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We investigate the dynamical Casimir effect and its detection with Rydberg atoms. The photons are created in
a resonant cavity with a plasma mirror of a semiconductor slab which is irradiated by periodic laser pulses. The
canonical Hamiltonian is derived for the creation and annihilation operators, showing the explicit time variation
in the couplings, which originates from the external configuration such as a nonstationary plasma mirror. The
number of created photons is evaluated as squeezing from the Heisenberg equations with the Hamiltonian. Then
the detection of the photons as the atomic excitations is examined through the atom-field interaction. Some
consideration is made for a feasible experimental realization with a semiconductor plasma mirror.
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I. INTRODUCTION

The quantum nature of the vacuum provides a variety
of physically interesting phenomena, including the Casimir
effect [1]. The so-called dynamical (nonstationary) Casimir
effect (DCE), as well as the static force, has been investi-
gated extensively (see [2–23], and references therein), where
photons are created from the vacuum fluctuation because
of a nonadiabatic change of the system such as vibration
of a cavity or expansion of the universe. It is, however,
difficult experimentally to realize the mechanical vibration
of the cavity with a sufficient magnitude at the resonant
frequency ∼1 GHz which is required to create a significant
number of photons for detection. As a feasible alternative,
it has been proposed recently that the oscillating wall can
be simulated by a plasma mirror of a semiconductor slab
which is irradiated by periodic laser pulses [15] (see also
[16,17]).

In this article, we investigate quantum mechanically the
photon creation via the DCE and its detection with Rydberg
atoms. We particularly intend to examine the experimental
realization of DCE with a plasma mirror of a semiconductor
slab [15,23]. In Sec. II, the canonical Hamiltonian for DCE
is derived in terms of the creation and annihilation operators,
where the field operators are expanded simply with the initial
modes. Then, in Sec. III, the time-varying frequencies and
squeezing couplings of the Hamiltonian are calculated in
an effective (1 + 1)-dimensional scalar field model with a
plasma mirror. They exhibit the enhancement of effective
wall oscillation for the DCE which is simulated by the
nonstationary plasma mirror. In Sec. IV, the number of
photons created via the DCE is evaluated as squeezing from
the Heisenberg equations for the creation and annihilation
operators. The results appear to agree essentially with those
obtained by the usual instantaneous-mode approach. In Sec. V,
we investigate the excitation process of Rydberg atoms through
the atom-field interaction, which is utilized to detect the
created photons. Some conditions of the physical parameters
are clarified for the efficient photon detection. In Sec. VI,
the experimental realization of DCE with a semiconductor
plasma mirror is discussed. Section VII is devoted to a
summary.

II. CANONICAL HAMILTONIAN

We consider a scalar field in 3 + 1 space-time dimensions
as an effective description of the electromagnetic field in a
resonant cavity. The Lagrangian is given by

L = 1
2ε(x,t) (φ̇)2 − 1

2 (∇φ)2 − 1
2m2(x,t)φ2 (1)

(h̄ = c = 1) [7,9,10,18,19]. Here ε(x,t) and m2(x,t) repre-
sent the dielectric permittivity and conductivity (effective
mass term), respectively, in the matter region such as a
semiconductor slab. As specified later, they are space-time
dependent, simulating the boundary oscillation. Conven-
tionally, the instantaneous modes f̄α(x,t) (real, orthonor-
mal, and complete) at each time t with time-varying fre-
quencies ω̄α(t) are adopted according to the boundary
oscillation:

[−∇2 + m2(x,t)]f̄α(x,t) = ε(x,t)ω̄2
α(t)f̄α(x,t) (2)

with the orthonormalization

∫
V

ε(x,t)f̄α(x,t)f̄β(x,t) d3x = δαβ/[2ω̄α(t)]. (3)

Instead, we here specify the particle representation simply in
terms of the initial modes:

f 0
α (x) = f̄α(x,t = 0), ω0

α = ω̄α(t = 0). (4)

The canonical field operators in the Heisenberg picture are
expanded with the creation and annihilation operators a†

α(t)
and aα(t) as

φ(x,t) =
∑

α

[aα(t) + a†
α(t)]f 0

α (x), (5)

�(x,t) = ε(x,0)
∑

α

iω0
α[−aα(t) + a†

α(t)]f 0
α (x), (6)
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where �(x,t) = ∂L/∂φ̇ = ε(x,t)φ̇(x,t). Then the canonical
Hamiltonian is presented by the usual procedure as

HF(t) =
∫

V

1

2

{
�2

ε(x,t)
+ φ[−∇2 + m2(x,t)]φ

}
d3x

=
∑

α

ωα(t)

