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PREFACE

Threshold Logic is the branch of Switching Theory that
deals with the use qf threshold elements as the fundamental
building blocks for the synthesis of digital machines.
Digital systems such as electfonic digital computers, digital
communication systems, and digital control systems ordinarily
contain networks whose input and output variables have only
two distinct values, namely binary-valued, The analysis
and synthgsis of such digital networks are the main material
of Switching Theory.,.

A threshold element is a device with a single binary-
valued output and a number of binary-valued inputs, The
output value of the device is solely dependent on whether
or not the;weightedginputs sum exceeds a real number, called
threshold.‘”This mathematical model is applicable to certain
areas such as Decision Theory and Adaptive Control, Physi—
cally, parametrons, magnetic cores, and Esaki diodes based
on the threshold principle have been used for digital networks,

Recently, considerable attentions have been given on
the threshold logic because of its logically powerful abil-
ity compared with the conventiopal logic gates such as AND,
OR, NAND, or NOR gates, Therefore a given switching function
can generally be implemented with fewer threshold elements
by using this gates properly. Since new.industrial tech-

niques can now mechanize reliable, inexpensive and minute



thréshold elements, it promises that fﬂis logic will be used
more énd more for digital systems in future. |

On account of its increased logical complexity, however,
the developmenfs of a new switching theory about threshold
gates are strongly required in order to use this gatgs eff-
jiciently.

This thesis deals with Threshold Logic mostly through
the 1ineaf algebra aspects, The linear inequality system
inherent to a threshold fupction will be treated elaborately,
This apbroach will be easy to compréhend and achieve further
insights and will give us an intuitive conception,

Chapter II consists of basic developments for this theory.
Some fundamental relations and theorems Which‘further advance-—
ments of our study base on are presented mainly in this chapter,
Here the material is indicated as the autonomous network problem
for some purpose, However this is hardly different‘from the
ordinary problem handled in Threshold Logic,

Chapter III treats the physical weight values and threshold
valge which realize a given threshold function, These values'
gange is stated as the domain in Euclidean space,

The test for the linear separability is treated in Chapter
IV, in Chapter V and in Chapter VI, Three distinct methods are
proposed in each chapter. The first method is based on the
solutions of the adjoint linear equation system. The second
one is stated as the determinantal condition of certain ma-

trices. The last one is based on the successive transformations
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and eliminations of variables.

Chapter VII and Chapter ViII treat the synthesis proce-
dures to realize any éiven transition of states for the auto-
nomous network.

Chapter IX deals with the synthesis procedure to realize
any given Boolean function through the successive decomposition,

Chapter X discusses the similar subjects, mentioned hith-
erto, by using the simplified inequality system based on the
characteristic vector's properties,

Our study for the threshold logic started originally from
the investigation for the nervous network. For this purpose,
the electric analogue of the neuron was constructed at the
first stage. This analogous device not only is one kind of
threshold devices but also has other features such as the re-
fractory period, the frequency modulation ability and so on.

This analogue and its properties are presented in Chapter XI.

December, 1967

Kazuhiro Sugata
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CHAPTER T

INTRODUCTION

1.1 Threshold Element

Theoretical aspects of the logical device based on the
threshold principle were first investigated by McCulloch and
Pitts in 1943. Later von Neumann also considered this logic
to discuss the reliable network composed of unreliable elements.
They regarded the threshold element as a mathematical model of
a neuron of living things rather than as a logical element for
the engineering.

Since then, cénsiderable attention has been given to the
threshold(%i&éigl(%%?particular, the availability of physical
elements operating on the threshold principle seems to ﬁave
stimulated further developments of the study of this logic.

Some mathematical aspects of the threshold function were studied
by Gilbert in 195k, however apprecialble studies have been done
since Karnaugh and Gutermg%ygointed out to use magnetic cores

as threshold devices.

At present, most digital computers are constructed from
the fundamenfél building blocks such as AND, OR, NAND and NOR
gates. All of these conventional gates have some very excellent
properties mentioned below.

(1) .All of them can be easily constructed from simple

elements such as diodes, resistors and transistors.



Moreover they require not so much tolerance or reli-
ability.

(2) Their input-output relations are connected in the
convenient forms for the Boolean expression. Besides,
the input—-output relation of a network synthesized is
ordinarily described by these logical operations.
Therefore the theory of the analysis and synthesis
for digital networks using these gates will be tractable
and unified, This fact is very desirable especially
for the practical design engineer of digital systems.

These factors may suggest surely in some sense that it is

entirely natural to chooze these conventional gates for the
construction of digital networks, Howgver, there is no striqgt
reason only such simple conventional gates must be adopted as
the fundamental building blocks for digital networks.

In fact, as electronic digital computers are becoming

more and more extensively used not only for arithmetic calcu-
lations but for various information processinés, our require-
ments on their speed, ability and compactness increase more and
more .strongly. To aim at more speed and compactness, it needs
at least a iogically more poyerful basic building block. In
actual, the number of gates that are required to implement a
givén Boolean function can be practicaliy decreased by using
more powerful fundamental building blocks. Still more, this
fact promises the possibility of constructing faster digital

computers only if the switching time of the more poweful gate



is as small as the conventional gates.

Furthermore the promise of an intrinsic decrement in the
number of gates will give rise to the decrement in the number
of internal interconnections, This is particularly significant
for the sake of decreasing the circuit compléxity.

The threshold gate is certainly one of the logical devices
that is endowed with these properties., In fact, since the
Boolean function implemented by a siﬁgle threshold gate is
relatively complex compared with the conventional gates, In
other words, an& given Boolean function can generally be real-
ized with less threshold gates, Therefore the proper use of
threshold gates provides the possibility of increments in speed
and savings of gates together with decrements of the circuit
complexity.

Besides above all mentioned advantages, there exists an-
other very principal advantage that the Boolean function im—
plemented by threshold gates can be easily modified. Since
the Boolean function realized by threshold gates is completely
determined by weights values and threshold value setting, it
is easy to change the qulean function by adjusting weights

(41)
values and threshold value,

In order to modify the Boolean function of the network
constructed from the conventional gates, 1t needs to change the
internal interconnections, This is rather troublesome operations.
Hence, this indicates that threshold devices are suitable for the

(26) (36

network whose Boolean function has to be adjusted by the learn-



ing process based on the past experiences.

The reéent emergence of new technologies for the manufac-
ture of reliable, minute and inexpensive threshold elements
provides the possibility more surely that threshold gates can
be uséd as the fundamental building blocks to realize any
Boolean function inlthe same manner as AND, OR, NAND and NOR
gates, |

These factors seem to have aroused much attention in the
threshold device. On the other hand, because of its logical
complex performance, it requires further developments of the
theory about Threshold Logic so that this device might be used

efgibiently. Considerable researches have been done by many

ipvestigators aﬁ various laboratories. These efforts have much
contributed to develop the theory of Threshold Logic. However
many interesting and challenging problems still remain.,
Although the recent rapid growth of studies for Threshold
Logic may be due to above mentioned factors, the positive atti-
tude”to grasp the information processing mechanism of living
organisms is one of undeniable causegil)giﬁhally, appreciable
works of Threshold Logic have been done in association with
the neurons, since McCulloch and Pitts, It is not surpr;sed
that the attempt to analysing the nervous network's behavior
leads to analysing the threshold devices network's behavior in.

.the course of natural.

The properties of a threshold device have been surveyed.



To summarize, the advantages of a threshold device from the
.engineering point of view consist in

(1) its logically powerful ability

(2) 4its elastic behavior

(3) its relative economy of physical realization.

1.2 Boolean Function and Threshold Function

In genefal, a Boolean function is defined as follows, Let
X denote the set which consists of the two values of the binary
logic, The two elements in X are usually denoted by the two
integers 1 and O, For any given positive integer n, consider

the Cartesian power

n

X =X X¥X® .... 09X
which is the Cartesian product of n copies of X,

n
Thus, the elements of X are given as the 2n ordered n-—-tuples
(X134 Xps eeees %)

where the k—-th coordinate xk is an element in X for every

k=1, 2, +e.., n, Hereafter, X" will be called the n-cube and
its 27 elements are called the input points or vertices, By

a Boolean function f(xl, x vee ey xn) of n variables, we mean

2'

a function
f X == X

from the n-cube X" into X. In other words, a Boolean function

f(xl, X2y eseay xn) of n variables is defined by assigning one



of two integers in X to each 2" input point. Thus, there are
n
2 distinct Boolean functions of n variables.,

A threshold function is one class of Boolean functions
which can be realized by a single threshold gate. A threshold
gate is a device with a single binary-valued output and a
number of binary-valued inputs. A real number is given in
association with each input which is referred to as "weights".

The output of the de&ice takes a constant value denoted by
the logical va;ue O‘unless the weighted sum of the inputs exceeds
a real number, referred to as "threshold". On the other hand,
if the weighted sum of the inputs exceeds the threshold, the
output of the device takes a different constant value denoted
by the 1ogicgl value 1,

There fore, a threshold device is defined by the following

relations:

n
£ =1 4if and only iff 2 w x>0

J
j=1
(1.1)
n
= 0 if and only iff Z W, xj_s_e
=1

where

f = binary output of the device, 1l or O

xj = j-th binary input to the device, 1 or O
mJ = weight 6f the j—-th input, a real number
n = total number of the inputs
© = threshold, a real number

-6 -



Observe that xl, Xps evees x are interpreted in Relation 1,1
as real numbers O or 1 rather than as Boolean values,

A given Boolean function f(xl, Xny essey xn) is said to
be linearly separable if and only if there exist real numbers
Wag Boy seeey W, A such that Relation 1.1 holds., A threshold
function is referred to as various names such as a linear
separable function, a majority or a voting function, and a
linear input function, These names come from its behavior.

It is convenient to consider the geometrical interpretation
of a Boolean function. This will serve to give an intuitive
interpretation to some of the definitions and theorems given
in the subsequent discussions,

Let us consider the n—-cube in n-dimensional Euclidean
space where cach coordinate axis corresponds to one of the
input variables., It is wholly'immedinte to establish a one-
to-one correspondence between the set of vertices of the n-
cube and the set of arguments of a Boolean function of n
variables,

If the Boolean function takes the value 1 for a given
argument, the corresponding vertex is said to be an element
of the function, AOn the other hand~“if the opposite case is
true, the vertex is said to be an element of the complement
function. In this way, the value O or 1 which the Boolean
function takes, divides the set of vertices into two classes.

If a given.Boolean function is a threshold function, there

exists ‘an (n-1)-dimensional hyperplane n which effects this



separation.' That is to say, ® separates the on-set f_l(l)

from the off-set f_l(O). Therefore, the on-set of the thresh-
old function lies on one side of n, and the off-set lies on

the other side of n; The hyperplane n is called a separating
hyperplane of the threshold function. The separating hyperplane

can be expressed in the following form,
T w + ceoe = 6 1.2
x w, X, + + e X ( )

For all those vertices lying on one side of the hyperplane =,
the linear form of the left hand of Equation 1,2 takes the
value gfe;ter or smaller than the threshold 6.

This geometrical interpretation is of great value when
it 15 used to expiain the properties that have been derived
abstractly, even if it has the disadvantage of being nonvisual

for the case of more than three variables,

1.3 Explanation of the Problem

'With respect to threshold devices there are two basic
problems., The first is the practical fabrication of reliable
and inexpensive threshold elements which depends on the technical
level at that time. The second is about Threshold Logic which
does not depend on the technological level. Threshold Logic
cén be discussed apart from the physical elements, It is
Threshold Logic that is dealt with henceforth.

Since only logical propérties are concerned with, the theory

of Threshold Logic is not necessarily limited to the ldgical



design, but can be applied to the system where the mathematical
model of the threshold principle dominates such as Decision
Theory.

In general, Swifching Theory primarily consists of two
problems;

(l) specification of the input-output relation of the
digital petwork often in the form of a truth table
or a Boolean function. |

(2) the method of the synthesis of the digital network
based on its input-output relation by using certain
given fundamental building blocks,

The fundamental building blocks selected by the engineer are
ordinarily determined by various criteria such as logical
abilities, availabilities of physical elements, easiness of
design procedures and reliabilities, At present AND, OR and
"NOT gates are usually used and its synthesis procedures are
well known.

Once threshold gates are selected because of some require-
ments, let us consider the subject (2) mentioned concerning
Switching Theory. This subject can be stated in details as
follows,

(1) Conditions which a Boolean function must satisfy

to be a threshold function, that is, linear separa-
bility conditionsfg)(29)(5u)

(2) Actual procedures for finding the physical realiza-

tion in terms of weights values and threshold value,



when it is a threshold function,

(3) Practical algorithms for determining whether a
given Boolean function is a threshold function or
(13)(39)(56)
not.

() Actual methods for synthesizing any given Boolean
function with generally more.than one threshold
elemeg22(7)(ll)(3b)

This thesis handles the materials mentioned above individually

in each chapter,

These materials, however, will be reformulated in rather
different forms from the subjects reviewed above. This is due
to the‘motivation from which our study arised. However, there
exists no essential difference between the original and reformu-
lated materials., That is, the subjects will be treated as the
problems of the autonomous network constructed from N threshold
elements, instead of treating a single threshold element, This
reformulation will be seen to be only the expansion of treating
a éingle threshold elemegi.

The problem of the autonomous network can be stated as
follows, When a behavior of the autonomous network composed
of ‘N threshold elements is given as a transition §tate diagram,
consider thé conditions and practical proéedures to testify
whether or not such a given behavior is realizable with N thres-

hold elements. This reformulation of the problem will corres-

pond to the areas (1), (3) mentioned above.



If any given behavior of the autonomous network is seen
to be realizable with N threshold elements, let us consider
the systematic determination procedures of the actual weights
values and threshold value which realize the given behavior,
On the other hand, if the given behavior can bot be realized
with N threshold elements, consider the me thods which realize
the given behavior using some additional control threshold
elements, Note here that the given behavior is realized with
more than N threshold elements in the meaning that we are con-
cerned only with its behavior of the network constructed from
the originally given N threshold elements, In other words, it

is only N threshold elements given from the beginning that

their functions are observed, Additional attached threshold
elements only serve to control t®e behavior of the autonomous

network and their functions are not observed,

1.4 Preliminary Consideration

The motivation that the autonomous network of threshold
elements was first treated, originates from the attempt to
use the nervous network as an information processing filter.
lere the information processing means the two~diménsional
optigal pattern recognition,

To explain the motivation more in details, consider a

two—~dimensional arrayed nervous network constructed from N

N
neurons. The nervous network has 2 internal states on the

- 11 -



whole if each neuron is assumed to have two states, namely,
fire or rest. Attach to each neuron a réceptor'sﬁch as a
photo—-transistor which feels‘the optical pattefn. The sensed
input signal is amplified appropriately if necessary and trans-
mitted to the cofresponding neuron,

At some instant of time, a‘two—dimensional optical pattern
comes into this nervous nefwork system, Assume moreover that
no input pattern comes successively for a while. Then the
nervous'network is initialized to one of 2N internal states
corrésponding to the input pattern. Hence we -are considering the
autonomous network whose initial internal state is solely set by
the external input pattern,

Furthermore suppose that the internal state of the ne twork
is transited autonomously an: synchronously time to time from
the initial state., After some lapse of time, the internal state
of the nerwork is changed periodicafT; or absorbed into a certain
internal state, since there are only finite internal states and
vet the following internal state is uniquely dependent on the
previous internal state.

Let us try to determine the interconnection coefficients
between the neurons and each threshold valué to satisfy the
following condition. The set of internal states of the network
makes groups in the transition state diagram so that the grouped
internal states_ma} fransit to each other within the internal

states corresponding to input patterns of one symbol which are

- 12 -



deformed in various forms and may never transit between the
internal states COrreﬁppndihg.t0<tﬁe disfinqt symﬁéls{

Thus all the internal states whicﬁ bélong to 6ne group
in the transition state diagram correspond fo va;iouély deform-
ed patterng ofiqne symbol,  If such a synthesis of a nervous
network is possible,_the internai state always éither passes
over periodically or falls into tﬁe internal state corresponding
to one of the representative symbol patterns after some lapse
of tihe.

Therefore it will be possible to discriminate two~dimen-
sional optical patterns by considering that some groups of the
internal states in the transition state diagram make one symbol
of the patterns or one category of the patterns, Since the
internél state of the auton;moué ne twork exposed to an input
pattern always becomes the internal stﬁte corresponding to one
of the representative patterns, the output of to whiqh category
the input pattern bglongs can be readily indicated.‘

Hitherto the autonomous network has been considered whose
initial state is set by the external input, . As long as we are
concerned with the realization problem of such aﬁ autonomous
network, this will be only the mpdificaﬁion of Threshold Logic
of a single threshéld element, However; the synthesis problem
of such a network will notvnecessarily become only the modifica-
tion, In some phase the subject will be mainly discussed as the
problem of the autonomous network and‘in another phase the sub-

ject will be discussed as the problem of Threshold Logic of one

- 13 -



threshold elemenf like usual works investigated up to date.
Howevef, the'results obtained in the autonomous network prob-

lems can be'immedidtely transformed to the results'of Threshold

Logic.

-1 -



CHAPTER II

BASIC DEVELOPMENT

2.1 Outline of the Network

Although many electrical analogues for a neuron are pro-

posed by various investigators, the essential behavior is based
on the threshold principle., The following relations

ui(t+t) =Y{Z mij). uJ(t—r'C) - Qi}

Jryr
(i=1. 2, oocoo)

. : i, for x>0

Yix) =

o , for x50

are proposed as the fundamental behavior equations of the nerv-

ous network. Here,

mf} = the coupling coefficignt that transfers the pulse
generating in neuron j at the instant of (t-rt ) to
neuron i at the instant of t. <« is time delay,.
91 = thréshold of néuron i,

uJ(t) = the state of neuron j at the instant of ¢t, nahely,
1l or o éorresponding to fire or rest, respectively,

In actual, however, there is no necessity to treat Relatior
2,1 itself, It is sufficient to deal with the case where the

present internal state is completely dependent on the just

- 15 =



previous internal state. That is to say, the behavior equa-

tions of the mnervous network are given as follows,

N
uy(tse) =YL S wyyoug(e) '91}
- 3=1
' " (i=1, 2, eeess N)

h N for x >0 (2.2)

Y (x) B
o , for xS0

4] .
where w = w( ) This will be easily admitted by imaging

43 i3 *
additional neurons instead of taking account of the past effects
()

iJ
difference between Relation 2,1 and Relation 2.2,

(r=1, 2, eess)s Therefore, there exists no substantial

Hereafter let us concider the autonomous ne twork constructed
from N threshold elements, Tl’ T2, eecey TN whose behaviors are
expressed by Relation 2.2, The network transits synchronously

with time delay < .

2.2 Notations and Definitions

If all the components v, of a vector V.= (vl, Vs eeees vn)
are positive, let us demnote v>0, If all the comppnents vy are
nonnegative, let us denote v=0." Furthermore, if besides v >0,
there is at least one po;itivé component in vi(i=l, 2, casoy N’),
let us denote vZ0, Hereafter, the expres‘sj—.ons v>0, v=0 and
v>0 are distinguished in such meanings. These will be called

a positive vector, a nonzero nonnegative vector and a nonnega-

- 16 -



tive vector, respectively.

Likewise, the similar mnotations v<0, v<0, and vS0 can
defined, With regard to a matrix ﬁ, the similar notations are
also used such as H>0, HZO aﬁd H=ZO0, '

The letter "g" written at the left-hand upper corner of a
vector or a matrix denotes the transpose of the vector or the
matrix., The letter "-1" written at the right-hand upper corner
of a matrix denotes the inverse of the matrix., By the terms of

a (m, n)-type matrix, we mean the matrix has m rows and n column:

Definition 2.1, let ﬁi and w, denote the N-dimensional

vector and the (N+1)-dimensional vector, respectively, as

follows,

a =(m ] ee e e ] )
i 11’ 12’ ' 4N

|-} w (0]

g = (780 wyqs Wyp0 ceven in)
These 61 and ®w, are called the weight vector and the threshold-

weight vector.

Definition 2.2. Assume that each threshold element takes
either of two states denoted by integer 1 or O, Let uJ denpte
generallj the state of e;ement TJ.‘ Then, the ordered set
(ul, Usy eeoes uN) will be called the internal state vector.
There exist 2 distinct internal state vectors on the whole in
a network constructed from N threéhold elementé. These 2N dis-

tinct internal state vectors will be labelled by ﬁl;ﬁz,...,ﬁ N
2

in ascending order of these binary numbers, However, make an

_17-



exception in labeling ﬁj+1 (=1, 2, .e., N). Namely, ﬁj+1
represents the internal state vector such that only uj =1
and all the other u, = 0 (i=1, 2, ..., N; i#j). That is;

q, = (O, 0y, Oy coeey 0)
ﬁz = (19 0, Oy covey 0)
63 = (01 1, Oy ceuny O)

aN+1 = (0, 0, Oy vees, 1)

GN+2 = (1, 1, 0, «v.., O)

‘G’N = (1, 1, 1, vses, 1)
2

. L)
. Observe that the labeling defined above for “N+2'QN+3""’

Q N bears no particular significance other than a convenience

2

of notation. In Chapter III this labeling will be altered for a
convenience of analysis by regarding the set of all the internal

state vectors as Galois field GF(2N).

Definition 2,3, Consider the (N+1)-dimensional vector

’ N
uj (j:l, 2, ceeey 2 ) whose first component is always 1 and
the remainder components equal  to the components of Gj'

‘That is:

H
=t
N

.

.

-

N

2
S

llj = (1’/‘}J) ’ (J

This veptof uJ is referred to as the content vector.

Definition 2.4, Consider the function ¢, defined over

the ‘set of internal state vectors that takes as its_value the

i-th component of the intermnal-state vector.
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. That is:
Qi(Gj) = uji ’ (J) i=l, 2, 4i00,y N)
where G&: (ujl’ uj2, cs ey “jN)‘

Definition 2.5, Consider the (2N, N+1)-type matrix U

N
whose j-th row (j=1, 2, ...., 2 ) is the content vector u..

o

This matrix is referred to as the universal matrix.
That is:

('l OO0 0 ... ')W
1100 4000 0
1010 .... 9
1201 ....0
1000 ..., 1
1110 ....0
1101 ....0

U =

o 00 00 06008000000

‘1111 .... 1

Furthermore consider the submatrix UI that consists of

the first (N+1) rows of U, This UI is referred to as the pri-

mary universal matrix.

