEga, Fie = pVs2
Fin pabe 'f.3= pabe, Jc,q= »&s ?f;o = paw;
f = PEps , fu=PEs , Foum PVas L Fy
JLzs =pVsy , 3(26= PAva s Jc27= PAPta

]

paEsas

In the computation process, the induced voltages E;i and E;s and the
difference angle J} which result from £he machine equations and appear
as the integrable Variables in the‘machine equations are considered as the
input quantities for the solutions of the transmission networkvequations
(3-35) and (3-36), whereas the terminal voltages 1)3} and 1Tk} , and terminal

currents id} ‘and i?i are determined as their output quantities from the

transmission network.

3-4-2. System Parameters and Initial Condition

The data of the machines, the transmission network and the'impedance
loads are shown in Table 3-4-1. The data for the machines are taken from
Kimbarégand the typical values are used for the control systems parameters.
The equivalent circuit of the model system yields the admittance ﬁatrices
of the order under the several conditions of the model system described below
; (1) steady state,(2) three-phase to earth fault at the point A in-the nodel
éystem,(3) isolationAof the faulted line by circuit breakeré. The admittance
matrix of each situation is shown in Table 3-4-2.

After load flow calculation of the model system fér the given operating
condition, the initial conditioné of the modellsystem have been determined
By the phaser diagram shown in Fig.3-4-2., The initial conditions of the

model system are shown in Table 3-4-3.



Table 3-4-1 System data Table 3-4~3 Initial conditions
Machine No.| No.1 No.2 No.3 "~ - Machine No.| No.1 No.2 No.3
Xa 1.15 1.15 0.115 Pejo 1.00 1.00 9.77
x4 0.37 0.37 0.037 Bjo 0.40 0.58 2.15
x5 0.24  0.24 0.024 . Utjo 1.00 ©0.99 0.97
X 0.75 0.75 0.075 Usjo 0.99 0.99 0.97
X3 0.75 0.75 0.075 %}o . 0.14 0.03 0,00
X3 0.34 0,34 0.034 Ltjo 1.08 1.16 10.28
Tdo 5.60 5.60 5.60 ipjo 1.05 1.03 10.04
J(=weM)| 5.60 5.60 56.0 tojor | -0.25 -0.55 -2.21
Kg 25.0 25.0 95.0 $o -0.91 -1.05 -0.99
Ts 0.10 0.10 0.10 : Esaj0 1.84 2.01 1.66
Th 0.30 0.30 0.30 _ Ejjo 1.18  1.24 1.09 -
K 1.00 1.00 1.00 Eso .| 0.00 0.00 0.00
Ks 5.00 5.00 5.00
Ks 0.007 0.007 0.007
T 0.20 0,20 0.20
e 0.20 0.20 0.20
Ts 0.30  0.30 0.30

Zi= 0.0 + 30.2, Z3= 0.0 + j0.1
Zi= 0.0 + §0.1, Zy= 0.0 + §0.1
Za= 0.0 + §0.3, Zu= 0.3 + §0.1
Za= 0.1 + §0.02

Table 3-4-2 Admittance matrices under several system conditions

Admittance matrix in steady state

0.1095 - j4.0511 0.2190 + j1.8978.  0.2190 + j1.8978
0.2190 + j1.8978 0.4380 - §6.2043  0.4380 + 3.7956
0.2190 + 1.8978 0.4380 + §3.7956  10.0533 - §8.1275

Admittance matrix during fault

0.0257 - §12.2700  0.1029 + §0.9202 0.1029 + j0.9202
0.1029 + j 0.9202  0.4115 - §6.3193 0.4115 + 13.6807
0.1029 +j 0.9202 '0.4115 + 33.6807  10.0269 - §8.2424

Admittance matrices when faulted line is isolated

0.0334 - §2.2383 0.1336 + §1.0468  0.1336 + j1.0468
0.1336 + j1.0468 0.5345 - §5.8129 '0.5345 + j4.1871
.0.1336 + j1.0468 0.5345 + j4.1871  10.1499 - §7.7360
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Fig.3-4-2 Phasor diagram for computation of"

initial conditions

3-4-3. Numerical Results

Fig.3-4-3 shows the case that the model system is transient stable under

the following system conditions;

(1) The three-phase to ground fault of 0.1 sec. duration occurrs at the

point A in the model system at t=0.0 sec..
(2) The faulted line is isolated by the circuit breakers at t=0.1 sec..

(3) The faulted line is reclosed at t=0.2 sec. after clearing the fault

from the systen.

The admittance matrices of the transmission network have already been shown

in Table 3-4-2 for the above three system conditions. In this case, all the

system variables converge. to their steady state values after clearing the

fault as shown in Fig.3-4-3, then the model system is transient stable for

the above conditions.
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Fig.3-4-3 Transient stable case of model system

Fig.3-4-4 shows the case that the model system is transient unstable
under the following three system conditions;
(1) The three-phase to ground fault of 0.3 sec. duration occurrs at the
point A in the model system at t=0.0 sec..

(2) The faulted line is isolated from the system by the circuit breakers

at t=0.3 sec..

(3) The faulted line is reclosed after clearing the fault at t=0.4 sec..



In this case, all the system variables pulsate after clearing the fault

as shown in Fig.3-4-4, then the system is transient unstable for the above

conditions.
-2
2 .
< 8 .
30.04 @ Ay t = 0.0 sec.
'§ .
_ : A: t = 0.3 sec.
20.0
an Az: t = 0.4 sec.
XA
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Fig.3-4~4 Transient unstablé case of model system
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Section 3-5. Summary

In this chapter, the mathematical methods of stability analysis of the
power system and the applications of these methods to the model system have
been fepresénted.

The methods have the following advantages.

(1) The methods are not limited to one machine or pairs of machines, but
can handle a number of machines connected to a transmission network of any
form. The methods are limited only by the memory capacity of the digital
computer used in those implementation.

(2) The methods use the model of a round-rotor ﬁachine or the model of a
salient-pole machine and include the governors and the voltage regulators
actions. Further, the methods allow the inclusion of any alternative
governor or voltage regulator that acts continuously.

(3) For the case of the dynamic stability analysis, the state space of
eqn. (3-1) enables the use of any technique of modern multivariable linear
system theory.

In later chapters, the methods represented in ﬁhis chapter are used in

order to investigate the performance of the given system.
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CHAPTER 4 IMPROVEMENT OF DYNAMIC STABILITY

BY STATE FEEDBACK CONTROL

In the most general case, the dynamical system can be represented by
the non-linear differential equations and the implementation of optimal
controls, determined directly from this non-linear model through a standard
optimizing procedure, is extremely difficult. However, for the case of
transient involving small disturbances, it is possible to linearize the
original non—linear}system about the operating point.

In this chapter, the disturbances in the system are assumed to be suf-
ficiently small, then the optimization of synchronous machine performance
has been considered by minimizing the quadratic performance index in both
system va;iables and control variables. In this approach, the linearized
equations of machine are considered and the control law congisting of
constant feedback coefficients of the state variables of the systém has been
derivegﬁLGggigsfactory performance of the machine‘around the selected oper-

ating point has thereby been obtained.

Section 4-1. Determination of Optimal State Feedback Controller for

‘Linearized System

In this chapter, it is assumed that the system disturbances are suf-
ficiently small and all the state variables of the system are measurable.
Here, we consider the linearized éystem described by the following
-equation :
PAX = A-AX + B-u (4-1)
AW = (C-AX (4-2)

where, AX : n-th order state variables vector
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AW : m-th ordef output variables vector
w ¢ r-th order control variables vector
A, [B, C : (nx n), (nxr) and (mxn) coefficient matrices
of the system
As the cost functional of the system described by eqn.(4-1) and eqn. (4

. 32)
~2), the following quadratic performance index J is chosen:

0 .
J ='7j (AW Bw- 2w + W-R-wm)dt (4~3)
)
From eqn. (4_—2), the above equation is rewritten as:
J

where, @

-%—g (a2 - Q- 2% + W-R-w)dt (4-4)

€ Quw-C

In the above two equations, the matrix ©u and the matrix @ are positive
definite or positive semi-definite and the matrix R 1is positive definite.
The optimal control vector W , which minimizes the quadratic per-

‘ : (33),(34)
formance index described by eqn.(4-3) or eqn.(4-4), becomes:

w =--Fax , F =QgR“B°K (4-5)

where, the matrix IK is the solution matrix of the following matrix
Riccati equation and becomes positive definite symmetric, if the original

system described by eqn. (4-1) is completely controllable. -

aT . ~{ T
AK+ KA-KBR-BK+@=0 (4-6)
By the optimal control described by eqn.(4-5), the value of the cost

functional J becomes:

1 T '
J = zaxKoax| (4-7)
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Section 4-2. Stability of Closed-loop System

By the above optimal control described by eqn.(4-5), the original system

described by eqn.(4-1) becomes:
PAX = (A-BF)-ax © (4-8)

The stability of this closed-loop system is determined by directly computing
the characteristic roots of the closed-loop system matrix ( A - %'ﬂ’ ) as
described in section 3-~1-1. Furthermore, the stability of this closed-loop
system is also detétmined by the solution matrix [. of the following

Lyapunov's matrix equatior(lmof the closed-loop system.
T : ' ' '
(A-BF)-IL+L-(A-BF)=-N (4-9)
As described in section 3-1-3, if the closed-loop system described by eqn.(
4-8) is asymptotically stable, the matrix L becomes positive definite with

the matrix /\/ being arbitrary chosen to be positive definite, and the

following relationship is satisfied.

(-]

I =(a3"mN-axat = ax-Loax| (4-10)
]

Furthermore, the expected value of 1 becomes:

1 =—r-L‘Tr(\L) ' . (4-11)
where, " is the order of state variables.
From eqn.(4-11), for the smaller value of Tr(lL ), the close'd-loop system
is more stable.

As described in section 3-1-2, the exact solution of the closed-loop

system described by eqn. (4-8) becomes:

- AX(0) R | (4-12)

where, E(A_B"F)t’ is the state transition matrix of the closed-loop system.

The system responses are obtained by solving the eqn.(4-12) by the recursive

formulas for digital computer.
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Section 4-3. Application to a One-machine Problem

The power system under investigation consists of a synchronous machine

unit connected to an infinite bus through a transmission line as shown in

Fig.4-3-1.

infinite
bus
impedance
load
Y=§+b

Fig.4-3-1 Model of one machihe system

It has both voltage regulator and speed governor. The models shown in Fig.
2-3-2(b) and Fig.2-4-2(b) are-used for these control systems, and the

additional control signals li1nand W, are determiﬁed to minimize the given
performance index of the model system.

4-3-1. Linearized Equations of Model System

The mathematical representation of synchronous machine described in
section 2-1 is used in order to obtain the linearized equation of thé model
system. At first, the synchronous machine equations (2-1)-(2-10) are re-

arranged and linearized as follows around ‘the operating point.

PAYy = wor (32 aBs + L. (AW - a¥sa) (4-13)
PaY; = Wo'{AU'd + AV, + 1lf.y,-"—“l +f‘“'(AWad—A%)} (4-14)
PAY = wo - (aVad - AVia) (4-15)
PAY; = ouo-{m)}r - oY, - %‘Uo +:{J(A%z_ - a¥p)} - (4-16)
A= w?g%’;' (aWag = 8 V¥iy) | (4-17)

where, A id = (AW -0V, )/Xu. s Aig_ = (AIVag_ - 41‘@ )/xaz
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LTI A aYi
BVt = (G St v o I » AV = (B 4 Sy /i,

[ ! 1 1 ! 1 1
=t b = + +
Ki Xad Aag  Afe  Kyde » Ke Aoy  Xag - Xkse

From eqn.(z—lé), eqn(2-16) and eqn.(2-17):
pas = aw | (4-18)
PAW= (APy - Pa-aw- aPy) /M. (4-19)
where, AP, = %O-Aig—wo-Aid + Qg AWy ~ {4,-0Y;

From eqn. (2-35) and eqn.(2-38) the control systems equations are rewritten

as follows:

- KE A vy - LES
paky= = (-aVe - Vs) = AEs o W (4-20)
_Ks 1. ‘ _
PVs B paEsd = Vs (4-21)
Ky 4w { Ks .
AP, = -2 W 1 | AT 28 _
P4P, T, W T, APy + T U, “ (4-22)
| 1
aPo=——. AP, ———. AP _ _
pare T VT t (4-23)
where, from eqn.(2-31), AU;: do . AUy + Uso AUZ-
Uto to

(1), (12)
Furthermore, the transmission network is represented as follows:

i = 14 + Y-Uy | (4-24)
o/ ‘
Vs = T(E)-Vo + Ze- iy C (4-25)
where, Uy =

w L, V. =[o] , T4 = 4], 8 =(id
Uy Vo 1g iy

Y =[3,—b] » Ze =[Ye,—'xe].,T(J)=[C055‘,sinéﬁ]

b, $ Xe, Ye -sins, cos§

For a small perturbation from a fixed operating point, eqn.(4-24) and eqn. (

4-25) become:

o / ‘
Alg = Ay + Y-awy (4-26)

’

AUy TI(JO)-\\/O-AS + Z’Q-Aid_ (4-27)
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0 . o/ . ’ .
where, 4U;=|aVy| , dig=|ai4] , diy=[dia) , T&)=|-sind, cosS,
AUg Aiz_ A"Lz_l —COS&,-SinSa

In the above equations, the subscript O denotes the steady state value.

Let vectors AX , AY and W be defined as:

T
AN = [ﬂuffd;A%,AWKJ,A%,Al//;gldcg,Au)JAEfJ)V;)APV,APf] (4-28)
Y = [A%a,A%g, Aly, Ai«j.,AU;j,AUs_]T o (4-29)
W o= [ Ui, U J" (4-30)

Then, the linearized equation of the model system becomes:
PAX= A¢-aX + A0y + B-w ~ (4-31)
AY = As-ax (4-32)

From above two equations, the linearized equation of the model system

- becomes of the form shown in eqn.(4-1), and the matrix A becomes:

A = Ac+ A As (4-33)
The output vector AW of the niodel system is selected as:

AW = [a8, aw, aEga, Vs, APy, aVs, 804 ] (4~34)
Then, AW = Cy- 4% + {‘ZI-AH ' . (4-35)

From eqn. (4-32) and eqn.(4~35), the matrix € in eqn.(4-2) becomes:
€ = Ci + Co-As | (4-36)

The components of the matrices Aj , A, , As; » B and € are shown

in Table A-2 in appendix.



4-3-2. System Parameters and Initial Conditions

The parameters of the model system are shown in Table 4-3-1. Before the
construction of matrix A\ ; it is necessary to find the steady state values
of the system variables. After the load flow calculation, the operation
angle 4% is determined by thé phasor diagram of Fig.4—3—2; The initial
conditions of the model system are shown in Table 4-3-2, where the operating
poinf of the synchronous machine is selected as follows: P (actiﬁe power
output or electrical output)=1.0 p.u., 8, (reacfiﬁe power output)=-0.5 p.u.

and VUi, (terminal voltage)=1.l p.u..

Table 4-3-1 System parameters

© Machine constants

Y3 =0.00107  Yyd =0.0035 Yxg =0.0035 T =0.002
Ijﬁ =0.14 x;(dl =0.04 ,x'(sg =0.04 A2 =0.14-
Aod =1.86 Aag =1.86 Ps =0.005

FJT (=w,M) =6.0(sec)

Control systems constants

Kf =20.0 Tj- =1.0(sec.) Ks =0.05 . Ts =0.5(sec.)
Kg =10.0 - Tg =0.8(sec.) Tp =0.25(sec.)

Line constants

2 =0.1 b =-0.05 Ye =0.01 Xe =0.8

Table 4-3-2 Initial conditions

Rfo) =1.0 Qo =-0.5 Uto =1.1 0o =0.4058 (rad.)
Ve . =1.6322 Vi, =1.0939 Vo =0.1160 {do =0.8561

130 70.5478 W, =0.1171 Y, =-1.0956 & =1.8710(rad.)
1440 =0.9835 Wy, =0.2369 Wiego =-1.0189 Py, =1.0020
Yido =0.3746 Efdo =1.8292 :
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Fig.4-3-2 Phasor diagram for initial values

4-3-3. Numerical Results

For various weighting matrices Qu and R shown in Table 4-3-3, the
optimal state feedback gain matrix F of the model system has been

determined by the method described in section 4-1.