(
a†

αaα + 1

2

)
+

∑
α �=β

µαβ(t)a†
αaβ

+
∑
α,β

i[gαβ(t)a†
αa

†
β − g∗

αβ(t)aβaα], (7)

where the space integral is taken over the whole region V ,
which is fixed suitably (not time dependent) according to the
physical setup, as illustrated later for the case of a cavity
with a nonstationary plasma mirror. [The usual oscillating
boundary may also be described as a periodic shift of the
region of a high potential wall represented by m2(x,t).] The
explicit time dependence of the Hamiltonian HF(t) in Eq. (7)
represents the variation of the couplings which originates from
the nonstationary behavior of the c number external quantities
ε(x,t) and m2(x,t). The second-order field equation (Klein-
Gordon equation) is derived from the Heisenberg equations
for φ(x,t) and �(x,t).

The mode frequencies ωα(t), intermode couplings µαβ(t),
and squeezing terms gαβ(t) are calculated by considering the
orthonormality of f 0

α (x), which obeys the wave equation with
ε(x,0) and m2(x,0):

ωα(t) = ω0
α + µαα(t) ≡ ω0

α + δωα(t), (8)

µαβ(t) = 2Gε
αβ (t) + 2Gm

αβ(t), (9)

gαβ(t) = −i
[ − Gε

αβ(t) + Gm
αβ(t)

]
, (10)

Gε
αβ(t) = 1

2
ω0

αω0
β

∫
δV (t)

ε2(x,0)

ε	(x,t)
f 0

α (x)f 0
β (x) d3x, (11)

Gm
αβ(t) = 1

2

∫
δV (t)

m2
	(x,t)f 0

α (x)f 0
β (x) d3x. (12)

The space integrals for G
ε,m
αβ (t) are actually evaluated in the

subregion δV (t) (⊆ V ), being possibly time dependent when
a moving boundary is considered, where ε(x,t) and m2(x,t)
vary in time as

ε−1
	 (x,t) ≡ ε−1(x,t) − ε−1(x,0), (13)

m2
	(x,t) ≡ m2(x,t) − m2(x,0). (14)

Here G
ε,m
αβ (0) = 0 with ε−1

	 (x,0) = 0 and m2
	(x,0) = 0 at

t = 0, as the Hamiltonian HF(0) is diagonalized in terms of
the initial modes f 0

α (x).
Similar formulas are presented for the effective

Hamiltonian with the instantaneous modes [9,10]. This ef-
fective Hamiltonian involves even the time derivatives of the
mode functions since the quantum time evolution is traced
along the instantaneous modes. On the other hand, in the
present approach, the time evolution is viewed on the initial
modes according to the Heisenberg equations. The canonical
Hamiltonian is calculated without the time derivatives of the
mode functions and is readily applicable to various physical
setups, for example, the case of a plasma mirror, clarifying
its dependence on the experimental parameters. There may
be some claim concerning the ambiguity in the particle

representation and photon number since the basis modes
are changing during the DCE. This ambiguity is, however,
spurious physically (but might be essential for the case of the
expanding universe, which is beyond the scope of this article).
In fact, the instantaneous modes return to the initial modes
at each period of the oscillation, where the photon number
operators of the respective descriptions coincide with each
other by definition. We can check explicitly that when the
mode functions are not deformed largely in time, as usually
considered, this canonical treatment provides essentially the
same result for the DCE as the instantaneous-mode approach.
The effects of the intermode couplings will be less significant
in the instantaneous-mode approach, where the Hamiltonian is
diagonalized at each time. Anyway, the intermode couplings
are usually off resonant, providing subleading contributions to
the DCE.

III. VIBRATION WITH A PLASMA MIRROR

We next calculate the time-varying frequencies and squeez-
ing couplings of the Hamiltonian for DCE in an effective
(1 + 1)-dimensional scalar field model with a nonstationary
plasma mirror which is realized with a semiconductor slab
irradiated by periodic laser pulses [15].