That 4is:

rl O O
110
101
100

= O © O
o O © ©O

L1000 .... 1/

Consider the submatrix UII that consists of the last

(2N-N—l) rows of U, This UII is referred to as the secondary
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universal matrix,

Proposition 2.1. The rénk of the primary universal matrix

is (N+1),

The terms of the "internal state" or "state" will be‘usgd
in place of the "internal state vector" for brevity, if it does
not make any confusion from the confext.

The behavior of the autonomous network can be, in‘general,
expressed by_assigning;fbr all the internal states, to what state
the present one transits at th; next time. The‘diagram which
illustrates this behavior is called the transition state diagram

and will be denoted by the notation "F",

Definition 2.6, Let the notation Gh = f-ﬁj denote the

relation betwveen Gh and Gj such that in a given transition

state diagram "F", GJ is just followed by U,.

Definition 2.7. Consider two sets Py and Qi that consiét

of all such internal states as satisfy the éondition,
@i(f-ﬁd) =1 or ?i(f'ej) = 0, respectively.

That is:
_ ~ . D
Py _{ U, cpi(f uj),

and Qi'are called the positive set and the

i I
o o
-

These two sets Pi

negative set, respectively.

Following two relations always hold as the consequence of
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the previous definition,

Proposition 2,2,

PiUQi=V
Pin‘ Qi =&

where V¥ and & denote the set composed of the whole internal

states and an empty set, respectively.

N N
Definition 2.8, Consider the (2 , 2 )-type diagonal

matrix C(i). Let cjj(i)' denote the j-th row and the j=th

column component of C(i) which takes a value either 1 or -1

as follows,

1, if and only if Gie P,

THOE -
) -1, if and only if ﬁjEQ1

This diagonal matrix C(i) is referred to as the characteristic
matrix with respect to element T,, (See page i6.)

Decomposc C(i) into the direct sum of two submatrices as

follows,

CI(i) 0
C(i) = '

0 Cp (1)
where CI(i) is the (N+1, N+l1)-type diagonal matrix and CII(i)
is the (2N—N—l, 2N-N—l)—type diagonal matrix, CI(i) and CII(i)
are called the primary characteristic matrix and the secondary

~characteristic matrix, respectively, with regard to clement Ti‘
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The se afguménts result in the following proposition,

Proposition 2;3. The characteristic me trix C(i) is an-

other.representation of-a’Boolean func tion, X

Proof: There exist, by Definition 2.8, 22 distinct
characteristic métrices_which have a one—to-—one correspondence
to each Boolean function of N variables, Thus; to give a char-

acteristic matrix is equivalent to give a Boolean function,

Henceforth, let us denote the Boolean function by fi which

the characteristic matrix C(i) represents,

Proposition 2.4, For a given transition state diagram of

.the netwprk with N threshold elements, N characteristic matrices
c(1) (i=1, 2; vee., N) are completely determined. Conversely,
if N characteristic matrices are given, then a transition state’
diagram F can be drawn uniquely.

Proof: To give a transition state,diagr;m is equivalent

to give N Boolean functions.f; , f2 s ecesey fN of N variables.

From now, the relations mentioned in Proposition 2,4 are

denoted as follows:

g(F)=c(1)@c(2)® .... @c(N)
(2.3)

glc(1)@c(2) @ ... @C(N) =F

Proposition 2.5, C(i)—l = c(i)
cI(i)'1‘= CI(i)
Syl
Crp(1) Cyr(1)



Proof: C(i) is a diagonal matrix whose diagonal components

are all either 1 or -1,

" Proposition 2.6, c(i) c(i)

tcI(i) c (1)

fopp(1) = cpp(1)

Definition 2,9, Let Eg denote the (N, N)-type identity

matrix, Let e, denote the i-th row of Ey, referred to as the

i=-th unit vector.

Pfoposition 2.7 The inverse of the primary universal

-1
matrix UI always takes the following form.

1 0
Uy =

t
-1 B

where -1 implies the N-dimensional vector (-1, -1, ceeey =1),

2,3 Inherent Inequality System

Behavior Equation 2,2 implies Relation 2,4,

N
1, iff :E: mij~ud(t):>ei

ui(t+t) = J=1

N (2.4)
0, iff -:E: mij~u5(t)5;ei
J=1

(i= 1, 2, .vvvy N)

where the terms "iff" implies if and only if. The terms will be
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used hereafter for the simplicity of notationm, Now, consider

the function vi(t+'c ) defined as follows.,
vi(t+'l:) =2ui(t+'c)—1 (2.5)

Then, the function vi(t+'c) has a value either 1 or -1 as the

following manner,

N
1, iff mij.uj(t)>ei

=1
vi(t+'c) = (2.6)

Case

-1, iff mij.uj(t)g 8,

Cae
[

Hence, the following equations

M=

wiJ-uJ(t)-vi(t-r‘c)g 8;+v;(t+T) (2.7)
J=1

(i=1, 2, ...., N)

result from Relation 2,6 by the slight rearréngement. Observe
that in Inequality 2,7 the relation = holds iff vi(t+'c) = -1
and the relation > hc;lds'iff vi(t+zT) = 1. |

Inequality 2.7 is expressed in terms of the function of
the time variable, Now regard Inequality 2,7 as the inequality
system with respec.t to the internal state, For this purpose,
let us denote the il;lternal state at time t by'ak, then the in-

ternal state at time ('t+'c) can be known immediately as foﬁk
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by the given transition state diagram, Thus, fhe following

relations are obtained by fhe definitions of ?i and ckk(l).

S (1)

and (2.8)

~
vi(t+'c) = 2¢i(f-uk) -1 =

ay(e) = o (&)

Substitution of Relation 2,8 into Inequality 2.7 ylelds:

. _

Z { mijc(pj(:}k)ockk(i)v} - 9_1' ckk(i) =0 (2.9)

j=1 ‘ :
(i=1, 2, ...., N)

Now, consider the following replacement:
Wig = -qi - (2.10)

Furthermore, consider an imaginary threshold element which
always remains state 1 regardless of the internal state to

assume the following relation,
-
= 2.
9o(H) =1 (2.11)
Note that the function P4 is used above in an extended meaning
from Definition 2,4,

Substitution of Relation 2,10 and 2,11 into Inequality 2,9

yields the following inequality systems

N .
Z wij-@‘j(ﬁk)-ckk(i)é 0 (2.12)
4%

N
(k'—'l, 2, -000.2 ). (i=1, 2, aolo,N)
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With respect to each threshold element there are 2N inequalities.
The ‘'set of these 2N inequalities is referred to>aé an inequale
ity éystem inherent to a completely specified Booléan function,
Hence, Inequality 2.12 contains N inequality systems,
. Inequality Systems 2,12 can be rewritteh by ﬁsing the
oA, i
thrgshold—weight vector and the content vector as follows.

s (1) ( uk-gmi )>o0 , for G EP,

(2.13)
ckk(i)-( ukottni )=o , for i}ke Q

(k=1v 2, ~"-12N) ’ (i;1! 2y eseey N)

) t
where the notation ( u -y ) implies the inner product of u,
and w, .
Let us express Inequality Systems 2,13 in terms of the

characteristic matrix C(i) and the universal matrix U as follows,
t .
c(1)- Ut Z 0 (am1, 2, e, N) (2030)

The e*pression of each Inequality System 2.14 contains all the
- internal state véctors in the implicit form.‘ Let us pay attén—
tion éhat in each Inequality System 2.14 the relation = holds
if and:only if the internai state is involved in the negative
set apd the felation > holds if and only if the internal state
is involved in the positive sét.

Each inequality System 2,14 contains 2N inequalities and

(N+1) unknown variables W, Wy eeeny W s Since the relation
T 10’ i1 iN
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2N:> (N + 1) holds in general with exception of N = 1, it fol-
lows tﬁat we are faced fo the inequality system where the number
of inequalities is larger than the number of unknown variables.
The difference between the number of inequalities and unknown
variables in each Inequality System 2,14 increases monotonically,.
Almost every difficulty of our work consists in the fact that

the number of inequalities becomes formidable as N increases a
little.

By preceding arguments, it is concluded that the treatment
of an autonomous threshold network is reduced to the treatment
of each threshold elément individually, in so far as we are
concerned with the realization problem.

Hitherté discussions can be summarized in the following

theorem.

Theorem 2.1. If a given transition state diagram "F" is

" realizable with N threshold elements, then Inequality Syétems
2,14 are consistent for every characteristic matrix C(i) (i=1,
2, v..., N) determined completely by Relation 2.3,

Conversely, if a given transition state diagram is not
realizable with N threshold elements, then there exists at
least one characteristic matfix determined by Relation 2.3

for which Inequality System 2.1l is not consistent,

It is rathér complicated to handle Inequality Systems
2.14 directly because the quality sign does not necessarily

hold. That is, the equality sign holds only for the case where
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the internal state is involved in the negative set. So as to
avoid this complication, let us establish the following theorem

stated in the absolute inequality form.

Theorem 2.2. The inequality system

c(i) - U ~tmigo (2.15)

is consistent, if and only if the absolute inequality system

c(1)- U ‘w >0 (2.16)
is consistent.

Proof: Sufficiency is obvious. Thus, only necessity

will be shown. If Inequality System 2,15 has a solution Ei,
then let us verify that Absolute Inequality System 2,16 always

has a solution.
If for the solution &;, all the linear forms c(i) . U -tﬁi

have positive values, there is no quéstion. Thus, let us

consider the case where some of the linear forms C(i) «U .tﬁi

have zero values. That is, consider the case:

t— A .
cjj(i)i. u, - "’i>° , for uje {PiU Qi} (2.17)

(i) ew,_ . w, =0 -, for U €Q -(2.18)

Ckx k i k= i

‘Since each left side of Inequality 2.17 is a continuous function

with respect to @ it is possible to change the vector 61 by a

i’

minute vector § within the range which doces not alter the
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direction of the inequality sign > of Inequality 2.17. Besides

it is possible to make the following relation
c ., (1) . ‘% +8) >0
kk Yk k :

hold for the minute vector & satisfying above conditions, since
all the coefficients of the linear forms of Equation 2,18 are
negative numbers. Q.E.D.,

Therefore, Theorem 2.1 in association with Theorem 2,2

leads to the next theorem, which is a basic theorem for our

further developments,

Theorem 2,3, If a given transition state diagram F is

realizable with N threshold elements, then Absolute Inequality

Systems
C(i)-U.tmi>0 . (1=1, 2, ...., N) (2.19)

are consistent for every characteristic matrix C(i) (i=1, 2, ...
N) determined completely by Relation 2,3.

On the contrary, if a given transition state diagram 1is
not realizable Qith N threshold elements, then there exists at
least one characteristic matrix for which Absolute Inequality

System 2,19 is not consistent,

2,4 Reformulation in the Equation Form

By theorem 2.3, it is concluded that we can deal with
Absolute Inequality Systems 2,19 independently for each thres-

hold element in order to treat an autonomous network. This
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means there is no intrinsic difference between an autonomous
network problem and a 31ngle threshold element problem.

Thus, hereafter let us forcus our-attention to only one
Absolute Inequality System 2,16 with respect to a certain thres~
hold element Ti’ Consider the following.theorem which is well
known in the linear algebra so as to transform the absolute

inequalities problem into the equations problem,

: (18) :
Theorem 2,4, Let H and x be an arbitrary (m, n)-type

matrix and a n-dimensional column vector, Moreover, let y and

a be m—dimensional row vectors. Then the equations
Hex = 8

are consistent if and only if the next equations

k) t : -

(Y( )' a)=0 , (k=1, 2, «eve) m-r)_
hold for all k., Where r implies the rank of the matrix H and
y(k> implies the k—-th fundamental independént solution of the

adjoint linear equations:

Moreover, (v k. a ) implies the inner product of the vectors

y(k)

and q.

Proposition 2,8, The rank of the matrix tu.c(i) is

always (N+1), regardless of value 1i.

Therefore, instead of treating Absoluté Inequality System



2,16 itself, consider the following equations.
t
C(1) * U+ "w, =d (2.20)

where di is a 2N-dimensiona1 colunn vector such that d > 0,
Now, let b(f) denote the k-th fundamental independent

solution of the adjoint linear equations:

ty + C(1) -tbi = 0 (2.21)

Before proceeding to Theorem 2.5, consider the following prop-

osition,

Proposition 2.9, There exist (2N-N-1) fundamental inde-

pendent solutions for Equation System 2,21,

Then, the next theorem is obtained as the consequence of

Theorem 2,4,

Theorem 2,5, Absolute Inequality System 2,16

c(i) + U .tmi':> 0 (2.16)
is consistent, if and only if the equations

( b(:). a ) =0, (k=1, 2, ..., 2N-n-1) (2.22)
' (53)

have a positive solution d >0,

Thus, the realization problem of a completely specified
Boolean function by a single threshold element is reduced to
the problem of whether or not certain linear equations have a

positive solﬁtion. This material will be handled elaborately
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in Chapter IV,

2.5 Fundamental Solution Matrix

In order to develop Theorem 2,5 further, it needs all the
fundamental independent solutions of Equation 2.21, The purpose
of this section is to introduce the fundamental solution matrix.

This matrix will play an important role in Chapter Iv,

Proposition 2,10, The (N+1, N+l)=-type matrix tUI.th(i)

has rank (N+1).

~
Theorem 2.6. Consider the (2N, ZN-N—l)-type matrix B(i)

whose k-th column equals to the k-th fundamental independent
solution of Equation 2.21. Then, 3(1) can be expressed in the

following form.

-1 ¢t
~ -Cy(i) * U~ » Upp - Cyr(i)
B(1i) = - (2.23)
E
2N-N-1
Proof: Each column of B(i) surely leads to zero vector,

if it is substituted into the linear forms of Equation 2,21,
Besides, it is linearly independent, since the identity matrix

E is contained as the submatrix of B(1). . Q.E.D,
27 ~-N-1

Definition 2.10. Let B(i) denote the submatrix that

consists of the first (N+1) rows of B(1). This matrix B(i) is
referred to as the fundamental solution matrix.

Naturally, there exist infinite forms to éxpress all the
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fundamental solutions, It is desirable, however, that all the
fundamental solutions are given in an easier form for the com-
putation. In fact, it.hardly requires complex computations with
the exception of matrices! multiplication as shown in Matrix
2.23, since U;l is given in Proposition 2.7, Thus, the expres-
sion by Matrix 2,23 is one of the most simplified forms to pro-

vide all the fundamental solutions.
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CHAPTER III

ARGUMENT ON WEIGHTS AND THRESHOLD SPACE

Throughout this chapter, the materials are described as
the problems of a single threshold element rather than as the
autonomous network problems, because of the reason mentioned in
.the previous chapter, The results obtained here, however, are
reédiiy applicable to an autonomous network by trivial modifi-
cations.:

In this chapter, the pfocedure of determining the practical
values of weights and threshold which realize the given Boolean
function will be presented at first, Furthermore it will be
shown in the explicit form Qhat'domain these pra@tical values
occupy in (N+1)—dimensiona1 Euclidean space. Some knowledges
about the Galois field are required for the advancement of our
theory. Only the necessary knowledge will be listed up.

N+1
3.1 Weights -and Threshold Values in R-+

By preceding arguments, it is conclﬁded that we can tesfi-
fy by the following proce&ures whether or not a given transition
bétgte diagfam is realizable.

(1) ‘For a given transition state diégram F, find each

characteristic matrix C(i) determined completely by
Relétion'2.3.

(2) For each obtained characteristic matrix c(i), produce

- 34 -



fundamental independent solutions b(t) (k=1, 2, ....,
2N—N—1) by Matrix 2,23,

(3) For these fundamental independent solutions, ascertair
whether or not Equation System 2.22 has a positivg
solution di> 0,

(4) If for each i (i=1, 2, ,..., N), Equation System 2,22
has a pdsitive‘solution, then the given transition
state diagram is realizable by the autonomous network
constructed with N threshold elements.. Otherwise it

is not realizable with N threshold elements,

Now, suppose that Equation System 2.22 is turned out to
have a positivé sloution through the test stated in the subse-
quent chapter, Thus; suppose that the Boolgan function repre-
sented by the characteristic matrix C(i) can be realized by a
single threshold element. Then, let us provide-the procedure
how to find the practical values of weights and threshold to
realize the given Boolean function. Let di denote the first

(N+1) components of d, then the following theorem is estab-

i ’
lished,

Theorem 3.1, If a given Boolean function represented by

C(1) is realizable with a single threshold element, then the
practiéal values of weights and threshold are glven by the fol-

lowing vec tor mi.

w = Uloc (1) & ()
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Proof: Substitution of wi given by Relation 3.1 into the

linear forms of Absolute Inequality System 2.16 yields the vector

d This is immediately followed by Theorem 2.4, Q.E.D.

1°

The expression of di generally contains (N+l) parame ters,
since the number of Equations 2,22 is (2N—N—1) and the number
of unknown variables is 2N. If d; is fixed to a certain posi-~
tive vector by éffording appropriate concrete real numbers into
these parameters, the threshold-weight vector wy that realizes
the given Boolean function can be obtained by Relation 3.1 for
this fixed positive vector.

By this way, the practical values of weights and threshold
can be easily obtained by a simple and unified computation,
only if the positive solution of Equation 2,22 is found for
the characteristic matrix C(i).

(46)
3.2 Domain of Weights and Threshold

In this section, the concrete correspondence betwgen a
given threshold function and the domain of (N+1)-dimensional
Euclidean spacé will be presented. Therefore, 1if the given
transition state diagram can be realized with N threshold_
elements, then the actual threshold and weights values are
given as an arbitrary element contained in the direct sum of
such obtained N domains. To begin with, let us introduce &wo
terms, a convex cone and a polyhedral convex cone, by Defini-

tion 3.1 and Definition 3.2, respectively.
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These terms themselves are well known in the linear algebr:
but used here to respresent a little different concepts from the
familiar ones so as to handle the absolute inequalities rather
than the inequalities where the relations hold always in the

form = ,

Definition 3,1, Let L be a subset of n~dimensional
Euclidean space. Then L is called a convex cone, if the

arbitrary linear combination with positive coefficients of

any two elements of L is involved in L. That is, L is a

convex cone if and only if

,Vy2€ L, Ya>0,Y8>0

ay, + BYZE.L holds for Vyl

Proposition 3.1, Let H and y denote an arbitrary (m,n)-

type matrix and an n-dimensional column vector, respectively,

Then the whole solutions R of the absolute inequalities
Hey>0

constitute a convex cone.

Proof: Since H-yl:>0 and H-y2:>0 hold for any two
elements Y1 Yo contained in R, the following relation is

obtained.

H-(alyl + azyz) = le'Yl + d2H°Y2>o

where a1>>0, a2>>0. Hence, aly1+a2y2 is an element of R,

Q.E.D,
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Consequently, the whole solutions of any absolute inequal-
ities can be given as a convex cone. This result itself is
not of so much significance, However, it will be seen more-
over that the whole solutions of any alsolute inequalities
constitute a polyhedral convex cone which has a more strongly
defined structure., For this purpose, let‘us consider the

following definition.

Definition 3.2, Let H and v denote An (n,n)-type matrix

and an n-dimensional column vector respectively. Then the set
of the whole vectors y which can be expressed in the following

form:
y_—_Hov N v>0

‘is. called a polyhedral convex cone generated from the matrix H:

This polyhedral convex cone is denoted by K(H).

That is:
K(H):{y; y =H v V>O}

Theorem 3.2, Any subspace L of the Euclidean space is

a polyhedral convex cone,

Proof: Tf the dimension of a subspace L is k, then L
equals to the set which consists of the whole vectors constructed
from the linear combination of k ‘linearly independent vectors,

€19 eé, cecesy €1, given by Definition 2.9,
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Therefore, consider the matrix H with 2k columns such that

H = (el, ez, oo ey ek, —el, "92, o0y -ek)
Then, L equals to the polyhedral convex cone K(H), Q. E.D.

Theorem 3.3. The set L* which consists of the whole

positive vectors involved in a subspace Lj;
L+={y 3 y>0 vEL}

is a polyhedral convex cone,

Proof: If the dimension of a subspace L is k, then L
is the polyhedral convex cone generated from the identity

matrix Ek' Namely L+ = K(Ek). Q.E.D,

Proposition 3.2. Let H and v be an arbitrary matrix

and a column vector, respectively. Then the whole vectors

that can be expressed in the form H*v make a subspace L,

Proof': Suppose that Y, and Yy, can be expressed by l{-vl

and Hev,, respectively, Then, the element expressed by

@)Y *+%,Y, is involved in L, since a1y1+d2y2=H-(alvl+a2v2).
Q. E. D.
Theorem 3.4, Let H be an (n,n)-type square matrix whose

rank is n, Then, the whole solutions R _of the absolute in-

equali ties

He v>0
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can be expressed as the polyhedral convex cone K(A ).

Here, A is the (n,n)-type matrix,

Proof: Consider the subspace L that consists of the
whole vectors expressed in the fofm Hev. Then it follows

from Theorem 3.3 that L* defined by the relation
+
L = Yy s y=Hev |, y>0 (302)

is a polyhedral convex cone., Hence the relation

Lt = K(Ep,)

holds., Furthermore consider the vectors qu q2' ceeesy q

such that

ej = E['qj (J = l’ 2, s 000y n)

where e is the j-th unit vector. Note that each qJ is
defined uniquely since det(H) ¥ O by the hypothesis.

Now suppose that the matrix A stated in this theorem
has these vectors 939 Gps eeen, a, as its n columns, This

is shown as follows. Let v be an arbitrary element involved

in K(A ). Then, v can be expressed in the following form.

n
v = Z “j'qj ’ a‘j>0 (j =1, 2, se0ey n)
j=1
Thérefore the relation
n _ n
Hev = Z az‘j-H-q:j = Z aJ-e]->O
j=1 j=1
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holds., Consequently the relation

x(a) € r

is obtained,

Conversely, let v be an arbitrary element involved in
the set R of the whole solutions, Then the vector Hev is
always contained in Lt given by Relation 3.2, Thus, the

vector Hev can be expressed in the following form,

Hewv = 55 rjye @y = ii aj.l{. 9,
Jj=1

where a ;>0 (j =1, 2, «vee, n). This relation leads to

the equation,
n
He( v - . 3 = 0 .
( D %yt ay) (3.3)
=1
Consequently, since det(H) # O, the following equation
n
Z *5° qJ=O
J=1
results from Relation 3.3, Thus, the relation

R =2 K(A)

is obtained. QR.E.D.

