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In this study, we observe the nonlinear behavior of the two-photon geometric phase for polarization states
using time-correlated photon pairs. This phase manifests as a shift of two-photon interference fringes. Under
certain arrangements, the geometric phase can vary nonlinearly and become very sensitive to a change in the
polarization state. Moreover, it is known that the geometric phase for N identically polarized photons is N

times larger than that for one photon. Thus, the geometric phase for two photons can become two times more
sensitive to a state change. This high sensitivity to a change in the polarization can be exploited for precision
measurement of small polarization variation. We evaluate the signal-to-noise ratio of the measurement scheme
using the nonlinear behavior of the geometric phase under technical noise and highlight the practical advantages
of this scheme.

DOI: 10.1103/PhysRevA.83.063808 PACS number(s): 42.50.St, 03.65.Vf, 42.65.Lm

I. INTRODUCTION

When a system evolves in such a manner that it returns to
its original state after some time, its wave function acquires
an additional phase factor, which depends solely on the
path traced in the ray space. The geometric phase was first
discovered by Berry in adiabatic, cyclic evolution of pure
quantum states [1]. The geometric phase has been generalized
to other state evolutions including nonadiabatic evolution
[2,3], noncyclic evolution [4,5], and mixed state evolutions
[6,7]. In optics, Pancharatnam reported the geometric phase
in the polarization state [8]. His pioneering work is now
widely regarded as being an early precursor of the geometric
phase [4,9,10].

There have been many interesting studies on the observa-
tion of the geometric phase [11–18]. Schmitzer et al. [19]
reported that the variation of the geometric phase exhibits
extraordinary nonlinearity associated with post-selection. In a
certain arrangement, a small change in the pre- or post-selected
state induces a large phase shift [18–24]. Several applications
have been proposed that utilize the nonlinear behavior of
the geometric phase including optical switching [20,25] and
high-precision measurements [22,24].

Another important topic is the manifestation of the geomet-
ric phase in bipartite and multipartite systems. Klyshko [26]
showed that the geometric phase for N identically polarized
photons is N times that for one photon. This principle has
been observed for two photons in a two-photon interference
experiment utilizing time-correlated photon pairs [27]. The
effect of entanglement on the geometric phase has also been
discussed in [28–31].

The aim of the present study is to observe the nonlinear
behavior of the geometric phases of two photons. To the
best of our knowledge, this is the first observation of the
nonlinear behavior of the two-photon geometric phase. In
our experiment, time-correlated photon pairs with the same
polarization are incident on a Mach-Zehnder interferometer
with polarization elements. We can observe the geometric
phase of two photons as the phase shift of two-photon
interference fringes using coincidence counting. This phase
shift is two times larger than that for one photon. It lies between

0 and 4π , i.e., the two-photon interference fringe can be shifted
by up to two fringe periods. Moreover, the nonlinear behavior
suggests that the geometric phase for two photons is two times
more sensitive to a change in the input polarization than the
one-photon case. A minute change in the input polarization
results in a large shift in the two-photon interference fringe.

This high sensitivity to the input polarization can be utilized
to precisely measure small variations. We show that the
signal-to-noise ratio (SNR) of the measurement scheme using
the geometric phase for multiphoton can be improved for
a certain type of noise. Recently, there has been a related
discussion about signal enhancement with post-selection, the
so-called weak measurement amplification, in the presence of
some noises [32–36].

The remainder of this paper is organized as follows. In
Sec. II, we briefly review the geometric phase induced by a
change in the polarization state in a one-photon interferometer
and we show that the geometric phase can be very sensitive
to a change in the polarization state for a certain arrangement.
Moreover, we show that the N -fold geometric phase for N

identically polarized photons can be observed using the same
interferometer. In Sec. III, we introduce the experimental
setup used to observe the geometric phase for two photons
and the results indicating the twofold geometric phase and
its nonlinearity. In Sec. IV, we consider the application of
the nonlinear behavior of geometric phases to high-precision
measurements. The SNR is evaluated for a practical situation
that includes both shot and technical noise. A summary is
presented in Sec. V.