The dielectric response of the plasma is given by
ε(ω) = ε1[1 − (ω2

p/ω2)], with the plasma frequency ωp =
(nee

2/ε1m∗)1/2 in terms of the effective electron mass m∗ and
the conduction electron number density ne proportional to
the laser power Wlaser/pulse. This response for the dispersion
relation, ε(ω)ω2 = ε1ω

2 − (nee
2/m∗), can be taken into ac-

count in the slab region [l,l + δ] around x = l with a thickness
δ(� L) as

ε(x,t) = ε1(t), m2(x,t) = m2
p(t) ≡ ne(t)e2/m∗, (15)

where m2
p(0) = 0 for Wlaser(0) = 0. (The spatial distribution

of the conduction electrons along the x direction may also
be considered readily.) The instantaneous-mode functions are
given as

f̄k(x,t) =

⎧⎪⎨
⎪⎩

D sin kx [0,l),

Beik′x + Ce−ik′x [l,l + δ] : slab,

A sin k[x − δ + ξ (t)] (l + δ,L],

(16)

with the dispersion relations

ω̄2
k = (k2 + k2

⊥)/ε0 = (
k′2 + k2

⊥ + m2
p

)/
ε1 (17)

(k′ = i|k′| for k′2 < 0 with large m2
p), where k⊥ is the

momentum in the orthogonal spatial two dimensions (not
shown explicitly) [12,13,21]. The Dirichlet boundary con-
dition is adopted at x = 0,L with sin k[L − δ + ξ (t)] = 0,
corresponding to the case of transverse electric (TE) modes.
The case of transverse magnetic (TM) modes can be treated
in a similar way by adopting m2(x,t) = [(∂ne/∂x)e2/(k2

⊥m∗)]
[23].

The diagonal couplings δωk(t) and gkk(t) are specifically
calculated in Eqs. (8)–(12) with Eq. (16) for f 0

k (x) at t = 0 as

δωk(t) = ω0
k[δε(t) + δm(t)]/L, (18)

gkk(t) = −(i/2)ω0
k[−δε(t) + δm(t)]/L. (19)
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Here the effective wall oscillation is enhanced as

δε(t)/δ 
 −[ε1(0)/ε0][1 − ε1(0)/ε1(t)] sin2 kl, (20)

δm(t)/δ 
 [
ne(t)e2/m∗ε0

(
ω0

k

)2]
sin2 kl. (21)

This effect is almost proportional to the square of the
mode function around the slab, [f 0

k (l)]2 ∝ sin2 kl, since∫ l+δ

l
[f 0

k (x)]2dx 
 [f 0
k (l)]2δ for k′δ ∼ [ε1(0)/ε0]1/2(δ/L) �

1 at t = 0. If the slab is placed at the boundary x = l = 0,
sin2 kl is replaced with (kδ)2/3 ∼ (δ/L)2 � 1, as observed
in Ref. [19], claiming that the DCE is suppressed in the
TE mode. The significant photon creation, however, can
take place even in the TE mode if the slab is placed apart
from the boundaries x = 0,L, which are the nodes of f 0

k (x)
[18,23].

The shift ξ (t) in the instantaneous mode of Eq. (16) is
determined mainly proportional to δ to give the frequency
modulation δω̄k(t). The diagonal squeezing coupling ḡkk(t) is
then calculated with the formulas for the effective Hamiltonian
[9,10]. After some calculations, we find the relations

δω̄k(t) 
 δωk(t), ḡkk(t) 
 [i/2ω̄k(t)]ġkk(t), (22)

where the change of dielectric is assumed to be small,
|ε1(t) − ε1(0)| � ε1(0), as usual [19]. These relations in
Eq. (22) ensure almost the same result for the DCE in
the canonical and instantaneous-mode approaches (except
for the small contribution of the off-resonant intermode
couplings). This will be checked numerically in the next
section.

The preceding calculations of δωk(t) and gkk(t) are valid
up to |δωk(t)|/ω0

k = |δε(t) + δm(t)|/L ∼ 0.1, which is still a
significant enhancement of the effective displacement |δε,m| �
δ for the DCE. The present approach on the fixed basis,
however, does not work effectively in an extreme situation
where the mode functions are largely deformed in time
with |δωk(t)| ∼ ω0

k . In such a case, the instantaneous-mode
approach is rather suitable, though the deformation of the
mode functions cannot be treated perturbatively [23]. Anyway,
as seen in the following, a reasonable deformation to induce
|δωk(t)|/ω0

k ∼ 0.01 − 0.1 is sufficient to create a significant
number of photons for detection with atoms.

IV. PHOTON CREATION AS SQUEEZING

Once the Hamiltonian is presented in terms of the cre-
ation and annihilation operators, the time evolution for the
DCE is determined by the Heisenberg equations ȧα(t) =
i[HF(t),aα(t)] and ȧ†

α(t) = i[HF(t),a†
α(t)]. It is described as

the Bogoliubov transformation:

aα(t) = Aαβ(t)aβ + B∗
αβ(t)a†

β, (23)

a†
α(t) = A∗

αβ(t)a†
β + Bαβ(t)aβ. (24)

The master equations for the Bogoliubov transformation are
derived from the Heisenberg equations as

Ȧαβ = −iωα(t)Aαβ − iµαγ (t)Aγβ + 2gαγ Bγβ, (25)

Ḃαβ = iωα(t)Bαβ + iµ∗
αγ (t)Bγβ + 2g∗

αγ Aγβ, (26)

where the intermode couplings are renamed suitably as
µαγ (1 − δαγ ) → µαγ with µαα ≡ 0.