The following theorem is well known in the linear algebra,

which will be used for further developments, For the sake of
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unity, let us mention it with a slight.modification.
(38)

Theorem 3.5, Assume it is previously observed that

there exist n linearly indépendent vectors in m vectors set

Vis Vos eeeey Vi héwever there never'exist (ﬁ+l) linearly
independent vectors in this set even if we choose appropriately.
Then, any.set composed of k (where k is less than n) linearly
independent vectors which are selected from vj, V3, ««.es Vpy

‘can be expanded to contain n linearly independent vectors by

adding adequately (n-k) vectors in vj, V3, +eeey Vpeo

Theorem 3.6. The whole solutions R(i) of Absolute

Inequality System 2,16
t
c(i)+ U+ w,>0 (2.16)
can be given’in the following form.

s
R(i) = . K b
(1) = [ K(a,,) (3.4)
j=1
Namely, R(i) is an intersection of finite number of polyhedral
convex cones K( Ail)’ K( Aiz)’ coees K(A‘is)' Where the bounds

 for the value "s" will be given in Theorem 3.1k,

Proof: Let {Wi} denote the set which consists of all

the éN row vectors of the matrix C(i) e U, Divide the set

{wi} into "s" subsets {will , {wiZ} y eveey {wis} so

that the following conditions may be satisfied:



and (3.5)

det(WiJ) Ao , (3=1, 2, veuve, 8)

where each subset {Wii} contains (N+1) elements and wid

denotes the matrix whose each row is one of these (N+1)

elements. Observe that the relation

bﬁJ}r\{wﬂ<}=¢ y (Jy X =1, 2, souey 85 J # k)

needs not necessarily hold. Theorem 3.5, guarantees that
such a division exists.

Now, adopt such Aij as is given by the relation;

-1

A ij = wiJ (4 =1, 2, .00y )
Then, the relation
s
R(1) = N K(A.id)
J=1
follows .immediately from Theorem 3.4, Q.E,.D.

.The next theorem is almost obvious from the above proof.

Theorem 3.7. The set R(1i) does not depend on how to

divide the matrix C(i)+U. Namely two distinct divisions,
satisfying Relation 3.5, make the two intersections which

represent the same set.



By these discussions, it is concluded that the whole
solutions of Absolute Inequality System 2.16 can be given by
the intersection of finite number of polyhedral convex cones.
However, if any given Boolean function is a threshold function,
we must treat Inequality System 2.15 itself inherent to the
given Boolean function rather than Absolute Inequality System
2.16 so as to argue rigorously the whole practical solutions
in terms of the weights and the threshold.

For this purpose, it only needs a minor modification.
That is, according to Definition 3.,2. a polyhedral convex
cone equals to the set which consists of the whole linear
combinations of the column vectors of a matrix H with positive
coefficients. Now in ofder to argue about Inequality System

2,15, adopt nonnegative coefficients v‘j for every j such that
L)

Y3
tion, however, it hardly brings important effects with except-

S Qi instead of positive coefficients, In the actual situa-

ion of whether or not the boundary of a polyhedral convex cone
is contained. Therefore it will be admitted to réstrict our-
selves to the solutions of Absolute Inequality System 2,16 so
as to avoid complications.

Thus, Absolute Inequality System 2.16 will be treated
throughout the remainder instead: of Inequality System 2,15,
Then, if any given transition state diagram can be implemented
by N threshold elements, the whole weights and threshold values
realizing this behavior are given as a direct sum of such

obtained N intersections



S1 S2 ' SN
N K(AIJ)Q N K(AZJ)e....G) N K(ANJ)
j=1 j=1 j=1

2
which is a subset of (N +N)-dimensional Euclidean space.

' (38)
3.3 Introduction to Galois Field

To obtain the bounds for the number of divisions of the
matrix C(i)*U, some knowledges about Galois fields are used.
The minimum background for the subsequent discussions is pre-
sented here for tﬁe sake of unity and continuity.

In the theory of rings, ideals play very important roles
Just like normal subgroups in groups.v An ideal I is a ‘subset
of elements of a ring R with the following two properties.

(1) I is a subgfoup of the additive group of R,

(2) For any element "a" of I and any element "r" of R,

a.r and r.a are contained in I,
Since an ideal is a subgroup, cosets can be formed. In thish
case the cosets are called residue classes, Then, the residue
classes of a ring with respect to an ideal form a ring. This

ring is called the residue class ring.

Theorem 3.8, The residue class ring modulo p is a field

if and only if p is a prime number, This field is called the

Galois field of p elements, denoted by GF(P).

In so far as we are concerned with the integer, the field

which has pn (n>1) elements can not be generated. Now let us
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consider the polynomial f(X) of degree n with one variable X

and with the coefficients from any field A:

n

2
1X + a2x + cees + anx

Cf(X) = ag + @

Polynomia}s can be added and multiplied in the ordinary way,
and thus they form a ring. . A set of polynomials is an ideal
if and only if it consists of all the multiples of a certain
polynomial £(X). This ideal is denoted by {f(x)} . The
residue class ring formed by such an ideal {f(X)} is called
the ring of polynomials modulo f£(X).

Then, every residue class modulo a polynomial f(X) of
degree n contains either 0O or a polynomial of degree less than

'n., Zero is an element of the jideal, and every polynomial of
degree less than n is in a distinct residue class.

Some symbol, usually ¢, is used to represent the residue
class contéining X._ Thé fesidue class containing a field
element is given the same name as the field element. This,
however, should not cause any confusion. Then the coset that
contgins | |

n-1

a, + alX + seee + an_lx

can be denoted by

ao + ala + 0 0 0 + an_lan—l

Thus every residue class can be represented by a polynomial of
degree less than n with respect to «. Consequently the number

of distinct residue classes is mn where m denotes the number
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of elements contained in a field A.

Theorem 3.9. In the residue class ring modﬁlo a poly-

nomial f£(X) of degree n, the relation f(a) = {f(x)} = {O}

always holds. But no polynomial in o of degree less than n

is the ideal {f(x)} or {o} .

Theorem 3,10, Let P(X) be a polynomial of degree n with
the coefficients from a field A. If P(X) is irreducible in A,
that is, if P(X) has no factors with the coefficients of A,
then the residue class ring modulo P(X) becomes a field,

It is shown that the ring of polynomials over any finite
field has at least one irreducible polynomial of every degree.
The field of polynomials over GF(P) modulo an irreducible ﬁol—
ynomial of degree n is called the Galois field of-pn elements,
'denoted by GF(Pn). It is verified that every finite field is
isomorphic to some Galois field., Furthermore it is élso veri-
fied that any two finite fields with the same number of ele-
ments are isomorphic to each other, Hence, for any given
positive integer B there exists a field GF(B8), if and only if
B is a power of a prime number. |

There is a natural correspondence between GF(Pn) and the
n-tuples composed from the elements of GF(P). That is, the
polynomial ag + aja + se0e + an_lan_l corresponds to the

n-tuple (ao, 21y escey B ). The sum of two n-tuples corre-

n-1
sponds to the sum of the two corresponding polynomials, and

the multiplication by scalars carries over similarly. Thus
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GF(Pn) can be considered as a vector space of the dimension n
over GF(P).» Consequently the set Y which consists of all the
internal state vectors GJ (4 =1, 2, s00uy 2N) can be regarded

as GF(2N).

(48) .
Theorem 3.11. In GF(ZN) there is a primitive element a

which is an element of order (2N—1). Thus every nonzero ele-—
ment of GF(2N) can be expressed as a power of a, Therefore,

the multiplicative group of GF(ZN) is cyclic,

Example 3.1. The Galois field of 25 elements can be

formed as the field of polynomials over GF(2) modulo X2 +X%+1,
let « denote the residue class that contains the polynomial X.
Then ¢ is a root of (X5 + X% + 1 = 0), and this « happens to
be a primitive element of the field. Then the 31 nonzero

field elements of GF(25) are given by Table 3.1.

2 =1 = (10000)
al = a = (o1000)
o2 = «? = (oo0100)
@ = o« = (o0o0010)
= o = ( 00001)
o« =1 + o«* = (10100)
0 = a + o = (01010)
al = <> +a¥= (00101)
2 =1 + a® v ad = (10110)
«? = a« R T (o1011)



alo = 1
all = 1
12
o =
d13 =
dlh =1
a15 = 1
a16 -1
ul7 =1
alB =1
19 =
a20 =
a21 -
a22 =1
a23 =1
24
o =
a25 =1
a26 =1
a27 = 1
28
o . =
a29 =1
30 =
Table 3.1.
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Ordered Representation of GF(25)
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An irreducible polynomial of degree n over GF(P) is called
primitive if it has a primitive element of GF(Pn) as a root.
There exist the irreducible polynomials which are not neces-
sarily primitive. Thus, the actual procedures to examine
whether or not a polynomial is primitive are one of subjects
to be studied. Moreover it is significant to find out a ﬁrim—
itive polynomial for any given GF(Pn).

With regard to such problems some studies have been done
by various -investigators. For the practical use they gave the
primitive polynomials for GF(2") where n is up to 34. Thus we
can easily produce such an ordered representation of GF(2n) for

any given positive integer n less than 34 as Table 3.1.

3.4, Bounds for the Number of Divisions

The bounds for the number of divisions of the matrix C(i)‘U
still remain unknown. The object of this section is to provide
this bounds by utilizing the above stated preliminary knowledges
about the Galois field. To begin with let us cohsider the fol-
lowing theorem which is almost evident from the definition of

the linearly independence.

Theorem 3,12. If the given N vectors Vs Vo5 eeeey VN
are linearly independent over GF(2), then they are also linearly

independent over the real number space.

Theorem 3.173. In the ordered representation of GF(2N),'

any successive N elements of GF(ZN) are linearly independent.

- 50 =



Proof: Any successive N elements in the ordered repre-—

sentation of GF(2N) can be given as

m m+1 am+N—1

[} oo 0 0y
where a denotes the primitive element of GF(2N) and m denotes
the integer such that lsm§2N - N.

Therefore the linear combination L(a) of these N succes-

sive elements is expressed in the following form.

L(a) aoam + alam+1 b oeue. + aN-lam+N-l

I

a™ag + aja + cee. + aN_laN-l)

where a;(i=0, 1, ...., N-1) is an element of GF(2).
On the other hand, since a is a primitive element, « must

be a root of an irreducible polynomial of degree N.- Thus the

following equation holds through Theorem 3.9,
ag + By + ... + aN_laN"l # {O}
Hence, L(a) does not equal to {O} except for

8g =83 = eese =8Ny =0

This implies am, am+1, ess ey am+N-1 are linearly independent

over GF(2). Consequently any successive N elements in the
ordered representation of GF(2N) are linearly independent over
the real number space. Q.E.D.

In fact, the validity of Theorem 3.13 will be assured by
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checking Table 3.1.

Theorem 3.14, When the whole solutions R(i) of Absolute

Inequality System 2. 16 are expressed in the following form,

R(1) K( A

:)m

ij)

j=1

the bounds for the number s are given by the next relation:

where the notation (x] means the smallest integer which does

not exceed the value x.

Proof: The number of divisions of the matrix C(i)-U is
same as that of the matrix U , since c(i) is a diagonal matrix
and every diagonal component is not zero. Hence, it is suffi-
cient to consider the matrix U.

The lower bound is obvious since each wij (defined in the
proof of Theorem 3.6) is an (N+1, N+l1l)-type square matrix.

As for the upper bound, divide all the internal state
.vectors into [ZN/N] sets by taking the internal state vectors
N by N from top to bottom in the ordered representatidh of
GF(2N){ Permit, however, an overlapping extraction only for
the last divisioﬂ unless 2N is a multiple of N, Namely, the
.last division set may be constituted from the last N internal

state vectors in the ordered representation of GF(2 ).
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Furthermore, add thé vec tor Gl = (0, Oy «vesy O) to each divisiom
- set obtained by the above stated process. Now replace the in-
ternal state vectors involved in each resulted division set by
the corresponding content vectors. Then each matrix generated
from the above mentioned (N+1) content vectors has the rank
(N+1) through Theorem 3.13.

By such ways [2N/N] matrices, all of which have the rank
(N+1), can be produced. Therefore such [ZN/N] matrices can be
expresse& as follows. .

) This completes the part of
(1 000 ..., O

the upper bound., Q.E.D,
1 ao
1 al
1 P s

1 000 ,o00 O

1 aN
1 aN+1
1 a2N_2 )

1000 .... O

1 azg-N-l
l a2-N
.‘..l.b.&:....
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Thus it is concluded that all the threshold and weights
values reﬁlizing a threshold function represeﬁted by C(i) can
be given completély by Theorem 3.1k, ‘It is the well known
fact that the whole solutions of the linear inequalities are
generally expressed as a polyhedral convex cone. In this
vchapter, the practical procedures which‘determine the polyhed-
rhl.convex cone have been provided. The terms of the polyhed-
ral convex cone is modified here éo as to handle the absolute

inequalities.

Example 3.2. The submatrices ﬁd (3 =1, 2, cuoeey 7)

of the universal matrix U for N = 5, defined by the relation
L PR C.(1) 4 the submatri

A 13 = Yy = [ 3 i Uj] wherg 3 i enotes e submatrix
of C(i) corresponding to a division set expressed by ﬁj, are
given by Table 3.2. Thus Cd(i) is the (6,6)-type diagonal
matrix which consists of the k's—th rows and columns of c(1),
if ﬁd contains the k's—th rows of U,

Therefore the polyhedral convex cone for the whole solu-
tions of a threshold function of 5 variables can be constituted

by using these matrices ﬁj in the form :

R(1) = k(T3 §y(2))

c|'|":D~z

1
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100000 100000}
110000 110100
ﬁl= 101000 3, - 101010
100100 100101
100010 110110
L100001J L 101011 |
(100000 ) ’1oooooj
110001 111111
§3= 111100 T, -| 111011
101110 111001
100111 111000
L 110111 L 101100 |
[ 100000 ) '100000}
100110 110011
= .|l 100011 Tg=| 111101
5 110101 | 111010
111110 101101
|l 101111 ) 110010 J
(100000 )
111101
= _.|111010
7 101101
110010
101001

Table 3.2. The Basic Component Matrices for the Polyhed-

ral Convex Cone of a Threshold Function of 5 Variables.
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CHAPTER IV
LINEAR SEPARABILITY BY FUNDAMENTAL SOLUTION MATRIX

In‘this chapter the problem, generally known as the linear
separability, is treated. Concerning this préblem various
approachégl pgactical procedufes and conditions have been pro-
posed such as Linear Programmfgg,lFunction %#22 and Asummabili;
‘ty. This problgm is one,of-the most classical and yet the most
difficult ones in Threshold Logic as»the‘number of input vari-
ables increéses a litfle. Here the subject is discussed with
using the fundamental solution matrix, The linear separability

condition is established with respect to the properties of this.

matrix,

h,1 The Basic Background

By the preceding argument, it is éondluded that a given
Boélean fuﬁction represented by C(i) is realizable by a single
thfeshold eleﬁent if and only if Equation System 2,22 has a
positive solution d;. Here the practical procedures which>
examine whether or ﬁot Equation Sysfem 2.22 has a positive
solution are presented. 'Fof this purpose let us first consid-
er the next theorem,

(18) ‘
Theorem 4,1, Equation System 2.22 has a positive solu~

tion dj if and only if the minimum convex body which involves

- 56 -



the 2N points of the s—dimensional- space (S=2N—N—l) whose

coordinates are given by

(1) (2) (s)

Py = (byys byys eeees byy)

1
(1) (2) (s)

p = ( b129 b12’ NN R] bi2)

RN C N KON
. 2N iZN’ iZN, B 12N

contains the origin, Here the k-th fundamental soiution is
expressed by the coordinate
k) (k) (k) (x)

(
by = (By1s Byar eeeen bizN) .

However it is often difficult to analyse the Equation
System 2,22 by the aid of Theoreﬁ'h.l. Now consider the next
theorem established by Furtwingler and M. Fujiwara which pro-

vides the foundation of the subsequent argument.

1
Furtwingler's Theorem There exists a system of positive

numbers Yy Yps cccer Yp such that the relations

Me(y) = 3 @ o vy<0, (k=1 2, eeeey m) o (Be2)
=

hold, if and only if at least one of r linear forms
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L) = a, cxme (=12 ) (h2)
| 2o kg

becomes a negative»number-for”any nonzero nonnegative vector’

x = (xi, x ceoey xs)zo.

2'
Since the linear forms of Relation 4,1 take negative

values, let us represent these values by y Yy ceooy Y

r+l’ ‘r+2’ r+s.

Then the next theorem is obtained immediately from Furtwidngler's

Theorem.,
~ Theorem 4.2. The linear equations
r .
/4 . = = k=1 2 so e B o ho
Z X3 Yj Yr+k ’ ( ’ ’ ’ 5) ( 3)
J=1

have a positive solution (yl, Ypr eeees V. )}, if and only

r+s
if at least one of r linear forms given in Relation 4,2 becomes
a negative number for any nonzgro'nonnegative vec tor

x=(x1, X2. cee sy xS)ZO'

Therefore the fact that at least one of r linear forms
given in Relation 4,2 becomes negative for any x=0 is équ;yq—
lent to the fact that the origin Lies Qithin thq minimum convex
body éontaining the following s+r points in the s—dihensional

space:
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Pl = (all, azl, ¢ 000y asl)
Py = (eypr @pns vevey @)
P_ = (alr, Rpr sosey asr)
Pr+l = ( l’ Oy vevey 0)
Pr+2 = ( o, 1, ceeey 0)
P ois = ( o, Oy eess, 1)

Then the next theorem is established which is the basic theorem

for the further development.

Theorem 4.3. Equation System 2,22 has a positive solu-

tion d;>0 if and only if one of N+l linear forms

2N—N—l(k)
Lij(x) = D B35 « xc o(3 =1, 2, oo, Ne1)  (B.4)
k=1

becomes a negative number for any nonzero nonnegative vector

x = (xl, x2f ceeey sz—N-l);Z o.

Proof: The coefficients of Equation System 2.22 have
the same forms as the coefficients of Equations 4,3, That
is, the 2N points stated in Theorem 4,1 have the following

coordinates.
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(1) (2)-

(
110 Pyys eeeer Py

(1) (2)

P, = ( Byos  Bygs eeeer By )
(1) (2) (s)
Pror = (Pini1s Pine1s ++ve0 Pine1)
PN+2=( . l’ o, e o e oy O)
PN+3 = ( 0, 1” e o0y 0 )
PN’=( 0, Oy seeey 1)
2
where s = 2N-N-l. Q.E.D.
h,2 Development

The main purpose of this section is to develop Theorem
_'h.3 in order to make it more tractable. Thevconditiéns for
the existence Qf a{pqsitive solution di of Equation System 2.22
afe stated as the properties of the fundamental solution matrix>
B(i) defiﬁed,by Defihitioﬁ 2.10.

For brevity of notations the terms of ‘a nonnegative4col—

umn, a negative row and a nonzero nonpositive row will be used

in the same meaning defihed for a vector in Chapter II.
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Theorem 4.4, If there exists at least one nonnegative

column in the fundamental solution matrix B(i), then Equation

System 2.22 has no positive solution.

Proof: Suppose that the k-th column of B(i) is nonneg-
ative., Consider a vector x such thgt only the k-th component
is a sufficiently large number and all the other components
are zero, then the linear form Lij(x) of Relation 4,4 does not

become a negative number for any j,. Q.E.D,

Theorem 4.5, If there exists at least one negative row

in the fundamental solution matrix B(i), then Equation System

2.22 has a positive solution,

Proof: Suppose that the k—th row of B(i) is negative,
then the linear form Lik(x) of Relation 4,4 becomes a negative
number. Q.E.D.

Since Theorem 4.4 and Theorem 4,5 are not so applicable
excepting the limited fundamental solution matrix, let us de-
velop Theorem 4.3 in the easier form to apply. For this pur-

pose consider the following two definitions.

Definition 4,1, If the 1,~th row of B(i) is nonzero

nonpositive, then the submatrix'glizll) of B(1i) is construc ted
in the following manner, That is, exclude all the columns from
B(1) such that the components of the 1;-th row are ﬁegétive.
Exitll) is called the reduced fundamental solution matrix éf

order 1 cohcernihg the ll-th row, Similarly if the 12-th row
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of;Eﬂi:ll) is nonzero nonpositive, then the submatrix.gli:lllz)
of B(i) is constructed in the same manner. That is, exclude
all the columns from Eqizll) such that the conponents of the
1p,-th row are negative. 15(1:1112) is called the reduced fun-
démental solution matrix of ofder 2 concerning the ll—th row
and the 1l,—-th row. Likewise the reduced fundaméntal solutioh
matrix‘iﬂizlllz..;ln) of order n can be defined by the similar

manner.

Definition 4.2. Consider the (N+l,2N-N—l)-type matrix

B(i:row) which is constructed from B(i) in the following man=
ner. That is, first make a linear combination of some rows

of B(i) with positive coefficients, and then replace an arbi-
trary row which was joined in the linear combination with this
linear combined row. B(i:row)‘is called the row-combined fun-
damental solution matrix. Similarly, the column—-combined fun-

damental solution matrix B(i:column) can be defined.

) -— .
Theorem 4,6, If B(i:1 12...1n) becomes the (0, O)-type

1

matrix for an appropriate number n, namely, vanished, then

Equation System 2,22 has a positive solution.

Proof: Let us represent the 1l;—th row, l1,-th row, ....,

and 1n—th row of B(i) by bill’ bilz’ cessy and biln’ respective=-

-1ly. Then the linear combination

n
bi = 2 djv bilj' (al>>a2>'>ooau >>¢n>0)
=1
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becomes a negative vector. Hence the linear form of Relation

4,4 which takes the components of this negative vector b; as

its coefficients becomes

2N-N-1 n
E by X = Z oy Lid(x)<0
k=1 J:l
where b, = (bil’ bioy eeee bizN-N-l). Therefore at least one

of Lij(x) (j=1, 2, ..+., n) becomes a negative number. Q.E.D.
The case where-ﬁfizll) becomes a (0, O)-type matrix cor-

responds to Theorem 4.5,

Theorem 4,7. If it is possible to make a column-combined

fundamental solution matrix B(i:column) whose at least one of
columns becomes nonnegative, then Equation System 2,22 has no
positive solution.

Proof: Let E(column) denote the matrix which is con-

struc ted from the identity matrix E2N N-l by performing the
same linear combination and the same replacement as B(i:column)

Then each column of the matrix

B(i:column)
E(column)
becomes the fundamental solution of Equation 2,21. Q.E.D.
In Definition 4,1 the reduced fundamental solution matrix

1R131112"’°1n) of order n is constructed for B(i). Likewise,

the reduced row-combined fundamental solution matrix.
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- . . :
B(i:row:l;1,....1) of order n can be defined for B(i:row).

by the similar manner. Then, the next theorem is established.