Table 4-3-3 Weighting matrices ®4 and R

Case matrix Quw- matrix IR

Case 1 diag.( 1,1,1,1,1,1,1 ) diag.( 1,1 )

Case 2 diag.( 1,1,1,1,1,1,1) diag.( 0.001,0.001 )
Case 3 diag.( 10,1,1,1,1,10,10 ) diag.( 1,1 )

Case 4 diag.( 10,1,1,1,1,10,10 ) diag.( 0.1,0.1 )
Case 5 diag.( 10,1,1,1,1,10,10 ) diag.( 0.01,0.01 )
Case 6 diag.( 10,1,1,1,1,10,10 ) diag.( 0.001,0.001 )
Case 7 diag.( 100,1,1,1,1,100,100 ) diag.( 1,1 )

Case 8 diag.( 100,1,1,1,1,100,100 ) diag.( 0.1,0.1 )
Case 9 diag. ( 100,1,1,1,1,100,100 ) diag.( 0.001,0.001 )
Case 10 | dfag.( 10,1,1,1,1,10,1 ) diag.( 0.001,0.001 )
Case 11 diag.( 1,1,1,1,1,10,1 ) diag.( 0.001,0.001 )
Case 12 diag.( 10,1,1,1,1,1,1 ) diag.( 0.001,0.001 ) -
case 13 without éontrol
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For the model system, the matrix F becomes a (11X 2) matrix as shown
in Table 4-3-4.

The closed-~loop stability of the model system'applied with these optimal
controllers has been investigated by various methods described in section 4-2.

The characteristic roots of the closed-loop matrix ( A - B'F ) of the
model system are shown in Table 4-3-5.

In this table, the case 13 shows the éhracteristic roots of the original
uncontrolled system, i.e. the characteristic roots of the matrix A .

In this case all the characteristic roots lie on the left half plane of the
complex field, namely all the real parts of the characteristic roots are
negative, so the original system is stable. The original system is governed
by two dominant modes of oscillations; the low frequency rotor oscillation
induced.by the excitation system ( -0.0934t j0.874 ) and the natural rotor
oscillation ( -0.761% j9.35 ). By the state feedback optimal control the |
ogiginal system is much stabilized, because all the characteristic roots

are shifted to the left side apart from the imaginary axis of the complex
plane and the low frequency rotor oscillation induced by the excitation
system does not appear. “

The values of Tr(|L ) of the closed-loop system are shown in Table 4-3-6
for the given & w and R matrices. As shown in this table, the original
system is much stabilized by the state feedback optimal control, and for
the same @w matrix the smaller values of the matrix R make the system
more stable. Furthermore, the case 11 makes the system much more stable
amoﬁg the various cases. In this case, the weight of AU ih the matrix @y
is emphasized. .

For the above calculation, the positive definite matrix N in the

Lyapunov's matrix equation (4-9) of the model system is selected as the (11

X 11) unit matrix.
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Table 4-3-4 Feedback gain matrices }F

Case 1

Case 2

Case &

Case 3
U, U, U, u, U U, U, U,

- AY|  0.468 -4.971 | 13.181  -90.995 0.951L  -5.389 2.929 -11.825
AY)] 0.036  -0.031 1.271  -1.223 0.036  -0.047 | ©0.129  -0.159
AYl 0.183  -5.052 6.034 -138.785 0.335  -6.216 1.119° '17-5“.,
AVl o.005 0.060 | -0.294 4.046 0.005 0.109 0.008 . 0.473
AVl 0.480  3.850 | -2.721  91.948 0.554 5.396 0.563  14.708
as 0.474  -7.560 8.337 -167.893 0.482  -6.812 1.155 -15.385
AW | -0.0004  0.411 | -0.409  24.470 0.0006  0.700 | -0.028 - 2.878
4Esa}  0.955  -0.029 | 31.582  -0.033 0.962  -0.031 3.126  -0.031
Vs | -0.772  -0.048 0.532 0.028 | -0.782 0.025 | -0.798  -0.006
AP.| -0.054  1.965 -0.047  32.825 | -0.054 2.163 | -0.051 4.518
aP.| -0.194 5.089 | -4.818 131.317 | -0.193  6.430 | -0.530  17.679

Case 5 Case 6 Case 7 Case 8
111 LLz lll llz Lly le llu le
aY3] 9.130  -30.042 | 28.772 -86.773 3.577  -5.985 | 11.326. -10.210

AVs] 0.420 -0.506 1.170  -1.598 0.034  -0.100 0.119  -0.301

CaYal 3536 -s0.244 | 11.268 -152.071 1.172 -9.490 | . 4.001 -22.569
AY,| -0.024 1.637 | -0.495 5.312 0.012 0.284.] 0.012 0.961

AVl 0.430 42,277 0.223  128.542 1.107  10.518 2.365  28.143
AS | 3.208 -37.836 9.714 -106.571 0.716  -3.580 2.366 2.680
AWt 0,096 9.787 | -0.298  31.593 0.034 1.707 0.083 5.622
AEn) 9.964  -0.030 | 31.594  -0.031 0.993  -0.026 3.156  -0.022
Vs | -0.522 0.005 0.465 0.024 | -0.823  -0.010 | -0.837  -0.003
AFR, | -0.048  11.401 | -0.046  33.031 | -0.044 2.686 | -0.036 5.067
AP | -1.499  50.428 | -4.554 152.537 | -0.095 - 10.549 | -0.265  26.082

Case 9 Case 10 Case 11 Case 12
111 L{z lll le lll le Llo Lll
AV f113.052  -54.255 | 15.853 -107.986 | 15.198 -98.706 | 14.972 -105.057
ay;| o0.200 -2.828 1.245  -1.438 1.239  -1.295 1.280  -1.396

aVYg| 43.793 -170.377 | . 7.677 -155.972 7.053 -142.848 7.238 -154.353
avyy | ~2.600 9.592 | -0.434  4.813 | -0.407 4.158 | -0.334 4.769
8Vsl 20.008  248.473 | -4.897 108.391 | -4.878 105.198 | -3.120  99.154
AS | 24.382 . 116.936 5.661 -128.778 | 7.024 -161.632 | 6.237 -131.330
AW | 0.687  55.215 | -0.706 28.965 | -0.547  25.140 ] -0.650  28.703
AEs} 31.651  -0.018 | 31.584  -0.042 | 31.584 * -0.039 | 31.583  -0.040
Vs | o0.184 0.008 0.522  0.058 | - 0.523 0.055 0.526 0.049
4P| -0.028 33.588 | -0.058 -32.957 | -0.053 32.845 | -0.056 = 32.950
APc | -2.607 210.712 | -5.758 144.947 | -5.251 133.404 | -5.594 144.186




Table 4-3-5 Characteristic roots

Case 1 Case 2 Case 3
~0.335 ~0.330 ~0.496
-0.196x 10 £ j0.197 -0.197x10 * jO.126 -0.195x% 10
~-0.197 X 10 -0.199 x 10 ~0.224%x 10

-0.952% 10 t j0.132 x 10 -0.43L % 10

-0.640x 10 * §0.130 x 10"
-0.103 x 102 .
-0.157 x 102
-0.205 x 102
-0.156 x 10% + 30,202 x 10*

~0.103x 10°

-0.395x10°

-0.636 x 10°

~0.156 x 10°t §0.202 x 10*

~0.636 % 10T 50.133 % 10°
~0.104 ¥ 102

-0.155 x 102

-0.205 x 102

-0.156 x 10t §0.202 x10*

Case 4 Case 5 Case 6
-0.491 -0.490 -0.490
~0.199 x 10 ~0.199 X 10 -0.199 X 10
-0.224 % 10 -0.223 x10" -0.223 % 10
~0.431x10 -0.431 x10 ~0.431 %10

~0.890 X 10, * jo.137 x10"
-0.103 %'10"

-0.941 x10 1 30. 135 % 10°
~0.103 x10°

~0.946 % lO T jO.135 XlO
-0.103 x10?

-0.400 = 10? -0.125 x 103 -0.395 x103 °

-0.637 x 10 -0.201x 103 . 4| -0-636 x10>

~0.156 x10° * j0.202 x 10*| -0.156 x 10° £ j0.202 x 10*| -0.156 = 10° = jO. 2oz x10*
Case 7 Case 8 ) Case 9

-0.111%x10 -0.109 X10 -0.109 10

-0.192 X 10 . | -0.198x%10 -0.199 2 10

-0.221x10 -0 222x10 -0.222% 10

~0.646 X 10 . 50.147 x 10°
~0.964 X 10

~0.1352 10°% 0.251 x 10

-0.205 % 102

-0.156 x 10°1, j0.202 x10%

-0.889 x10 t j0.156 x 10°
-0.960 X 10
~0.119 x 10?
-0.399 x103
-0.637x 103
-0.156 x 10?1 10.202 x10*

-0.954 X 10 ¥ j0.154.x 102
-0.959 x 10

-0.118 x 102

-0.395 x10°

-0.636 x 103

-0.156 x 10° £ §0.202 x 10*

Case 10 Case 11 Case 12
-0.503 -0.447 -0.477
~0.199x 10 - -0.199x 10 -0.199 x 10
-0.218%X 10 ~0.204x10 * §0.518 -0.204 x 10
~0.333X10 -0.952x10 * jO.132 x10%| -0.339 x10

~0.948X 10 & jO. 134 x 10%
-0.103% 102
-0.395x 103
-0.636 X 103
-0.156 x 10°£ 30,202 xm"

-0.103 x 102

-0.395 x 10%

-0.636 x 103 .
~0.156 x 103 & §0,202 x 10

-0.948 x10 * §0.134x 107
-0.103 x 10%
~0.395 %10
~0.636x10°

Case 13

-0.934% 10 't §0.874

-0.761 % 30.935x 10
-0.123% 10 :
-0.187 X 10
-0.409X 10
-0.457X 10
-0.999 X 10,
-0.156x 10° & jO 202 x 10%

-0.156 x 10° £ §0.202 x 107



Table 4-3-6 Values of Tr( L )

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8
L(1,1) 5.5526 4.9470 4.8762 4.5271 4.4282 4.3966 7.6985 7.7833
L(2,2) 0.0036 0.0035 0.0036 0.0035 0.0035 0.0035 0.0036 0.0036
L(3,3) 2.6673 1.7134 2.4187 1.8639 1.7039 1.6531 2.5121 12,2081
L(4,4) 0.0063 0.0058 0.0064 0.0061 0.0060 0.0060 0.006S 0.0068
L(5,5) 1.2851 0.9614 1.3641 1.2071 1.1844 1.1180 1.7759 1.9379
L(6,6) - }4.8021 3.5330 5.0004 4.1007 3.8537 3.7782 5.6332 5.5718
L@,7 0.1066 0.0875 0.1070 0.0961 0.0924 0.0913 0.1184 0.11S5
L(8,8) -]0.0284 0.0033 0.0279 0.0104 0.0049 0.0033 0.0265 0.0103
L(9,9) 0.2596 0.2495 0.2564 0.2496 0.2495 0.2495 0.2519 0.2495
L(10,10) | 0.0517 0.0013 0.0406 0.0120 0.0039 0.0013 0.0270 0.0104 !
L(11,11) | 1.9154 1.0737 1.7668 1.2832 1.1152 1.1112 1.7033 1.4801
Tr(l. ) |16.679 12.579 15.868 13.360 12.646 12.412 19.758 19.380

Case 9 Casel0 Casell Casel2 Casel3
7.8071 4.4710 4.5412 4.5218 73.521
0.0036 0.0035 0.0035 0.0035 0.0045
2.0320 1.6795 1.6609 1.6762 17.764
0.0070 0.0059 0.0058 0.0059 0.0143
2.1362 1.0345 11,0407 0.9856 53.154
5.9760 3.6350 3.4893 3.6106 30.476 °
0.1233 0.0891 0.0370 0.0888 0.3619
0.0033 0.0033 0.0033 0.0033 2.4891
0.2496 0.2495 0.2495 0.2495 56.946
0.0012 0.0012 0.0013  0.0013 17.747
1.3781 1.0883 1.0683 1.0554 1&.935.
19.718 12.261 12.151 12.231 267.41

The responses of the model system variables have‘ been obtained by solv-
ing the eqn.(4-12) of the model system. In Fig.4~3-4 the responses of the
system applied with the optimal controllers and the uncontrolled system are
shown for the given initial deviations Aglt_°= 0.5 and‘A%d\t_f 0.5.

The damping characteristic of the system is much improved by the state
feedback optimal controllers, and the emphasis of the weights of AU and
A1t of the matrix ®uw restrains the variations of these variables. This
fact is much useful in choosing the weighting matrix B , namely the

variations of the much weighted variables are restrained by the control.
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‘ without controller ( case 13 )

----- with controller ( case 2 )'

—+—-.— with controller ( case 9 )

(a)

AW (ra_d./sec.)

(b)

Fig.4-3-3 System responses for the initial deviations

ASli,= 0.5 and a¥il,_= 0.5



Alg (pou)
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AVz(p.u.)

(sec.)
without controller ( case 13 )

~—~-—- with controller ( case 2 ) 

~—-~—.— with controller ( case 9 )

(c)

T ' T
1.0 \\/2.0 \./(sec.)

(d)

Fig.4~3-3 System responses for the initial deviations

48li.s = 0.5 and aWl,.,= 0.5



Section 4-4. Summary

The optimal control tﬁeory of linear system has been applied to a model
one machine infinite bus system. The original uncontrolled system can be
ﬁuch stabilized by the sfate feedback controller, and the apﬁropriate
selection of the weighting matrices of the cost functional makes the system
more stable. Furthermore, the variations of much weighted variables are
restrained by the controller. |

There are more works remaining to be done in applying the optimal control-
theory to the power systems with sfstem non-linearities and control con-
straints and so on. The studies about these problems will be shown in later:
chapters. Furthermore, in this chapter, the control signals are represented
by the linear function of all staté variables, namely the state feedback
controller obtained in this chapter requires the cémplete measurement of
the system states, and for especially large scale power systems it is almost
impossible to have all the informations about system states, sd it is also
ne;essary to design the controllers applied with the only measurable states

of the system.



CHAPTER 5 IMPROVEMENT OF DYNAMIC STABILITY

BY OUTPUT FEEDBACK CONTROL .

The optimal control of power system dynamics has become a popular
subjects since Yu, Vongsuriya and Wedman first introduced the optimal control
theory to the power system stability problem, however it has not yet been
used in practical power systems. The maiﬁ difficulty is that all the state
" variables required for the controller are not directly measurable.

Luenberger's observegwé;gxgzﬂggnstructed to estimate the unmeasurable
states from informations available but the addition of a dynamical observer
v of high order will make the overall controlled system mofe complex and
unduly sensitive to system disturbances and changes of system parameters.

An alternative method is to design a output feedback controller using
only the directly measurable states of the system, but it will never be as
good as all-state feedback optimal control, namely the controller becomes
a suboptimal controller for the system.

In this chapter, in order to construct a output feedback controller for
the powér system in terms of the directly measurable output variables of |
the system, the model rgduction techniqueg”are appli?d. In other words, the
output feedback éontroller obtained is physically realizable and can easily

implemented.

Section 5-1. Determination of Output Feedback Controller for

Linearized System using Matrix Riccati Equation

In this chapter, it is assumed that the system disturbances are suf-
ficiently small, and the original non-linear system is linearized around the
operating point. As shown in eqn.(4-1) and eqn.(4-2), the linearized system

equation .becomes:

PAX = A-AX + B-w : (5-1)
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AW

C.-ax (5-2)

where, A : n-th order state variables vector
AW : m-th order output variables vector

r-th order control signals vector

w
A,B,C

(nxn), (nxr) and (mxn) coefficient matrices

of the system

Eqn. (5-1) and eqn. (5-2) describe the n-th order linear system. In general
the number of output variables M is smaller than the number of state
variables N, then the inverse matrix of matrix € does not exist.

In order to construct the output feedback controller of the system, the
system order is reduced to the same order of the output variables by the

model reduction techniques described later as follows:
PANs= As-aXs + Bg-W (5-3)

AW

Cs- 6%s (58

where, AXs

AW

m-th order state variables vector of the reduced system -

e

m—-th order output variables vector
w
AS,Bs,d-\S

r—-th order control signals vector

(mxm), (mxr) and (mx m) coefficient matrices of the

reduced system

In the reduced order system, the inverse matrix of matrix (s exists.
As the cost functional of the reduced system described by eqn. (5-3)

and eqn. (5-4), the same quadratic performance index J shown in eqn. (4-3)

is chosen:
T =—32-§(Aw7@w-AW+ WR-Udt  (5-5)

From eqn. (5-4), the above equation becomes:
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] [+
J =5 O(Axl-@s-wcs + W R- W) dt (5-6)
where, @s = CST' @w' Cs
In the above two equations, the matrix @y and the matrix s are positive

~definite or positive semi-definite (mx m) matrices and the matrix R is a

positive definite (rx r) matrix.
The optimal control vector U for the reduced system, which minimizes

the performance index described by eqn.(5-5) or eqn.(5-6), becomes:
-1 T
w ="Fs'41rs > Fs =fR'st‘”<s (5-7)

As described in section 4-1, the matrix Ks is the m~th order solution matrix

of the following matrix Riccati equation for the reduced system.
T -1 T — 0
/As'l'Ks + le‘As“ "KS'BS'R'BS'IKS*' O = (5-8)
From eqn. (5~4) and eqn.(5-7), the output feedback controller becomes:
- -1 :
U = -Fy-aw , Fo = F-Cs (5-9)

By the control described by eqn.(5-7) or eqn.(5-9), the value of the cost

functional J for the reduced system becomes:

T =g ok Ks- A, | (5-10)
t=0

Section 5-2. Determination of Output Feedback Controller for

Linearized System using Lyapunov's Matrix Equation

In this section, instead of the solution of the matrix Riccati equation,
the solution of the Lyapunov's matrix equation of the reduced system is used
to determine the output feedback controller of the system.