In the following, we illustrate the characteristic features of
DCE by concentrating on a single resonant mode with time-
varying frequency ω(t) = ω0 + δω(t) and squeezing coupling
g(t) (the mode index k omitted). The intermode couplings
will not provide significant contributions since they are
fairly off resonant generally for the nonequidistant frequency
differences [11,13,21]. The master equations read

Ȧ = −iω(t)A + 2g(t)B, Ḃ = iω(t)B + 2g∗(t)A (27)

for the Bogoliubov transformation:

a(t) = A(t)a + B∗(t)a†, a†(t) = A∗(t)a† + B(t)a. (28)

The solution is expressed as squeezing and phase rotation [2]:

A(t) = cosh r(t)eiφA(t), B(t) = sinh r(t)eiφB (t), (29)

with the initial condition A(0) = 1,B(0) = 0, ensuring
|A(t)|2 − |B(t)|2 = 1.

An analytic solution for A(t) and B(t) is obtained in the
rotating-wave approximation (RWA) by replacing

ω(t) → ω0 + 〈δω〉 (average), (30)

g(t) → 〈g〉�e−i�t (Fourier component), (31)

where ω0 = ω(0). By noting the time evolution of the number
operator a†(t)a(t) = |B(t)|2aa† + . . ., we obtain the photon
creation via DCE (vacuum squeezing) as

nγ (t) = 〈0|a†(t)a(t)|0〉 = |B(t)|2



∣∣∣∣2〈g〉�

χ

∣∣∣∣
2

×

⎧⎪⎨
⎪⎩

sinh2 χt (|	| < |2〈g〉�|),
|χ |2t2 (|	| = |2〈g〉�|),
sin2 |χ |t (|	| > |2〈g〉�|),

(32)

with the effective squeezing rate

χ =
√

|2〈g〉�|2 − 	2. (33)

Here the detuning 	 is introduced for the frequency � of laser
pulses [12,13] as

� = 2(ω0 + 〈δω〉 + 	). (34)

The resonance condition for DCE is then given by

�(resonance) = 2(ω0 + 〈δω〉), (35)

involving the average shift of the frequency 〈δω〉 [18,23] rather
than the naive condition � = 2ω0. If � = 2ω0 is taken with
	 = −〈δω〉, the squeezing rate χ is significantly reduced,
even possibly becoming imaginary with nγ (t) <∼ 1 oscillating
as sin2 |χ |t . The photon damping with the factor e−�t because
of the cavity loss should further be taken into account,
where

� = ω0/Q, (36)

with the cavity quality factor Q. Hence the threshold condition
for the squeezing by DCE is placed as

χ > �/2, (37)

which is readily satisfied with a large enough Q.
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1.4
n γ
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∆=0

∆= –<δω>

FIG. 1. Photon creation nγ (t) (linear plot) in the early stage
of DCE for Npulse = t(�/2π ) � 30 (the number of periodic laser
pulses). The results of the canonical and instantaneous-mode ap-
proaches are shown with the solid and dotted curves, respectively. The
parameters are taken typically as 〈δω〉 = 0.02ω0, 2〈g〉� = i0.01ω0,
and 	 = 0 (on-resonance, upper curves) and −〈δω〉 (off-resonance,
lower curves) for �.

We have solved numerically the master equations in
Eq. (27) without the RWA. The time-varying couplings
are taken typically as ω(t) = ω0 + 〈δω〉(1 − cos �t) and
g(t) = 2〈g〉�(1 − cos �t), where |2〈g〉�| ∼ |〈δω〉|/2, as in-
dicated in Eqs. (18) and (19) for the plasma mirror. The
instantaneous-mode solution has also been obtained by consid-
ering the relations δω̄(t) = δω(t) and ḡ(t) = [i/2ω̄(t)]ġ(t) in
Eq. (22). In Fig. 1, the photon creation nγ (t) in the early stage
of DCE is plotted for Npulse = t(�/2π ) � 30 (the number
of periodic laser pulses). The results of the canonical and
instantaneous-mode approaches are shown with the solid and
dotted curves, respectively. Here the parameters are taken
typically as 〈δω〉 = 0.02ω0, 2〈g〉� = i0.01ω0, and 	 = 0

0 100 200 300

Npulse = t(Ω/2π)

10–3

10–2

10–1

100

101

102

103

104

105

106

107

108

n γ

canonical
instantaneous

∆=0

FIG. 2. Photon creation nγ (t) (log plot) through the DCE period
for Npulse = t(�/2π ) � 300. The results of the canonical and
instantaneous-mode approaches are shown with the solid and dotted
curves, respectively. The parameters are taken typically as 〈δω〉 =
0.02ω0, 2〈g〉� = i0.01ω0, and � = 2.04ω0 (	 = 0).