- ,
Theorem 4,8, If B(irzrowllllz...ln) becomes the (0, 0)-

type matrix for an appropriate number n, namely, vanished,

Equdtion System 2,22 has a positivé solution.

~N ' :
Proof: Let I, ,(x) denote the linear form when B(i:row)

iJ
is considered instead of B(i) in Relation 4,4, Suppose that
B(i:row) is constructed in the way such that the t-th rowlis
replaced by the linear combination of m rows of B(i) with

positive coefficients Bl, Bz;b...., Bm.. Then the following

relations hold,

T,(x)

L; 4(x), (3#¢)

i By Ly (x)

k=1

il

%it(x)

. ~
On the other hand let %;11'13112' eveey bil denote the
: n

l;~th row, lp~th row, ...., 1,-th row of B(i:row) respectively.

‘Then, the linear combination

~n 2 o~
b, = Z @ bild (a,>>2,>> 000 >> @ >0)
J=1 ‘
becomes a negative vector. Hence the linear form of Relation

) ~n
4.4 which takes the components of the negative vector b; as its

coefficients becomes
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2N-N-1 n

~J
E bl X, = Z aJ.LiJ(x)<O
k=1 j=1

~y

wher %’ (A' %’ b
ere = ee e
i i1’ 42’ 7 T1,N_nay

Therefore the following relation holds

M=

n ~N
Z aJ.LiJ(x)=¢t B+ L, (x)+ ZaJ.LiJ(x)<O
3=1 /

1 JEt

~
[}

Thus at least one of Lij(x) (3=1, 2, «...N41) becomeg a

negative number, Q.E.D.
Let us practise the arguments stated hitherto for the

case N=3, The notations and terms will be used to represent

the same conception defined in the preceding discussions.
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4,3 Example

Example 4.1, Examine whether or not the transition

state diagram given by Fig. 4.1 is realizable with three

threshold elements. If it is realizable, then determine the

actual weights values and the threshold value of each element.,

Furthermore let us determine what domain these weights values
and threshold value occupy in the (N+l)-dimensional Euclidean

space.

N 33 4,
(0 00) (o 0) (0 0 1)
g,
<(1 o] o)>
ﬁ7 b ﬁ5A< 66
(o 1 1) (1 1 0) (10 1)
(r11)

Fig. 4.1. Transition state diagram
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Three characteristic matrices for this behavior are given by

the following matrices.

(1 ) (-1 )
-1 1
.0 .0
c(1) = t c(2) = )
1 _
o) 1 0 1-1
\ =1 \ 1)
(-1
w0 |
c(3) = -

L 1
J
Thus the corresponding fundamental solution matrices are given

by the following three matrices.

-1 1 1-2 -1 -1 1 -2
-1 1 0-1 -1 -1 0 -1
B(1) = 1 0-1 1 B(2) = 1 0-1 1
0-1-1 1 0 1-1 1

-1 1 1 -2

-1 1 0-1

B(3) =
1 0-1 1
0-1-1 1
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Since B(3) is coincident Qitn B(l); only B(1) and B(2)
are considered hereafter, Construct the.row—combined funda-
mental Qolution matrix B(l:row) by adding the fourth row to
the first row of B(1). As the‘first row of B(l:row) is non-
positive, construct the reduced row—combined fuqdamental so-—
lution matrix ﬁzl:rowzl) of order 1 . Thus'ﬁilzrowzl,h) be-
comes vanished, |

On the other hand since the second row of B(2) is non-
positive, construct‘§12:2). Then‘§?2:2,3) becomes vanished.
Hence Equation System 2,22 has a positive solution for any i.
Thus the transition state diagram given'by Fig, 4.1, is realized

with three threshold elements, These processes are shown in

Table 4,1.
-1 0 0-1 o o
B(l:row) = 1 0-1 1 = B(1l:row:l) = o -1
0-1-1 1 -1 =1

v

B(l:row?l,h) = 0

o
B(2:2) = = B(2:2,3) =0
Table 4.1, Actual processes for linear separability
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The following three vectors dl’ d d., can be positive

2' 73

solutions of Equation System 2,22,

a
i

(u, 1' 2’ 6, 3’ l’ l" 1)

d, = (, 1, 2, 1, 1, 1, 1, 1)

=%
I

(l‘, 1' 2’ 6’ 3, l, L" l)

Thus, by Theorem 3.1, we obtain

t."’l = ( "v -5, =2, 2)
w, = (-1, =2, o0, 0)
‘”3 = ("'hv 5, 2, -2)

Therefore the autonomous network given by Fig, 4.2 shows

the behavior given by Fig. 4.1,

Fig. 4.2, The autonomous network
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The domain of the weights values and the threshold value
of each element is given as the intersection of the polyhedral
5
convex cone, R; = [} K(A ij)’ where each matrix A, is pro-
j=1 -

vided aé follows.,

1 0 O O -1 1 1 2
A - -1 -1 0 O A . 0 O.—l -1
11 -1 01 O 12 0-1 0-1
-1 0 0 1 1 0 0 -1
-1 0 0 O 1 1 -1 =2
1 O O 0O 0 1 1
Az = 22 °
0O-1 O o-~-1 0 1
1 0 0 -1 -1 0 O 1
-1 0 0 O 1 -1 -1 =2
- 1 0 0 = o 0o 1 1
31 0-1 0 32
0O 1 0 1
1 0 0-1 -1 0 0 1
Example 4.2, Examine whether or not the transition state

diagram given by Fig. 4.3.is realizable with three threshold

elements,



(o 1 0)

|
/1 g o\,
~ . G ul a[,

(1 11) P(1 1 0) (ooo\_/
(0 0 1)
(1 01)
Y6

Fig. 4.3, Transition state diagram

Three characteristic matrices for this behavior are given

as follows,

4 -1 \ ¢ 1 \
1 1
. 0 . 0
c(1) = - c(2) = "t
O l‘1 O 1_1
\ 1 \ -1
4 -1 3\
..11 O
-1
c(3) = 1
1
0 -
-1




Thus the corresponding fundamental solution matrices are

given as follows.

-1 -1 -1 =2 -1 1-1-2
-1 -1 0 -1 1-1 0 1
B(1) = 1 0 1 1 B(2) = | ) 611
0 1 1 1 o 1 -1 -1
-1 -1 1 2

1 1 O0-1
-1 0 1 1
o 1 -1 -1

B(3) =

- -, .
Hence B(1:1) and B(2:3,1) become vanished through the

processes shown below,

1
B(2:3) = 'é = B(2:3,1) =[0]
1

However the column-combined fundamental solution matrix
B(3:column) constructed by adding the second column to the
fourth column of B(3)_has a nonnegative column in the fourth

column as follows,

-1 -1 1 1

1 1 O O

B(3:column) = 1 0 1 1
o 1 -1 0
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Hence Equation System 2,22 has no positive solution for

i=3, Therefore the behavior given by Fig. 4.3 is not realiz-

able with three threshold elements.

Note that if the component of a matrix is not given, that
is, left blank, then it means the component is zero throughout
the above representation of a matrix. Such a representation

will also be used in the remainder of this paper.
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CHAPTER V

LINEAR SEPARABILITY BY VARIABLE TRANSFORMATION

The tests for the linear separability so far proposed
are, in general, not very practical when the function of more
than five or six variables is to be tested. Since most of
these proposed methods require a large amount of computation,
the problem of determining whether or not a given function is
a threshold function is commonly solved in actual by reducing
the function to a canonical form and checking to see if it is

14 62
contained in the entry of the tables prepared for this(pugpgse?

Since the number of threshold functions grows very ﬁ:gfégg)
with an increase of the number of variables, it becomgs necessary
to enumerate only the representatives of equivalence classes.
The number of representatives even in the most enlarged con-
cept of equivalence becomes more’than two thousands for the
function of seven input variables. Thus this fact indicates
that it is still necessary to develop a general test for the
linear separability for the function of a large number of
variables.

The main purpose of this chapter is to develop a general
test to meet this fequirement. This test is a method which

examines whether or not a certain equation system has a non-

zero nonnegative solution.
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5.1 Preliminary Consideration

The.practical procedure&?720 be presented in this chapter
consiat of two fundamental operations, the transformation of
input variables and the eliminations of columns and rows of
matrices, This test procedures require at most N times'of the
transformation of input variables in order to examine whether
or not the function of N variables is a threshold function.
Hence this test is useful even if the number of input variables
increases.

The fact that at most N times of the transformation are
sufficient is due to the treatment of the adjoint linear equa-
tions instead of the inequalities directly. The following
theorem promotes this idea and gives the foundation of the
subsequent analysis. This theorem, brought out at first by
Stiemke and settled later in the refined form by Tucker, plays a
very important role not only in the theory of linear inequality

but also in the theory of games and linear programming.

Stiemke's and Tucker's Theorem Let H denote an arbitrary

(m,n)-type matrix., Then either of the following two propositions

always holds and never holds simultaneously.

(1) The inequalities
He x>0

have a solution x = t(xl, x2, ce o0y xn)o
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(2) The equations

tH-y:O

have a nonzero nonnegative solution y = t(yl, Yoo

ceees Yp) =0,

By applying this theorem to Absolute Inequality System

2.16 it is concluded that we have to examine whether or not
Equation System 2.21 has a nonzero nonnegative solution by 236.
That is, if Eqpation System 2,21 has no nonzero nonnegative
solution bi.E:O, then Absolute Inequality System 2,16 has a
solution and the reverse fact is also true. '

This theorem states very concisely and explicitly the
condition for the consistency of homogeneous strict inéqual—
ities, however it is not so surprised one. It states the en-
tirely same fact as Theorem 4,3 which is reduced through
Furtwingler's Theorem, Hence we can say that in Chapter IV
we have rearranged this theorem into the more tractable form
for the analysis.

The practical procedure to be discussed hereafterlis a
method which can test whether or not Equation System 2.21 has
a nonzero nonnegative solution. There are N+1 equations in
Equation System 2.21 whose coefficient matrix is tU 'C(i).

The primary concept of this method is to diminish the equations

one by one by the elimination of the row and columns of tU~C(i)

or by the transformation of input variables. Hence the necessary
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the number of transformations to examine the existence for a

nonzero nonnegative solution is decreaséd as many times as
the order of the eliminations.

For the efficiency'of procedures, the eliminations, in
general, are performed before the transformations until further

eliminations become to be unexcuted.

He2 Simplification Procedure by Elimination

In this section let us present the simplification procedure

of Equation System 2,21 by the eliminations of rows and columns
t
of “U.c(i).

Definition 5.1. Consider the set Vi of the internal state

vectors defined as follows.

!
-

ﬁj eV, if ¢i(uJ)

¢ v, ir 93 ()

!
o

Proposition 5.1, If the relation

V‘jgpi (J=1' 2' s 00 0y N)

is satisfied, then the (j+1)-th row of ty . C(1i) is a nonzero
nonnegative vector whose each component is either O or 1, On

the other hand if the relation

Vi S g (4 =1, 2, ...., N)



is satisfied, then the (j+l)-th row of YU «C(i) is a nonzero

nonpositive vector whose each component is either O or -1.
Proof: If Ug€ Vj € Pj, then the k—th column of tu.c(i)

equals to Gk- Hence the k-th component of the (j+1)—th row of
t -~ e
U+C(i) is 1 for Uy € Vy and is O for uk€$ Vi Thus in any
way the component of (j+l)-row is either O or 1.

If G € V; € Q, then the k-th column of Yy . c(1) equals

to —Gk. Therefore by the similar argument the proposition

follows, Q.E.D.

Proposition 5.2. if the relation

P, =V (5.1)

is satisfied, all the components of tU +C(1) are 1 and O.

On the other hand if the relation

Py =Q (5.2)

is satisfied, all the components of ty -C(i) are -1 and O,
Proof: If P; =V, then the characteristic matrix c(i)

becomes the identity matrix EQN' Thus tU.cC(i) = tU. On the

other hand if Py =& , then C(i) becomes -EzN. Therefore |,

ty Jc(i) = =fu. Q.E.D.

Proposition 5.3. If either Relation 5.1 or Relation 5.2

is satisfied, then Absolute Inequality System 2,16 is consist-

ent,
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Definition 5.2. If either of the two relations

Vv, € Py or vV, € Q

is satisfied, exclude all the k's—-th columns from the matrix

tU + C(1i) such that G € V3 and moreover exclude the 1;~th row.
1
Such an obtained matrix is referred to as the curtailed matrix
t- -
U(ll)- C(i) of order 1 concerning the threshold element T, .
1
Let us expand this concept and define the curtailed matrix

t‘*— <
U(lllz...ln)-c(i) of order n concerning the threshold elements

Ty 4 Ty 4 +++, T} stated as follows, That is, if there exists
1 2

n N -—
the curtailed matrix U 1112...ln_l)-C(i) of order n-1 and

moreover if either of the two relations

n-1
(v, - v Vlj) c py (5.3)
n j=l
or
n-1
(Vi - u vlj) =N (5.4)
j=1
is satisfied, exclude all the k's-th columns from the matrix
o P -~ -~ n-1
U(1;1,...1,_7)°C(i) such that uy € (vln - U V11) and fur-
J=1 )

thermore exclude the (1lp+l)-th row,

Proposition 5.4, The curtailed matrix of order n (n=l,

2, 4440, N) is an (N—n+1,2N-n)-type submatrix of °U .C(1).

Proof': The number of the components contained in the
n

N-n). Hence the number of the columns

N
set U vlJ is (27=-2

which are to be excluded from the 2V columns of Pu.c(1) is
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N—

2N—n)

(2 . On the other hand one row is always excluded as
the order of the curtailed matrix is raised. Q.E.D.

Theorem 5,1, The equations whose coefficient matrix is

the curtailed matrix’of order n-1
t T - t—
U(1315...153) - C(4) "By g = O (5.5)

f—

have a nonzero nonnegative solution bi n-1 =0, if and only if
’

the equations whose coefficient matrix is the curtailed matrix

of order n
t = < :
t<—
U(1315...1,) - C(1) - bj n=0 (5.6)

have a nonzero nonnegative solution'B;’IIZZ 0.

Proof: First consider the "only if" part. The (1,+1)-th
row of tﬁ?lllz...ln_l) is a nonzero nonnegative vector which
consists of 1 and O, if Relation 5.3 holds., On the other hand,
if Relation 5.4 holds, then this row is a nonzero nonpositive
vector which consists of -1 and O. Hence all the k's—th com-

ponents of the solution B- of Equation 5.5 must be O such
n-1 i,n-1

that @_€ (v1 - v v, ). Therefore from the definition of
t N J=1 J N-n '
U(lllz...ln)' c(i), it follows that the 2~ ~—dimensional vec-—

tor 'Bl,n obtained by excluding all the k's-th components of

2N-n+1

the ~dimensional solution of Equation 5.5 such that

n=-1 ,
g € (Vln - ng Vlj) can be surely a solution of Equation 5.6.
This completes the proof of the "only if" part,
N-n+l g
Let us construct a 2 —dimensional vector by p.j =0
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from the solution 31,,122 O of Equation 5.6 by attaching 2N-n
zeros as the k's—th components such that Gk € (V1 —,:Gi Vl ).
n J= j
Such an obtained vector E;,n—l can be surely a solution of !
Equation 5.5 from the definition of tafillz...ln)'ﬁii). This
completes the proof of the "if" part,. Q.E.D.
For a convenience, the matrix tU'C(i) itself will be
called the curtailed matrix of order O. The next corollary

follows immediately from Stiemke's and Tucker's Theorem and

Theorem 5.1.

-, ‘-
Corollary 5.1.1. Suppose that there exists tU(ll)-C(i).
Then Absolute Inequality System 2.16 is consistent if and only
if the equations

U(1,) - c(i) - b; 1 =0

have no nonzero nonnegative solution1; = 0.

i, 1l

e
Theorem 5.2, For the case where there exists tU(lllz...

f—
1,):C(1i), the equations
fu.c(i)-tp; = 0 (2.21)

have a nonzero nonnegative solution bi;z 0, if and only if the

equations

c(1) % _=o0 (5.6)

t<—
u(1 i,n

1

1o n)

. -
have a nonzero nonnegative solution bi'IIEECL
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Proof: This fact is immediately obtained by applying
Theorem 5.1 successively by n times. Q.E.D,.

The number of equations and unknown variables in Equation
5.6 is decreased by n and 2N_oN-n respectively, compared with
Equation 2,21. ‘Hence Theorem 5.2 shows that the test for the
linear separability becomes easier if we use Equation 5.6 rath-
er than Equétion 2.21. The nearer n approaches N, the easier
the test with Equation 5,6 becomes.

Therefore in order to examine the consistency of Absolute
Inequality System 2.16, Equation 5,6 where the curtailed matrix
of the highest order is adopted is most convenient to investi-

gate. Thus if U(111 lM)-C(i) denotes the curtailed matrix

20.0

of the highest order, then it is easiest to examine whether

or not the equations .

tﬁ(lllz...lM) . C(4) ."E:,M =0 (5.7)

have a nonzero nonnegative solution'E; M = 0.
9

Theorem 5.3. If there exists the curtailed matrix of
order N, then Absolute Inequality System 2.16 is consistent.

Proof': The curtailed matrix of order N always becomes
a (1,1)-type matrix from Proposition 5.4, and its component
must be 1 or -1. .Hence Equation 5f6‘becomes'g;'N =0 for n=N,
Thus it is concluded that there exists no nonzero nonnegative

solution bi;2 0 of Equation 2.21 through Theorem 5.2. Q.E.D.
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Theorem 5.4, Let U(lllz...lM)-EYi) denote the curtailed

matri; of the highest order that exists really. Then neither
nonnegative row nor nonpositive row exists in the rows of
t3(1715...1y)-5(4). That is, each row of “U(1jly...1y)-C(1)
always contains 1, -1, and O as its components.

Proof: If the ly,;-th row of PU(1;15...1y).C(1) is a

nonzero nonnegative (nonpositive) vector, then the relation
M
- ] C
(vq u v, ) spr(q)
M+1 j=1 J

holds. Hence the curtailed matrix of order M+l can exist,

This contradicts the assumption. Q.E.D.

‘ (24)
5.3 Simplification Procedure by Transformation:

It is not necessarily so easy except for the case M=N to
investigate about Equation 5.7, since every equation contains
both a positive coefficient term and a negative coefficient
term. Thus in this section let us develop the practical pro-
cedure to examine the existence of a nonzero nonnegative solu-
tion of the equations like Equation 5.7.

The procedure to be discussed in this section is a method
which decreases the number of equations by transforming the
unknown variables. If the transformation is performed once,
one equation always vanishes, Therefore if there are m equa-
tions in a giveh equation system, the transformation of m-1

times is sufficient to examine completely whether or not the
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given equation system has a nonzero nonnegative solution.
Let H denote an arbitrary (m,n)-type matrix which has

neither nonnegative'row nor nonpositive row, Hence if hi=(hil’
Bjoy seeey him) denotes the i-th row of H, then some of these
components hij(j=l, 2, v4esy, m) take positive numbers, others
take negative numbers and tﬁe remainders may take zeros, With-
out loss of generality suppose that the first p components are
positive, the successive q components are negative and the last
r components are zeros, Then the i;th equation of the equation

system H . X = O can be written as follows.

hilxl + h12x2"' + hipxp = fhip+1xp+1-hip+2xp+2"'—hip+qxp+q

where hy j =0 (=1, 2, ..., p) and -hj,, >0 (J=1, 2, eeoey Q).
Now consider the transformation table given by Table 5.1 and

make such a transformation of unknown variables as given by

Relation 5.8,

z11 z)2 e e .. Z1q hj1xy
Z31 Zap <. e Z2q hja%a
4 2z e o o » -4 h, . x
31 32 3q i3 3
) . . . 4.

z z e o o o z h X
rl p2 pa ip™p

“hip+1Xps+1 “Bipi2Xpiz “hipigXpeq

Table 5.1, Transformation Table
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~Rip+a¥p+q

xp+q+1

xp+q+2

. LY . .

Xn =

This transformation can

Table 5.2.

be expressed
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X2

Moo o o o

p+l

p+2

p+q
xp+q+l

xp+q+2

M

q
)R vt
X hyeeneett

00 .....0

Oooonooo

O O .....0
Blo .....0
0 BZ.....O
00 330000

000 ...8

Table 5.2.

1

q

a
Pt
O 0 .....0

Anlo,eeeeln

00...090

. . . . .

oo '..'C.O

Blo 000000

082.....O

00 33...0

000 ...8

q

1, 2, s 00y p), 8 =

q q
Oo..'..o~..oo.....o

00 .....0 ..00 .....0

a3a3.....a3..0 0 .-...0

00000000 e s O O _oso00el

PP P

B l'BlO llll.o

10 otloto

032000000 -.O 62000000

0o 83...0 ++0 O 83¢..O

. . . . [] L] . . . . . .

00O ...Bq..O 0o ...Bq

Lo (s
3 ipeg = 0

Transformation Matrix

r
—

o ©

o
o
[N

\

\"1n

l, 2, s0 00y q)




Definition 5.3. Let us represent by x= D, 2 the rela-

i

tion denoted by Table 5.2. The matrix Di is called the trans-—

formation matrix of variables, Here the suffix i shows the

i=th row of the matrix H.

Proposition 5.5. The transformation matrix D; is always

positive definite. That is, Dy = 0.

Theorem 5.5. Let H denote an (m,n)~type matrix which

“has neither nonpositive row nor nonne8ative row. Moreover con-
sider the transformation matrix D; given by Table 5.2. Then

the equation system

H'Di-z=0

consists of m~l equations and p.q+r unknown variables where

P, 4 and r denote the number of the positive components, the
negative components and zero components contained in the i-th
row of H, respectively.
Proof: The i~th equation of the equation system
H. X =0

is transformed into the form

D Tyt 2 7y =0

i, 1,3

by the transformation given by Relation 5.8. Then the i-th

equation becomes vanished, The number of unknown variables is

obviously p.q+r through Table 5.2, Q.E.D.
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Theorem 5.6, Let H denote an (m,n)-type matrix which

has neither nonpositive row nor nonnegative row, and Di denote

the transformation matrix given by Table 5.2, Then the equa-

tion system
He x =0 , (5.9)

has a nonzero nonnegative solution X =0 if and only 1if the

equation system
HeDj+ Z =0 _ (5.10)

has a nonzero nonnegative solution Z >0,

Proof: If Equation 5.10 has a‘nonzero ponnegative solu-
tion 2, then X determined by the relation x =Dj+2Z becomes a
nonzero nonnegative vector fhrough Proposition 5.5 and it can
surely be a solution of Equation 5.9.