II. GEOMETRIC PHASE FOR N PHOTONS
AND ITS NONLINEARITY

A. Geometric phases in a one-photon interferometer

We begin by reviewing the geometric phase induced by
changing the polarization state in a one-photon interferometer.
Consider a Mach-Zehnder interferometer with polarization
elements as shown in Fig. 1. In each arm of the interferometer,
the initial polarization state |ψ1〉 of an incident photon is
converted into new polarization states |ψA〉 and |ψB〉. If an
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FIG. 1. (Color online) A Mach-Zehnder interferometer with
polarization elements used to observe the geometric phase. The
interferometer contains two linear polarizers, LP1 and LP2, and
two quarter-wave plates, QWPA and QWPB . The angles of the
transmission axes of LP1 and LP2 are, respectively, 90◦ + θ1 and
θ2, and those of the fast axes of QWPA and QWPB are 0◦ and 90◦.
The states |ψ1〉, |ψ2〉, |ψA〉, and |ψB〉 are the polarization states after
LP1, LP2, QWPA, and QWPB , respectively.

additional U(1) phase shift χ is introduced in one of the arms,
the output intensity Im will be

Im ∝ ‖|ψA〉 + eiχ |ψB〉‖2 (1)

= 2[1 + vm cos(χ − φm)], (2)

where the visibility vm and the phase shift φm are, respectively,
given by

vm = |〈ψB |ψA〉|, (3)

φm = arg〈ψB |ψA〉. (4)

The phase shift φm expresses the phase difference between
the two different polarization states and is called the relative
phase [8]. When 〈ψA|ψB〉 = 0, two states can be perfectly
distinguished and the path followed by the photon is unam-
biguously discriminated. The interference is then completely
destroyed and the visibility vm is reduced to zero.

Next, we consider the phase shift induced by post-selection.
Post-selection of the polarization state into |ψ2〉 causes the
output intensity If to become

If ∝ ‖(cA + eiχcB)|ψ2〉‖2 (5)

= 2p[1 + vf cos(χ − φf )], (6)

where cA = 〈ψ2|ψA〉 and cB = 〈ψ2|ψB〉. The success proba-
bility p of the post-selection, the visibility vf , and the phase
shift φf are expressed as

p = 1

2
(|cA|2 + |cB |2), (7)

vf = 2|cAcB |
|cA|2 + |cB |2 , (8)

φf = arg〈ψB |ψ2〉〈ψ2|ψA〉, (9)

respectively. Equation (8) shows that even when |ψA〉 is
orthogonal to |ψB〉, the visibility is completely recovered
(vf = 1) provided |cA| = |cB |. In this condition, |ψA〉 and
|ψB〉 are projected into the same polarization state |ψ2〉 with
the same probability, and it is not possible to determine the

FIG. 2. Spherical triangle on the Poincaré sphere formed by three
polarization states, |ψ1〉, |ψ2〉, and |ψ3〉. The geometric phase is
proportional to the solid angle � of the spherical triangle. The poles
correspond to the right and left circular polarization states, |R〉 and
|L〉, and the equator corresponds to the linear polarization states; for
example, the horizontal polarization |H 〉, vertical polarization |V 〉,
45◦ polarization |D〉, and 135◦ polarization |X〉.
photon paths. This shows that post-selection completely erases
the which-path information and recovers the interference.

The net phase shift induced by the post-selection is
calculated as

γ (ψA,ψB,ψ2) ≡ φf − φm (10)

= arg〈ψA|ψB〉〈ψB |ψ2〉〈ψ2|ψA〉. (11)

The cyclic form on the right-hand side of Eq. (11) is gauge
invariant (i.e., independent of the choice of the phase factor
of each state) because the bra and ket vectors for each state
appear pairwise. This phase shift γ is the geometric phase [8]
and can be interpreted geometrically on the Poincaré sphere
as shown in Fig. 2. The geometric phase γ (ψ1,ψ2,ψ3) can be
shown to be proportional to the solid angle �(ψ1,ψ2,ψ3) of
the spherical triangle connecting the states |ψ1〉, |ψ2〉, and |ψ3〉
with geodesic arcs on the Poincaré sphere [8,37], i.e.,

γ (ψ1,ψ2,ψ3) = 1
2�(ψ1,ψ2,ψ3). (12)

The sign of the geometric phase is determined by the order of
the states.