It is well known that besides providing stability information, Lyapunov's
direct method is also effectiv%”iﬁ”formulating the solution to the control
problem. The value of the Lyapunov function for the system is animportant

measure of the system stability and represents the distance from the steady



state equilibrium point, and 5y minimizing the ratio of the derivative of
the Lyapunov function with respect to time to the Lyapunov function, the
system performance is improved.

The system to be considered is described by eqn.(5-3) and eqn.(5-4).
Here it is assumed that,‘under a control W = 0 » the transient process
of the system will be asymptotically stable. The vector U is selected

as to decrease the value of the functionai:
[+ ) ‘ ’
T+
T(w) = {(a% @5 a%s5) dt (5-11)
]

This functional becomes a performance index for the reduced system described
by eqn.(5-3) and eqn.(5-4), and the matrix @s is a positive definite or
positive semi-definite (mx m) matrix. The Lyapunov function can be chosen

for the reduced system as follows:
V(EXs) = AXs - IKs- AXs . - (5-12)

where, the matrix KKs is the positive definite (mxm) solution matrix of

the following Lyapunov's matrix equation for the reduced system;
. S
As-Ks + Ks-As = - B - (5-13)

The time derivative of the above Lyapunov function along the trajectory
represented by eqn.(5-3) becomes:

dV '
—d—t—=—A1)CsT- QS'AKs'i' Z-MT'B:'IKS'AKS (5-14)

And the following relationship is satisfied.
= .
- A
I(w)= V(axs)| -+ 2 [ U7 B Ks-axs dt (5-15)
- [

The control vector W 1is required to decrease the value of the per-

formance indéx I(w), the control vector becomes:
' -1
W =-fF-ax . F = 2P Bs - KGs (5-16)

where, the matrix P is a positive definite matrix.

From eqn. (5-4) and eqn.(5-16), the output feedback controller becomes:
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U =-Fpaw , Fo=F-c° (5-17)

From eqn. (5-14), eqn.(5-15) and eqn.(5-16), the performance index L(®) and

the time derivative of the Lyapunov function dV/dt become:

W= viaxsdl,,, - [P wyat (5-18)
% = —AKs-@s-4A%s - W-P-w - (5-19)

As described in the above two equations, by the control.representéd by
eqn. (5-16) or eqn.(5-17) the equilibrium point is approached faster since
the performance index T(w) is smaller due to the additional negative control
term —Jju"-ﬂ’-uat , and it is also assured because fhe time derivative of
Lyapunov function dV/dt is smaller due to the additional negative control
term - WP-W .

In order td minimize the performance index I(w) of the reducea system,

following recursive formula is also possible.

: £ .
W = 2T WUk _ (5-20)
K=t '
-{
Uk = -Faxs  , F&=2-Pe- B K (5-21)

. . e s e
where, £ 1is anarbitrary positive integer and the matrix Ks is a (mxm)

solution matrix of the following Lyapunov's matrix equation.

(CLEN ) (K) 5 (K)

s - Ks o+ Ks - As =- Qs | (5-22)

() tk-1) Ck-1) o) ) 1)
where, s = As - Bs-TFs ; As = As 3 s“ =0, Ks'= Ks

In this case, the performance index I(W) of the reduced system becomes:
1 (]
Iw = Vx|, , - 2 (e P s de (5-23)
where, V{aXs) = AZP:ST' s A

From eqn.(5~4), eqn.(5-20) and eqn.(5-21), the output feedback controller

becomes:

W = -Fy-osw y P =(§£ }F;k’)" (E;' (5-24)
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It is also possible to determine the control signal as follows:

Up = Uy sgr(B iGs-a2c:), , f=1~r (5-23)

’
where, uu} is a positive constant, and the control signal U; is bounded,
e.g. by {ujl< Uy for }=1~7r . The symbol [ J; refers to the j-th
component of the column vector [ ] . |

Introducing the vector function with vector argument $G#. , we obtain:

u = - u;‘W”‘[B} s 4 s ] (5-26)
where, We =[Upr, Uva, +---- , uw_]T
sgn ]=diag.[- SRR S FUERR ]T

By the control bexpressed by eqn.(5-25) or eqn.(5-26), the performance

indéx I(UL) becomes:
I(wu) = \/'(Mrs)llc=0 - 2foleI-H<s-le-uu dt (5-27)

As shown in the above equat_iobn, by the control described by eqn.(5—25) or
eqn. (5-26) the equilibrium point of the system is also approached faster
since the performance index L(WU) is smaller due to the additional negative
control term -2 ;:IoAﬁCsTle - Bsl- Wy 4t . |

The controller described by eqns. (5—7),(5-9),(5-—]‘.6),(5-17), and (5-24)
is a proportional type controller and the controller described by eqn.s.(5—25),

and (5-26) becomes a bang-bang type controller.

Section 5-3. Stability of Closed-loop System

The above controllers for the reduced system could serve as suboptimal
controllers for the original system described by eqn.(5-1) and eqn.(5-2),

and the original system is governed by the following closed-loop equation.
PAX = (A - B Fy-C)-ax (5-28)

Here, it is noted that the stability of the original system applied with
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the above output feedback controllers is not assured.

The stability of this closed-loop system is determined directly
computing the characteristic roots of the closed-loop system matrix ( A —
B-Fr€) as already described in section 3-1-1.

The stability of this closed-loop system is also examined by the solution

matrix . of the following Lyapunov's matrix equation of the closed-loop

system.,
T
(A-B-FpC) L+ L-(A-B-Fs-C)=-N (5-29)
As described in section 3-1-3, if the closed-loop system expressed by eqn.

(5-28) is asymptotically stable, the solution matrix L of eqn.(5-29)

becomes positive definite, and the following relationship is satisfied.

00
I = gAJJCT~fH-A:DC dt = A L-ax|,., (5-30)

(]

Furthermore, the expected value of L becomes:
< 1
I =T (L) (5-31)

For the smaller value of Tr(lL ), the closed-loop system becomes much stable.

The exact solution of the closed-loop system becomes:

A (E) = 'Em_ B-Fue)t A (0) (5-32)

“BFC
where, E(A BF O

is the state transition matrix of the ciosed-loop system;
The responses of the cloéed—loop system are obtained by éolving the eqn. (5-

32) by the recursive formula described in section 3-1-2.

Section 5-4. Model Reduction Techniques

5-4-1. State Variables Grouping Techniqué“bﬁﬂ

The n state variables of the original system described by eqn.(5-1) and
eqn. (5-2) are classified into two groups; AX; of m state variables and 4X:
of (nF-m) state variables, each group being associated with large and small

time constants of the system, respectively. Thus, eqn.(5-1) and eqn. (5-2)
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can be rewritten in the following partitioned form.

-

P ADG | = A“ A|2 | AN + B, - w (5-33)
AN, Az An (A B.
AW =[Cy C,)-[ax - (5-34)
\A]fz

where, the matrices An, Az, A, An , B, , Bo, C; , and C;are
respectively (inXm), (mx n-m), (n-mxm), (n-mxn-m), (m xr)‘, (n-m x1), (mxm)
,» and (m¥X n-m) coefficient matrices.

The transients due to the small time constants would have decayed fast
and the AX; variables closely follow the AX,; variables. This justifies
t;hé omission of pAX, term in eqn.(5-33). Then the reduced system is
described in the form as shown in eqn.(5-3) and eqn.(5-4), and the matrices

As , Bs , and Cs become:

As = Au - Ain- /A'z;' Az | (5-35)
Bs = EB1 '"» Alz . /9\2;,' Bz (5"36)
Cs = € (ax,= 0) (5-37)

Thus, the n-th order original system is reduced to a m—th order siniplified‘
model. The reduced modél may represent the long-lived transients of the
original system, and the dominant eigenvalues of the original system may be
approximately determined by the characteristic roots of the matrix As (=An
= A Br- g

5-4-2. Eigenvalues Grouping Technique“”’“'”

If AZ represents the n modes of the system described by eqn.(5-1) and

eqn. (5-2), then the n state variables AX are related to AZ by:
A = M- aAZ ‘ (5-38)

where, the matrix M is the (n xn) modal matrix of the (nxn) matrix A

and becomes:



-

- 64 -

Moo= [Me, My, My, - - , Mn] (5-39)

where, the j—-th column vector Mj of the matrix [M is the eigenvector of
the j-th eigenvalue 7\;1 of the matrix A . By the transformation described
by eqn.(5-38), the system equations (5-1) and (5-2) can be rewritten in the

following partitioned form.

p [az]=[A, o |-|2az] +[m| w  (5-40)

AZZ ﬂ) AZ kAZZ [rg .
aw = [ D LHE (A7) (5-41)
\AZZ/ '

where, diag.[A1,Ae)= M A- M
Av = diag.(Ay, Aa, Ag, - - - - Am )
Ny = diag.( Ame1, Amez, «-- - - An )
T, = top (mxr) submatrix of M B
T = bottom (n-mxr) submatrix of M -B
D, = front (mxm) submatrix of cC-M

]Dz = rear (mx n-m) submatrix of €'M

If the matrix A 'has only distinct eigenvalues this transformation

will yield a diagonal matrix whose elements are the eigenvaiues of the matrix
A However, if the matrix A  has only repeated eigenvalues a trans-

formation to a Jordan canonic form will be obtained. Assuming, for
simplicity, the system has distinct eigenvalues such that Ih1|<|>\z\<----({)\;|.

In general, the eigenvalues of the system méy be devided into two groups;
those that are farther frorﬁ the imaginary axis A\, , and those that arAe nearer t;o the
imaginary axis A . Then, the variables vector AZ; may represent the long-—
lived transients of the system, and the variables vector AR, thay represent
the short-~lived transients of the system. Therefore, we can assume AZ,2 () .

In this case, the reduced system can be described in the form shown in

eqn. (5-3) and eqn.(5-4), and the matrices- As , Bs and Cs become:
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As = M , . (5-42)
Bs = [ ' (5-43)
Cs = D . . (5-44)

Section 5-5. Application to a One-machine Problem

The same one-machine infinite-bus sysgem shbwn in section 4-3 has been
used in this section in order to investigate the control effects of the
output feedback controller described above and also to compare the control
“effects of the output feedback controller with those of the state feedback
optimal controller shown iﬁ section 4-3.

The system configulation and the block diagrams of the associated control
systems have already been described in section 4-3. Furthermore, the para-
méters and the initial conditions of the model one-machine system have been
shown in section 4-3.

5-5-1. Numerical Results (I)

The output feedback controller for the model system has been determined
by the methods described in section 5-1 and section 5-4-1.
In order to obtain the simplified model of the original system, the state

variables AX represented by eqn.(4-28) have been devided into following

two groups.

A X,

[A%J; AWK;, aé, sw, aksd, Vs, APy ]T

AX,

[AWJ, AWK&,AW&, APtJ

In this case, the reduced system is 7—thiorder, and the 7-th order measurable

output variables AW are defined as shown in section 4-3 as follows:
- _ —
AW = [a8, aw, aEga, Vs, aPv, AV, dit]

In the model system, the matrix B, becomes equal to ® , so the matrix



Cs in eqn. (5-37) of the reduced system becomes as follows without the
' -1
Cs = ‘rl - ([‘z'Azz‘Azt-

The characteristic roots of the original and the reduced system are

assumption AX,= 0

shown in Table 5-5-1 for the given operating point of the model system;
P.  (active power output)=1.0 p.u., 8, (reactive power output)=-0.5 p.u.,
and Ugo (terminal voltage)=1.1 p.u..

The dominant eigenvalues of the origi'nal system are retained in the
simplified model by the model reduction described in section 5-4-1. .So the

effectiveness of this model reduction is assured.

Table 5-5-1. Characteristic roots of original and reduced system

Original model : Reduced model
-0.934X1G'% §0.874 -0.953%1G' * §0.101 x 10
-0.761 + §0.935x10 | -0.630 * 10.885 x10
-0.123% 10 -0.124x 10
-0.187 % 10 -0.187% 10
-0.457x 10 -0.455 % 10
-0.409 x 10
-0.999 X 10
-0.156 x 10"t §0.202 x 10*

For the various weighting matrices O and IR shown in Table 5-5-2, the
output feedback controller of the model system has been determined using the
solution of the matrix Riccati equation of the reduced system as described

in section 5-1. The feedback gain matrices MFw are shown in Table 5-5-3.

Table 5-5-2. Weighting matrices ®u and R

Case No. matrix @y matrix [R
1 diag.( 1,1,1,1,1,1,1 ) diag.( 1,1)
2 diag.( 1,1,1,1,1,1,1 ) diag.( 0.1,0.1 )
3 diag.( 1,1,1,1,1,1,1 ) diag.( 0.001,0.001 )
4 diag.( 10,1,1,1,1,10,10 ) | diag.( 1,1 )
5 diag.( 10,1,1,1,1,10,10 ) | diag.( 0.1,0.1 )
6 diag.( 10,1,1,1,1,10,10 ) diag.( 0.001,0.001 )
7 diag.( 10,10,1,1,1,1,1 ) diag.( 1,1)
8 diag.( 1,1,0,0,0,1,1 ) diag.( 1,1)




Table 5-5-3., Feedback gain matrices ﬁiJ
Case 1 Case 2 Case 3 Case 4
Uy Uz Ue . U, W, U. U U2
a8 | -0.525 2.53 | -1.910 7.439 | -19.249  72.877 -1.676  6.263
AW | 0.007 1.930 | -0.014 6.319 -0.198  63.596 0.020 2.215
AEq4| 1,909 -0.011 6.235 -0.021 63.166 -0.018 1.925 -0.006
Vs | -1.544 -0.138 | -1.580 -0.047 1.048 -0.018 | -1.566 -0.079
aP,| -0.042  6.323 | -0.041 12.706 | -0.032 72.433 | -0.022 - 6.740
av; | -0.867 -10.694 0.484 -20.297 21,240 104.961 -0.243 -12.259
ate| 1.007 -8.841 3.161 -15.985 31.349  72.584 2,536 -7.637
Case 5 Case 6 . Case 7 Case 8
U Uz U Uz U+ U, Ut Uz
a8 | -5.456 19,395 | -54.750 191.822 -0.571 6.590 -0.227 2.204
AW | 0.018  6.898 | -0.014 66.922 | -0.002 6.282 0.033 1.927
sEqa}l 6.251  -0.009 63.196 -0.002 1.911 -0.033 | - 0.134 0.007
Vs | -1.601 -0.029 0.891 -0.030 | -1.552 -0.054 -0.547 -0.172
4P, | -0.019 13.136 | -0.008 72.871 -0.061 11.194 -0.017 6.003
AU:| 2.571 -24.128 | 42,471 -138.417 -0.782 -19.688 -0.104 -10.862
aig| 8.232 -10.878 82.915 -15.052 1.133 -17.131 0.955 -8.834
The dynamic stability of the model system applied with these output
feedback controllers has been investigated by various methodsdescribed in

section 5-3.

The characteristic roots of the closed-~loop matrix (A - B-F-€) of the
mbdel system are shown in Table 5-5-4, and the characteristic roots of the
original uncontrolled system are shown in Table 5-5-1. All the characteristic
roots of the original uncontrolled system are shifted to the left side apart
from the imaginary ;xis, therefore the dynamic stability of the model system
is much improved by these controllers.