Converse fact is proved as follows. Here the proof is

shown by giving the practical procedure to determine an actual

nonzero nonnegative vector 2 =0 for a given nonzero nonnegative

vector 1‘2 O connected by the relation XX =Di-Z « The trans-—

formation x::Di-Z is shown by Equatioh 5.8, Here with respect

to the part

Xp+q+l = Z1p+q+l



there is no problem, if it is determined that ziJ has the equal

value to the given xJ (J=p+q+l, P+a+2, secey n). Hence it ié

sufficient to consider - the remaining part.

hilxl(o) = le + 212 + ceee  + Zlq
hizxz(o)' = Zp1 * Zpp *oeeee * Zp,
= 2 + Z + seeo z
hipxp(o) pl p2 * pa (5.11)
—hip+lxp+l(0) = le + Z21 + s0e0 + zpl
=hy o 2%5,2(0) = mpp 4z b oeees 4 Zp
—hip+qxp+q(0) = zlq + zzq + o000 + zpq

Here the index "(0)" attached to the term hinj(O) represents

the stage of the operation stated in the following paragraph.

= eo 0 - o) 0
For any.given hijxj(O)E;O (3=1, 2, , p) and hip+pr+J( )=
(521, 2, +e.ey q), let us determine concrete values z; § =0

(i=l! 2y ey P;v j=1, 2, '00'., q) in Equation 5,11.

If the relation
hyyx,(0) + by gx,,,(0) S0
holds, then determine as follows

= h 0 z =2 = ,se 2 = 0.,
%11 1151 ) 2, 13 1q
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Moreover perform the replacement given as follows,

hy2x3(0) = hypxp(1)
hijxj(o) = hi3x3(1)
hipxp(o) = hipxp(l)
~h_ x (0)-=z = =h x (1)
ip+l p+l 11 . ip+1l p+l

-hip+2xp+2(0)-212 = -hip+2xp+2(l)

. . . . . . . . . . . . . . . ] .

(0)-z, (1)

-h ‘ x -h x
ip+q p+q q ip+q p+q

Now rewrite Equation 5.11 by using such defined hijxj(l)
(J=29 3y ceey p) and —hip+jxp+j(l) (3=1, 2, cesey q) and
enter the Stage 2.

On the other hand if the relation
hy3x3(0) + hy  4x,,,(0) >0
holds, then de termine aé follows.,
27y = -hip+lxp+1(0) s Zg] = Zg] = ees. Zp) =

Moreover perform the replacement given as follows.



[
=2
e
=
b
=
—~~
[
S’

hy1x(0)=z3; =

byox,(0)-25, =

[
=2
[N
V]
»
hY)
P
e
N

o—
hipxp( ) Z51 hipxp(l)
“hy o a%p,2(0) = mhy o ox (1)

-hip+3xp+3(0) = —hip+3xp+3(1)

(0)

(1)

. x -h x
ip+q p+q ip+q p+q
Now rewrite Equation 5.11 by using such defined hidxi(l)

(j=1, 2, ....,p) and -h (1) (3=2, 3, ...., q) and

X
ip+i p+]
enter Stage 2.

After the similar operations as Stage 1 are performed

by "t" times, Equation 5,11 is replaced into the following

form.
hinx'n(t) = 2ot Paperteo Y %hq
hi'r)+lxn+1(t) = z')+1ll+z1)+l;1+l+""+z +1q
hipxp(t) = zpu+zpu+l+""+zpq
-hip+pxp+"(t) = z')ll+zn+1p.+' oo +zpu
-hip+u+1xp+u+l(t) np+l ﬂ+1”+1+"°'+zpu+l

'hip+qxp+q(t)



where n and p satisfy the relation n+p=t+2. Now enter

Stage t+l stated as follows.

Stage t+1

"If the relation

(t) <o

h x (t) +h x
in 1 ip+p p+p

holds, then determine as follows.

z = h

x (t)v z = = seee = Z =0
np N

z
in np+l np+2 nq

Moreover perform the replacement given as follows.

hyoe1%g.1(8) = g gxo o (241)

hin+2xq+2(t) = hin+2xn+2(t+l)

h =
ipxp(t) hipxp(t+1)
By pepXpap (812, = By %p,, (641)
-h - - -
ip+u+1xp+p+1(t) znp+l hip+p+1xp+p+1(t+1)
—h. — = -
1pra¥pralt)%ng = “Pipig¥peqltl)

Furthermore rewrite Equation 5.11 by using such defined

hijxj(t+l) (J=n+1, N+2, ceeey p) and -h J(t+.1)

ip+j*p+
(4=p, p+1, ....,q) and enter Stage t+2.
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On the other hand if the relation

h, xn(t) + h (t) >o0

in ip+uxp+u

holds, then determine as follows,

z = h, x
nin 1p+p p+p

(t) r 2

el = Fyazp Sreeer= Zg, = O

Moreover perform the replacement given as follows.

h, t)-z = h

1nxn( ) - inxn(t+l)

hiﬂ+lxn+l(t)_zn+lu - hin+lxn+l(t+1)
hypXp(t)=2p, = hypx (te1)

—hip+n+lxp+p+l(t) = -hip+p+lxp+u+l(t+l)

-h

ip+p+2xp+u+2(t) _hip+u+2xp+p+2(t+l)

(t)

(t+1)

~h X = =h
ip+qp+q ip+q®p+q

Furthermore rewrite Equation 5.11 by using such defined

hijxd(t+1) (3=, n+l, ...., p) and -hip+jxp+j(t+l) (J=uflo

B+2, ...+, q) and enter '‘Stage t+2.
After similar operations are performed by p+q times, the

nonzero nonnegative vector Z > 0 has been already determined

for any given nonzero nonnegative vector X =>0. Q.E.D.



5.4 Expansion of the Concept of Curtailed Matrix

Iﬁ the preceding section the curtailed matrix is defined
for the matrix tU 'C(i). Here, let us apply this concept to

an arbitrary matrix H.

Definition 5.4. Let H be any given (m,n)-type matrix

which has no row formed only by zero components, Suppose that
the ll-th‘fow hll of H is a nonpositive (nonnegative) vector, .

~then exclude all the columns from H such that the components
of h; are nonpositive (nonnegative) numbers and exclude, more-
over, the 1lj-th row. Such an obtained matrix is called the
-
curtailed matrix H(ll) of order 1.
-

By the similar manner, the curtailed matrix H(lllz...ln)

of order n can be defined as follows. That is, if there exists

the curtailed matrix-ﬁ]lll ...ln_l) of order n-1 which has no

2

row formed only by zero components. Suppose, moreover, that

the 1 _=-th row hln of H(lllz"'ln-l) is a nonpositive (nonnega-

-—— .
tive) vector, then exclude all the columns from H(1112...1n_1)
such that the components of h1

‘ n

numbers and exclude, furthermore, the ln-th row, If there

are nonpositive (nonnegative)

exists in-ﬁklllz...ln_l) such a row as is formed only by zero
components, then at first exclude this zero Qector and then
perform the same process,

Then, the similar theorems as given in Section 5.2 can

be established by the almost same arguments.
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Theorem 5.7. The equations whose coefficient matrix is

u(1112...1n_1)
-~ te ‘
n(1112....1n_1) . x;_l =0

have a nonzero nonnegative solution S(—'n =0 if and only if

-1
-—
the equations whose coefficient matrix is ”(1112"‘1n)

t
Xh =0

-
H(1112....1n). n =

—
have a nonzero nonnegative solution an 0

- ——
Theorem 5.8. let 11(1112...11\1) denote the curtailed

matrix of the highest order for H, Then the inequalities
tn. by >o

are consistent if and only if the equations

.

<«

t$T o
H(1112....1M) M = O

R e
have no nonzero nonnegative solution Xy >0,

-—
Theorem 5.9. If there exists a curtailed matrix H(lll

2
e+ely 1) of order m-1 for any given (m,n)-type matrix H, then

the inequalities

t
e >o

f—
are consistent if and only if H(1112...1m_1) is positive def-

<« > -
inite H(1112...1m_1) O or negative definite H(1112...1m_1)<:o.
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-
Proof': -Since H(lllZ"°lm-l) is a row vector, the equa-

tions

-— -—
H(1112"'f1m—1) : Jﬁ-l =0 (5.12)

héve nonzero nonnegative solution x,_l >0 for any vector
H(ll 5e++1 1) except for (1 1150001, 7) >0 or?(1112...1m_1)
<0, . _ 2.E.D.

Observe here that Equation 5.12 can possess a nonzero
nonnegative solution2 _, =0 even if H(1112"‘1m—1) <0 or
H(1,15...1, _4) =0.

Theorem 5.10, If there gxists a curtailed matrix of

order m for any given (m,n)-type matrix H, then the inequalities

Y.ty >o

are consistent.

Proof: The curtailed matrix of order m-1 is always com-—
posed of one row h, Since there exists a curtailed matrix of
order m by assumption, the roﬁ h has tp be a nonnegativg
vector h =2 0 or a nonpositive vec.tor h < 0. However, if at
least one zero component is contained in the componenté of h,
all the components of the column corresponding to this zero
component must be zero through the definition of the curtailed

matrix. Consequently the vector h becomes positive or negative.,

Q.E.D.

- 96 -



5.5 Practical Procedure for Linear Separability

The purpose of this section is to provide actually the
procedures to examine the consistency of Absolute Inequality
System 2.16 by using the basic principles so far discussed.

(1) Construct the curtailed matrix tﬁ?lllz...lM Y.

- N ) 1
C(i) of the highest order for “U .C(i). This

process is done only by searching for a nonnegative

row or a nonpositive row, Hence it is performed
easily.
(2) If Ml = N, Absolute Inequality System 2,16 is con-

sistent from Theorem 5.3.

(3) If M; < N, compute the value (po+aq + r) for each
row of ﬁ?lllz...lMl)--EKi) and then determine the
row for which this value becomes minimum where p,

q and r represent the number of positive components,
negative components and zero components of each row,
respectively. This process is performed in order
to make the dimension of the vector Z , introduced
by Definition 5.3, minimum,

(4) If the row searched by Process (3) is j,~th, then
construct the transformation watrix'DJ concerning
the jl~th row, !

(5) Compute the product tﬁ?lllz...lMl) <C(1) - D .

If M;+1=N, then 13(1112---1141) ST(1) - Dj, be°l°'“é8

a matrix composed of one row. Thus it is readily
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(6)

(7)

(8)

(9)

(10)

(11)

examined whether or not the equations

1th =O -
Jq M, +1

te -~
U(1112....1M2 c(i)+ D )

have a nonzero nonnegative solution by using Theorem

5.9.

if Ml+1-< N, then construct the curtailed matrix of

tn— —,
the highest order for U(1;1,...1, )+ C(i)+ D.. Let
172 M3 s
D

t(— -
us denote this matrix by U(1112"'1Ml) +C(4i) - ;5
1
(1112...1M2).

If M1+1+M =N, then Absolute Inequality System 2.16

2
is consistent from Theorem 5,10,

If M1+1+M2<:N, then compute the value (p . q+r) for
each row of tﬁ(lllz...lMl)’-EYi). B, (1325002 )
and then determine the row for whichlthis value
becomes minimum,

If the row searched by Process(8) is j,—th, then
construct the transformation matrix Djz.

2...1Ml)-?ﬂi)-

t* D
Compute the product U(111 Dj (1112
1

eeel, )e D

My 2
If M_+M_+2=N, U(1,1 1 1, )
1772 ’ 1 1tz ety

Di becomes a matrix composed of one row, Hence it

2

Uﬁ(i)-i%l(l

2...1M1)

is readily examined whether or not the equations

(1,1 1 1. )«D T
P . . =
1 1t2 M, Jg M, M, +2

eeol )07:—()03- (l
2 My * 3y
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have a nonzero nonnegative solution by using Theorem
5.9.
(12) If M1+M2+2‘< N, then construct the curtailed matrix
. <«
of the highest order for “U(111p...1y ).T(1) .,
1 Y1
(1112...1M2) . Djz. Let us denote this matrix by
t0(1,1,...1, )« (i) D (1,1 1, ).D
112 M, gyt tatar ety ) 32(1112"‘1M3)
(13) If the similar processes stated in (7), (8), (9), ...

are repeafed, fhe matrix tU oC(i) is transformed into
one row at last. Therefore since it can be readily
examined whether or not Equation 2,21 has a nonzero
nonnegative solution x = 0 by using Theorem 5.9,
we can test very.easily the consistency of Absolute
Inequality System 2,16
By the above arguments it is concluded that the number
of times of the transformation to be excuted is decreased by
:g: Mi. Therefore the necessary number of times of the trans-
formation for the linear separability is given by
N - Z M,
i
Constructing a curtailed matrix is a much easier process
than constructing a transformation matrix, Hence the procedure

becomes easier as the value z; Mi becomes larger.
i
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5.6 Example

Example 5.1. Examine whether or not the traﬁsition state

diagram given by Fig., 5.1 is realizable with three threshold

elements,
8

N

-~

~
u I.13

%
4
" O

Fig. 5.1. The transition state diagram

J?*—-'£>

The three characteristic matrices for this behavior are given

as follows.

c(1) = 1 c(2)

]
[
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N /

There exists the curtailed matrix of order 3 for . (1)

as shown in Table 5.3. Thus Absolute Inequality System 2.16

is consistent for i=1l.

There does not exist any curtailed matrix for tU .C(2),
Thus construct the transformation matrix Db concerning the
second row of W :¢(2). There exixts the curtailed matrix of

t

order 2 for "U-C(2) . Dé’ Hence Absolute Inequality System

2.16 is consistent for i=2, These processes are shown in

Tablé 5.4,
Since it is seen by the processes shown in Table 5.5 that
Equation 2,21 has a nonzero nonnegative solution, Absolute
Inequality System 2,16 is inconsistent for i=3, Therefore fhe
behavior given by Fig., 5.1 is not realizable with three thresh-

old elements,
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- 20T =~

1 1-1-1 1-1-1-1
— 0.1 0 0 1-1 0-1
tg.c(1) =

0 0-1 0 1 0=1-1
0 0 0-1 0-1-1-1
1 1-1 1
t< -t
u(3) . c(1) = 0 1 0 1
0 0-1 1

t903,1) - €(1)

i
I\
o~
o
(S

Ne—

tﬁz3v291) :Eil)

"

(+)

Table 5.3. Simplification process by elimination



- €oT -

-1 1-1-1 1-1-11
4
{1 1 0o 1 0 0 1=1 0 1]|_ ty.c(2)
1 0 o 0-1 0 1 0-1 1
1 o o 0-1 0-1-11
0" \
= Do
1
oc10011 -1 0-1-1 0 0-1
01
0 0 0o 0 0 0 Ojf_ ty.c(2)-D,
k 10) 0 0-1 0 1 1-1
0-1 0-1-1 0-1

-1 -1 O

~ \

(-1-1] = 1;?J--'E-(Z) -<D-2(1.3)

[0 1 1]: Y. E(2) » Do(1)

Table 5.4. Simplification process by transformation and elimination



[
Q

/
100010
11
11

O 101

00O l’

Table 5.5.'

© O O ~ © © O =

© © 0 O

= © O O

O = O O

O = O =

O H O W

Dy

o+ O H

o O O ©

-1 -1 1 1-1.
0-1 1 0-1
= tU'C(3)

0-1 0 1-1
-1 0 1 1 -1
-1 0 0 1
0 o0 0 O :

=tU 'C(B)'Dz
0-1-1 1
-1 1 0 1
0-1 0
0 0 O} _ty.c(3).D,: Dy
1 -1 -1 ‘
0o 0 O
0 0 O
o o of .
1 -1 =1 | U =c(3) Dy Dy Dy

o O O

Simplification Process by transformation
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CHAPTER VI

LINEAR SEPARABILITY BY DETERMINANTAL CONSISTENCY CONDITION

Concerning a system of inequalities many studies have
been done from various aspects including the consistency con-
dition., A system of strict inequalities has also been treated
by many investigators such as W, B, Carver and T. Motzkin who
studied the concept of an irreducibly inconsistent system.

In the various proposed consistency conditions there exists
such one that is grounded on the concept of "irreducibly in-
consistency", The purpose of this chapter is to present the
practical procedures to examine the linear separability based
on this concept., This procedures consist of computation of

the determinants of certain matrices.

6.1 Basic Principle

The method for the linear separability to be argued here-

after has two prominent features stated as follows,

(1) The basic principle and the algorithm are very sim-
ple.

(2) The condition for the linear separability.can be
written only in terms of the components of the char-
acteristic matrix C(i).

A system of inequalities is said to be irreducible incon-

sistent, if the system itself is inconsistent and if every
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proper subsystem is consistent, Hence the system of linear

inequalities

1, 2, .00y m)

fi(x) >0y (4

is irreducibly inconsistent, if and only if the following two
conditions are simultaneously fulfilled,
(1) Any m-1 of the linear functionals fj, fa, ...., fin
are linearly independent.

(2) There exist m nonnegative numbers B;=0 (i=1, 2,

eeesy m), not all zero, such that

m ‘ m
Z B« f3 =0 ’ Z By ca;>0
i=1 i=1

The next theorem was established by Ky Fan which is the

basic theorem for the subsequent argument.

16
Ky Fan's Theogem) Let the rank of the matrix H be_m-l.

Suppose that the first m~1 columns of H are linearly independ-

ent, and let

(h. b .... n )
11 12 1,m-1
h h ceoe h
~ 21 22 2,m-1
H =
{ hml hm2 e hm,m—lJ

be submatrix of H formed by its first m-1 columns. For each
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i=l, 2, «.e., m, let Ni denote the determinant of order m-1

~J
obtained from H by deleting its i—-th row. Then the system

of linear inequalities
Hex >ao

is irreducibly inconsistent if and only if the following two

conditions are both fulfilled.

Nye Ny, <0, (1=1,2,...., m1)
m

Z oy . |Ni|20

i=1

Clearly a system of linear inequalities is consistent,
if and only if it does not contain any subsystem which is
irreducibly inconsistent, Hence the next theorem and its

corollary follow directly from Ky Fan's Theorem..

Theorem 6.1, Absolute Inequality System

c(i)- U °tmi >0 (2.16)

is inconsistent, if and only if certain q linearly dependent
rows of the matrix C(i) + U contain a (q,q~1)~-type submatrix

n, ~J
C(i) « U such that

Nk(i)- Nk+l(i) <0 , (k =1, 2, «v..y, q-1)

(6.1)
where Ny (i) (k=1, 2, ...., q) denotes the determinant of order

oJ nJ
q-1 obtained from C(i)« U by deleting its k=-th row.
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Corollary 6.1.1. Absolute Inequality System 2.16 is con-

sistent if and only if there exists no submatrix such that

Relation 6,1 is fulfilled.

6.2 Development

Theorem 6.1 states the inconsistency condition only as
the property of the coefficient matrix of inequalities. Let
us restate this theorem in the more deveioped form in order
that it may be applied readily. Before advancing Theorem 6.2,

consider the next definition.

~o
Definition 6.1. Let U(q) denote the (g,q-1)-type matrix

which consists of the q linearly dependent rows of the univer-
sal mafrix U such that every q-1 rows of these quows are in-
dependent. Hence the g-1 columns of‘g(q) are linearly indend-
ent. Let us denote by |§L(q)i (k=1, 2, ¢++., q=1) the deter-
minant of the matrix obtained from Ekq) by deleting its k—~th
row,

Suppose that the rows of %Yq) correspond to the 1,~th row,
the 1lp—th row, ...., and the lg-th row of the universal matrix.
fhen the k-th row and the k+l-~th row of‘%kq) become the content
vector ulk and uj respectively. Hence the next proposition

k+1
follows immediately.

Proposition 6.1. The determinants Ny (i) and N1 (1)

defined in Theorem 6.1 are given by the relation
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N (1)

°1, (1)}|u (a)|

L,
{I} s clj(i)}|uk+1<q)|

(k =1, 2, ...., q-1)

Nk+1(i)

Theorem 6.2, Absolute Inequality System 2,16 has a

solution if and only if there does not exist any submatrix
g(q) of the universal matrix U such that the condition
~ ~J
c (1)+c (1) |u, (q)|+|u,,,(a)] <O (6.2)
Lk i1tk |V @] [ ean ()]

(k 1, 2, seeey q_l)

is fulfilled.

Proof: The product of Nk(i) and N (1) can be written

k+1

as follows.

N (i) « Ngya(d) ='{j£l 01111(1)}- 01k1k(i)
X 3

c (1)« ()] - [V, ()]

stk
Q.E.D.
In Relation 6.2 the part which will be inf}uenced by a
given transition state diagram is the product term ¢, 1-(1)-
~ ~ k+k
c, (1). The product term lUk(q)I'lUk+1(q)| receives no

k+llk+1
influence and takes the fixed value notwithstanding the given
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~nJ
behavior. The number of matrices U(q) and the values of the
~J

determinants lUk(q)I (k=1, 2, ...., q) are fixed when the
number of threshold elements of a network is once determined.
If these matrices and the determinants have been preliminarily
investigated in beforehand, the consistency of Absolute Ine-
quality System 2.16 can be examined only by the sign of ¢ ;(i).

The value of c, (i) - 1 1

(i) takes 1 when the re-
k'k k+1 7 k+1

lations

?(f'a )=l
i 1k

and
p;(f- 0 ) =1
i_ lk+1
hold simultaneously or when the relations

Qi(f'al ) =0
k

and
?i(f‘ Gl ) =o0
k+1
hold simﬁltaneously.

(1)

On the other hand the value of LI (i) ) 1
k'k k+17k+1

takes -1 when the relations
(f-4, ) =1
Py 1,

and
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(r.q ) =0
i 1k+1

hold simultaneously or when the relations

?i(f’ 81 ) =0
k

and

q).(f-al ):l
* k+1
hold simultaneously. Anyhow this value is immediately obtained

when a transition state diagram is given.

6.3 Example

Example 6.1. Let us examine by Theorem 6.2 whether or

not the behavior given by Fig., 4,3 is realizable with three
threshold elements, In this case there are twelve matrices
‘6(q) which possess the properties prescribed in Definition

6.1 for g=4, These twelve matrices are given in Table 6.1 in
the (4,4)-type matrix rather than the (4,3)-type matrix in
order to show clearly the corresponding content vector. By
this expression we can infer immediately what content vector
each row of ﬁ(q) consists of. The (4,3)-type matrices required
by Theorem 6,1 afe constituted by excluding the column marked

by "x" from each matrix.
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(1 00

N 110

Uy (4) = 01

111

(1 00

N 110
T (b) =

3() 1 01

(111

(100

101

(111

b, 3

(110

101

U (8) = 1110

| 101

b 3

(110

o 111
U (4) =

9( ) 110

(111

. »

101

N 111

Ull(h) = 1 01

111

Table 6.1.