B. Nonlinearity of geometric phase for one photon

Here, we consider the nonlinear behavior of the geometric
phase for one photon using the experimental setup shown in
Fig. 1. This is a similar setup to the one used in previous
experiments with a laser light source [18,23].

The initial polarization state |ψ1〉 is prepared by the linear
polarizer LP1:

|ψ1〉 = − sin θ1|H 〉 + cos θ1|V 〉, (13)

where θ1 is the angle between the vertical line (−π/2 � θ1 �
π/2) and the transmission axis of LP1, |H 〉 is the horizontal
polarization state, and |V 〉 is the vertical polarization state.
The initial state |ψ1〉 is changed by two quarter-wave plates,
QWPA and QWPB , whose fast axes are aligned to form angles
of 0◦ and 90◦:

|ψA〉 = − sin θ1|H 〉 + i cos θ1|V 〉, (14)

|ψB〉 = −i sin θ1|H 〉 + cos θ1|V 〉. (15)
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FIG. 3. Geometric phases and success probabilities of post-selection for (a) one and (b) two photons. The first row shows the variation
of the geometric phase and the second row shows the success probability of the post-selection with respect to θ1 for θ2 = π/50 (solid line),
θ2 = π/10 (dashed line), and θ2 = π/4 (dotted line).

Finally, these polarization states are projected into the same
state |ψ2〉 by the linear polarizer LP2:

|ψ2〉 = cos θ2|H 〉 + sin θ2|V 〉, (16)

where θ2 is the angle between the horizontal line (0 � θ2 � π )
and the transmission axis of LP2. Since this setup satisfies
|〈ψ2|ψA〉| = |〈ψ2|ψB〉|, the visibility of the interference fringe
vf becomes unity.

Substituting Eqs. (14)–(16) into Eqs. (4) and (11), we
can obtain the relative phase φm and the geometric phase
γ (ψA,ψB,ψ2):

φm =
{

π
2 (cos 2θ1 > 0),

−π
2 (cos 2θ1 < 0),

(17)

γ =
⎧⎨
⎩

2 tan−1
(

tan θ1
tan θ2

)
(cos 2θ1 > 0),

2 tan−1
(

tan θ1
tan θ2

)
+ π (cos 2θ1 < 0),

(18)

where the range of tan−1() is (−π/2 : π/2]. The summation
of two phases is given by

φf = φm + γ = 2 tan−1

(
tan θ1

tan θ2

)
+ π

2
. (19)

The top of Fig. 3(a) shows the variation of Eq. (18) with respect
to θ1 for three different values of θ2. It shows that, except for
θ2 = π/4, the geometric phase is nonlinear with respect to θ1.
The phase shift around θ1 = 0 is sensitive to a change in θ1

when θ2 is small. This nonlinear variation can be observed as a
rapid displacement in the interference fringe when we change
θ1 by rotating LP1 [19–23].

Equation (18) shows that the nonlinear behavior of the
phase shift originates from the geometric phase γ and can be
understood intuitively in terms of the geometry on the Poincaré
sphere. In the present setup, |ψA〉 and |ψB〉 given by Eqs. (13)
and (15) can be depicted at a latitude of ±2θ1 on the prime
meridian and the final state |ψ2〉 given by Eq. (16) can be
depicted on the equator at a longitude of 2θ2 (see Fig. 4). When
0 < θ2 < θ1 � 1, |ψA〉 and |ψB〉 are located near the vertical
polarization state while |ψ2〉 is near the horizontal polarization
state. In this condition, the spherical triangle connecting |ψA〉,
|ψB〉, and |ψ2〉 almost degenerates to a great circle. Therefore,
the solid angle � is almost equal to +2π . Now, we consider
that θ1 is changed to exchange the positions of |ψA〉 and |ψB〉
on the Poincaré sphere. |ψA〉 and |ψB〉 move toward |V 〉 with