The valuesof Tr(lL ) of the model system applied with these controllers
are shown in Table\5—5—5.. As shown in this Tablé, the value of Tr(lL ) of
the model system is much decreased by these controllers, so it is evident
that the system performance is much improved by these controllers. But, in
éomparison with the’value of Tr( L ) of the model system applied with optimal

state feedback controllers shown in Table 4-3-6, the value of Tr( L. ) of the



Table 5-5-4 Characteristic roots of closed-loop system

Case 1 Case 2 Case 3
-0.579 t §0.180 -0.418 -0.371
-0.165x 10 + j0.127 x10? | -0.105 x 10 -0.148 X 10
-0.180x10 ~0.157 x 10 * j0.149 x10° | -0.163X10 £ j0.175 x 10
-0.207 X 10 -0.179 x 10 -0.174 %10
-0.996 X 10 -0.202 X 10 -0.199 *10
-0.380 x 10° -0.100 X 10* -0.101 x 102
~0.813 x 10° -0.124%10% -0.907 % 102
-0.156 X10°% §0.202X10* | -0.161x 103 -0.127 x 10*

-0.156 x10°+ j0.202 x 10*

-0.156 X 10>+ §0.202% 10*"

Case 4 Case 5 Case 6

-0.571 -0.541 -0.525

-0.105%10 % j0.128 x10% | -0.772 + §0.147x 10% | -0.636 +40.178 x 10°
© -0.186 X 10 % §0.691 -0.202% 10 -0.199 X 10

-0.208 x 10 -0.221% 10 * §0.679 -0.258 x 10 + j0.432

-0.984 x 10 -0.995 X 10 -0.101 X102

-0.383 x10? -0.125x 10? -0.912 x 103

-0.865 x102 -0.166 x 103 -0.127 X 10*

-0.156 x10%+ §0.202 x10%

-0.156 % 10° * j0.202 x 104

-0.156 x 10 §0.202x 10%

Case 7 Case 8
-0.513 1 30.318 -0.596 + 30.776
-0.162x 10 * j0.150 x10%| -0.151 x 10
-0.189 X 10 -0.167 X 10 * j0.129 x 10°
-0.207 x 10 -0.173 X 10
-0.100 %102 ~0.457 %10
-0.380 x 102 -0.104 x 102
-0.142 x 103 -0.774 X 102

-0.156 X10° + 0.202 x 10%

~0.156 X 10%+ §0.202 % 10"

Table 5-5-5 Value of Tr( L )
. without
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8| controller

L(1,1) 7.797 6.877 6.152 8.331 8.241 8,055 6.510 9.665 73.521
L(2,2) 0.004 0.005 0.022 0.005 ©0.007 0.052 0.005 0.005 0.005
L(3,3) 4.562 4,514 4.626 6.880 8.708 11.440 4.434 4,794 17.764
L(4,4) 0.010 0,012 0.031 0.014 0.020 0.070 0.013 0.011 0.014
L(5,5) 2.335 2,167 2.068 3.489 4.021 4,715 2.114 2.481 53.154
L(6,6) $.638 9.159 8.970 13.910 17.574 25.253 9.316 10.277 30.476
L(7,7) 0.185 0.217 0.291 0.289 0.441 0.768 0.219 0.186 0.362
L(8,8) 0.015 0.007 0.003 0.015 0.007 " 0.003 0.015 0.171 2.489
L{9,9) 0.278 0.255 0.250 0.277 0.255 0.250 0.279 1.095 56.946
L(10,10)| 0.017 0.006 0.001 0.019 0.007 0.001 0.007 0.020 17.747
L(11,11)] 4.531 3.944 3.595 1.321 7.520 9.097 3.807 5.073 14.935
Te( L )[29.375 27.161 26.009 34.548 47.801 59.703 26.718 33.784 | 267.413



model system applied with the output feedback controllers takes a little
greater value for the same weighting matrices ®uy and R . Therefore,
the output feedback controllérs obtained become suboptimal controllers for
the model system.

For the model system applied with the optimal state feedback controllers,
the smaller value of the matrix H{ makes the system more stable for the
same Oy matrix, but for the model system‘applied with the above output
feedback controllers, the relation above described is not necessérily
satisfied, since the feedback gains have been determined through the reduced
ﬁodel.

In the above numerical calculations, the (11X 11) unit matrix has been
selected as the matrix N in eqn.(5-29).

The responses of the model system variables have been obtained by solving
the closed-loop equation 6f the model system for the given initial deviations
a8li.,= 0.5 and aVul,,= 0.5.

The typical responses are shown in Fig.5-5-1, and Fig.5-5-2. As sh&wn
in Fig.5-5-1, the damping characteristic of the system is much improved by
the output feedback controller, but in comparison with that of the system
applied with the optimal state feedback controller the improvemenﬁ is a little
smaller. As shown in Fig.5-5-2, the originary unstable system is stabilized
by the output feedback controller, therefore it is evident that the dynamic
stable region of the model system may be expanded by the outputAfeedback

controller,
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5-5-2. Numerical Results (1)

The output feedback controller for the model system has been determined
by the methods described in section 5-1 and section 5-4-2.

In order to obtain the reduced model, the modal matrix M of the. model
system has been determined as described below. As shown in Table 5-5-1, the

characteristic roots of the original system; A{ , A2, see.. 5 Ay become:

Av =i+ j@=~0.934x 10 + §0.874, Ay = i~ 3@

Ay =+ jB@y= -0.761 + j0.935x10, As= o, — j B2

As = -0.123%x 10, Ag
Asg

-0.187 %10,  As= -0.409 x 10

-0.457% 10, X4

-0.999 * 10,

3 4
A= dy+ jB;=-0.156X10 + j0.202x°10, Aun = d; - j B3

Instead of the transformation matrix /M described in eqn.(5-39), a modified

transformation matrix is used in order to avoid the complex arithmetic, and

' «3)
the modified matrix becomes:

(R) (x) (R) ) tR) (x)
!M=[Minf,Ms’Mg,Ml},"“,M?)MfQ)MIdJ

(9]

M+ ME, My = MP+iMY, M = M2+ M

where, M,
M} ¢ eigenvector of j-th eigenvalue 7\}'
) o
M} : real part of eigenvector Mj

(1) '
M;": ima inary part of eigenvector M;
i ginar & 4

Then, the matrices A¢ and A, becomes:

.Al = /Olt Big 0 ) Az = 18_7\ 0
B Vpomnooe
Lo, B2 p 1 s
B2 d2=>\ RS
—_—— e =] 5
0 Mo,

Furthermore, the matrices My , 2 , D; and D, have also been determined

by matrices B s € of the model system and the above transformation



matrix. And, the coefficient matrices As . Bs and Cs of the reduced
system have been determined by eqn.(5-42), eqn.(5-43) and eqn.(5-44). 1In
this case, the reduced system becomes a 7-th order system, and the same 7-th
order measurable output variables AW as shown in section 5-1-1 have been
considered.

For various weighting matrices shown in Table 5-5-6, the output feedback
controller has been determined using the solution matrix of the matrix
Riccati equation of the reduced system as described in section 5-1. The feed-

back gain matrices Fs and F, for the model system are shown in Table

5-5-7.

"Table 5-5-6 Weighting matrices @w, R and value of Tr( L)

Case No. matrix Q. matrix R Te( L)
1 diag.( 1,1,1,1,1,1,1 ) dlag. ( 1,1) 94.498

2 diag.( 1,1,1,1,1,1,1 ) diag.( 0.01,0.01 ) 67.992

3 diag.( 1,1,1,1,1,1,1) diag.( 0.001,0.001 ) 67.008
without controller 252,328

The dynamic stability of the model system applied with these output
feedback controllers hés been checked by various methods described in section
5-3.

The eigenvalues of the closed-loop matrix.(ﬂx— B-F.f) of the model system
are shown in Table 5-5-8. 1In comparison with the eigenvalues of the original
uncontrolled system shown in Table 5-5—1, all the eigenvalues are shifted to
the left side apart from the imaginary axis, therefore the dynamic stability
of the model system is improved by these controllers.

The valuesof Tr( . ) of the model system applied with the above controllers
are shown in Table 5~5-6. The value of Tr(|L ) of the model system is much
decreased by £he controllers, so it is evident that the system performance

is much improved by the controllers.



Table 5-5-7 Feedback gain matrices s and H:w-

Case 1' E;r Case 1 Hﬂ:
U U, U Ua
aZ, -0.769  -1.203 | o8& -0.426 -3.826
2%, 2.528  -0.036 | aw 0.128 0.473
A%, 0.157  -0.031 | 4Fza 0.985 -0.692
AZ, -0.062 0.922 | Vs 0.358  -27.145
AZs|  _0.726 -0.153 | AP, -0.954 8.158
Al 0.453  -0.030 | aV: "1.892  -36.405
AZ,l -0.461  -0.422 | ale 1.703 -7.938
Case 2 H:sT ) Case 2 }FwT
U U U, U,
Az, -3.321 -12.616 | 4S8 13.383  -34.355
az, 25.807 4.780 | aw -1.744 7.500
az,| 0.026  0.358 | aEg 12.626  -3.322
CAZ| -3.716 8.384 | Vs 114.084 ~ -231.093
A% -8.336 0.156 | ap, | -32.007 63.459
AZ, 5.359 0.620 | au; 154.162  ~300.943
aZq]  -5.348  -6.024 | Aig 35.667  -56.333
Case 3 F; Case 3 IFNT
u, U, U, U,
aZ,| -3.682 -43.928 | A8 43,960  -99.594
az, 80.150  21.025 | Aw ~8.657 24.652
az,| -2.605  13.250 | AFgy 40,157 -6.983
AZ,| -13,174  24.965 | Vs 409,482  -689.713
a%s| -26.191  -0.229 | AP, | -109.414  185.873
AZ  17.650  1.382 | av; 546.970 -893.791
AZ;| -16.321 -19.663 | a{. | 120.802 -161.433

Table 5-5-8 Eigenvalues of closed-loop system

Case 1 Case 2 Case 3

-0.575 -0.587 -0.601’ .
~0.117x10 % 30.195x10 | -0.113X10 % j0.175X10 | -0.115x10 £ 3j0.177 X10
-0.157x10 * j0.106x 102 | -0.201x 10 -0.200 10 _

-0.201 X 10 -0.214%10 T j0.113X10°| -0.217x10 * j0.113x 102
-0.970 X 10 -0.989 X 10 -0.989 x 10 ‘
-0.155 x 102 -0.153% 10° -0.491 x 103

-0.113x10% -0.113 x 10* -0.346 K10*
-0.156 x10° T 30.202x 10" | -0.155%10° * §0.202x10*| -0.156 x10° £ j0.202 x10"
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In the above calculations, the matrix CT- Qw-C has been.selected as the
matrix N in eqn.(5-29) instead of the (11X 11) unit matrix. Consequently,
the value of Tr( L ) represents the expected value of the.following quadratic.
performance index of the output variables AW ; Tv(L)=m /]:_ , I= J:O(Aw".
Q- AW )dE =LE°A3CT- C-Quw-C-ax)dt,

The responses of the model system variables have been obtained by solving
the closed-loop equation of the model syséem for the given initial deviations
| afl,.,= 0.5 and AWl = 0.5.

The typical responses are.shown in Fig.5-5-3. As shown in this figure,
the damping charactexistic-of the model system is much improved by the out-
put feedback controller 6btained here.

In Fig.5-5-4. the responses of 48 of the model éystem applied with
various controllers are shown. These controllers have been determined for
the same weighting matrices élw-and.ﬁi . As shown in this figure, the per-
formance of the model system is much improved for the case AW = [45 aw, AE}J V@
5 APV,AUt,AIt]than for the case AW = [Ag aw, aEg4, Vs, APt,AU't)Alt]T- But, in
comparison with the response of the model system applied with the state feed-

back optimal controller, the improvement is a little smaller.
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(rad.)

Q. = diag.(1,1,1,1,1,1,1)
R = diag.(0.01,0.01)

: with output feedback controller (case 2)
AW = [ 4§, aw, aFy4, Vs, APV,AU},,A-Lt]T
—-+— : with output feedback controller
AW = (4§, sw, AEfJ,\/s)APc,AU};,Ait]T
—-— ¢ with state feedback optimal controller

----- : without controller

Fig.5-5-4 Responses of 44 of the model systéﬁ applied with

various controllers
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5-5-3. Numerical Results (II)

The output feedback controller for the model system has been determined
by the methods described in section 5-2 and section 5-4-1.

In order to obtain the reduced system, the state variables AX; and AX:
have been selected as.shown in section 5-5-1. In this case, the reduced
system is a 7-th order system,_and the 7-th order measurable output variables
AW have also selected as shown in section 5-1-1. |

The output feedback gains of the model system have been determined by
the recursive formula shown in eqn.(5-20), eqn.(5-21), eqn. (5-22) and eqn.(
5-24) for the given s (= Cs Byp-C;) matrix, where Qu = diag.(1,1,1,1,1,1,1).

- In.Fig.S—S—S, the changes of the value of Tr( [, ) of the model system
applied with the oﬁtput controller obtained by the recursive formula above
descrived are shown as the positive definite matrix E? = diag.(K,K) varies.
As shown in this figure, the optimal ﬁ? matrix exists; [P, = diag.(180,180),
Ea = diag.(2,2), P = diag.(0.6,0.6). For these‘ﬂa ,.H% , and Hg matrices
the values of Tr( [}, ) are shown in Table 5-5-9 and the feedback gain matrices

W), R, and F,’ are shown in Table 5-5-10. As shown in Table 5-5-9, the
value of Tr(lL ) of the model system is muéh decreased by the output feedback
controller obtained by the recursive fofmula above described, therefore it is
evident that the systeﬁ performancej is improved by the controller. Further—
more the effectiveness of the fecursive formula above described is assured.

In the above calculation, the matrix CT' fusC has been chosen as the
matrix N in eqn. (5-29) insted of the (11X 1l) unit matrix.as described in
section 5-5-2. Consequently, the value of Tr(l. ) represents the expected
value of the quadratic performance index of the output variables.

In Table 5-5-11, the eigenvalues of the closed-loop system are shown. The
dynamic stability of the model system is much improved by the output feedback
controller shown in Table 5-5-10, because all the eigenvalues are shifted to

the left side apart from the imaginary axis.
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Table 5-5-9 Value of Tr(lL )

Case No. matrix Eg Tr( L)
Py =diag. (180,180) 36.292

P, =diag.(180,180), P, =diag.(2,2) 27.433

3 P, =diag.(180,180), B, =diag.(2,2), P, =diag.(0.6,0.6)| 25.580
without controller : 252,328

Qu=diag.(1,1,1,1,1,1,1) , Qs = Cs-Bu-Cs

Table 5-5-10 Feedback gain matrices ﬂ), ﬁﬁ? and Fﬁ?
Eﬁn’ , H:sr)'l‘ H:::JT . R:u?”

Uy u, U, Uz U, Ua
af -1.038  4.379 -4.244  -0.545 1.253  2.974
aw 0.029  0.113 0.430  3.223 -0.123  0.597
4Ey 0.301 -0.055 1.412  0.189 0.929  -0.000
Vs -1.213  -0.968 2.552  1.923 -0.742  -0.719
aP, -0.243  5.097 0.610  3.236 -0.115  0.557
AU -0.459 -10.533 | 2.277  3.7271| - -0.400 -1.635
aie 1.131  -9.808 1.298  2.826 0.003 -1.302
P; | P, =diag. (180,180) | P, =diag. (2,2) [P, =diag. (0.6,0.6)

Table 5-5-11 Eigenvalues of closed-1

oop system

Case 1 Case 2 Case 3
-0.936 * §0.987 -0.847 1 30.215x10 .| -0.819 1 §0.298x 10
-0.175x 10 ~0.144 x 10 -0.153%x 10 £ j0.139x10?%
-0.213 210 % 30.947%10 | -0.172x10 * §0.135x10® | -0.169x10 '
-0.234 %10 -0.185 X10 -0.190 X 10
-0.498 10 . -0.962 X10 -0.983 x 10
-0.103 x10° -0.398 x10? -0.569 x10?
-0.653 %102 -0.107 x 103 -0.114 x10?
-0.156x 10’ 30.202 x10* | -0.156x 10% £ §0.202x 10* | -0.156 x 10%2 j0.202 x 10%




The résponses of the model system have been obtained by solving the
closed-loop equation of the model system for the giveﬁ initial deviations
a8li= 0.5 and Vi), = 0.5.

The‘responses are shown in Fig.5—5—6. As shown in this figure, the
system performance is much improved bf the output feedback controller |
obtained by the recursive calculatioﬁ degcribed above. And the improvement
in case 3 is better than those in case 1 and case 2.

In Fig.5-5~7, the responses of the model system applied with various
controllers are shown. It is evidént that the system responses are much
improved by the various output feedback controllers obtained in section 5-
5-1, and in this section, but in comparison with. that éof the model system
applied with the optimal state feedback controller obtained in section 4-3,
the improvement of the sfstem performance is a little smaller. Namely,
these output feedback controllers act as suboptimal controllefs for the

model system.
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Section 5-6. Summary

In this chapter, in order to construct a output feedback controller
of the model system in terms of directly measurable output variables, the
techniques of model reduction have been applied. The model reduc;ién
techniques used in this chapter are the state variable grouping techhique
and the eigenvalue grouping technique. In the numerical calculation; the
11-th order original system has been redﬁced to a 7-th order simplified
system. By these model reduction, the dominant eigenvalues of the ofiginal
system have been retained in the reduced system, so it has been assured
that these techniques are useful to obtain a reduced system of a originally
higher order system. |
The procedures for utilizing the simplified model in deriving a output
feedback controller have been also described in this chapter. The output
feedback gains .have been determined by the solution matrix of the matrix
Riccati equation or Lyapunov's matrix equation of the reduced model system.
By these output feedback controllers the dynaﬁic performance of the
model system is much imprpved, but the improvement is a little smaller than
that by the optimal stafe feedback controller. Furtﬁermore, the originally
unstable system has been stabilized by these output feedback controllers.
These output feedback controllers are constructed in terms of méasurable

output variables, so they are physically realizable and may be easily imple-—

mented.
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CHAPTER 6 APPLICATION OF LYAPUNOV'S DIRECT METHOD

TO CONTROL PROBLEM OF NON-LINEAR SYSTEM

The implementation of éptiﬁal controls, deterﬁined directly from a non-
linear model through a standard optimization procedure, is extremely
difficulgﬂand thus few investigations regarding the.practical realization
of such control signals have been reportéd so far.