H = O O  ~ O O B = O O KB K O O0Ox ©O O O Ox

= = O O

Ua () =

(l&) =

=N
=

~o

Ug (%)

Vg (4)

R

(4)

10

¢

(=1

12(%)

The submatrices G(q)
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T
= 0o B O
© O O OX
= = O O

B
O O O Ox
= O FH ©

=

I
O = O
o R e
= = O Ox

R R R
M R O O
o r O kx
= O = O

T N

B O O
= +H O O
» O = ©

= © + O

= O O
o e K

W = OO




By testing on these matrices it is easily observed that
there is no submatrix’y(q) such that Relation 6.2 is fulfilled
for i=1 and i=2.. Hence Absolute Inequality System 2,16 is
consistent for i=1 and 1=2', However for i=3, the matrix’§7(h)
satisfies Relation 6.2, That is, for'ﬁ;(h) each functional

of Relation 6,2 takes the value

N1(3)-N2(3) = =1 «1e=1+=1 = =1
N2(3).N3(3) = 1+1e=1-1= -1
NB(B)-Nh(B) = 1+=1+1+1 = =1

Hence it is concluded that Absolute Inequality System 2.16

is inconsistent for i=3,

- 113 -



CHAPTER VII

SYNTHESIS PROCEDURE BY SUCCESSIVE SUPPLEMENT

The ﬁurposg of this chapter is to establish the procedures
to realize any given transition state diagram by using more
than N threshold elements in the case where the given transi-
tion state diagram is not realizable with N elements. The
synthesis method to be discussed here consists of the proce-
dures that are the successive supplements of threshold elements

(55)

one by one until the given transition of states is realized.

7.1 Basic Principle

In order to ﬁvail of threshold elements as the logic gates
of digital systems, it is required that any given Boolean func-
tion can be realized by threshold gates., If a certain Boolean
function is nat realized by a single threshold element, this
function.has to be synthesized by more than one element.

Similarly, when a certain transitipn state diagram of the
autonomous network is not realizable with N threshold elements
since at least one of N elements does not satisfy the linear
Separability condition, we have to supplement some elements
to achiéve this transition. The supplemented threshold ele-
ments are called control elements henceforth.

‘In this case the transition is said to have been achieved
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in the meaning that we are concerned only with the behaviors
of the N threshold elements given from the beginning. These
N threshold elements are called the primary élements so as to
distinguish from the control elements. Thié interpretation
corresponds to considering such an automaton where only the
autonomous network given from the beginning is in contact with
the external environment and we are concerned only with its
inputs and outputs. On the other hand, the network supple-
mented later has no function except controlling the behavior
of the network.

In this section the basic principle of how to supplement
the control elements is discussed, Stiemke's and Tucker's

Theorem becomes the fundamental theorem for our further devel-

opments.

Definition 7.1, Consider the replacements

R

ujO(o) ="l}.:l
- *(.1=19 2. s o0 0y 2N)
uJO(O)‘= u‘1 J
Pi(O) =P,

g (i = 1, 2’ o0 00y N)
Q(0) = q; J

where the Gﬁ, uy, Py, and Qi imply the internal state vector,
the content vector, the positive set and the negative set de-

fined in Chapter II, respectively.
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—
Define the (N+l)-dimensional vector ajr(l) and the (N+2)-

dimensional vector G}r(l) as follows.

("530(0), 1), ifﬁjo(o) € P_(0)
bl r(l) = -
! @0, 0 , 1rT (0)€ q(o)
T () = (1,F ) =12 . 2Y),

o :
Let F(l) denote the transition state diagram obtained by

replacing G& with r(1) in the given transition state diagram

3
3

F of the primary network.

Consider two sets 3;(1) and 6;(1) of the vectorsishjl)

defined as follows.

P (1) = {-‘531,(1) p o F, (e -—ix‘jr(l) ) = 1}
A ={§jr(1) L CCR ORI

(i =1, 2, oo, N+1)

Here, the notation f(l):ﬁ;r(l)'stands for the vector which is
= - —_
the successor of ujr(l) in F(1) and g, implies the function
defined over the set of vectors that takes as its value the
i-th component of the vector.
Furthermore, define recursively the (N+k)-dimensional

vector.ﬁﬁs(k) and the (N+k+1)-dimensional vector'ahs(k) as

follows.
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(@, (k-1), 1) if'ﬁhs(k-l) € P, (k-1)

ifjt(k) = = - _,,‘
(ajs(k-l), o) , if Gds(k—l) € Qi(k-1)
k) = (1, T () ) v (3 =1, 2, ..., 2N

-
The Gjt(k) and G;t(k) are called the expanded internal state
vector of order k concerning the threshold element Tt and the
expanded content vector of order k concerning the threshold
element Tt’ respectively,.
Let E?k) denote the transition state diagram obtained by

= =

replacing ujs(k-l) with ujt(k) in the transition state diagram

Fri-l). The F(k) is called the expanded transition state dia-

gram of order k.

—l
Moreover, consider two sets Pi(k) and 3;(k) of the vectors

}
°)

' — -
Here, the notation f(k)oujt(k) stands for the successor vector

'ﬁjt(k) defined as follows.

—e

Pi(x) = {%Jk)

-e

73T - T () )

() {ffdt_(k) B GO

(1

l’ 2, se ey N+k).

=~

just followed by &, (k) in (k).

The next proposition is evident from the above definition.

—
Proposition 7.1. The transition of states in F(k) is

' —
completely same as the transition of states in F(k-1), if we
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are concerned only with the behaviors of the elements Tl, T ,

2

s 000y TN, TN+1’ s o0 09 TN"'k-l.

Therefore, the next proposition is an immediate consequence
of this proposition.

Proposition 7.2.

— —
Pi(k) = Pi(k-l)
— — for i = 1, 2, ..., N+k=1
Q; (k) = @ (k-1)

Hence, only the sets PN+k(k) and QN+k(k) are newly defined
— —_

when Pi(k) and Qi(k) are constituted.
Moreover, the following relations are clear from the def-

initions of'F:(k) and T (k).

T () uT (k) =y

for i

It

P
N
Z
+
~

——

Pi(k) N Q(k) = @

k=1, 2, ...

Definition 7.2. Let cjj(N+i) denote the j-th row and
the j~th column component of the characteristic matrix C(N+i)
of the control element Ty . (1 =12, 2, v¢ee.y k). Then cJJ(N+i)

takes the value given as follows.,

- x>
1, for ?N+i(f(k)- u,

~—~
~
A d
At
t
[

cJJ(N+i) =

[t}
o

-1, for ;;ﬁ(}’(k)-?a"j(k) )
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Definition 7.3. Consider the (2N, N+k+1)~-type matrix

— ' = -
U; (k) whose j-th row equals to uJi(k)' This Ui(k) is called

the universal matrix of order k concerning the element Ti’

4 N
4 (k)

T2y (1)
Ui(k) = | (k)

—
u k
2N1< )
\ /

Definition 7.A4. Consider the (N+k+1)~dimensional vec tor

ﬁ;(k) defined as follows.

—

wy(k) = (B3, wine1s WiNgps voees O5Nak)
This ;:(k) is called the expanded threshold-weight vector of
order k.

Theorem 7.1. If there exist certain real numbers j and

k such that the inequality systems

c(i) -IE(R)-tEZ(k) >0 (L = 1, 2, v.v., N+k)

are consistent for every i, then the network supplemented with

k control elements realizes the transition of states defined
—
by F(k).

Theorem 7.2. The equatiohs
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50 (k) + c(4) %y (k) = 0 (7.1)

—
have no nonzero nonnegative solution bi(k) 0
Proof: Suppose that v = (Vv3, Vo, ceeey V N) denotes the
- 2
(N+k+1)=-th row vector of tUi(k)~ c(i). Then the following

relation holds.

_ - .
1 , for Iy (k-1) € P;(k-1)

VJ =
- .

o ., for &, ,(x1)€ T, (x-1)

-—
Therefore, there exists no solution by (k) = (bil(k), biz(k)’

b y(k)) 20 of Equation 7.1 such that all the j—th com-
iz - - .

ponents bij(k) satisfying 331-(k‘1) € Pi(k-l) are nonzero non-

negative. Hence, we can regard all the j—th components bij(k)

as zeros.

On the other hand, all the j—th components of the first
= -
row vector of bﬁ;(k)- c(i) satisfying “ji'(k-l) € Qi(k—l) are
-1. Therefore, there exists no solution?i(k) = 0 such that
—_ —

all the j~th components bij(k) satisfying aji,(k-l) € Qi(k-l)
are nonzero nonnegative.

Consequently, if we assume that Equation System 7.1 has
a nonzero nonnegative solution, it contradicts eitherrthe first

equation or the (N+k+l)-th equation. Q.E.D.

"Theorem 7.3. The inequality system

c(1) » Uy (k) T (x) > 0
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is always consistent regardless of the value k.

Theorem 7.3 guarantees that if the inequality system
c(i) « U, (k-1) S8 (k-1) >0

is inconsistent, then this system can be made consistent by

supplementing one control element T This supplement gives

N+k*’

rise to the construction of the expanded universal matrix

ot
Ui(k) concerning the element Ti’

Theorem 7.4, If the inequality systems

c(1) - T, (1) "8 (k) > 0 (7.2)

(k = 0, 1, 2, ...., n-l)

are consistent for at least one value of the order k< n-1,

then the inequality system

c(1) « Ty(n) . & (n) > o (7.3)

becomes always consistent.
Proof: Suppose that Inequality System 7.2 is consistent

‘for k=m <& n, then the equations
—
U (m) « c(1) B (m) =0 (7.4)

have no nonzero nonnegative solution bi(m) =>0. On the other

hand, the first N+m+1l equations of the equation system

Ti(n) - ¢(1) %5(n) = 0 (7.5)
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are just same as Equation System 7.4 from the definition of

—_

UJ(n). Consequently, Equation System 7.5 has no nonzero non-
—

negative solution bi(n)EE(L Q.E.D.

Theorem 7.4 guarantees that the consistency of the in-
equalities is not changed, even if some control elements are

supplemented to the network.

Theorem 7.5. Assume that the expanded content vector

E;i(k) is generated if and only if the inequalities
C(1) « Ty (k-1) . ") (k-1) >0 (7.6)

have no solution'E;(k—l). Then the rank of the expanded uni-
—
versal matrix U; (k) becomes N+k+l.
Proof': The rank of the expanded universal matrix of
—
order 1 is always N+2, If the rank of Ud(m) is N+m+l, then

—
the rank of Ui(m+1) becomes N+m+2. : Q.E.D..

Theorem 7.6. The inequality system

c(1) - Ty(2N-N-1) -5 (2M-N-1) >0 (7.7)

N
(1 =1, 2, eeee,y 2 =1)

is always consistent for every i.

Proof: Since the rank of C(i) . U4(2 -N~1) becomes 2
from Theorem 7.5, all the row vectors of this coefficient
matrix are linearly independent, Q.E.D.,

Theorem 7.6 guarantees 'that the synthesis procedures so

far discussed terminate at the (2N-N-1)-th step without fail,
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1.2 Practical Procedure for Synthesis

Since the basic principle to realize any given transition
state diagram has beenvprovided in the preceding section,'here
let us set forth the practical procedures in order.

(1) Examine first of all whether or not Inequality
System 2,16 is consistent for every characteristic
matrix C(i) determined by Relation 2.3. If it has
turned out to be consistent for every C(i), then
determine the actual threshold-weight vector by
Theorem 3.1.

(2) If Inequality System 2,16 has turned out to be in-
consistent for a certain C(h), then supplement one
control element TN+1 and make it consistent. This
can be performed by constructing the expanded uni-
versal matrix.ﬁ;(l) in Theorem 7.3.

(3) Moreover, if Inequality System 2.16 élso turned
out to be inconsistent for another C(n), then sup-

Plement another control element T and make it

N+2
consistent. This is possible by considering-G;(2)
in Theorem 7.3.

(4) Similarly, if there exist other inconsistent In-
equality Systems 2.16, supplement control elements
and make theﬁ consistent.

(5) Even if control elements are supplemented to the

network, such Inequality System 2,16 is still con-
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(6)

sistent as is originally consistent. That is, even
if the procedures mentioned in Step (1), (2), (3)

are performed, the inequality system
— ts
c(4i) Uj(k) . mi(k) >0

is still consistent regardless of k and j, where C(i)
represents a threshold function.

Likewise, if a certain Inequality System 2.16 has
been made consistent once, then further sdpplements
of control elements do not change the consistency
of this system from Theorem 7.4, Hence there is no
necessity to deal with the primary elements again
after the procedures stated (1), (2), (3) are per-
formed once.

Now it is sufficient to consider only the control
elements. Examine whether or not the inequality

system for the control element TN+i

C(N+t) « Ty(xc) « @iy (k) > 0 (7.8)

(i=l, 2, o e ey k)

is consistent. If Inequality System 7.8 has turned

out to be consistent for every i, then the given

transition state diagram is realizable with the pri-
mary elements and the N+k control elements so far

supplemented.
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(7)

(8)

(9)

(10)

On the other hand, if Inequality System 7.8 has
turned out to be inconsisten for C(N+n), supplement
one more control element TN+k+1’ Then this incon-

sistent system becomes

t
C(N+n) « ?N+n(k+1). G;I+q(k+l) >0 .

Thus, this inconsistent system is made consistent
from Theorem 7.3.
Moreover, examine whether or not the inequality

system for the control element TN+k+1 Supplemented

“in Step (7)

—
U

N

—

t
C(N+k+1) +ﬂ(k+1) Ul

(k+1) >0 (7.9)

is consistent. If this system has turned out to be

consistent, then search for the inconsistent system
of Inequality System 7.8. Then, perform the similar
procedure stated in Step (7).

If Inequality System 7.9 is inconsistent, then sup-

plement one more control element T Further-

N+k+2°
more, examine whether or not the inequality system

C(N+k+2) « U (k+2) . %5~ (k+2) > 0 (7.10)
T N+k+1 N+k+2 T

is consistent., Repeat the similar procedures.

The supplement of 2N-N-1 control elements terminates

these procedures at worst case.

—125—



7.3 Example

. Example 7.1, Let us realize the transition state diagram

shbwn in.Fig.ﬁh.B by the succéssive supplement of control ele-
ments. If haé alfgady turned out that Inequality System 2.16
ié'indonsistent only for C(3) through thé argument mentioned in
Example 4.2,

Hénce, supplement one control element Th and construct
the expanded éontent vector of order 1 concerning element T3

as follows.

—
u23(1)=11000
—n
u33(1)—10101
—
uh3(1)_=1001o
T{‘53(1)=11101
3“63(1)=11 11

0
u73(1)=10110
1

. ’ —
Thus, we obtain the expanded transition state diagram F(l) as

follows, (o110)
| N
/(_1000 )\ {(0101) Fig. 7.1.
(1110) (1101) (, . \\' 'Traésitiqn state
\ / (0000) (oo10)  diagram 1)
(1011) —
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Therefore, the characteristic matrix C(4) for the control ele-

ment T) is given as follows

c(4) = -1

The inequality system
c(1) « Uy(1) % (1) >0

becomes consistent for C(1), C(2) and C(3) through Theorem 7.3

and Theorem 7.4, Ndw, examine the consistency of the inequali-

ty system
c(4) +Ty(1) 5y (1) >0

Since this system turns out to be consistent, it is concluded

that the transition state diagram showm in Fig. 4.3 is realized
with one control element.
The expanded threshold-weight vectors-gl(l) (+ =1, 2,

3, h) are obtained through the similar computation stated in

Chapter III, for insfance, as follows.

V1) = (-4, 8, 5, 3, -5)

:’;(1) = ( i, o, _l‘o -2, 2)
;3(1) = ("1’ o, o, o, 2)
;Z(l) = ( i, 2, -1, =3, -1)



Consequently, the autonomous network shown in Fig. 7.2 realizes

the transition state diagram given Fig. 4.3, if the transits

of the elements T;, Ty, T are observed.

8

primary elements

control element

Fig. 7.2, The autonomous network

- 128 -



CHAPTER VIII

GENERAL SYNTHESIS PROCEDURE

The general method to realize any given transition of
states is treated in this chapter, although concerning this
problem an effective method has been alregdy given in Chabter
VII. The method to be discussed here is very intuitive and
systematic, it is, however, forced to use much more control
elements in compensation for its advantages. In fact, it
requires M—-N-1 control elements, where M denotes the number

of states specified their successor states.

8.1 Basic Principle

The method presented here is in actual applicable to the
incompletely specified transition state diagram, since the
number of the ﬁecessary control elements becomes very large
for the completely one. For the generality, however, the
argument will be stated with respect to the latter case.

Consider the autonomous network which is constructed with
N thresﬁold elemeﬁts. This network i% called the primary net-—

work.. The primary network has (2N) distinct transitions,
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However some of them are realizable and others are not realiz-

able by the primary network., If a certain given transition

is not realizable, then éupplement 2N—N-l threshold elements
to the ppimary netJﬁ?L{ The network supplemented with 2N—N—l
elements is referred to as the genefai network. . Suppose, how-
éver, that only'the inpﬁts andbthe outputs of the primary net-
work are observed from the outsides. Then let us show that
the general network can realize all the (2N)(2N) transitions
by adjusting the threshold values and the weights values. 1In

this chapter the argument will be done for Inquality Systems

2.14 rather than Absolute Inequality Systems 2.19,

"Definition 8.1. Let us define the (2N-l)-dimen$ional

vec tor Ex( ﬁi) by extemding the internal state vector 4 . as

i
follows.
N
2 =N-1 zeros
(ai! 0’ 09 o, . . . . . . LNy O)
for i =1, 2, ...0, N+1
Ex(ui) = (i-N-1)-th position

(@a,, 0, 0, ..., 0, 1, O, .., O)

for 1 = N+2, N+3, eo ey 2N

This vector is called the extended internal state vector.
Furthermore consider the 2N-dimensional vector Ex(uy)

attached 1 as the first component to Ex(ﬁi) as follows.

Ex(ui) = (1, Ex(ﬁi)), for 1 = l, 2, seo0 ey N"‘l, e ey 2N



This vector is called the extended content vector.

Definition 8.2, Consider the (2N, 2N)—type matrix Ex(U)

whose i-th row equals to the extended content vector Ex(ui).

This square matrix is called the extended universal matrix.

/ N
1000 .... 0
1100.,..0
( U ) 1 010 0] ()
I O soe o0
l o o l e s 00 O
Ex(U) = =|1110....0 1
l l 0 l * 8 00 O l
o e 0
L II 2N-N"l/ . . . . . . . . Oo
\ 1 l l s e 00 l 1’

Definition 8.3, Consider the 2N-dimensional vector
N

Ex(mi) attached 2 -N-1 weights values to the'threshold-weight

vector wi as follows

Bx(u.) = (Wi gy Ygnenr oooe mLZN-l)

This vector is called the extended threshold-weight vector.

Definition 8.4, Let Ex(F) denote the transition state

diagram which is obtained by replacing @ with Ex(ﬁi) for the
given transition state diagram F,
Therefore Ex(F) becomes an incompletely specified transi-

tion state diagram for the general network.

Then the next propcsition is almost obvious . from Defini-
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tion 8.1 and Definition 8,4,

Proposition 8,1, If we take notice only the primary

network, then the transition of states in Ex(F) is completely

same as the transition of states in F.

Definition 8.5. Let us define the characteristic matri-

ces C(i) for the control threshold elements TN+1’ TN+2’ cscey

T as follows.
2N-3

i1... for Ex(ﬁi = Ex(f) - Ex(Gj)

+l)

-1 ... for Ex(ﬁi+l) £ Ex(f) » Ex(Gj)

Here Ex(§@ ) = Ex(f) .+ Ex(4 ) implies that Ex(G ) is just
1+1 3 E J
followed by Ex(ﬁi+l) in the extended transition state diagram
Ex(F).
Now consider the inequalities
t ' N
c,. (1) «Ex(u)) « "Ex(u,) =0, (3 =1, 2, c0es, 27)
JJ J i

where the relation ">" holds for j satisfying c1J(1)=—1 and
the relation ">" holds for j satisfying cjj(i)=l. Let us

represent such defined inequalities by

c(i) - Ex(U) otEx(mi):z o) (8.1)
(i =1, 2, ceeey ZN-l)

Theorem 8.1, If Inequality System 8,1 is consistent for
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every i, then the primary network performs the transition given

by F in the general network,
Proof: If Inequality System 8.1 is consistent for every
i, then the general ne twork performs the transition given by

Ex(F). Q.E.D.

Proposition 8.2, The set of all row vectors of Ex(U) is

linearly independent.

Theorem 8.2, Inequality System 8.1 is consistent for

every i.
Proof: It is sufficient to show that the set of all row
vectors of C(i) e+ Ex(U) is linearly independent. In fact, the

following relations hold.
det [c(i)- Ex(U)] = det C(1i) « det Ex(U)

= det C(i)+ det Upedet E,N_y_, = (-1)|Q1I

I N-1
where jQil denotes the number of components contained in the

negative set Q.

8.2 Weights and Threshold Values

The method how the general network realizes any ﬁrapsition
of the primary network has become evident through the preceding
discussioﬁ. In this section let us discuss the practical thres-
hold values and weights values of the general network which

realize the given transition,
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Proposition 8.3. The inverse of the regular matrix

c(i) »- Ex(U) is given as follows.

’ -1
. -1 CI(i) ‘U, O
[C(J_) . EX(U)] = o (i) o G ()
GF S Akiihs & (RS & Al
/ .
U'Il- cI(i),' 0
= (8.2)
thI'IU;l' cr(3), Cprp(4) '

Here the inverse U;l is given by Proposition 2.7. Hence

the troublesome computation which is ordinarily brought by the

inverse calculation is excluded, The inverse of C(i) « Ex(U)

can be readily obtained only by the multiplication of matri-

ces,

Definition 8.6. Let trj(i) denote the j—th column vector

of (c(1)« Bx(v)]™1,

Theorem 8.3, The whole solutions of Inequality System

c(1) « Ex(U) -tE:;(mi)Z o (i=1, 2, , 2N-1) (8.1)

are given by the following form.