FIG. 4. (Color online) Geometrical interpretation of the nonlinear
variation of the geometric phase around (θ1,θ2) = (0,0). If |ψA〉 and
|ψB〉 are close to each other across the vertical polarization state |V 〉
on the Poincaré sphere, the area of the spherical triangle will vary
rapidly with movement of |ψA〉 and |ψB〉.
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decreasing θ1. When the distance between |ψA〉 and |ψB〉
becomes less than 2θ2, the area of the spherical triangle shrinks
rapidly. After traversing |V 〉, the area � blows up rapidly and
approaches −2π . Thus, the area � changes rapidly from −2π

to 2π around θ1 = 0 and the phase shift can vary nonlinearly.
In the nonlinear region of the phase shift around θ1 = 0,

the success probability of the post-selection drops according
to Eq. (7):

p(θ1,θ2) = sin2 θ1 cos2 θ2 + cos2 θ1 sin2 θ2. (20)

The bottom of Fig. 3(a) shows a plot of Eq. (20) on a
logarithmic scale. It implies that a rapid change in the
geometric phase around θ1 = 0 can be achieved at the expense
of the output intensity.

C. Geometric phase for N photons

As shown by Klyshko [26], N identically polarized photons
are expected to acquire N times the geometric phase for
one photon. In this section, we theoretically analyze the
interferometric method for observing the N -fold geometric
phase.

Assuming that a collection of N photons is incident on the
interferometer (see Fig. 1) and that these photons can form
path-entangled states in the interferometer known as |N,0〉 +
|0,N〉 (NOON) states (i.e., all the N photons pass through path
A or path B [38–44]), the polarization state of the N photons
can be expressed as the N th tensor product:

|�i〉 ≡ |ψi〉⊗N, (21)

where i = (1,2,A,B) and ⊗ represents the tensor product.
If an additional U(1) phase shift χ is introduced in one of

the arms, the output intensity Im measured by the N -photon
coincidence detector will be

Im ∝ ‖|�A〉 + eiNχ |�B〉‖2 (22)

= 2[1 + Vm cos(Nχ − 	m)], (23)

where the visibility Vm and the phase shift 	m are, respectively,
given by

Vm = |〈ψB |ψA〉|N, (24)

	m = N arg〈ψB |ψA〉. (25)

Since N photons act as a collective entity in the interferometer,
the phase term in Eq. (23) is N times that for the one-photon
case.

After post-selection into the polarization state |�2〉, the
output intensity If is given by

If ∝ ‖(〈�2|�A〉 + eiNχ 〈�2|�B〉)|�2〉‖2, (26)

= 2P [1 + Vf cos(Nχ − 	f )], (27)

where the success probability for post-selection P , the visibil-
ity Vf , and the phase shift 	f are, respectively, expressed by

P = 1

2
(|cA|2N + |cB |2N ), (28)

Vf = 2|cAcB |N
|cA|2N + |cB |2N

, (29)

	f = N arg〈ψB |ψ2〉〈ψ2|ψA〉. (30)

Substituting Eqs. (14)–(16) into Eqs. (28)–(30) we can obtain

P = (sin2 θ1 cos2 θ2 + cos2 θ1 sin2 θ2)N, (31)

Vf = 1, (32)

	f = 2N tan−1

(
tan θ1

tan θ2

)
+ Nπ

2
. (33)

Figure 3(b) shows the variation of P and 	f with respect to
θ1 for N = 2.

Since the slope of the phase shift for N photons around
θ1 = 0 is N times steeper than that for one photon, we can
obtain an N -fold enhancement in the variation of θ1 (see the top
of Fig. 3). However, the success probability of post-selection
P decreases as the N th power of the one-photon success
probability p because P corresponds to the probability that
all N photons are successfully post-selected into state |ψ2〉
(see the bottom of Fig. 3).