The possibility'of obtaining a stabilizing controller for a power s&stem
using non-linear model will be demonstrated in this chapter. The difect
method of Lyapunov is ‘applied to determine the stabilizing controller for
the non-linear system. Furthermore, the effectiveness of the broposed method

is explained by the numerical analysis of the model multi-machine sjstem.

Section 6-1. Introduction of Control Law through Lyapunov's Direct

Method
Here, we consider the general case, where the system equation is

represented by the following non-linear differential equation in vector form.

px = F(x) + B-u | (6-1)
where, X : n-th order state variables vector
W : r-th order control signals vector

Fix)
B

n-th order non-linear functional vector

(nxX r) coefficient matrix

At the stable equilibrium point, it is assumed that the following

relationships are satisfied.

T,

0 , WU =0 (6-2)

where, ¥, : stable equilibrium point
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If we can obtain anappropriate Lyapunov function V(X) for the given
system described by eqn.(6-1), the control signals vector W can Be
determined as described below.

The time derivative of the Lyapunov function V(X) along the trajectory

expressed by eqn. (6-1) becomes:

dv Vv oV : ,
Tt " o T + EY i B-UW ‘. | (6-3)
3V 23V 3V v oV ]

Where’ axT - 33Xy 3 23X, ) 3X3, 2 oXn

In order to improve the damping characteristic of the system, the control
vector W 1is determined as follows:

-1 IV
U =-R" B~

(6-4)
where, the matrix R is a (rxr) positive definite matrix.

Then, the time derivative of the Lyapunov function described by eqn. (6-3)
becomes:

dv 2V

dt ~ ex

F)— U R-w (6-5)

Now, let us suppose that the system starts from a point away from the equi-
librium point and the system appiied with no contrqller is asymptotically
stable. Then, by the cohtroller described by eqn.(6-4), the stable equi~
librium point is approached faster since dV/dt is smaller due to the
additional negative control termf-u:H@ﬂL. Here, it is noted that the value

of Lyapunov function is some measure of the distance from the stable equi-

librium point.

Section 6-2. Determination of Control Law using Energy Function
In order to simplify the analysis following assumptions are made;

(1) Each machine in the system may be represented by a constant voltage

behind a transient reactance.
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(2) The mechanical angle of each machine rotor coincides with the
electrical phase of the voltage behind the reactance.
Then, the dynamic performance of a n-machine power system can be described

by the following electromechanical equations of motio#?
p&i = AW; _ (j=1~n) (6-6)
PAW = (Prjo+ 8Pe; =Ry - Py-aw;)/M;  (G=l~m)  (6-7)

where, the subscript j_denotes the j-th machine in the system, and AF%}
represents the deviation of mechanical input to the j—th machine rotor by
the governor action of the j-th machine.

Here, the ideal governor, i.e. one which allows the prime—moﬁer torque
to be changed instantaneously, is considered and the deviation of the

mechanical input to the j-th machine is considered as the control signal to

the j-th machine.
Ui = APt}' ' o (6-8)

From eqn.(6-6)-eqn.(6-8), the dynamic performance of the n-machine power
system can be represented by the equation of the form described by eqn.(6-1).
One of the Lyapunov functions of this n-machine power system can be

(46), (47)
defined using the energy function of the system as follows:

V&, §2yc---- , §n, AW, AW2, - .- , AWn)
1 n-t n 2 .
= 28 2 B, Mir Mee (aw; - 80e)" + §(81, 82,02+, 8n) - (6-9)
(2]
where, M= Z M;
b=t

The control signal Ll} can be determined by the method described in
section 6-1. The time derivative of the above Lyapunov function along the

trajectory expressed by eqn.(6-6) and eqn.(6-7) becomes:

dv i dV_ dd; 3V .aw;)

6-10
dt =1 bS} dt * aAu)& dt ( )
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&IV Ui

{as, Wit aAw (Pejo = Py~ Py aw) M} + B

In order to improve the damping characteristic of the system, the control

signal U;j is selected as:

l AV |
Ui = — . . =1~.n (6-11)
where, R; ¢ a positive constant
3V M; '
=2 = AW; — AW
aAlOt MT E Mk ( J’ K)

Then, eqn.(6-10) becomes:

dV & v
_d_t_=é”{_a_§.mr.+— (Pt,o Pej = Puj Aw,)/M,} (§-12)
_SZ}Q_ u}

i=t
As shown in the above equation, when the control signal U; expressed by
eqn. (6-11) is applied to the system, the equilibrium point is approached
faster, since dV/Jt is smaller due to the additional negative control texm
5 .
";% R}‘uj . Namely, the damping characteristic of the system can be

improved by the control described by eqn.(6-11).

It is also possible to determine the control signal u; as follows:
U; == Uv; - sgn (Mw) (3=1~n)  (6-13)

where, Uv; is a positive constant, and the control signal ll; is bounded

by {Wl¢Uvj; . By the control described above, the time derivative of the

Lyapunov function becomes:

dv 3%
at }Z,E{aé‘ v Ay 34‘“} *(Pejo= Pej - Py Aw,)/M,} (6-14)
3\/ Uv;
e leaa Mg

As shown in eqn. (6- 14), the damping characteristic of the system can also be

improved by the controller descrlbed by eqn.(6—13) because dV/dt is smaller

Uv;
due to the additional negative control term - aAw,I .

In order to improve the damping characteristic of the system, two types

of controllers, i.e. eqn.(6~-11) and eqn.(6-13), are proposed using the
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energy function as a Lyapunov function of the system. The control described
by eqn.(6-11) is a proportional type control and the control described by

eqn. (6-13) is a bang-bang type control.

Section 6-3. Application to a 3-machine Problem

The same 3-machine system shown in section 3-4 is used for the modél
multi-machine system. The system parametérs and the initial conditions and
the admittance matrices under several system conditions have already been
shown in Table 3-4—l;v Table 3-4-3,

It is assumed that the internal induced voltage behind the transient
reactance is constant for each ﬁachine. Namely, E%} has its steady state
value during all the transient processes of the model system. Furthermore;
each machiné in.the model system is the salient-pole one, so Eg} becomes
equal to zero during all the transient processes. 'Then the system equations
are described by only the mechanical equations of motion of the form
expressed by eqn.(6-6) and eqn. (6-7).

For the model 3-machine system, the control signal U; (= AFQ;) becomes:

u, = — £, M,.{Mz.(Aw,—Aw2)+ M3-(Aw|—.ALU3)}
Uy = — Ry Mz-{Ma'(A‘Uz‘Awa)"; M- (8w - awy}
U3 = - ’fﬁa' M3°[M1'(A(U3~ Au).)+ Mz‘(AW_;— A(Uz)}

where, fe; = 1/R3.-MT, Mr= Mi+ Mo+ My

The system responses have been obtained by solving the system equations
using Runge-Kutta-Gill method under the following system coﬁditions;
(1) Three phase to ground fault occurrs at the point A in the model system
at the time t=0.0 sec.. (2) The faulted line is isolated from the system by
the circuit breakers at the time t=0.2 sec.. (3) The faulted line is reclosed

at the time t=0.3 sec.. after clearing the fault.
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The responses of the model system applied with no controllef are shown
in Fig.6-3-1. The responses of the model system.applied with the above
controllers are shown in Fig.6-3-2 and Fig.6-3-3. 1In Fig.6-3-2, the positive
constants #®; , +, and ®s; have been selected as 0.3, 0.3 and 0.0, and in
Fig.6-3-3 the positive constants Ry , #; and #, have been selected as
1.0, 1.0 and 30.0, respectively. Furthermore, in Fig.6-3-3 the control
signals W: , WUz and Uz have been bounded by lu,lg 0.2, luzl¢ 0.2 and
Uzl € 1.0, so when the absolute values of the control signals Wy , U; and
U3 are greater than 0.2, 0.2 and 1.0 respectively, the.above control
becomes a bang-bang type control and otherwise becomes a proportionai type
control. | |

As shown in these figures, the damping characteristic of the model system
can be much improved by the above controller, and fhe-improvement becomes

greater for the greater values of the positive constants 4, , 4, and 1%3 .

Section 6-4. Summary

In this chapter it has been shown that the Lyapunov's direct method is
indeed applicable to the control problem of non-linear systems. A 3-machine
power system has been used to test the effectiveness of the proposed method.

But, it is noted that in order to simplify the analysis several assumptions

have been made.
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CHAPTER 7 IMPROVEMENT OF OVERALL STABILITY

BY STABILIZING CONTROL

In the case of the linearized system, it is possible to obtain the

controller as a linear fﬁnction of the system variables as éhown in the
former chapters. Therefore, if the variables are measurable, the controller
can be easily realized. However, it.can not be guaranted that the controller
obtained from the linearized system will always be applicable to the original
non-linear system. 1In some cases such control,_derived from the linearized
system, when applied to the original non-linear system, results in undesirable
system performance. Because, the controller is obtained from the small signal
system equations, the improvement of the system performance is local in
nature, and under large disturbance conditions, the system operation departs
from the steady state operating point considerably and conéequently.the
controller determined solely from the small signalAconsideration is inadequéte
in improving the system stability under these circumstances. Namely, in
spite of its appérent advantages in implementation, the linearized analysis
can not be considered fully satisfactory.

| In this chapter, in order to improve the overall stability of the system
the direct method of Lyapunov is applied as desdriﬁéd in-chapter,6, under
the consideration of the results of the linearized analysis described in
chapter 4 and chapter 5. The effectiveness of the proposed mefhod is also

shown by the numerical analysis of the model system.

Section 7-1. Introduction of Control Law using Krasovskii's Lyapunov

Function

As shown in eqn.(6-1), the original non-linear equation becomes:

PX = F(x) + B-w (7-1)
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where, X is the n-th order state variables vector, UL is the r-th order
control signals vector , T(x) is the n-th order non-linear functional vector
and the matrix B is the (nx r) coefficient matrix.

The Lyapunov function of the above system is defined by the method of

“48
Krasovskii as follow's":’

Vix) = 4 )™ K- Fx) (7-2)

where, K : a (nxn) positive definite matrix
At the stable equilibrium point, i.e. at X = X, , the value of the above
Lyapunov function becomes equal to zero.

The t:'uné derivative of the above Lyapunov function along the trajecﬁory

expressed by eqn.(7-1) becomes:

dv | T T
Tt—é-i":ﬂ:(m)'(J'K-P K-T)- Fx) (7-_3)

+—,'z—-1b(T-BT- T K-f(x)+¥12—-f’(mc)T- K-J-B-w

In order to improve the damping characteristic of the system, the control

signal W is determined by the following equation.

W =~Foo)-Fao » Fo=R-B-T K (7-4)
Then eqn.(7-3) becomes:
N @ K T) Fe) -WTR W g5

If the matrix -(J K+ K-J) becomes positive definite, the original uncontrolled
system becomes asymptotically stable and the controller. described by eqn.
(7-4) improves the damping characteristic of the system because of the
additional negative control term -Ul-R- U .

In the above equations, the matrix J is a. (nxn) functional matrix
designated as Jacobian matrix and each term of this Jacobian matrix is a

function of the state variables of the system. And the matrix J  becomes:
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g f _ |f 2Ff oFf 3% (7-6)
o’ 9% » ¥3X2s X3 3 3Xn
2of, ofi 3f . afs
3%y 0Xzy 9% . s a;(n
o 3 2 ., P
Lax. » 39Xz, 3X3)> 5> dXn

Therefore, the feedback gain matrix F(X) becomes a (r>(n) functional

matrix of the state variables of the systém.
It is also possible to determine the control vector U as follows:
U; = - Uy - sgn (BT K- F30]; (G=l~1)  (7-7)
where, llvjis a positive constant and the control signal U; is bounded by

Tu;l € Uvj , and the symbol [']j refers to the j-th component of the column

matrix (-] .

Introducing the vector function_with vector argument $¢M , we obtain:

U = - Uy sgn [B-T" K- F(30] | (7-8)

where, W,

[u‘“; Uva, + -~ - 3 uur]
$$“[BT-\TT K-Foa) = diag. [----- , sgn (BT K- Fad;, - ]

By the controller described by eqn.(7-7) or eqn.(7-8), the time derivative

of the Lyapunov function (7-2) becomes:

. % =—'z”-if(pc)*-(m-*-m + K-T)-F60) ~ | $)- K-T- Bl- Uy (7-9)

As shown in the above equation, the controller described by eﬁn.(7-7) or
eqn. (7-8) can improve the damping characteristic of the system because of
the additional negat.ive control term -|#(x)- K-T- B u,.

The effectiveness of the above two controllers expressed by eqm.(7-4)

and eqn. (7-7) or eqn.(7-8) for the system can also explained as described

below.

It is assumed that the performance index of the system will be defined as:
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I = + [ Fo0™ N- F00 4t | (7-10)
where, the matrix /N satisfies the following relationship:
N ==(T K+ K-T) (7-11)

Then the matrix N is a (nxn) functional matrix since tﬁe components of
the Jacébian matrix J  are the function of the state variables of the
system.

If the matrix N  becomes positive definite for a given initial
system condition, the original uncontrolled system becomes asymptotically
stable and eqn. (7-10) can bé considered as the performance index of the

system. Furthermore, we get the following relationship.
- i
Iw = Vool + [w 8 T K- F0dt (7-12)
’ /]

When the system is applied wiﬁh the above two controllers expressed by

eqn. (7-4) and eqn.(7-7)or eqn.(7-8), eqn.(7-12) becomes respectively as

follows:
Iw= Voly., ~ [ u™ R wdt o @-13)
Iw= V0lteo - [ |$0 K-T-Bl- Uy (7-14)

As shown in the above two equations, the value of the performance index
is smaller due to the additional negative control term -szm-udt or
'LTf(K)TK'T'BI- U, , conseguently the system performance can be improved by the
above two controllers. |
The controllers proposed, i.e. eqn.(7-4) and eqn.(7-7) or eqn.(7-8), are
reépectively a proportional type controller and a bang—bané type controller.
In this section, the controllers are determined by the Lyapunov function
defined by Krasovskii, ﬁere it is noted that Krasovskii's theorem offers a
éufficient condition on the asymptotic stability of the non-linear system,

so the stable region obtained by this theorem is narrower than the practical



stable region.

Section 7-2. Determination of Feedback Gain Matrix

The stabilizing controllers are determined by the method described in
section 7-1 for the model systems shown later. In these model systems, the

following relationship is satisfied.

BT = B"A

+
B. (7-15)
where, A = :lf'lxﬂCo = aﬁ‘/aqu: %, s Wo ¢ stable equilibrium point

Consequently, eqn.(7-4) and eqn.(7-8) become:
-F-foo , F = R'B:-K (7-16)
- Uy - sgn[R-F- ()] (7-17)

u

T

u

In the above two equations, the feedback gain matrix J becomes a constant

matrix.

N “9)
7-2-1. Complete Feedback Stabilizing Controller

In order to determine the feedback gain matrix F , it is necessary
to choose anappropriate positive definite matrix HK . It should be noted
that selecting the (nxn) unit matrix as the matrix K will often 1ead.to‘
sucéess, but in this section we define the solution.ﬁatrix.of the following
matrix Riccati equation as the matrix /}K under consideration of the results

of the analysis of the linearized system shown in the former chapters.
“1 T
A+ KA - KBoR“Bolk + 6 =0 (7-18)
where, the matrix @ is a positive definite or a positive semi-definite
matrix.
When the disturbaces are sufficiently small, the original non-linear

system described by eqn.(7-1) can be approximated by the following linearized -

system around the operating point X = 3, .
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PX = AX + Bor W | (7-19)
whgre, X : n-th order state variables vector
u r~th order control signals vector
A; Bo (nxn) and (nxr) coefficient matrices
X = A-ax
AX = X - Mo
B, = A-B

-
A= Tlxen = of/ax | s 5o
The Tailor expansion of I(X) around the operating point becomes:

f(m) = f(Xo) + Bf(x)/ax" ’K=£(°AK + ( zigzexr tems) (7_20)

So, the state variable X is the first approximation of F(x) around the

operating point, and for sufficiently small AX , the following relationship

is satisfied:

X = F(x) - (7-21)

Then, eqn.(7-16) becomes:
WU =-F-X , F =R"B"K (7-22)

The above controller minimizes the following quadratic performance index

of the linearized system described by eqn.(7-19).
I (%o T
T =5 (X"6-x+u-R-w)dt . (7-23)
0

Furthermore, the above cbntroller also minimizes the expected value of J
, i.e. the value of Tr( K ).