N
Ex(w, ) = E aJ(i)qtvd(i) (i =1, 2, couey 2N-1) (8.3)
. o
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where ad(i) is either an arbitrary positive number for cjj(i)=1

or an arbitrary nonnegative number for cdj(i) = =1,
Proof: Since the following relation
2\ t t
c(1) « Bx(U) - D ay(1) - ry(1) = “(ag(d), wp(i)y oovy @ (1))
2
J=1

holds, Ex(mi) is surely a solution of Inequality System 8.1,
Conversely, let y denote an arbitrary solution of Inequality

System 8.1, then the relation

c(i) - Ex(U) .y =0

holds. Hence we can rewrite by using the j—th unit column

vector‘ej\as follows.
N
c(i) + Ex(U) + y = Z a (1)« e,

=1

Therefore y can be expressed as follows.

<
]

N .
_ I
[C(i) cEx(U)]7. ?::1 aJ(i) Xy

N
2 .
-y aj(i).trd(i)
J:

H
o
5
g
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It is not necessary to assign the internal state vector
of the general network as given by Definition 8,1, Any assign-
ment will do only if it makes ‘the rank of the coefficient

matrix of Inequality System 2,14

c(i) - v -twigo

2N. Thus there are many assignments to satisfy this require-

ment. However such an assignmént i1s desirable as makes the
further analysis easier. For inétance, in order to determine
the practical threshold values and weights valugs, such one

is suitable that we can obtain the inverse of [C(i)- Ex(Uﬂ -

as easily as possible., In fact the inverse is given by Proposi-
tion 8.3, if we define the extended internal state vector by
Definition 8.1.

This method requires 2N—N-l control elements for the com-
pletely specified transition. The number 2N—N-1 becomes tre-
mendous large if N increases slightly. Thus it is not neces—
sarily applicable to this case. This method is rather aﬁpro—
priate for the incompletely specified transition where the
number of states specified their following states is small;

One of the most advéntageous points of this method is the
féct that the practical threshold values and weigﬁts values
can be determined very easily by Theorem 8,3,

There is a méans toldeCrease the number_ZN-N—l of control

elements stated as follows., That is, at first we realize the
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given transition by the general network. After that we search

for the unnecessary control elements and exclude them,

8.3 Example

Exdample 8.1. The transition state diaéram shown by Fig.

4.3 is not realizable with three threshold elements. Hence,
supplement four control elements and consider the extended

internal state vectors given as follows.

Ex(ul) =(10000000)
Ex(uz) =(11000000))
Ex(u3) =(10100000)
Ex(u,) = (1 0010000)
Ex(us) =(112101000))
Ex(ug) =( 11010100
Ex(u7) =(10110010)
Ex(ug) = (11110001 )

Then the characteristic matrices for this transition are given

as follows.

c(1) = _ 1 c(2) =
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,-1 \ /-l 3\
-1 ) () 1__1 ()
-1 -1
c(3) = 1 L c(u) =| - -1
0 -1 0 o
L _l/ \ -l/
( _1 3 ,-l )
_1-1 O --1_l 0
. -1 ' -1
c(5) = 1 c(6) = -1
-1 -1
0 -1 0 1
\ -1 \ -1
/_1 3\
-1-1 ()
~1
c(7) = 1 L
0 -1
—l/

Now determine the extended threshold-weight vector by Relation
8.3. The following extended threshold-weight vectors are

obtained by fixing aJ(i)=l (j=1, 2, ..c., 8, i=1, 2, vvus, 7).

Ex(wi) = (-1 2 00 0 0 2 0)
Ex(wz) =(10-2-202 2 2)
Ex(wj) = (=1 02 0 0 2-2-2)
Ex(wh) = (-1 2 0 0-2-2 0-2)

Ex(m5) = (-1 000200 0)
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(=1 000000 0)

[}

Ex(ms)

(-1 0000 20 0)

Ex(m7)

Therefore the autonomous nefwork Shown by Fig. 8,1 performs

the behavior given by Fig. 4.3, if we observe only the primary

ne twork.

control elements

Fig, 8.1, The autonomous network
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CHAPTER IX
MULTIGATE SYNTHESIS OF BOOLEAN FUNCTION

The problem of synthesizing threshold-element networks
to realize any given Boolean fdnction is treated in this chap-
ter. This problem has‘not recelived aé much attention as the
problem of a single threshold element., This certainly depends
on fhe fact that sufficient knowledges of the latter seem to
ée essential for the successfﬁl solutioh df the former.

Al though the ne twork resulting from the synthesis proce-
dures discussed here has a similar form to that obtained by
Threshold-Or network synthesis or Threshold-Cascade networ
syntheséglgL(Z%; proposed, the procedures to be presented.are
very straightforwérd. However, they do not give the most eco-

nomic synthesis in the meaning of a network constructed with

the least number of threshold gates.

9.1 Basic Principle

With a view to designing more efficient digital systems,
it is desirable to obtainva most economic network of threshold
gates realizing a given Boolean function. This leads us to the
problem of finding for a given Boolean function f a minimal
decomposition of f with‘threshold functiégs.

For this purpose, the classical network synthesis techni-
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6) (50) .
qugs{ such as the Quine—McCluskey procedure for AND-OR syn-

thesis play an important role. If a minimal decomposition is

obtained, the subsequent procedure is straightforward. Hence,
the central subject consists in how to make the minimal decom-
position.

As in many synthesis problems, the fact that a large num-
ber of the configurations can be employed for a general network
entails many admissible decomposition forms. This often makes
the synthesis procedure complex., In view of the complexity
imposed by the unrestricted network, it is not necessarily un-
reasonable to postulate the network configurations. 'Hereaftér,
_let us assume that the network consists of the two levels, an
input level and an output level which is an OR gate.

If all the ONES of a Boolean function f; are covered with

fi2’ eossy T and if there exists no other ONE covered

im

with these functions, then f

fi10
i is said to be decomposed into
fil’fiz’ esoey fim' Here, the connotation of "cover" implies
the concept used in AND-OR synthesis.

As M, L, Dertouzos and other investigators have already
pointed out, if a given Boolean function fi can be decomposed
info m threshold functions, fi is realized with the two-level
network whose m input level elements produce these m threshold
functions and one output level element produces an OR function.

Since an OR function is a threshold function,regardless of the

number of input variables, these facts are restated in the fol-
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lowing theorem which is the foundation of the practical proce-

dures mentioned in the subsequent section.

Theorem 9.1. If a given Boolean function fi can be de-

composed into m threshold functioﬂs fi19 fi2, ....,vfim, ﬁhen
fi can be synthesized with the two-level network constituted

by m+l1 threshold gates.
However, the thfeshold element representing the output OR

gate is not needed, since any two-level Threshold-Or network

i$ equivalent to a cascade of the input level elements, This

fact can be understood easily by considering the case where the

weights wvalues associated with all interconnecting leads are

made sufficiently large to.permit the propagation of a ON? %)
1

generated by any threshold element toward the network output,

These statements are formalized in the next theorem.

Theorem 9,2, If a given Boolean function fi can be de-

, then

composed into m threshold functions fil’ fiZ’ ces oy fim

fi can be synthesized with the Cascade-Network constituted by

m threshold gates.

9.2 Synthesis Procedure

The practical procedures t6 synthesize any Boolean func-
tion are given without justification in this section. However,
its justification will immediately follow from Theorem 9,1 and
Theorem 9.2, Let us examine by the methoa presented in Chapter

v or by any other available test whether or not a given Boolean
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function is a threshold func'tion., It is, of course, more im-
. , _ , (14)(40)(62)
mediate to consult for thevsame purpose the Table-whigh lists

up all the threshold functions of less fhan 8 variables.

The characteristic matrix C(i) represents the Boolean
function fi as stated in Proposition 2.3, Hence, c(i) is used
in some case as the matrix and in another case as the Boolean
function. A However, it won't any confusion from the context.

Then, any given Boolean function C(i) is synthesized by
the following finite steps.

(1) Examine whether or not C(i) is a threshold function.
If C(i) is a threshold function, then determine the
actual weights values and the threshold value by Theorem
3.1, If C(i) is not a threshold function,  proceed to.
Step 2.

(2) Let V, denote the set given by Definition 5.1, and Y;
denote the complement set. of VJ. The notation |X| im-
plies the number of components contained in the set X.

Now, search for the suffix k.  of the input variable

1
such that

mzx { |pin vj|x|pin vj‘}.: |pin vkllxlpir\v;l|. (9.1)

If there exist more than one suffixs satisfying Re~-
lation 9.1, select an arbitrary one of them. More=-

- +
over, construct two characteristic matrices C(i; kl)

and C(i; kI) defined as follows.
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(3)

o~
1 , for uJG(Pind )

1
-1, for Uy€ (pyN vkl)
and
-~ C
1 s, for qu (pinvkl)
cjj(i; kl) =

- c
1 , for uj¢ (Pinvkl)

where cjj(i; k+) and cjj(i; k) denote the j—th row and
J: 1 J, 1
J-th column of C(i; kI) and C(4i; kI), respectively.
Examine whether or not C(ij; kI) and C(i; k;) are
threshold functions. If both of them are threshold
func tions, then C(i) can be synthesized with the
Cascade-Network of two elements, Determine the actual
weights values and threshold value through Theorem 3.1
+ - ' -
for C(i; kj) and C(4; k;). If only C(i; kl) is a
threshold function, proceed to Step 3. On the other
+
hand, if only C(i; kl) is a threshold function, proceed
+ -
to Step 4. If neither C(ij; kl) nor C(i; kl) is a
threshold function, proceed to Step 5.

Search for the suffix k, of the input variable such

2
that

max P.NV. NV |x|P Nv. N Vcl
y {I it kY ik

=| PNV
i k

1 k k

nv |x|P nv,_nve I
kol 11y iy
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Furthermore, construct two characteristic matrices

+ + + -
c(i; ki, kp) and C(i; k3, kp) defined as follows.

>~

1 , for uJEE(Piﬂ vkln sz)
+ +
°35(1s Xp» X3)

-1 , for GJE,t, (Piﬂ Vkln sz)

and

D [+
1 , for uj (pin vkln vk2)
+ -

- A c
1 , for ujei(pin vkln vkz)

Examine whether or not C(ij; kI, k;) and C(4i; kI, k;)

are threshold functions, If both of them are threshold
functions, then C(i) can be synthesized with the

Cascade-Network of three elements. The actual weights

values and threshold value are obtained through Theorem
- + + + -
3.1 for C(i, kl), c(4i; k), kz), and C(i; LM kz).
+ —
If only C(i; kl’ kz) is a threshold function, construct
+ + +
two characteristic matrices C(i; kl, k2, k3) and C(i;

+ + -
kl’ k2’ k3) in the similar manner, On the other hand,

if only C(i; kI, k;) is a threshold function, construct
+ - + ( - -
c(i; ki, Ky, k3) and C(i; kI[ L k3) in the similar

manner, If neither of them is a threshold function,

construct similarly C(i; X, k k+) c(i; K, k. k)
Yy H 1’ 2! 3 ’ H 1’ o7 B '
c(i; kI, k;, kZ) and C(i; kI, k;, k;).
(h) Search for the suffix k,_ of the input variable such that

2
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mjx{ Ipin viln VJI x ' PN Villﬂ vg l}

c c
nyv
k kl k2

= |p.Nve nv lep.nv
, i 1 k2 i

Moreover, construct two characteristic matrices C(i;
k 1’

+ -
1’ k2) and C(4i; k k2) defined as follows.

C
knvk)
1 2

T n
1 , for uJ e.(Pi v

M ER kI, k;)

. v
-1 , for i}jé& (PN v nvy )
' 1 2
(o] C
o v
1 , for u, € (Piﬂ kln vk2)
cj3(i; kg, kp) =
- c c
-1 , for pjéﬁ (p, N vkln sz)

Henceforth, perform the similar procedures shown in
Step 3.
(5) Search for the suffixs'k2 and k3 such that

n}glx {lpin vkln VJI x[Pyn vkl'n v‘;[}

| Pin Vi, N vk2| x lpin vklhv§2|

and
c

) ) c c
max {lpinvkln vjl x |pinvkln vj|}
[+ . C [
'Pin‘ vkln Vk3| x | P N vkln vk3|

Furthermore, construct four characteristic matrices

i 1, 1G), C(i; kg, 1G), C(1; K, k) and C(1; k;, k)
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in the similar manner shown in Step 3 and Step 4.
'Hereafter, perform the similar procedures shown in
Step 3.
: * » »*
C(i; ki, kz, es ooy kN) becomes a threshold function,

where "x»'" implies either "+" or "=", because C(i; k k;. se e

1
kﬁ) is a Boolean function which takes the value 1 for at most
one input vertex. Hence the above synthesis procedure termi-
nate;, even at the worst case, after. C{i; k;, k;, eo ey k;)

is comnstructed. | ‘

The synthesis procedure to have been presehted here is
not superior to the Threshdld-Cascade synthesis or the Thres-
hold—Or synthesis insofar as we are concerned only with the
number of the required elements; However, this procedure does
not need, in advance, the knowledge of whether the decomposed
function is a threshold function., That is, at first the de-
composition is perfomed and then the decomposed function is
examined to be a threshold function. Thus, the procedure is
straightforward and can be excuted eaéily by the computer.

Some consideration to decrease the number of required
elements is given by searching for the suffix of the iﬁput

variable such that "max",
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9.3 Example

Example 9,1. Synthesize the network of threshold ele-—

ments realizing the Boolean function

£, = x x.x x X X, X, X
i xlx3x5 + xlx2x3x5 + xlx2x3xux5 + xlx2x3x5
+ xlxle‘xs + xlx2x3x5 + xlx3xhx5

xl % x]_

X
X

X
X }xh xx}xh
xB{ X[ X]X XB{XX
X X [x
. o~
x2 x2

Since C(i) is not a threshold function, decompose C(i)

into two functions C(i; 5+) and C(i; 5-) given as follows,

XA X +x1xxx

+ - -—
C(i; 5 ) xl 3%s5 2%X3%g + xlx2x3xhx5

C(13 5) = X xp¥q%5 + X XX Xg + X XpXgXs + XpXgxXs.

However, since C(i; 5%) is not a threshold func tion,

+

decompose C(i; 5%) into two functions c(i; 57, 1%) and C(i;

*, 17) given as follows.

5

[}

c(i; 5%, 1)

C(i; 5+9 1+)

ilexs

Xl 2 3x5 + xlxzxjxhxs

On the other hand, since C(i; 5-) is not a threshold

function, either, decompose C(i; 5 ) into C(i; 5, 3%) and
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c(1; 5, 3 ) given as follows.

c(i; 5, 3+) = xlx2x3§5 + x1x3xu§5 + ;1xéx3xh;5
c(i; 5, 37) = ;1;2;325 + ;1-3xh§5

Now, since C(i; 5+, l+), c(i; 5+, 1—), c(is 5—, 3+) and
c(i; 5, 3-) are threshold functions, C(i) is composed of the

four threshold functions shown as follows,

c(1i)
c(i; 5%, 1 c(i; 5%, 17) c(1; 57, 1 c(i; 57, 17)

Hence, C(i) can be synthesized by the cascade network of four

elements shown in Fig., 9.1.

Fig. 9.1. The cascade network
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CHAPTER X
LINEAR MAPPING OF FIRST QUADRANT

All ‘the subjects, so far treated, have been investigated
by solving the simultaneous inequalities directly. 1In this
chapter, similar subjects are discussed from an aspect of the
linear mapping which maps a first quadrant vector into a first
quadrant vector. For this purpose, some properties of the
characteristic vector are used.

Before proceeding to the treatment of the linear mapping,
the procedure to reduce the number of Inequalities 2,16 inher-
ent to the linear separability problem is presented. This
reduction procedure is based on the ideavthat.we can eliminate
some inequalities which are the direct consequence of the othér

inequalities.

10.1 Characteristic Vector and its Properties

The characteristic vector or other similar parameters
were pointed out by M, L,'Degtouz%ti)c. K.‘Ghow and other in-
vestigators: for the purpose of identification of a Boolean .
functioh with avcertain real number set., They also proved
various properties’of these parameters. However, let us list

up only the necessary definitions and properties for the devel-

opment of our ‘theory.
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The general expression of a Boolean function fi(xl’ Xo
ceony xN) of N variables is converted so that all the binary
variables may have the value -1 or 1 rather than O or 1, re-
spectively. This is easily accomplished through the following

algebraic transformations.
’

Y 2xk -1

2f, - 1

g5 i

Hence, Yie and 8; take either 1 or -1, depending on whether Xy
and fi are 1 or O, respectively.

The 2N input points of a Boolean function fi(xl, Xpg eesey
xN) can be identified by the internal state vectors ) (i=1,

J
N
2, vv.., 2 ) defined in Chapter II., Since the quantities vy,

and gi are defined for every input point iT,, they are denoted

J
by yk(ﬁi) and gi(ﬁj), respectively.

Then the characteristic vector ¢; = (aio, Tiqs eovon diN)

is defined as follows.

N

dik:i yk(l?j)-gi(ﬁj) , (k =1, 2, «vsey N)
j=1
SN

%o < 'Z»gi(aj)
j=1

Therefore, the characteristic vector ci is completely determined
by the given Boolean function fi'

With regard to the components of the characteristic vector,
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some relations which involve the algebraic sign are proved.
That is, if a given Boolean function fi is ‘a threshold function,

then the following relations always hold,

(1) sign wy = sign oy, for dijx £ O

(2) 1If o, =0, then w, = O is admissible. (10.1)

where wyp implies the weight value associated with the k-th

input X Since the component aiO is not used in the subse-

quent argument, the relation holding for G40 1is eliminated

here.

10,2 Reduction of Inequalities

A modified positive set and a modified negative set are
first constructed Sy using the characteristic vector and then
a partial order relation is introduced into these sets in order
‘to find immediately such inequalities as the direct consequence
of the other inequalities. The elimination of the inequalities
is excuted by constituting a minimal set and a maximal set in

these partial ordered sets.

Definition 10.1. Consider the N-dimensional vector

~

di = (3;1, 3;2, ceery E;N) which is completely determined by

the characteristic vector 3; as follows,
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1, if o, >0
T = o, if ¢ =0 (k =1, 2, +..,y N)
-1 ’ if o4, <O

The ?; is called a sign vector.

If a given characteristic matrix C(i) represents the
threshold function fi, C(i) is identified with the character-
istic vector oy which corresponds to only one threshold function

fy. Thus, C(i) determines uniquely the sign vec tor 3&. How-=

ever, the Gi does not correspond to one characteristic matrix

c(i).

Definition 10.2. Consider the two sets 3; énd a; gene-
rated from the positive set Pi and the negative set Qi’ re-
spectively, as foilows. That is, F; and a; consist of such
components as the bit-wise product between the sign vector 9;

and every component contained in Pi and Qi’ respectively.

for every GJ e Pi }

H:'U?
[}
—t—
324
Con
1]
S—
£)
e
HFI
| VN

o
iy
1}

-e

for every ﬁj € Q }_

~ {53 =[’63~71]

where the notation [ ﬁd. 31] indicates the bit-wise product of
GJ and ¢;. The F; and 6; are called the modified positive set
and the modified negative set, respectively. The N~dimensional
vector ﬁs = [Gj ;3] is called the modified internal state

vector.,

We can regard 3; and E; as the partial ordered sets by
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introducing a partial order relation defined as follows. That

: £ x ' x
18, let u ( l, j2’ e 00 0 9 JN) and u (uhl, h2’ se 0 0y ﬁhN)
~o

be arbitrary two elements contained in Pi' Then, it is said to
be ﬁjg §,; if and only if the relation

u

=u

Jk hk

holds for every k. By the similar manner, the partial order

relation can be introduced into a;.

Definition 10.3. A modified internal state vector ﬁh is

said to be minimal, if and only if, for an arbitrary modified

o~
internal state vector ﬁj, the relation

N x
uhginlj
inplies
=~ x
uh = UJ

Similarly, a modified internal state vector ﬁh is said to be

maximal, if and only if, for an arbitrary Gj, the relation

lﬂgs q;
implies

¥ -8

h™ 7J

a4
Let Min(Pi) denote the set which consists of all the mini-

mal vectors contained in the set’l?i and let Max(a;) denote the
set which consists of all the maximal vectors contained in the
set 6;. The Min(gi) and Max(ai) are called the minimal set and

the maximal set.
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Definition 10,4, Delete all the j—th rows and j-th

Lo d
columns from a characteristic matrix C(i), if GJ is not con-
~S ~5
tained in the set-sum Min(Pi)U Max(Qi). Such an obtained
matrix is denoted by Cy(i).
Likewise, delete from the universal matrix U all the j—th
rows, if ﬁj is not contained in the set-sum Min(?l)LJMax(a;).

*
Such a deletion yields submatrix of U, denoted by UM'

/ ~ N\
1 u
1 u

b3 12

UM = . . . .
~
1 u

\ im)

The subscript ij appears in the above expression of U;, only

»

~ ~
if ui is contained in the set-=sum Min(Pi)LJMax(Qi). Moreover,

*

replace all the vectors Gi of UM with the corresponding modi-
J oy
fied internal state vector ﬁi . Let us denote such an obtained
J
matrix by Uy.
N
/ ~e
1 4,
1
1 5; N
~ ~
Ut = ‘ 2 4, eMin(P,) U Max(Q;)
M . . . . J
e e (§ =1, 2, veeey m)
1§
L m ;

Furthermore, replace all the 1's of the first column of U; with
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-1, The resulting matrix is denoted by U;.

~ N
(-1 &
~ 1
-1 ui2 .
- N o~ ~
u, = L. u, € Min(Pi) U Max(Qi)
J
(3 =1, 2, veee, m)
-1 &, '
1
\ mJ

With respect to the matrices CM(i), Uﬁ and Uﬁ de fined
above, the next theorem is established.