III. OBSERVATION OF GEOMETRIC PHASE
FOR TWO PHOTONS USING PHOTON PAIRS

A. Two-photon interference in Mach-Zehnder interferometer

We consider a two-photon state input at port 1 and a
vacuum state input at port 1′ of a symmetric Mach-Zehnder
interferometer. The first beam splitter splits the incident
photons into two paths A and B:

|2〉1|0〉1′ → |2〉A|0〉B + ei2χ |0〉A|2〉B + 2eiχ |1〉A|1〉B, (34)

where the photon number state with N photons in path (or
port) p is written as |N〉p and χ is the additional phase shift.
When we operate coincidence counting between output port
2 and 2′, the |1〉A|1〉B term in Eq. (34) is missing due to the
complete destructive two-photon interference [45], producing
a two-photon path-entangled state to be detected.

The above consideration is valid even if the interferometer
contains polarization elements as shown in Fig. 1 because the
polarization states of two photons are eventually projected
into the same states with the same probability at output ports
2 and 2′. Hence, we can observe the nonlinear behavior of the
phase shift of two photons using coincidence counting between
output ports 2 and 2′.

B. Experimental setup

Figure 5 shows a schematic representation of the experi-
mental setup. Photon pairs are generated in the periodically
poled LiNbO3 (PPLN) waveguide via degenerate type-I
parametric down-conversion of a 410-nm blue light from a
laser diode (LD). The temperature of PPLN is calibrated by a
temperature controller to satisfy the phase-matching condition.
The center wavelength of the photon pairs is 820 nm and its
spectral bandwidth is restricted to 20 nm by the interference
filter IF. After beam shaping by the single-mode optical fiber,
photon pairs traverse the Mach-Zehnder interferometer with
polarization elements. The phase difference between two arms
is varied continuously by shifting the total reflection mirror
MB using a piezoelectric translation stage. The outputs of
the interferometer are coupled to a pair of single-photon
counting modules (Perkin Elmer, SPCM-AQR-14). Individual
photon counts and coincidence counts are recorded using
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FIG. 5. (Color online) Experimental setup for observing the
geometric phase for two photons. IF is an interference filter and
MA and MB are total reflection mirrors.

field-programmable gate array (FPGA) electronics connected
to a personal computer [46].

C. Observation of geometric phases for one and two photons

Figure 6 shows the one- and two-photon interference fringes
obtained for photon pairs. The solid line is a fit by a sinusoidal
function. The vertical axis shows the single-photon and the
coincidence count rates. This figure shows that the two-photon
interference fringe has a period given by the wavelength of the
pump light and an average visibility of 63%.

Figure 7 shows the phase shifts of one-photon and two-
photon interference fringes with respect to θ1 for θ2 = 45◦
(filled green circles), 20◦ (open blue circles), and 10◦ (filled
red squares). The origin of the vertical axis is determined by
the position of fringes when θ1 = −90◦ and the value of the
vertical axis shows the displacement of fringes normalized by
one period of the fringes. The solid line in Fig. 7 indicates
the theoretical curve calculated from Eq. (33). For both one-
and two-photon interferences, the gradient of the variation of
the phase shift around θ1 = 0◦ increases with decreasing θ2.
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the one-photon interference measured by single-photon counting and
the two-photon interference measured by coincidence counting. The
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This implies that the variation in the phase shift becomes more
sensitive to a variation in θ1. Moreover, the phase shift for two
photons is two times larger than that for one photon. Thus, the
gradient of the phase shift for two photons around θ1 = 0◦ also
becomes two times steeper than that for one photon.

IV. DISCUSSION: SNR OF MEASUREMENT
SCHEME USING NONLINEAR BEHAVIOR

OF GEOMETRIC PHASE

In what follows, we consider the measurement of a small
polarizer angle θ1 (|θ1| � 1) through the phase shift of the
interference fringes. As shown in the previous section, the
geometric phase becomes sensitive to a variation in θ1 around
θ1 = 0 when θ2 is small. Moreover, the geometric phase for
N photons will be N times more sensitive to a variation in
θ1. Utilizing this nonlinear behavior, we can measure the
small angle θ1 from the large phase shift of the (N -photon)
interference fringe. However, the small success probability of
post-selection around θ1 = 0 might cancel out the advantage
of the large phase shift.