As described above, the feedback gain matrix F of the controller
expressed by eqn.(7-16) or eqn.(7-17) becomes the optimal state feedback
gain matrix for the linearized system. Then, for sufficiently small dis-

turbances the controller described by eqn.(7-16) and eqn.(7-18) becomes the

optimal state feedback controller, and the system performance can be improved
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by the controller. Furthermore, with the reason descri§ed in section 7-1
for large disturbances the controller can also improve the system performance.
Consequently, it may be possible to improve the overall Stability‘of the
original non-linear system by the controller described by eqn.(7-16), eqn.
(7-17) and eqn. (7-18). |

In this thesis, the controller is designated 'complete feedback stabilizing
controller'. 1In order to construct the éontroller, it is necessary that all
the system states 'fi (j=1~ n) are measurable. But, in practical power system
it is almost imﬁossible to measure all the system states, so it is necessary
‘to construct the stabilizing controller using only the measurable system
states, i.e. 'incomplete feedback stabilizing controller'.

7-2-2, Incomplete Feedback Stabilizing Controlleé‘”

As shown in the above section, the feedback gain matrix of the complete
feedback stabilizing controller is equivalent to the optimal state feedback
gain matrix for the linearized system.

In order to determine the feedback gain matrix of the incomplete feed-
back stabilizing controller of the form described by eqn.(7-16) or eqn.(7-17),
the theoretical results which can be used to determine the optimal output
feedbéck gain matrix for the linearized system are represented briefly.
fhese results h;ve already been represented by W.S;ievine and M.Athaégé(%tt
here these results are extended as follows.

For the linearized system described by eqn.(7—i9),'it is assumed that

each element of the control vector U; (j=1L~r) is represented by the linear

combination of Vj outputs Wi (k=1~V;):

re
Uu; = —ZZ h}n-wik=—H’t}-W’

P i (3=1~ 1) (7-24)

Wy = € X (3=1~1) (7-25)

where, the vector m} is a Y} ~ dimensional row vector, and C} is a (Y}x n)

coefficient matrix. From the above two equations, the control vector W
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for the linearized system becomes:

W = - fF-X | (7-26)
where, F = | R F; = ;¢ (3=1~1)
fFa
Fr

The expected value of the quadratic performance index J described by

eqn. (7-23) becomes:
A ’ ™ . . |
J o= ;LTr[LMP{(A-Bo-m}-(mF-R-w)-exp{m-ns,-rwt}at] (7-27)

For simplicity, the constant !/2n has been droped from eqn.(7-27), then the

performance index, which has to be minimized, becomes:
A 0 - _
T = Te[fexp {(A-BoF)t]-(0+ F'R-F)-2xp[(A-B )t at] (7-28)

Here, we derivate eqn.(7-28) with respect to !h} s the parameter sensitivity
N

of T with respect to th; becomes:
—aa\- = .. — -T. . . T i=1A ‘ =2
o = (“} i lb& K) 1L G:J, (3=1~1) (7-29)

where, \\’a', is the j-th row of the matrix R and fb} is the j-th column of

the matrix B, and the matrices K and IL become:
K = fe«p(m- B, FIEH(O+ F-R-F)-2xp{(A-BsF)t } dE (7-30)
L = exp{tA-BoF)t} exp{(A-B P}t (7-31)
] .

Alternatively, the matrices M and [ are the positive definite solutions

of the following Lyapunov's matrix equations.
T
(A-Bo-F)- K + K- (A-BoF)+ &+ F-R-F =0 (7-32)
' T . :
(/A" Bo'ﬁz)' L + lL. (A" Bo'}F) + I =0 (7-33)
Here, it is assumed that the matrix R is a diagonal matrix shown below.

R =¥ | =diag. (i, ¥, cooee, v ] (7-34)
W2

¥
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Then the optimal parameter ih,‘,' is given by 3?/3 ”7}‘. = 0
1 T T T+ - ) A
'hj =,_):,;—' bj - H('Um(fi'(dfj'l!.,'(tj) (=1~r1) (7-35)

- T T\~
F; =’\1F;' b; - - L- €5-(€4-L-€;)- €5 (§=1~1) (7-36)

[
By the controller described above, the performance index J . described by

eqn. (7-28) becomes:
T = Tr(K) (7-37)

There are several remarks about the above theorm; First, it is noted

-1 .
that if we assume (E&' exists for j=l~r, eqn.(7-36) reduces to:

Fi=5 bl K | (=l~1)  (7-38)
i.e. F = }R_" B. - I

Furthermore,. eqn. (7-32) becomes the matrix Riccati equation described by
,eqn.(7;18), namely the above output feedback controller bécomes the optimal
state feedback contfoller for the linearized system. Second, eqn.(7—32),
eqn. (7-33) and eqn.(7-36) show the necessary conditions for optimality.

The incomplete feedback stabilizing controller is éonstructed as follows
using the optimal outputAfeedback gain matrix for the linearized system

obtained by eqn.(7-32), eqn. (7-33) and eqn.(7-36). |
U = - F-F(x) - (7-39)

7-2-3. Iterative Algorithm for Determination of Complete or Incomplete

Feedback Gain Matrix

As shown in section 7-2-1 and section 7-2-2, the feedback gain matrix
of the complete or incomplete feedback stabilizing controller is selected
as the optimal state feedback gain matrix or the optimal output feedback
gain matrix for the linearized system described by eqn.(7-19).

The feedback gain matrix F ,which minimizes the value of Tr(/K ), is

152),(53)
researched, thus the problem can be considered as:
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min 3\' = min Tr( K )
F ¥

subject to
(A-BoF) K+ K- (A-Bo-F)+ & + F-R-F = 0
Then, the feedback gain matrix K ,which minimizes the value of Tr( K ), is
determined iteratively in the following steps.
Step 1: Assume an initial value of the feedback gain matrix TFM such that
the linearized closed-loop system PX =(A-BoF)X becomes stable.
Step 2: In order to determine the matrices H((D and -U..(i) , solve eqn.(7-32)
and eqn.(7-33), i.e. ' .
- . . . . T .
(A- Bo.ﬁ;(t))'l: ”((!)+ ”(“"(A"%o'ﬂ:(l)) + Q + }F(L). R.- ﬁ:(t)__: 0
. (A__ Bo'ﬁ:‘u)' u_'(i)+ u_.(l'-)_ (A_$O.H:({))T+ I=20

. . . . (i) . )
Step 3: Determine the direction of correction D “for matrix F. using the

. . (54, (55
following equation. )

ID(L)= F(‘L) _ H:-(‘L)

)
where, F is determined by eqn.(7-36), i.e.

r—F"(i)___ _’% ) lbjT° KO 0. (r}.'"_ (fi' . lL('i)d.‘{)-'- C;

Step 4: Correct the feedback géin matrix ﬁ:ﬁ" by the following equation.
}F(ug vﬁ:{i’-,- o((-i')ID(U
= min Tr(K)

Step 5: Calculate || Vf/l (= é"; ”b?/am}vﬂ) by eqn.(7-29).

Step 6: Check of convergence by HV? <€ .

If the step 6 is not satisfied, return to the step 2.
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Section 7-3. Application to a One-machine Problem

The power system under investigation consists of a synchronous machine

unit connected to an infinite bus through a transmission line as shown in

Fig . 7—3—1 »
jb% (Xet) O Vo
YU R
[/ Z
& Xt (Xe1)

infinite bus

Fig.7-3-1 Model .of one machine system

It has both voltage regulator and speed governor. The modeis shown in Fig.
2-3-2(b) and Fig.2-4-2(b) are used for these control systems, and the
additional control signals U: and U: are determined by the method described
in section 7-1 and section 7-2.

7-3-1. Non-linear First Order Differential Equations of Model System

The mathematical representation of synchronous machine described din
section 2-2 is used in order to obtain the original nbn—lineaf equations
of the model system. _

The.synchronous machine equations (2-26)-(2-29), (2-32) and (2-33) are

rearranged as follows:

P& = Aw | (7-40)
fAu): (Pt = Pe - Piraw)/M (7-41)
pE; = { Efd - Eg' - (%4 - xd)-id}/ Tas | (7-42)
PEa={  -Fi+(Xg-x{)-ig}/ Ts (7-43)
where, Pt = Pro+ AP, Ega=FEgo+aEgq , Pe = Uy-ig+ Up-ig

From eqn. (2-35), the voltage regulator action becomes:

paEy,= {-Ke(aVi+ V5) - dEfd}/Tf + K- U/Tg (7-44)
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PVs = Ks'{~Ks-(aUp + Vs)=aEga /T4 Ts - Vs /s (7-45)

+ Kf-KPUi/Tf-Ts
where, Ui =JUs'+ V32 | A= Ur - W,

AEq = fAEfdmaz. for AEsf4 > 4aEfdmax
AEu for AEfamin < 4F44 < AEgdmax

AE#dmin for AEfs ¢ AEfamin

From eqn.(2-38), the governor action becomes:

paR = (- K- aw/w,- aPy)/Ty + Ky U2/ Ty (7-46)
paP= (aPv-aPs)/Ty . (7-47)
where, AP, = f APvmax for APv > 4Pvmax |
APy for A Pymin < aPv< aPumax
APumin | for aPv € aPumin

- The terminal voltage and current become :

Vs

i

Ed + X§ i3 | o (7-48)
U; = Bp - %Aa- 14 (7-49)

‘The equations of the transmission network become: as follows in the steady

state system configuration.

a = (Ej = Vo-cos &)/ (Xd + 2y + Xe) (7-50)

(-Ed+ Vo-sin 8§)/ (Xg + Xt + Xe) (7-51)

I

Ly
For large disturbances in the model system various system conditions are

considered as shown in Fig.7-3-2. For these conditions the equations of

the transmission network become: :

(@) da= Eg/(xi+Xe) | | (7-52)
lg= ~Ea/(X5+Xe) | (7-53)
®)  a= [ Ef-(Xert Tez) = Xer-Viyr cos 8 L (2 + 2e)-( Xet + Xe) (1-54)

+ Xe;-xez}
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i’% = {" Ed,- (Xer+ Tez) + Xea-Vo- sin 8}/{(1{*‘ XAt)-(Xet+ Xez) (7-55)
+ Xet-Aez }

(@) 14 = (Ef-Ve-cos8)/(xd'+ X+ Xer) (7-56)
ig = (-EJ +VorSinS)[( Xy + Xt + Ket) (7-57)

In the above equations, the armature and the transmission line resistances

are neglected.
% Ket Vo
t .
a
O I—%
[ :
- (a) Three phase to ground fault at the point a

Vb o | Xe - \

’

(b) Three phase to ground fault at the point b

Vi %y Ket Ve

(4

(c) One line operation

Fig.7-3-2 Various system conditions

From the above equations, the original non-linear equations of the model
system can be described in vector form shown in eqn. (7-1), where the state
variables vector X , the control signals vector W and the non-linear

functional vector F(X) become:
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X = (&, aw, E4, EJ, 8Esa, Vs, aPv, aPs] ~ (7-58)
w o= (ur, Uz]” | (7-59)
fx) = [‘Ft, 'f'a, Tfa,f4,'fs,')cs,fq,7ca ]T (7-60)"

vhere, T = p& PEgt , To = pEJ

Is

’ j:z = PAW ’ f3

{—Kf-(AUt +Vs)- 8E5d } /T _fé ,

Ks{~Kg-(aUt+ Vs) - AEfa }/ T3 Ts
-Vs/Ts

&k
]

Fa = (~Kg-sw/w,-2P)I Ty paPy

7-3-2. Linearized Equations of Model System

In order to obtain the feedback gain matrix of the stabilizing controller,
we need the following linearized equations around the operating point of the
‘model system under the steady state system configuration.

From eqns,(7-40)-(7-51):

pad = aw . (7-61)
Paw = (aPe - aPe - Pa-aw)/M (7-62)
paEy = [ AEfs - AE{ ~(Xa-Xd)- 014 } [/ Td (7-63)
pAE, = { ~aEd + (g - gy aig }/ Tso | | (7-64)
Pabu= [~ Ke-(aVe+Vi)-2Ega} /T4 - Ke- Wi/ T ~ (7-65)

PVS = Ks;{‘kf'(du},"'Vs)'AEfJ}/Tf-Ts - Vs/Ts+Kf'K5'ul/7}-T} (7-66)

PAR= (- Ky aw/w, - 6PV)/ Ty + Kg-Uz/ Ty (7-67)

PaPy= (aPy -~ aPe)/Th - (7-68)
where, AUQ = AEdl-f- XEI'Ai,g_, AUZ= AEgl-Xd"AiJ) aPe = Vdo-Big + Uga-Aig_
, "'iJa’AUd'f' ixo”i U'z_
Aiy= (4B + Vorsind,  a8)/(Xd + At +Xe)
4ig = (~4E4 + Vo-cos8s-a8)/ (2§ + Xt + Xe)

Let vector AY be defined as follows:

AY = [aVy, aV;, aid, aig]’ (7-69)
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From the above equations, the linearized equations of the model system can

be rewritten in vector form as:
PAX = A-4X + Ay 0¥ + B-w (7-70)
2Y = Ay AX (7-71)

From the above two equations, the linearized equation of the model system

can be written in the form shown in eqn.(7-19), where the matrices A and

Bo become as follows:

A
B,

Ar + As As (7-72)
A-B | (7-73)

In the above equations the subscript O denotes the steady state value, and
the components of the matrices A; , Az , As , and B are shown in Table
A-3 in appendix.

7-3-3. System parameters and Initial Conditions

The parameters of the model system are shown in Table 7-3-1. Before the
constructiﬁn of the matrix A , it is necessary to find the steady state
values of the system variables. After the load flow calculatioﬁ, the steady
state values of the system variables are determinéd using the phasor diagram
shown in Fig.7—3—3.A The initial conditions of the model system are shown
in Table 7-3-2, where the operating point of the synchronous machine is
selected as follows: P, (active power output or electrical output)=0.5 p.u.,

Qo (reactive power output)=0.1 p.u., and Vi, (terminal voltage)=1.0 p.u.

Table 7-3-1 System parameters

Xy =1.0,  X§ =0.23, Xy =1.08, X} =0.23, Ti =5.6 sec.,
Tpe=4.5 sec., T (=w,M)=6.0 sec., P4 =0.01, X4 =0.1,

Xey =0.6, Xe =0.3, Ky =10.0, Tg =0.2 sec., Tn =0.2 sec.,
Kf=5.0,  Ks =0.01, Ts =0.2 sec., Ts =0.1 sec.
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\E4
1

STXe-p
(Teaa)

V, = Vo'COSS-i—éVo'SinS

i(xa"x")' it (

t=1+¢ig, 1’4=v‘,+juz

g-axis
imaginary)

Fig.7-3-3 Phasor diagram for initial conditions

Table 7-3-2 Initial conditions

P, (= Pes )=0.5, 8, =0.1, V;, =1.0

V, =0.98062, 0. =0.20537 rad., S, =0.65881 rad.
Vo =0.43807, Vjo =0.89894, 140 =0.30887
ig0=0.40562, Ego =0.96998, E;, =0.34477
Esde=1.20781, Peo =0.5,

7-3-4. Numerical Results

The feedback gain matrix ' of the model system, which minimizes the

value of Tr(l ), has been determined for each case shown in Table 7-3-3

using the iterative algorithm shown in section 7-2-3, and is shown in

Table 7—3;4 for each case.

The convergence characteristic of the above iterative calculation for

case 3 or case 5 is shown in Fig.7-3-4. The value of Tr(/ ) converges to

its minimum value by about ten times iterationms.

for each case is shown in Table 7-3-3.

The minimum value of Tr(K )
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value of Tr( K )

. Table 7-3-3 Restriction of feedback places and minimum

Case u;fi o 'f'z 'f'; f. £ fi £ K min of Tr( K )
Case 1 Ui | * * * % * * * * 13.144
Uyl * * * * * * * *
Case2 |W| * * 0o o0 * 0 * * 13.233
U | * * 0 0 * 0 % *
Case 3 (W|o * o 0o * o0 0 0 13.438
U1 0 * 0 0o 0 o * *
Case 4 |W| * * o0 o * o0 * 0 13.989
U * x o o * 0o *= o
Case5 |W|l* % o o * 0 0 0 14.014
Wl +* "+ o0 o o0 0 * 0
Case6 fW|o * o o * o o o 14.414
U| o * ] 0o o0 0 ] *
Case7 |,/ O 0 ©0o © O 0 0 O 177.934
u{o o0 0o © 0 0 0 O
B =diag. (11111111
R = diag.(1,1)°
( * denotes the feeciback place )
Table 7-3-4 Feedback gain matrix fF
Case 1 Case 2 Case 3
U, u, WU U U, U,
£ 0.4717%10" 0.1774 10 -0.2533x10" 0.4321x 10" 0.0 - 0.0
T, | -0.3163x10" 0.9593 -0.3322x10" 0.1321 -0.2763% 10" 0.1084
5, 0.1577 0.7338 . 0.0 0.0 0.0 0.0
.| -o0.8551x10% -0.1302 x 10 0.0 0.0 0.0 0.0
fs | -0.9618 0.5515%X10"'| -0.3836 0.8501 X 10" -0.4671 0.0
% -0.3104 X 10" -0.1337 0.0 0.0 0.0 0.0
p -0.4154 x 10" -0.9793 0.6874 X 1G° ~0.1080 0.0 ~0.8245X 10"
fo | -0.4639x10" 0.5690 -0.2960x 16" 0.1935 0.0 0.1861
Case & Case 5 Case 6
u, U, U, U: w u,
-+ -0.2791x 10" 0.5568X 10" | -0.1632x 10" 0.6746% 10" 0.0 0.0
Fo | -0.4234x10" 0.6848x 16" | -0.2427x10" 0.7504 x 16" -0.1114x 16" 0.2984x 16"
3 0.0 0.0 0.0 0.0 0.0 0.0
b O 0.0 0.0 0.0 0.0 0.0 0.0
fs | -0.3582 0.5269 x10' |  -0.3665 0.0 -0.1955 0.0
% 0.0 0.0 0.0 0.0 0.0 0.0
£a 0.3514 x 10" -0.8702x 16’ 0.0 -0.1045 0.0 0.0
% 0.0 0.0 ‘ 0.0 0.0 0.0 0.5520 x 16"
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( case 3 )

{ case 5)

Fig.7-3-4 Convergence characteristic

The stabilizing controller of the model system is constructed using
the feedback gain matrix FF shown in Table 7-3-4 of the form UL=-H¥fo) for
each case, When the system disturbances are suffiéiently small, the
stabilizing controller U=-f.fix) becomes equivalent to the.optimal controller
for the linearized system W=-JF-X ', which minimizes the expected value of
the quadratic performance index, i.e. the value of Tr(#K ). As shown by the
minimum value of Tr( K ) in Téble 7-3-3, the small signal performance of the
model system is ﬁuch improved by the stabilizing coﬁtroller and the
improvements are almost equal for both the cémplete feedback stabilizing
controller (casé 1) and the incomplete feedback stabilizing controllers (
case 2n«casev6).