Theorem 10,1, Inequality System 2,16

C(i)‘U-twi>o ( 2.16)
is consistent, if and only if either of the inequality system

+ t
Cy(i)+ Uy wi >0

(10.2)
+
Ni 20
or the inequality system
Cyli) s Uy<bu; >0
(10.3)
w =0
i
is consistent.
Proof: If Inequality System 2.16 is consistent, then

‘C(i) is a threshold function. Hence, there exists the charac-—

teristic vector o¢; which has one to one correspondence with
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c(i). The components of o constrain the signs of the compo~

nents of w, as g;ven by Relation 10,1, Hence, if we assume
wy >0, then we must compensate this constrain by changing
the signs of the components of the universal matrix U. This
compensation is done by introducing U; and U;. Here, note
that U; and U; are considered because we can not detect, in ad-
vance, the sign of Wi the threshold value., Therefore, either
of Inequality System 10.2 or 10.3 becomes a subsystem of In-
equality System 2,16,

Conversely, from the definitions of Min(gi) and Max(a;),

the following relations always hold.

en

( (1, a)‘mi )<§((19§b)'mi)
for ﬁa € Min(ff"i)
w € P, but G & Min(F)

and

( (1, Gc )"‘;i )g((l"ad)“”i)
fora € M
or U € ax(Qi)
IR
udE Qi but u, Max(Qi)
where ( ( 1, ﬁs )+ wy ) implies the inner product of the

vectors ( 1, ﬁj ) and ;. Hence, if either of Inequality
System 10.2 or 10.3 is consistent, then Inequality System 2.16

becomes consistent. Q.E.D,
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_ + -
If we regard CM(i)- U, and CM(i)- U, as the linear map-

M
. . N+1
pings of the (N+1)—dimensional Euclidean space R s, Theorem

10,1 can be restated as follows.

Theorem 10,2, "Inequality System 2,16 is consistent, if

or CM(i)- U, is a linear map-

+
Um M

ping which maps a vector of the first quadrant to a vector of

and only if either of CM(i)o

the first quadrant.-

We can also rewrite Theorem 10.2 in the following form.

Corollary 10.2.1, Inequality System 2.16 is consistent,

if and only if there exists a vector of the first quadrant of

N+1 '
R which is mapped to a vector of the first quadrant by ei-

+
ther of CM(].) Uy or CM(i) * Uy.

. ~
The less the number of components in the set—sum Min(Pi)
U Max(a;) becomes, the easier the analysis based on Inequality

System 10,2 or 10,3 rather than Inequality System 2.16 becomes.

10.3 Development

Theorem 10,3, If there exists at least one nonpositive

row in both the matrices Cy(i) -Uﬁ and Cy(i) -U;, then C(i)
is not a threshold function.

Proof: Let the k-th row of c, (1) - U;; is nonpositive,
then the k-th inequality of System 10,2 is not satisfied.

Q.E.D,

- 158 .-



Theorem 10,4. If there exists at least one positive

+ -
column in either of CM(i)- U, or CM(i) * Uy» then c(i) is a
" threshold function.
+
Proof: Let the k—-th column of CM(i) - Uy, is positive,
then consider a vector wy such that only the (k+1)~th compo-

nent WYk is sufficiently large. Then, this wy becomes a So-

lution of Inequality System 10.2. Q.E.D.

Theorem 10.5. If we can generate a nonpositive vector

by the linear combination of the rows with positive coefficients
for both CM(i) -U; and CM(i) -U;, then C(i) is not a threshold
function.

Proof: The existence of nonpositive linear combinations
shows thaf there existsbat least one inequality which does not

satisfy Relation 10.1 and 10.2. Q.E.D,

+
Definition 10.5, If the p,~th column of CM(:L) - U, is

v +
nonzero nonnegative, then eliminate all the rows from CM(i)- UM

such that the components of the pl-th column are positive.
< + ‘
Such a resulting matrix is denoted by CM(i)- UM(ul). Similarly,
-~ 4+
if the pp-th column of CM(i) -UM(ul) is nonzero nonnegative,
- 4

then eliminate all the rows from CM(i)° UM(pl) such that the
components of the pz-th column are positive. Such an obtained

e + —— +
matrix is denoted by Cy(i) - Uy(ny, Bp). Likewise, Cy(1) « Uy
(pl, Bos eees pn) can be defined by the similar manner. For

e

CM(i) < Uy CM(i 'Uﬁ(nl’ Moy eoes nm) can be also defined by

the similar way.
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-—
Theorem 10,6. If there exists either CM(i)- Uﬁ(pl; o

 —— -
coey un) or CM(i)! UM(nl, Nos oo nm) which becomes the (0,0)-

type matrix, namely, vanished, then Cc(i) is a threshold func-’

tion.
Proof: Consider the vectors w; or m; such that
+ + + +
wipl>> wipz S> e »wipn>> wj § >0
(J 7'4 l"ly l»l2) se ooy Pn)
or

(J 747)1! Nos secer T)m) .

+

The mi or mi can be surely one of solutions of Inequality 10.2

or Inequality 10.3, respectively. Q.E.D.
Let us develop Theorem 10.6 in order to be more applicable

form.

Definition 10.6. First, make a linear combination of

+
some columns of CM(i) OUﬂ with positive coefficients so that
the linear combined column may be nonzero nonnegative, then
+ .
eliminate all the rows from Cy(i) « Uy such that the components
of this linear combined column are positive. Such an obtained.
- +
matrix is denoted by CM(i)- UM(columnzl). Similarly, make a
L aavacmend +
linear combination of some columns of CM(i)- UM(column:l) with

positive coefficients so that the linear combined column may

be nonzero nonnegative, then eliminate all the rows from

- 160 -



- 4 -
oM (1) -UM(column:l) such that the components of this linear
combined column are positive. The resulting matrix is denoted

< 4 -—
by CM(i)- UM(column:2). Likewise, CM(i) -UM(column:n) and
 —— e
CM(i) -UM(column:m) can be defined.

Then, the next theorem is established by the similar

manner to Theorem 10.6.

-—
Theorem 10.7. If there exists either CM(i)- UM(column:n)

r— -
or CM(i)- UM(column:m) which becomes the (0,0)-type matrix,

namely, vanished, then C(i) is a threshold function.

10. 4 Example

Example 10.1, Unless the unate Boolean function of more

than 9 variables is tested, it is not instructive because var-—
ious Tables have been already prepared for this purpose.
However, for the illustration of the method mentioned above,

test the following function.

fi = Xy XXy + Xy XyX), + xlxux5 + xlxthx5 + XX, 3xhx5
The characteristic vector di is given as follows.

o3 = (-2, -2, 6, -2, 10, -6)

Hence, the sign vector G4 is given as follows.

~e

g, = (=2, 1, -1, 1, =-1)

Therefore, the order relations in 3; and in 6; are shown in

Fig. 10.1 and in Fig. 10.2, respectively.
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16 3 13 25 28
, 31 \ V
9 o 3 19 Q17 11 26
4 23 32

Fig., 10.1. The order relation in ?;

22

Fig. 10.2, The order relation in a;

Here, the number implies the suffix of the modified internal

state vector.
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Thus, we obtain Min(?i) = (ﬁh, ﬁll’ 523, ﬁés, 532) and

M T) = (& . Hence, C(i) + U' and C(i) » U” are given as
ax(Qi) (ulz) , C(1) N (1) M g

follows.

-1 0-1 0-1 0 )
1 0 0-1 0 O
1-1 0 0 1 o
+
oU =
c(1) - vy 1 0 1-1 0 -1
1-1 0 0 1 -1
(1 -1 1-1 1-1)
(1 0-1 0-1 0)
-1 0 0-1 0 O
(1) U; _|-1-1 0 0 1 o0
-1 0 1-1 0 -1
-1 -1 0 0 1 -1
(-1 -1 1-1 1 -1

, + -
Since the first row of C(i) + Uy and the second row of C(i) . Uy

are nonpositive, f; is not a threshold function.

Example 10.2. Synthesize the network whose behavior is

given by Fig. 4.3. Since C(3) is not a threshold function,

generate the characteristic vector ¢35 and the sign vector <.

3
oy = (—2,A2, 2, -2)
Ty = (1, 1, -1)

) ~ ~o
Hence, Pi and Qi are given as follows.
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u"UZ
Vo

ﬁb =(0 1 o) 51 =(0 0 0)
as =(1 1 o0) a2 =(1 o o)
T =(1 o0-1) Y =(0 0-1)
S =(0 1-1
o ( )
'58 =(1 1-1)
5 2 8
3 6 1 7

~

Fig. 10.3. The order relation in Py and 3

Hence, we obtt?.in Min(ﬂl%) = (53, 56) and Max ('63) = ('6'2, '3‘!;8)

Thus, C(3) - U;{ is given as follows.

) 1-1 0 O
R 1 -1 -1 1
c(3) s Uy =
-1 0 1 O
-1 1 0 -1
Now, supplement one threshold element Tl; and convert ;3 and
ﬁ; into the following form.
ff; ~
3 QB
(11 0)—> (11 o0 1) (0o 0) —> (00 0 0)
(01 0)— (01 01) (10 0) —> (1 0 o0 0)
(1 0-1) —> (10 -1 1) (0 0 ~1) —> (0 0 -1 0)
(01 -1) —> (01 -1 0)
(11 -1) — (11 -1 0)
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In accordance with this conversion, C(3) .U; is altered

as follows.

1 -1 0 O

- - 1-1-1 1
o(3) - tu = -1 0o 1 0

= k= O O

-1 1 0 -1

Hence,'33 = (2, 1, 1, 1, 3) is one of the solutions of the in-

equalities
-t
C(3) * Uyeuwy >0

The conversion mentioned above determines the character-

istic matrix C(4) as follows.,

C(l&) =

( -1

Thus, we obtain ¢, = (-2, 2, -2, -6) and o, = (1, -1, -1).

Hence, the order relations in ﬁh and 6h are shown in Fig., 10.4.

nJ ~ 6
Ph 2 Q, 3

8

7
Fig. 10.4, The order relations in ﬁh and 6&
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Thus, CM(u)' U’ is obtained as follows,

M
1 0 0 O
+ -
Cy(4) Uy = 1 1-1 0
-1 -1 0 1
-1 0 1 o
+

Therefore, w), = (2, 2, 3, 5) is one of the solutions of the

inequalities

Cy (%) Uy th)O .

Consequently,. the network shown in Fig. 10.5 performs the

behavior given by Fig. 7.1.

primary elements

control element

Fig., 10.5. The autonomous network
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CHAPTER XI

AN ELECTRIC ANALOGUE OF THE NEURON
An electric analogue model of the neuron is descrfggngO)
The model neuron is composed of the active units which simulate
the electric behaviors of the active loci of the membrane of a
neuron., The active units include the model axon and the model
synapées of six different types ( the ordinary, incremental and
decrementai ones each having the excitatory and the inhibitory

types). The properties of the models are described.

11,1 Introduction

During the last decade therc have been many attempts to
(31) (47)

construct electric analogues of the neuron., It seems to have

S0kQ
S0kQ
50kQ
50kQ

‘Fig. 11.1 The circuit of the model neuron
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paramount importance to investigate the electric performance

of the neuron and the nervous system constructing an analogue
model., As the electrophysiologicaf%%;éfghow the electric
properties of the neuron are fairly complex and it does not
operates in a simple digital or analogue manner as the artifi-
cial data processing organs. In some respects it operates in
the analogue way and in the other respects it does in the
digital way., It seems fairly certain that such complex nature
of the nervous function has some deep implications in the data»
processing in the nervous system. To understand the functions
of the neuron in detail and how it works as a data processing
unit in a nervous system the use of an analogue model seems

to offer some advantages., On account of the complex nature

of the ncuron functioning the detail mathematical treatment
becomes a formidable one or it needs gross simplification to
make a mafhematical treatment tractable., On the other hand
the actual neuron does not yield to change the parameters of
its electric functions arbitrarily or to construct an arbitrary
nervous net, These difficulties may be circumbented by the
use of the analogue model, By the use of the analogue model
we may understand the functions of the neuron and its potential-
ities as the data processing unit in considerable detail,

The understanding of the nervous functions and the small nerv-
ous net in their full cpmplexity seems to be a necessry first

step for the understanding of the mervous system,
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Of course, we must be cautious on the 1limit of the model, It

simulates only the electric behaviors of the neuron and not
the chemical or the molecular processes, The chemical proc-
esses may be essential for some properties in the nervous sys-
tem (especially_in the problem of the memory),

In this paper we describe an electric analogue of the neu-
ron and its properties, As the recent data of the electro-
physiology shows the neuron membrane consists of the active
loci of several different types, e intended to simulate the
axon membrane and the synaptic loci of six different types (or-
dinary, incremental_and decremental synapses each including the
excitatory and the inhibitory ones).

Each active unit is constructed independently and they are
assembled in a neuron as in Fig.,11.1, We may assemble the syn-—
aptic units in many different combinations and the axonal units
may be arranged in a long or short axon cable., This "active

units” method has the advantage of the great flexibility.

11,2 The Axon Analogue

1) The circuit of the model axon.

The electric properties of the axon membrane were analyzed

(32)
in detail by HODGKIN and HUXLEY, To construct the model axon

we intended to simulate qualitatively the essential features of

the electric properties of the axon., The circuit of the model

axon unit is shown in Fig,11.2. In this model the active ionic
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currents across the axon membrane are représented by the current
I through the capacitor QZ' In the rest state the input voltage
V is zero and the vacuum tube Ti is on and Té is off if the

grid voltage E%é of Té is set below a critical negative voltage
Eé' When V is decreased and reaches below the threshold wvalue
Vth which satisfies V;h - E%z = Eé ’ Ti is switched to the off
state and Té to the off state., After a brief active period in
which Ti is off and Tzis on, T1 is again switched to the on
state and T to the off state., If V is set below the threshold
vth’ the axon unit fires repetitively. 1In the active phasg the
current I consists of the two components; the current I.n which
compensates the current 12 flowing through the tube Té and the
discharge current Ik of the capacitor 02' In is inward and Ik

is outward., In the post active phase in which Tl and Té are

awitched to the on and off states respectively, I consists only

+300V

Fig. 11.2. The circuit

J:—' 7MQ
of the model axon unit.
250V A medium mu twin triode
12AU7 is used for T1 and T2, Cl = 0.001pF, 02 = 0,02uF
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of the discharge current Ik' IA and Ik may be corresponded to

the sodium and potassium currents respectively.

1ii) The wave form of the axon spike.

In Fig.11.3 the wave form of the axon spike potential is
shown, The wave form of the spike is fairly stable, It shows
only about 10% change for thé 10 fold changes of the threshold

or the pulse density,

Fig. 11.3. The wave form of the axon spike
potential. A scale gives 3 volts for the

ordinate and 300 psec for the abscissa

iii) The threshold and the refractory period.
As was mentioned previously, the axon unit has the thres-—

hold, For the input which does not reach the threshold V the

th
axon unit does not actively respond and the input voltage prop-
agates passively over the axon cable and decayes, while when

the input reaches the threshold the axon unit fires actively and
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the spike potential propagates regeneratively, The value of
the threshold may be changed by adjusting the variable resist-
ance Rv' The deepgr the grid voltagg Egz than Ec’ the larger

the threshold Vth' Ir Eg2 is set above Ec’ then the axon unit

fires spontaneously,
This axon unit has the refractory period. The time course
of the change of the threshold after a fireing is shown in Fig,

11,4, As seen from Fig.11.4. the absolute refractory period is

about 1 m sec.

iv) Pulse density modulation.
When the axon unit is fed a D.C. voltage exceeding the
threshold, it fires repetitively and the frequency of the firing

changes according to the magnitude of the input. In Fig,11.5

and Fig.11.6 the pulse frequency vs, voltage relations are shown,

Threshold value (V)
LY
1

7
L { L o
5 70
Time ofter a flying (msec) Fig. 11,4, The time course

of the threshold dhange after a firing. vth is sec at 2 volts
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In Fig.11l.5 the firing frequency vVs. the input voltage relation

is given in the linear scale for various vglues of the threshold
and Fig.11.6 is the semilog plot of Fig.11l.,5. As seen from Fig,
11.6 the firing frequency is approximately linear with respect
to log (6??)(52)

In Fig.11.,7 and Fig,11.8 the effects of the threshold change
for the pulse density modulation are shown. In Fig.11.7 the
frequency vs, the threshold relations for the fixed values of the
input D;C. voltage are shown, In Fig,11.8 the input D.C. volt-
age vs, the threshold relations for the fixed frequencies are
shown, . As seen from Fig,11.7 and Fig.11l.8 the pulse density for
the fixed input voltage and the input voltage,for the fixed pulse

frequency vary linearly for the change of the threshold,

)
800~ LAY
%)
=
3
X g0 -
75V
Fig. 11.7. The relations
200 - between the threshold and
the pulse frequency for
1 I
/ 7 2
Threshold (V) the fixed values of the

input d.c. voltage
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consisting of 8 axon units and for several different values of

the threshold
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v v) Propagation of the spike.

On account of thevspecial regenerative nature of thg
propagation of the spikg, there are some interesting properties
for the propagation of the spike potential along the axon
éable. When the first axon unit is firéd a degraded potential
change is induced at the site of the next axon, In order
to fire the next axon unit it is necessary tg reach the in-
duced potential at the threshold value, So that there arise
a delay to fire the next axon unit, The larger the threshold,
the larger the delay, On account of the threshold change
after the firing, the threshold of the axon units in the axon
cable is raised when the axon is fired in the high frequency.
So that the propagation velocity of the spike must be smaller

for the high frequency firing than the low frequency firing.

[}
Joo +—
2 unifs
Ty
g
200 —
"tg i Fig. 11,10, The rela-
o~
:; tion between the propa-
S 0}
]Q gation delay of the
| spike and the threshold
| -
0 >

‘ 7 2 for a fixed value of
Threshold (V) :

the pulse frequency
(50 pulse per sec). The delay is measured for the axon cable

consisting of 2 axon units
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This is indeed the case. In Fig,11.9 the relations between
the propagation delay and the firing frequency are plotted

for the axon cable consisting of eight axon units for which
the threshold is fixed at various values, In Fig,11,10 the

relation between the delay time and the threshold at the -

+75V

Fig. 11.11.

Input  gospF 7

arpf The circuit of
o—| a

the ordinary

7MQ

synapse model.

A twin triode

12AU7 is used

70k for Tl and T2.

o-~790V

fixed firing rate (50 pu1387 per sec) for the axon cable
consisting of 2 axon units is shown. As seen from Fig.,11.10

the delay time is approximately linear for the threshold

change,

11.3 The Synapse Analogues

According to the electrophysiological data we made three

different types of the mode; synapse, the ordinary,
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incremental and decremental ones. We made these synapse models
in such a way that both the excitatory and the inhibitory out-
puts may be get from a synapse unit. The ordinary synapse is
the most common synapse which responds to the spike inputs by
the outputs of constant magnitude except for the close array of
spikes for which the output synaptic potehtial overlapps (the
time summation). The incremental (facilitatory) and the decre-
mental (defacilitatory) synapses are such ones that for a series
of the input spikes in succession the magnitudes of the output

synaptic potentials gradually increase or decrease even when

L]

no overlapping of the output potential occurs.
' 7 i -

(). T L] tey ] |

. [ Uy B .
| : '

i { v
Leedbntatdejiiad o

Fig.11.12. The wave forms of the ordinary synaptic potentials.,
a) excitatory, b) inhibitory. ‘A scale gives 1 volt for the

ordinate and 0.5 msec for the abscissa

]
SR

!
1

!

Foi] e L

Fig.11.13., The time summed synaptic potentials for the input
of three successive spikes. A scale gives 1 volt for the

ordinate and 10 msec for the abscissa

- 178 -



70+

Output

Fig. 11.14.

The relation be-

tween the time summed synaptic

potential and pulse frequency

of the steady input spikes

o +75Y

Input 'alaij
o LLI

7MQ

d%pF

> JNH
C=002pF

Lx
00MPF

incremental synapse Ry = 50K

, Ry = 500R

the case of the decremental synape RL

C, = 0.2pF

-179-

o- 190V

°~150V

Fig. 11.15. The
circuit of the in-
cremental and de-
cremental synapse
models. The para-
meters are taken
as follows; in
the case of the

, C; = 0.5pF; in

100K , R, = 200K ,

1



i) The circuit of the ordinary model synapse.

The circuit of the ordinary type synapse unit is shown in
Fig.11,11, From a synapse unit we may get both the excitatory
and the inhibitory outputs (from EX and INH terminal respect-
ively). The magnitude of the output potential may be changed
by adjusting the volume R,. The wave form of the synaptic

potential is shown in Fig.11.12.

ii) The time summation,

For the closely spaced series of the input spikes the out-
put synaptic potentials overlap and are summed up (the time sum-
mation)., Fig.,11.13 shows the time summed synaptic potential,
The larger the pulse frequency of the input spikes, the larger
the average level of the time summed synaptic potential, Fig,
11.14 shows how the D.C. voltage arised as the result of the
time summation (it is given as the level of the bottoms of the
valleys between the peaks of the synaptic potential) and the
height of the synaptic potential (it is given as the height of

the peaks of the synaptic potential from the bottom of the valley
between the peaks of the synaptic potential to the top of the

_peak) change for the pulse frequency of the steady spike input.
As seen from Fig.11l.14 for the low frequency side each peak of
the synaptic potential has clear individuality, bﬁt for the
high frequency side the time summed D,C, potential becomes
dominant, This suggests that the character of the integration

of the inputs in the neuron is different for the low frequency
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inputs and for the high frequency inputs,

Py
e

: )
[N

T

T

P

e EEEL

3
suasasal

i
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. A
(2]
S~
i

T
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tritptt bk

trHE

Fig.11.16. The wave forms of the incremental and decremental

synaptic potentials for 7 successive input spikes. a) incre-
mental excitatory, b) incremental inhibitory, c) decremental
excitatory and d) decremental inhibitory. A scale gives 3

volts for the ordinate and 6 msec for the abscissa

1ii) The incremental and the decremental synapses,

Fig.11.15 shows the circuit of the incremental synapse,
The grid voltage of the tube T3 is set in such a way that '1‘3
is on in the rest state, When a spike input comes 'I‘3 becomes
temporally off and the capacitor C1 is charged up so that the
grid voltage of T3 is increased, When a series of spikes comes
in, the grid voltage of T2 increases gradually so that the
magni tude of the output synaptic potentials increases, too,

The circuit of the decremental synapse is almost the
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same as Fig.11.1l5 except that the grid voltage of Tj.is set
in such a way that ’I‘3 is off in the rest state, When a spike
input comes, the aftershoot of the differentiated input to T3
makes T3(n1and Cy is discharged, so that the grid voltage of
T, is deéreaéed and the output:for the next spike input is
decreased, The wave form of the outputs of the incremental
and the decremental synapses for a series of input spikes are
shown in Fig,11,16,

The incremental and the decremental synapses seem to play
important roles in the processing of the time pattern of the
spike input. Roughly gpeaking, the incremental synapse may
be regarded to perform the integration and the decremental
synapse the differentiation, If we regard a neuron as a vacuum
tube with many grids whose inputs and outputs are the continuous
"information" coded by the spike density, then these synapses

may play essential roles in the relaxation type performance of

the nervous net,
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