(upper curves) and −〈δω〉 (lower curves) for � in Eq. (34).
We can see that nγ (t) increases rapidly via the DCE on the
resonance with � = 2(ω0 + 〈δω〉) (	 = 0), while nγ (t) does
not grow for � = 2ω0 (	 = −〈δω〉) because of the effective
detuning brought by the average shift 〈δω〉. In Fig. 2, the
photon creation nγ (t) is plotted through the DCE period for
Npulse = t(�/2π ) � 300. The squeezing rate is determined
from this plot to be χ 
 0.01ω0, as indicated in Eq. (33) with
	 = 0. This result confirms that a large number of photons
can be created via the DCE with a reasonable squeezing rate
χ ∼ 0.01ω0 when the laser pulses are applied many times.
It is also found that the canonical and instantaneous-mode
approaches provide almost the same result (except for the
small contribution of the off-resonant intermode couplings).
The analytic solution under the RWA in Eq. (32) overlaps
almost with the instantaneous-mode result, though it is not
plotted explicitly in Figs. 1 and 2.

We briefly discuss the effect of the intermode couplings.
Specifically, the coupling µ12a

†
1a2 + µ∗

12a
†
2a1 between the

modes 1 and 2 becomes resonant under a condition ω0
2 =

3ω0
1 → ω0

2 − ω0
1 = 2ω0

1 ≈ � for the case of the TE111 and
TE115 modes in a cubic cavity because of the relation (12 +
12 + 52)1/2 = 3(12 + 12 + 12)1/2. Then, through this resonant
intermode coupling, the significant photon creation occurs in
both modes 1 and 2 as nγ 1(t) ∼ nγ 2(t), increasing the total
of photon numbers [13,21,23]. The photons of mode 2 are,
however, fairly off resonant with the Rydberg atoms tuned to
detect the photons of mode 1. Hence they cannot be detected
efficiently.

V. DETECTION WITH RYDBERG ATOMS

The photons created via the DCE are detected suitably by
Rydberg atoms with principal quantum number n ≈ 100 and
transition frequency ∼1 GHz [11,23]. Rydberg atoms may be
treated as a two-level system with a transition frequency ωe

for the resonant photon absorption with ωe ≈ ω0. They are
initially prepared in the lower level |g〉 and injected into the
cavity. A part of these atoms are excited to the upper level
|e〉 by absorbing the photons and are detected outside the
cavity as the signal of photons. Recently, a high-sensitivity
measurement of blackbody radiation has been performed at
a frequency 2.527 GHz and low temperatures 67 mK–1 K
by employing a Rydberg-atom cavity detector with a newly
developed selective field ionization scheme for n ≈ 100 (the
atoms excited by absorbing photons are selectively ionized
by applying an electric field) [24]. Here we note that in
order to observe purely the vacuum squeezing via DCE, the
cavity should be cooled well below 100 mK to suppress the
thermal photons as nγ (thermal) � 1. In fact, if photons are
present initially with an expectation value 〈a†a〉, they are also
amplified by the DCE as (1 + 2|B(t)|2)〈a†a〉.

Consider that NRyd Rydberg atoms (actually, NRyd ∼ 100–
1000 [24]), which are all prepared at the lower level |g〉, are
injected into the cavity to detect the created photons after the
period of DCE, for simplicity of argument. (The following
features for the photon detection are essentially valid even if
the atomic beam is injected continuously during and after the
DCE, as discussed later.) The nγ photons and NRyd atoms (all
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located at the same position, for simplicity) are coupled with
the Jaynes-Cummings Hamiltonian under the RWA as

HAF = κ
√

NRyd(aD+ + a†D−). (38)

(The effect of the counterrotating terms is negligible near the
resonance.) Here the collective atomic spinlike operators are
defined (in the Schrödinger picture) [25] by

D+ ≡
NRyd∑
i=1

|e〉〈g|(i)/
√

NRyd, (39)