.In order to investigéte the control effects by the above stabilizing
¢ontrollers following three system disturbances have been considered.

(1) The three-phase to ground fault of 0.3 sec. duration occurrs at the

point a in the modei system.
(2) The three phase to ground fault occurrs at the‘point b in the model

system at the time t=o0.0 sec., the faulted line is isolated at the
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time t=0.2 sec. and the faulted line is reclosed at the time t=0.3
sec. after clearing the fault.

(3) One of the parallel transmission lines is isolated at the time

t=0.0 sec..

The system responses following the disturbance (1) are shown in Fig. -
7-3-5~ Fig.7-3-8. It is obvious that the stabilizing controller W =-f F(x)
much improves the large signal performancé of the model:system, and the
improvements by the incomplete feedback stabilizing controllers aré almost
'equalﬁo those by the complete feedback stabilizing controller.

As shown in Fig.7-3-5, the optimal controller UW=-F-X for the linearized
system, wheﬂ applied to the original non-linear system, results in undesirable
system performance, i.e. it makes the original non-linear system unstable
under the large disturbance condition.

In Fig.7-3-5 and Fig.7-3-6 the control signals U; and W, are bounded
by Iuil £ 0.5 and by [U,;/< 0.5, so when the absolute values of the control
signals Ur and U; are greater than 0:5, the stabilizing contfollers become
the bang—ﬁang type controller and otherwise become proportional type
controller.

In Fig.7-3—7, the control signals Uy and U3y are bounded by [U]<0.5
and |Uz/< 0.5 or by JU,]< 2.0 and [Uz/< 2.0, and for the larger values of
~ the bounded valueé of the control signals, the improvements of the system
performance become gfeater.

In Fig.7-3-8 the phase plane trajectory of the model system applied with
the bang-bang type stabilizing controller is shown. The control effect by
the bang-bang type controller is almost equaito that by the proportional type
stabilizing controiler.

The system responses following the disturbance (2) or (3) are shown in

Fig.7-3-9 or Fig.7-3-10 respectively.
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Fig.7-3-5 Control effect by the complete feedback stabilizing

controller
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Fig.7-3-6 Control effects by the incomplete feedback stabilizing

controllers
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— W =-TFFx) (case 1)
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Fig.7-3-8 Control effect by the bang-bang type controller
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Fig 7-3-9 Control effect by the complete feedback stabilizing

controller



- 117 -

1.5+
el
g 1'0— - - —— -
”' \\ ” - “i~_ ."’A‘-
o - ~ —— -
0.5~
t
0.0 T T T - . T
0.0 0.5 1.0 1.5 2.0
(sec.)
~
B
X;) . t
PP et =TT TN LT T ——
3 0.0 B T IoF L
< 0.5 1.0 1.5 2.0
{sec.)

— : W=-F-Ff(x) (case 1)

=-=-= : without controller

Fig.7-3-10 Control effect by the complete feedback stabilizing

controller

The system performance’is also improved by the stabilizing controller.

In the above calculations, the same feedback gain matrix F , which ié
determined in the steady state system condition, has been used during the
all the processes of the system transients.

As described above the stabilizing controller ¥=-Ff®w can improve the
system performance following both large and small disturbances. The
improvement by the well selecting incomplete feedback stabilizing controller
is.aimost equivalent to that by the complete feedback stabilizing controller,
so it is possible to construct the stabilizing controller using only the

measurable states of the system.
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Section 7-4. Application to a 3-machine Problem

The same 3-machine system shown in section 3-4 is used for the model
mulﬁi—machine power system. The system parameters, the initial conditions
and the admittance matrices under several system conditions have been
shown in Table 3-4-1 ~ Table 3-4-3.

The control systems for each machine are shown in Fig.2-3-2(a) and Fig.
2-4-2(a). In the model system, No.3 macﬂine is conventionally used to |

 represent a large scale power system, and the control systems for No.3

machine are not considered here.

7-4-1, Non-linear First Order Differential Equations of Model System

In section 6-3, the stabilizing controller of the model system has been
introduced using the simplified model, namely only the mechanical equations
of motion have been considered and the deviation of mechanical input has
been considered as a control signal under the assumption that the governor
action is idealf

In this section, the stabilizing controller of the model system is
determined usipg the detailed equations of the model system. These equations
have already been represented in section 3;4, and a little modified forms
of these equations are used.

From eqn.(2-34) and eqn. (2-37), the voltage regulator and the governor

actions of the j-th machine become :
PAEgap= (- K- Vi - 0F03)/ Ty; + Kej- Ui/ T (7-74)
paRy = (-Ksj- Awi/w, - aPei)/ Tyy + Rg;-uga‘-/'r?j, (7;75)
where, j=1,2 and

AEfJ}' = f AEfdimax for AEgaj > AEijmax
AFs4; for AEsd;min < AEfd; < AE4d;max
¢ ¢ ¢ )

fal Efdjmin for AEfd}‘ & AEfdimin
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Apt = [ APtqu for 4Pt > aAPemax
AP for APemin < 4 Pe < aPemax
APemin, for APt < APtmin

The original non-linear equations of the model system can be written

in vector form shown in eqn.(7-1), where the state variables vector It , the

control signals vector and the non-linear functional vector j’-(x) become:

X =(8n, &, 4wy, aw,, aw;, Esi , Egz, Egs, . (7-76)
+ oFsd1, aEsde, 4P, 4?1:2]

u = ['L{H, Wi, Uai, u22] ' (7-77)

-ﬁ(x) = [f( 3 fz , -fgl """ Sy '.flz ]T ' (7—78)

where, F, = P& = aw,-aw,, ¥, = pdas = AW, - AW,
fs = pawi, £, = paw, , fr = paw; , % = P Egi
B = PEg. , i = PEgs

%5 = (-Ks-aVe1 ~ aEpi)/ Ty s Tro

‘JC" =(—K31-ALU«/UJ,—AR;,)/7}' . jclz

It

]

(- Kf2-aUsz - AEd2)/ T2

("‘ ng' AU)Z/LUo - APtz )/ng

The state variable X of the model system used here is a little
modified in comparison with that used in section 3-4; the internal induced
'~ voltage Ed/é. in direct axis is neglected here since all the synchronous
machines in the model system are salient-type ones, Ia‘nd the difference

angles 13 (=d1-4;3 ) and &23 (= & - J‘s') are considered instead of the

rotor angles =Y , J2 and d3 .

7-4-2, Linearized Equations of Model System

In order to obtain the feedback gain matrix of the stabilizing controller

of the model system, we need following linearized equations of the model

system.
pad,= AW, - 2w, | (7-79)

pady = AW, - AW, (7-80)
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4 / Vi .
PAEﬁ = {AEfdi - AE;; ~.(Xd3- XJ,')-IJJ,}/‘QJj (j=1,2) (7-81)
PAEZS = {" AEgla "(Ids - 143’)' ids }/Tdc:s (7"82)
PAW; = (aPsi ~ aPej - PJ}-A(UO;)/M} (3=1,2) (7-83)
pAW; = (-APes ~ Pis-aw;)/M; (7-84)
PaBg= (~Kfj- AUk - AE$d;) [ Tg; + Kgj- Wi [T (3=1,2) (7-85)
PAPC}= (_K3)Awd/‘Uo"APt(})/-rg}+K?J'U2J/T93-’ (j=l’2) (7—86)
. Viio . Vzzo . »
where, AU%J = Vt; .AU:;} + Tfi}% aly; |
aRj = Usjo-aia; + Ugjo- aigj + Lajoralsj + igjor aUs;
’ ’ . .
AE“-= AU:;J', + xdj,-A‘Ldé, + Y‘}. A‘ij
The transmission network equation becomes:
o Gy 2Yix ¥y
A EJJ,= KZ;‘{ YJ*‘ }§5=§50'AU4K+ 385 l.r,-,;,'-,wko%St + 35«/3}'?” (7-87)
K= dko x=dro k=Ko
X Uyko-dé‘k.}
let vector AX , AY and AF be defined as: - |
AN = [ 45\13, Acfaa, AW, aW;y, AWs;, AEz:, AEg;,AEg;, (7-88)
AEth, AE-szl 4Pt1, APtz]T
oY = [AU:“: Avgl; Avdz, a4 U’ga, 4Vus, a Ués) alas, Aig,, (7-89)
blde, dige, Alas, aigs]”
87 = [4ds, 882, aEy], aFy,, aEf 1T (7-90)
Then, from eqn.(7—79)—eqh.(7—87):
PAX = A aX+ Ar-a¥ + B-uw (7-91)
As-aY = P4 az (7-92)
4Z = Ag-4X (7-93)

From the above three equations, the linearized equations of the model system

can be written

Bo become:

in the form shown in eqn.(7-19), where the matrices A and
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]

A, AL+ Az /A;" As- As , (7-94)

Bs

A-B (7-95)

The components of the matrices_rfz\t s Az ’ As s A4 » As and B are
shown in Table A-4 in appendix.

7-4-3. Numerical Results

The parameters of the control systéms‘ have been sele.cted as shown in
Table ‘7—4—1.

The feedback gain matrix F of the model system, which minimizes the
value of Tr( #{ ), has been determined using the iterative algorithm shown in
section 7-2-3. The complete feedback gain matrix and anincomplete feedback
gain matrix are shown in Table 7-4-2.

The stabilizing controller of the model system is constrqctéd using the
feedback gain matrix F shown in Table 7-4-2 of the form W=-F-F(x) . When
the disturbances in the system are sufficiently sméll, the stabilizing
‘controller U=-F-F(X) becomes equivalent to the optimal controller u=-FX for
the linearized system, so the small signal performance of the model systen
can be improved by the stabilizing controller as described befére.

In order to investigate the control effects by the stabilizing controllef
for large disturbances, the following sy;stem condit.i‘ons have been considered;
(1) Three-phase to ground fault occurrs at the point A in the model system
at the time t=0.0 sec., (2) The faulted line is isolated at the time t=0.2
sec., (3) The faulted line is reclosed at the time t=0.3 sec., after clearing
the fault. |

The responses of the model systetﬁ applied with various controllers, i.e.
no controller, optimal controller WU=-F-X for the linearized system, complete
or incomplete feedback stabilizing controll U=-F-Ff(x) , are shown in Fig.
7-4-1 A, Fig.7-4-5, |

In this case, the model system is stabilized by the optimal controller
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Table 7-4~1 Parameters of control systems

Ks; =

I
W
o
.

Y

I

0.2 sec.

oy
ad
Oy
]
N
W
.
o
-
o
*l

= 0.3 sec.

Table 7-4-2 Feedback gain matrix F

Case 1 (complete feedback)

Ut U2 Uz Uz2
£ -0.1433% 10"  -0.3712x107% 0.7584 X10%  -0.3486 X107}
T2 0.4627 X 10%  -0.6468X107°  -0.4896X 10>  0.7380X10 -
fi | -o0.1938x10% -0.1649x10°>  0.1795x10?%  -0.3163x10°*
% 0.9411X10°  -0.1754%107*  -0.2057X10°%  0.1783x 10 2
£ 0.8086 X102 0.4847x10°%  -0.8504 X102  -0.8975 X10
£ 0.7897 X 10 0.1797x 107" 0.5424X10°>  0.6384 X102
¥4 0.2025 x 10" 0.6569% 10" 0.6668 X103  0.4720%10°°
f¢ 0.5795%10"  0.6473x 10"  0.3235%X10°3 . 0.2082%x10°
Fq -0,2788 -0.2629x 10" 0.2968 X 10° 0.1994%10"
o 0.5510x10%  -0.2788 0.3160X 10*  .0.2626 X107
Fu | -0.1016 x10"  -0.1141X10%  -0.5436X 102  -0.1108 %107}
$n | -0.6160x10°  -0.8976x107  0.1125x10°  -0.5440 %10
Case 2 (incomplete feedback)
U, Uz Uz Uz
£, -0.5545 % 10™ 0.0 0.7472 X102 0.0
5, 0.0 © -0.4315% 10" 0.0 * 0.7940 X102
f3 | -0.5543x10% 0.0 0.8518X 10° 0.0
f. | 0.0 -0.4857X10° 0.0 0.3973%10°
+s 0.0 0.0 0.0 0.0
- 0.0° 0.0 0.0 0.0
1, 0.0 0.0 0.0 0.0
£, 0.0 0.0 0.0 0.0
f, | -0.4968 0.0 0.0 0.0
Fo 0.0 -0.4914 0.0 0.0
f. | o.0 0.0 -0.1010% 10" 0.0
f | o.0 0.0 0.0 -0.1030 X 10"
e = diag. (0.1,0.1,0.1,Q.l,0.l,0.1,0.1,0.1,0.1,0.1,0.1,0.1)
R = diag.(1.0,1.0,1.0,1.0)
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(b}
aw,
TN
AW
t
.5
TT T 1 ¥ 1
tt, 1.0 1.5 2.0
(sec.)

(c) ()

2.0

0.2 sec. : the faulted line is isolated

0.3 sec. : the faulted line is reclosed

without controller '

with the optimal controller W=-FX for the linearized
system (case 1)

with:the chpléte feedback stabilizing controller
U=-F - F(x) -
with the incomplete feedbaék stabilizing controller
U= -F F(x) * (case 2)

(case 1)

Fig.7-4-1 Responses of the angular velocities AwWw; , AW, and AW,



Fig.7-4-2
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1.54
(a) (b)
1.0+ 5\‘3 1.0 S‘a ‘
Y 0.5~ 0.5
AW N
5] 23 23 )
- /\ 0\ t /\ /\ t
t‘6-0.0 e T T 7 0.0 ¥ T ¥ =1
1.0 2.0 2.0
(sec.) 1'0‘ (sec.)
~0.5+ -0.5
1.0 1.0J
(c) (4).
'E 0.5 - 6‘13 0.5+ Xl?l
(§ kY t
a & t 2 _
<9 0.0 _,"33 T /,\‘—,‘__I 0.0 4= rl\ T 1
1.0 (sec.) - 2.0 1.0 ({sec.) 2.0
0.5 4 -0.5-]
t; = 0.2 séc. : the faulted line is isolated
t; = 0.3 sec. : the faulted line is reclosed
(a) : without controller
(b) : with the optimal controller U=-FX for the linearized
system (case 1)’
(¢) : with the complete feedback stabilizing controller
' U=~ F(x) (case 1) _ |
(d) : with the incomplete feedback stabilizing controller
U=-F-F(x) (case 2)
Responses of the difference angles 333 and 523
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2.0 - (a) ' 2.0 ~ (b)

PQ{,PQ‘ (p.u.)

0.0 0.5 1.0 1.5 2,0 0.0 0.5 1.0 1.5 2.0
(sec.) (sec.)

Ry , Pea (p.u.)

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
(sec.) _ » {sec.)
T, = 0.2 sec. : the faulted line is isolated

T2 = 0.3 sec. : the faulted line is reclosed

(a) : without controller , ‘
(b) : with the optimal controller U=-F.X for the linearized
system (case 1) | ‘
(c) : with the complete feedback stabilizing controller
=~TF-£() (case 1)
(d) : with the incomplete feedback stabilizing controller

U=-F-Fx) (case 2)

Fig.7-4-3 Responses of the electrical outputs Pey and Pe2
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1.5~

1.5 -

(a) (b)

3 . ; . '
1.0 {3 W 1.0 - 3 P — 2
y - 3 3

g NV

=

0.5 - 0.5
L 1
[
t t
0.0 T T 1 0.0 T T T 1
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
(sec.) (sec.)
1.5 1.5
T (c) . W (a)

3 1 . 1
. 1.0 4 H 1.0 P 2
a. 3 3 3 3
2 2 2

nt

0.5 ] 0.5
1 1
t ‘ t
0.0 T T 1 0.0 T T T 1

t; = 0.2 sec. :
t2 = 0.3 sec. :

1.5 2.0 0.0 0.5

(sec.)