D− ≡
NRyd∑
i=1

|g〉〈e|(i)/
√

NRyd, (40)

and the complex phase for κ is absorbed in the atomic levels.
The single atom-photon coupling κ is explicitly given by

κ = d
√

ω0/2ε0V [|f 0(x1)|/|f 0(x0)|] (41)

in terms of the magnitude of the electric dipole transition
matrix element d, the cavity volume V, and the mode function
f 0(x), where x1 and x0 represent the atomic position and the
antinode, respectively. The collective atom-photon coupling is
suitably defined by

κ̄ = κ
√

NRyd. (42)

The single atom-field coupling is typically κ ∼ 3 × 103 s−1

at the antinode for the Rydberg atom of principal quantum
number n ≈ 100 with ωe ≈ ω0 ∼ 1.5 × 1010 s−1 (2.4 GHz ×
2π ) and V ∼ (0.1 m)3 [24,25]. Then the collective coupling
amounts to κ̄ ∼ 105 s−1 ∼ 10−5ω0 for NRyd ∼ 103, which is
still much smaller than the resonant frequency ωe ≈ ω0.

The commutation relations among the collective operators
are given by

[D+,D−] = Dz

≡
NRyd∑
i=1

[|e〉〈e|(i) − |g〉〈g|(i)]/NRyd, (43)

[Dz,D±] = ±(2/NRyd)D±. (44)

The operators N̂e and N̂g , to represent the populations of the
upper and lower levels |e〉 and |g〉, respectively, are given by

N̂e =
NRyd∑
i=1

|e〉〈e|(i) = (NRyd/2) (1 + Dz), (45)

N̂g =
NRyd∑
i=1

|g〉〈g|(i) = (NRyd/2) (1 − Dz), (46)

satisfying the completeness

N̂e + N̂g =
NRyd∑
i=1

[|e〉〈e|(i) + |g〉〈g|(i)] ≡ NRyd. (47)

The created photons are detected by counting the number of
excited atoms, which is represented by N̂e with eigenvalues
0,1, . . . ,NRyd. The initial atomic state is prepared as

|0e〉 = |g1,g2, . . . ,gNRyd〉, (48)

which is an eigenstate of N̂e with zero atomic exci-
tation satisfying D−|0e〉 = 0. The one-excitation state is
generated as

|1e〉 = D+|0e〉

= 1√
NRyd

NRyd∑
i=1

|g1, . . . ,ei,gi+1, . . . ,gNRyd〉, (49)

and so on for the multiexcitation states.
The Heisenberg equations are derived by taking the total

Hamiltonian HA + HAF + HF with HA = (NRyd/2)ωeDz for
the free atomic system:

ȧ = −iω0a − iκ̄D−, (50)

Ḋ− = −iωeD− + iκ̄aDz, (51)

Ḋz = −i(2/NRyd)κ̄(aD+ − a†D−). (52)

We solve these equations perturbatively to see the evolution
of the atomic excitation Ne(t) = 〈N̂e(t)〉. First, Eqs. (50) and
(51) for a(t) and D−(t) = D

†
+(t) are integrated up to the first

order of κ̄ with the initial atomic operators D±(t1) in Eqs. (39)
and (40) and the photon operator a(t1) at t = t1 after the DCE
with one sequence of Npulse laser pulses for the duration

t1 = Npulse(2π/�). (53)

Then the results are applied to Eq. (52) to obtain Dz(t)
up to the second order of κ̄ . This determines the atomic
excitation as

Ne(t) = 〈N̂e(t)〉 = (NRyd/2)[1 + 〈Dz(t)〉]

 nγ (2κ̄/	e)2 sin2[	e(t − t1)/2], (54)

where the atomic detuning is given by

	e = ωe − ω0. (55)

In these calculations, the following relations are considered:
{a,a†}Dz + {D+,D−} = 2(a†aDz + D+D−), [a,a†]Dz −
[D+,D−] = 0, 〈0e|D±(t1)|0e〉 = 0, 〈0e|D+(t1)D−(t1)|0e〉 =
0, 〈0e|Dz(t1)|0e〉 = −1, and 〈0|a†(t1)a(t1)|0〉 = nγ (the pho-
tons created via the DCE). Note here that Ne(t) � NRyd with
〈Dz〉 ≈ −1 in the early epoch of photon detection (the linear
regime). Although it is difficult in practice to trace exactly
the time evolution beyond the linear regime for the system of
the many atoms interacting with the resonant cavity mode, we
may survey the essential features for the atomic excitation to
detect the photons as follows.

Suppose that nγ � NRyd, namely, the photons are created
much more than the Rydberg atoms, as desired and fea-
sible experimentally. Then the atomic excitation is eventu-
ally saturated as Ne(t) ∼ (κ̄ t)2nγ ∼ NRyd for t ∼ 1/(κ

√
nγ ),

which is expected by extrapolating Eq. (54) roughly up to
κ̄ t ∼ √

NRyd/nγ � 1 near the resonance 	e ≈ 0 (henceforth
t − t1 → t). This excitation process may be viewed as the
onset of Rabi oscillation between |g〉 and |e〉 at a rate

�e ∼ κ
√

nγ , (56)

which takes place almost independently for the NRyd atoms in
the presence of the large field (many photons with nγ � NRyd).
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On the other hand, if nγ < NRyd, though less interesting
experimentally, the excitation is exchanged between the
atoms and field as Ne(t) ∼ nγ /2 on average for κ̄ t ∼ 1.
This may be understood from the fact that the interaction
Hamiltonian HAF in Eq. (38) describes the oscillation with a
rate �e ∼ κ̄ = κ

√
NRyd between the atomic and field operators

in the linear regime. The collective atomic excitation can be
treated as a quantum oscillator, satisfying approximately the
bosonic commutation relation [D−,D+] ≈ −〈Dz〉 ≈ 1 with
nγ � NRyd in Eq. (43), that is, D+ and D− act as the creation
and annihilation operators, respectively [25].

The cavity loss eventually becomes significant for t >∼ 1/�.
Then the atomic excitation is also relaxed with a rate

�e ∼
{

4(κ̄/�)2� (κ̄ < �/4)

�/2 (κ̄ � �/4)
(57)

through the transition |e〉 → |g〉 + γ and the loss of the
emitted photon in the cavity [25]. We also note that the atom-
field interaction terminates when the atoms transit through the
cavity. The atomic transit time is given by

ttr = L/v ≡ �−1
tr , (58)

where v and L are the atomic velocity and the cavity length,
respectively. We have typically

�tr ∼ 300 m/s

0.1 m
= 3 × 103 s−1, (59)

which is comparable to the single atom-field coupling κ . By
considering these damping effects, we realize that the created
photons are detected efficiently with the atoms under the
conditions

�e >∼ �,�tr, (60)

�tr >∼ �e. (61)

The atomic excitation should take place for t ∼ �−1
e before the

significant loss of the created photons because of the cavity
damping (� � 2�e) and the actual cutoff of the atom-field
interaction by the atomic transit (�tr). It is also required that
the excitation damping (�e) induced by the cavity loss does
not become significant before the atoms transit through the
cavity (�tr).

As investigated so far, if the photons are created copiously
via the DCE with nγ � NRyd, they are detected by the atomic
excitation as

Ne(ttr) ∼ NRyd/2. (62)

Here the condition �e >∼ �tr is less restrictive, requiring merely
nγ >∼ (�tr/κ)2 ∼ 1 for �tr ∼ κ . The atomic detuning may be
suppressed readily as 	e < �e, for example, for �e ∼ 3 ×
106 s−1 with κ ∼ 3 × 103 s−1 and nγ ∼ 106. The conditions
�e >∼ � and �tr >∼ �e ∼ 2(κ̄/�)2� (κ̄ < �/4) imply lower and
upper bounds, respectively, on the cavity quality factor:

(ω0/κ)/
√

nγ <∼ Q <∼ (ω0/κ)(�tr/κ)/NRyd, (63)

where ω0/κ ∼ 5 × 106. These bounds are combined as a
requirement for the number of created photons:

nγ >∼ (κ/�tr)
2N2

Ryd � NRyd. (64)

For example, we estimate Q ∼ 5 × 103 and nγ ∼ 106 for �tr ∼
κ and NRyd ∼ 103. This range of Q meets consistently the
condition κ̄ < �/4 for �e.

On the other hand, if �e = �/2 (κ̄ � �/4), the condition
�tr >∼ �e places a significant bound:

Q >∼ ω0/�tr ∼ 5 × 106. (65)

This range of Q meets consistently the condition κ̄ � �/4 for
�e. We also note that Ne(ttr) ∼ nγ /2 for nγ < NRyd. In this
case, with �e ∼ κ̄ , the condition �e >∼ � implies κ̄ � �/4.
Hence the preceding range of Q in Eq. (65) is effective either
for nγ >∼ NRyd or nγ < NRyd.