'(a)l :+ without controller

1.0 1.5 2.0
(sec.)

the faﬁlted line is isolated

.the faulted line is reclosed

(b) : with the optimal controller U=-F-X for the linearized -

system (case 1)

(¢) : with the complete feedback stabilizing controller

U= —-F-HF(x)

(case 1)

(d) : with the incomplete feedback stabilizing controller

u(:-}f-f(y() _ (case 2)

Fig.7-4-4 Responses of the terminal voltages IIE; » V2 and Uy,
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- (a) (b}
1.5 1.5_ -1
2
5 Pt
;s 1.0 —W\/ 1.0 4
2 P2 ‘
o2 .
0.5 - 0.5
t
0.0 T T T 1 0.0 T T T 1
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
(sec.) ) (sec.)
1.5 - (c) 1.5- (d)
~
a Per Py
w0 1.0 4 1.0
o® .
- 'Rz P
a5
0.5 0.5
: t - T
0.0 T T T — 0.0 T T |. 1
0.0 - 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 Z.Q
(sec.) " (sec.)
t1 = 0.2 sec. : the faulted line is isolated -°
T2 = 0.3 sec. : the faulted line is reclosed
(a) : without controller
(b) : with the optimal controller U=-F-X for the linearized
system (case 1) ) .
(c) : with the complete feedback stabilizing controller w=-F-T(x)
~ (case 1) _ | | »
(d) : with the incomplete feedback stabilizing controller U=-F-F(x)

(case 2)

Fig.7-4-5 Responses of the mechanical inputs to rotors Pet and Peo
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U=-fF-X . for the linearized systeﬁ, but the disturbances during the
fault are increased by the controller, namely the improﬁement is local in
nature, and is smaller than that by the complete or incomplete feedback
stabilizing controller w=-f-F(x) .

The large signal performance of the model system is much improved by
the stabilizing controiler, and the improvement by the incomplete feedback
stabilizing controller is élmost equivalént to that by the complete feedback
stabilizing controller, so it is possible to construct the stabilizing
controller using only measurable states of the model system.

In the above incomplete feedback stabilizing controller,veach machine
- is almost controlled using the informations of each machine respectively,
Consequently, the possibility of the decentralized control of the large
scale power system can be explained by the above numerical results.

In the above calculations, it is noted that the same feedback gain matrix

has been used throughout ‘all the transient processes of the model system.

Section 7-5. Summary

In this chapter, the stabilizing controller éf the form wW=-Ff(¢) has
been proposed for the non-linear system pX= Fox) + lB:lbL . |

By the numerical results shown in this chapter it is recognized that;
The optimal controller #=-FX for the linearized system is not always
. applicable to the 6rigina1 non-linear system. In some case, such control,
when applied to the original non-linear system, results in undesirable
system condition,vi.e. such control makes the system unstable.

But, the stabilizing controller proposed in this chapter, can much
improve the system performance following both large and small disturbances
of the system, i.e. the overall stability of the system can be improved by

the stabilizing controller, Furthermore, the improvement by the well-
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selecting incomplete feedback stabilizing controller is almost equivalent
to that by the complete feedback stabilizing controller, so it is possible
to construct the stabilizing controller using only the measurable state of
the system, and such control can be easily realized.

The possibility of the decentralized control of the large scale power

system can also be explained here.
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CHAPTER 8 CONCLUSION

In this thesis, the studies about the stability analysis and the
developement of compensating controllers for the required system
stabilization have been considered.

The mathematical representations of the electrical power systems have
been described in a form of a mathematic;l model on a generél~purpose
digital computer in chapter 2. By these methematical representations, we
can handle a number of machines connected to a transmission network of any
topological form, and these representations include the model of a round-
rotor machine or the model of a salient-pole one, and the automatic voltage
regulators and the speed governors. Furthermore, these representations
allow the inclusion of any alternative governors or voltage regulators that
act continuously.

Throughout thisAthesis,'the small signal performance, the dynamic
stability, of the system has been analyzed using the eigenvalues, the system
responses and the directbﬁethod of Lyapunov, and the large signal perfor-
mance, the transient étability, of the system has been investigated using
the system responses as shown in chapter 3. Furthermore, in this chapter
a new stability measure has been proposed using the expected value of the
quadratic performance index, and the stability margin has also proposed by
the restriction of the real parts of the eigenvalues of the system.

In chapter 4, the optimal state feedback controllef has been derived
in order to improve the dynamic stability of the system. The dynamics of
the system can be much stabilized by the controller, but the controller is
represented by the linear function of all the state variables, namely the
controller usually requires the complete measurements of the system states,

so especially large-scale power system it is almost impossible to have all’
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the informationsabout the system states. With the reason above described
the implementation of the controller to the practical power system may be
difficult. Furthermore, the selection of the weighted matrices in the
quadratic performance index is very important in order to improve the
system performance as shown in this chapter.

In chapter 5, the procedures for utilizing the reduced model in
deriving the output feedback controller 6f the system have been proposed,
and the possibility of the application of Lyapunov's direc£ method to the
control problem of the linear system has also been explained. The dynamic
stability of the model system can be much improved by the obtained controller,
but the improvement is a little smaller than that by the optimal state
feedback controller. The output feedback controller is constructed in terms
of directly measurable output variables, so the controller obtained may be
easily implemented to the practical power system.

In chapter 6, the possibility of the applicati;n of Lyapunov's direct
method has been explained, and the controller has been determined using
the well known Lyapunov function, the energy function, of the s&stem under
several assumptions. The transient stability of the model system can be
much improved by the controllér obtained.

By the numerical results shown in chapter 7, it is recognized that the
optimal state feedback controller and the output feedback controller obtained
from the linearized model is not always applicable to large disturbances
conditions. In some cases, such controllers, when applied to the original
non-linear model, result in undesirable system performance, namely such
controllers make the original non-linear system unstable under large
disturbances conditions. Because, such controllers are_obtained from the
linearized equations, the improvement is local in nature, and under large

disturbances conditions, the system operation departs considerably from the
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steady state operating point, and consequently such controllers are
inadequate in improving thé system stability under these circumstances.

In order to improve the overall stability, the stabilizing controller
has been proposed in chapter 7. The stabilizing controller is determined
using the Lyapunov' function propdsed by Krasovskii under consideration of
“the theoretical results of the control problem of linearized system described
in former chapters. The stabilizing congroller can much improve the system B
stability under large and small disturbances conditions, namely the overall
stability of the system can be much improved by the controller.

Furthermore, it is possible to construct the stabilizing controller
using the only measurable states of the system, éonsequently such stabilizing
controller can be easily implemented to the practical power system.

The possibility of the decentralized control of the large-scale power

system has also shown in this chapter by the numerical results of the model

multi-machine system.
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The absence of the zero-sequence equations allows the voltage vectors
and the current vectors to be denoted by the complex variables. Choosing
the rotor-pole axis as bthe' real axis, the transformation m‘atrices T(J‘zj),
T'(&‘.j)' and the admittance matrix Yj(wj) together with its derivative Yj,(wé)
are denoted with complex values Taj s Ta_f; s Y& and Yi’ ,respectively
, -for their representation in the steady state. '

In Table A-1 (c¢) and (d),
Tij =axp (-3840) , Tij =axp(-i(Sijo- L) = i Ty

Y; =Gj—j(w;c5—t/u)o-Lj), Ya', = f(1/wkL; + C3)

%y = Rij + jwoli; » Zi" Rij - jw.- Lij
‘and in Table A-1 (c), [- ]* denotes [Re(-1, &m.[-]] s

and in Table A-1 (d), (- )% denotes [Re_[. 1, -Inm.C-1] -
&m.['], Re'[’]
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Table A-2 Components of the matrices A . Az » Aa s B and C

(a) Matrix A

AV Al AV aY AWy 48 aw aEss Vs AP,  aP:

PV i"x—,’;’i | %
pavi T wo Vo
22 oy
P, -, N | ¥
paYhs 1;:’73?
pad 1.0
paE4 |
PVs }:{ST; .Tls("%
paPy | eE =
PAP‘ : ':'u ;TIT
(b) Matrix Az‘ (c) Matrix B
aVa sV,  sia Alg a3 Al _ u, U,
paty [ | PV
P e Ta -
PV | S| patls
paY £ w, P
Pt TS patiy
pas pas
paw : -—‘[—1‘—‘—'- —-%’— - pA‘w
pabPv ' ' pA_PV --’%’;
pab: , pak
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(d) Matrix As

AI‘P}J aVy; AWKJ Aq% A’l{f,‘.z as aw AEjJ Vs APV Apt
1 1 1 ’
AWod | Roxtre | Ko ker | Hoona
1 !
A\F“‘l ' Ke-Zap | Ka-Xrpe
. i I
‘“_J Ki-Xaa-Xan [ Ko Xy Zag | Ko-Xnap-Xaz
, , R 1
AI% : . KiXar Xag | Ky Xxas-Xar
-1
AV -1 ; (T4 Ze-Y)
(T+ Ze-Y)- Ee- [‘”_"] o .
Aui 412 X ° o

(e) Matrix €

AIP}J A.(VJ A\VM A\P; A‘”q Atg‘ AW AE]J Vs Apv A.P;

af 1.0

aw Lo

8%y 1.0

Vs 1.0

P 1.0
AV | [0, 2 ) (eI {2e- o + W5 Vi 28]

At [%E ,%ﬁ]'ﬁia

Table A-3 Components of the matrices A , A , Az ana B

(a) Matrix Ai

a8  aw  aE aE/ aEfa Vs aPy  aPe
- pad 1.0
paw |-R/m . /M
PaEy V| | VT
PAEg war?
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. -Ke-KsfryTs
PVs | S

PaPv’ -Ks/u) Ty -1/ Ty
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Table A-4 Components of the matrices A . Az . Az ,-/}H-, Asand B

(a) Matrix A
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padys : 1.0 |-1.0
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paw, | g 1R Yy
pawW; R,

paEy, 1 Y Vi,
paEp | Vs and
paEgs : Y
pabs /i
paEse | Ra
paPy -KK
pak. Ky

u)n'.,; 1
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(b) Matrix A2

AU AU§’ avy AU§2 AVj; AUg‘; aigy Ai?l 2is Aigz AiJ3 Aig;
PA&;; .

'Pd&a

~1dro | ~1aro -Wdio "ngo
M My ™My M
~id20 | ~f510 ~Vao |-VUj2o
Pdwz M. Ma M2 Me
—1dy | {20 : “Udyo | -Viao
paW; Ma Ms Ms Ma
d p it el
y 2139 IS
Tdot
’
PAEg nzr;gr:z
02,
AFS, : Y1 -Xdy
P 13 o Tl’a)
- K#1-Vino 'Kfr 3
v “KaLiel-Knly
P Ef“ Th Vo] Tor-Viio

'K -mm -Y - Ug o
y L7 J’—Tn-wm —f‘—Vmew

paw,

paPs
PAPtz

(c) Matrix /1’\3

aVy, aVy A5, AUy aViy aVy oy, 81 Als, 8ly lsy Alg
1.0 o-X
1.0 : XJ: £
1.0 Y2 "3(2'2
1.0 X, Y:
10 3 Y |- X
1.0 ) Xﬁ; Yg

Yn, ' Yn’ Yng
Yo | Yo | Ya
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(d) Matrix A4 (f) Matrix B

’
adis a8y 4By AEn aEf

. : Uy Up Uy Up
S T ) A Y a8
= 2 & ,m"-'- 3 813, #0 ? ‘:
1.0 ’ . A
dp= 22| o paces
3823 o pdwl
e
1.0 = 283 a.mw ) PALO,
' " PAUW;
e RLEE < RN
10 23] 23], PpaE;)
e [ ,
A | oy ol .M
’ PaEg,
PR N
38nl, Pakgy K54 T
K3 | & i
y 21T /1}1
A Pay Kﬂ/rﬁ
5 dl“» Kaz
PaR, 4
(d) Matrix As
adin adax s, AW, 2w, AE;. AEZ‘? AE{J AEfdldE‘thRl"Pﬁz
483 01.0
adzy 1.0
aFg 1.0
AE{'L 1.0
AEg 1.0
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APPENDIX B Eigenvector Solution of Matrix Riccati

. (56),(57),(58)
Equation ' 7

Consider the following linear system along with its cost function

given by the following equation.

PAX = A -V.ADC + B-w ‘ | (B-1)

T

%fo (X B2 + U-R-w)dt (B-2)

Let A be the costate vector of 4K . Then X obeys the differential

equation:
Pk = - &-A.K -~ AT'A (B-3)

Then, it is well known that the optimal control, which minimizes the cost

function, is given by:
L _
U = -R"B-A | (B~4)
From eqn. (B-1), eqn.(B-3) and eqn.(B-4), it is obtained:

p [ax|-| A , -B.R"B7|-|ax (B-5)
Nl |-a, -AT P

Let the system matrix of eqn.(B-5) be denoted by M .

M o=l A, -BR"B" (B-6)
.‘@ ) -AT
It has been shown that the eiggnvaluesof M must be symmetric with respect
to the imaéinary axis of the complex plane and there a?e no pure imaginary
eigenvalues. It will be further assumed that the eigenvalues of M are
distinct.
let D be (2nX2n) diagonal matrix of the eigenvalues of M arranged

so that —A is the (nxn) diagonal matrix of left half plane eigenvalues,
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which are the eigenvalues of the optimally controlled system, where n is

the order of the state variables vector aAX :

D =|-A, 0 = W'M-w (B-7)
o, A

Hence here we can make use of the eigenvalue grouping technique to

arrive at a model
PAR = A* ax (B-8)
by eliminating the eigenvalues A in eqn. (B-6). This is justified because

At ' . . e .
(3 tends to zero as the Riccati equation is to be solved backwards in

time. If the matrix W is partitioned properly as follows:

W =1 Wy, Wiz (B-9)
Wat ,- W

Then we get:

:9\* A - B- R—" IBT' Way - qu ‘ (B-10)
Defining

K = Wy wf.' : (B-11)

it can easily seen that the matrix K is the solut‘ion of the following

matrix Riccati equation:
AK+ K-A-KB-R"“B"K+ &=0 (8-12)
From eqn. (B-11) it follows that the eigenvectors of the matrix M

corresponding to those eigenvalues with negative real part only are needed

to get the required solution of the matrix Riccati equation (B-12).
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APPENDIX C Eigenvector Solution of Lyapunov's

Matrix Equation

) -1
By the assumption that R = 0 , the matrix Riccati equation (B-12)

becomes following Lyapunov's matrix equation.
ACK+ KA & =0 A (c-1)
In this case, eqn.(B-6) becomes as follows:

M = A, 0 _ - (C-2)
"@ )-AT

It has been shown that the eigenvalues of the matrix ™M must be symmetric
with respect to the imaginary axis of the complex plane. It will be further
assumed that the éigenvalues of the matrix M are distinct and there are
no pure imaginary eigenvalues.

Lét D be (2nx 2n) diagonal matrix of the eigenvalﬁes of M arranged
so that —A is the (nxn) diagonal matrix of the left half plane eigen-—

values of the matrix M :

D =[-A, 0] = W'M-W (c-3)
o , A\ i

" where the matrix W is constructed using the eigenvectors of the matrix M

and is properly partitioned as:

W = | Wi, Wi o (c-4)
Wei, W,

Then, the solution matrix I of the above Lyapunov's matrix equation

becomes:

K o= Wy \\/\/11-t (c-5)
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APPENDIX D Solution of Lyapunov's Matrix Equation

using Companion Matrix

Consider the Lyapunov's matrix equation (C-1) shown in Appendix C.
Let Ca be the (nxn) companion matri of the matrix _A and Let Ta be

the (nxn) transformation matrix, then the following relationship is

satisfied:

Ca (T A-Te =10 ST M (D-1)
1. °. . :
10 -Cin-i
O 1 - Gn

where, @1 , Q2 , .... , and 4an are the coefficients of the following

characteristic polynomial:
det|{A-AI| = Ak an A" + Qz-A + Qy (D-2)
Eqn. (C-1) can be written using the matrices Ca and Ta as follows:

Ca- Y+ YCo + R=0 . . (0-3)

-(qu)t Ql'7n;’ | (D-4)

where, R

Y = () K- TR (0-5)

Then the solution K of the Lyapunov's matrix equation (B-1) can be given

by the solution Y of eqn.(D-3) as follows:

K Ta'- Y- Ta (D-6)

[

Here, it is noted that eqn.(D-3) can be easily solved.
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