The atomic beam may be injected continuously through the
period of DCE. Then we can show that the atomic excitation is
squeezed together as Ne(t) ∼ (κ̄/ω0)2nγ (t) during the DCE.
This atomic excitation is usually smaller than NRyd ∼ 100 −
1000, for example, for κ̄/ω0 ∼ 10−5 and nγ < 1010. Anyway,
the created photons are detected with the atoms efficiently after
the DCE.

VI. EXPERIMENTAL REALIZATION

We now discuss a feasible experimental realization of DCE
with a semiconductor plasma mirror [15,23]. Based on the
analyses presented so far for the DCE and photon detection,
we can find desired values for the physical parameters.

The photons are created as

nγ ∼ 1
4e2χt1 ∼ 1

4e2π(χ/ω0)Npulse (66)

with the squeezing rate χ for the resonant mode, where t1 =
Npulse(2π/�) and � 
 2ω0 (see also Fig. 2). Hence the desired
number nγ of created photons places a requirement for the
squeezing rate as

χ/ω0 ∼ ln(4nγ )

2πNpulse
. (67)

Typically, χ ∼ 0.01ω0 to obtain nγ ∼ 106−108 with Npulse =
300 laser pulses, where the threshold condition χ > �/2 for
the DCE is also satisfied sufficiently with Q >∼ 103.

The effective displacement in Eq. (21) is achieved by
applying a laser power Wlaser/pulse for the period T =
2π/� ∼ 0.2 ns:

δm/L ∼ (nse
2/ε0m∗)L/π2, (68)

where sin2 kl = 1 for definiteness (the slab is placed in the
middle of cavity l = L/2), ω0L ∼ π , and ns = neδ (∝ Wlaser)
is the surface number density of electrons. We may readily
obtain (nse

2/ε0m∗)L ∼ 1 with a reasonable laser power
Wlaser/pulse ∼ 0.01µJ/pulse [23], achieving a significant dis-
placement δm ∼ 0.1L. In this case, the conductivity effect δm

in Eq. (21) dominates the dielectric effect δε in Eq. (20)
for ε1(0) ∼ 1−10 and ε1(0) � |ε1(t)| [the photon damping
by the complex ε1(t) does not exceed the squeezing by the
DCE mainly with δm]. We estimate the variation of the mode
frequency as

δω 
 (δm/L)ω0 ∼ 0.1ω0(Wlaser/0.01 µJ). (69)
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By noting the relation |δω| 
 |2g|, the desired squeezing rate
for the DCE can be obtained in Eq. (33) with 	 = 0 as

χ = |2〈g〉�| ∼ 0.01ω0(r�/0.1) (Wlaser/0.01 µJ). (70)

Here the factor r� represents the Fourier component 〈g〉�e−i�t

of g(t), which may be optimized by suitably designing the time
profile Wlaser(t) of the laser pulse. As seen in Eqs. (34) and (35),
the tuning of � is required for the resonance by taking into
account the average shift 〈δω〉/ω0 ∼ 0.01–0.1.

As for the photon detection, the analyses in Sec. V indicate
that roughly NRyd/2 ∼ 100 atomic excitations are detected
per mean atomic transit time ttr ∼ 0.1 ms for the creation of
nγ ∼ 106–108 photons via the DCE. The quality factor of
the cavity should be chosen suitably to ensure the efficient
atomic excitation and detection. Specifically, Q ∼ 5 × 103

in Eq. (63) or Q >∼ 5 × 106 in Eq. (65). We note that even
if an excessive number of photons (nγ � 108) are created,
their detection is actually limited by the number of Rydberg
atoms NRyd ∼ 100–1000. After the detection, the photons
remaining in the cavity are relaxed, finally, as nγ → 0 for
t >∼ 10 ms � �−1,ttr; namely, the field returns to the vacuum.
Then the subsequent rounds of photon creation and detection
are performed repeatedly.

VII. SUMMARY

We have investigated quantum mechanically the photon
creation via DCE and its detection with Rydberg atoms,
specifically considering the experimental realization in a
resonant cavity with a plasma mirror of a semiconductor
slab irradiated by laser pulses. The canonical Hamiltonian for
the DCE is derived in terms of the creation and annihilation
operators, showing the explicit time variation which originates
from the external configuration such as the nonstationary
plasma mirror. Then the photon creation is evaluated as
squeezing from the Heisenberg equations. This confirms that
a sufficiently large number of photons can be created via the
DCE with a reasonable squeezing rate when the laser pulses are
applied many times. The atomic excitation process to detect
the photons is described with the atom-field interaction, which
clarifies the conditions for the efficient detection. Based on
these analyses, desired values of the physical parameters are
considered for a feasible experiment for DCE and its detection
with a plasma mirror and Rydberg atoms.
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