In this section, we calculate the SNR of this measurement
using the geometric phase for N photons to evaluate its advan-
tages and disadvantages. Interferometric phase measurement
is subject to various noises. In the ideal situation, the shot
noise is dominant, whereas in most experiments, the SNR is
limited by technical noises such as excessive fluctuations in
the light sources. Thus, we calculate the SNR for a case with
technical noise in addition to the shot noise. We show that the
nonlinearity of the geometric phase does not improve the SNR
in the shot noise limit. However, under certain technical noises,
the large phase shift due to the nonlinearity of the geometric
phase can be of practical advantage.

A. SNR of direct measurement

First, we evaluate the SNR of the direct measurement of θ1

without utilizing the geometric phase as shown in Fig. 8. We
consider a sequential measurement of single-photon counts
integrated over the interval τ for 45◦ and 135◦ polarizations
expressed as

〈I+(τ )〉 = ητM|〈X|ψ1〉|2 = ητM

2
(1 + sin 2θ1), (35)

〈I−(τ )〉 = ητM|〈D|ψ1〉|2 = ητM

2
(1 − sin 2θ1), (36)

where 〈·〉 shows the ensemble mean value, M is the number of
incident photons per unit time, and η is the detection efficiency.
The angle θ1 can be measured from the ratio of the difference
to the sum between 〈I+〉 and 〈I−〉:

〈n(θ1)〉 ≡ 〈I+(τ )〉 − 〈I−(τ )〉
〈I+(τ )〉 + 〈I−(τ )〉 (37)

� 2θ1, (38)

where we assume that the absolute value of θ1 is small
(|θ1| � 1). The sum contains information about the total num-
ber of successful measurements, and the difference contains
phase information as a function of θ1. From Eq. (38), the mean
value of experimentally obtained counts 〈n〉 is twice the true
value θ1.
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FIG. 7. (Color online) Experimental results for geometric phases of (a) one and (b) two photons with respect to θ1 for three different
values of θ2.

Here, we consider the technical noise due to the fluctuation
in the number of incident photons, i.e., M → M[1 + ξ (t)], in
addition to the shot noise. Since we assume that two outputs
I+ and I− are measured sequentially, the technical noises in
the two outputs are uncorrelated with each other and there
remains technical noise in the difference of the two outputs.
Under this condition, the variance of the total noise around
θ1 = 0 is calculated from Eq. (A14) as

〈δn(τ )2〉 = 1

τ

(
1

ηM
+ ξ̄ 2

2

)
, (39)

where ξ̄ 2 is the power spectrum of the intensity fluctuation (see
Appendix for detail). The first and second terms of Eq. (39)
are, respectively, attributed to the shot noise and the technical
noise. The shot noise is dependent on M , whereas the technical
noise is independent of it. Thus, we cannot reduce the technical
noise by increasing the input beam intensity.

From Eqs. (37) and (39), the SNR of the direct measurement
is obtained as

R = 〈n(θ1)〉√
〈δn(τ )2〉

(40)

� 2
√

τθ1√
(ηM)−1 + ξ̄ 2/2

. (41)

The above equation shows that the SNR is proportional to
√

M

in the region where the shot noise is dominant (i.e., ηM �
ξ̄−2) whereas the SNR is constant with respect to M in the
region where the technical noise is dominant (i.e., ηM  ξ̄−2).

FIG. 8. (Color online) Direct measurement of θ1. I+ and I− show
the single-photon counts for 135◦ and 45◦ polarization, respectively.

B. SNR of measurement utilizing the nonlinearity
of the geometric phase

We now derive the SNR of the measurement using the
nonlinear behavior of the geometric phases. We consider the
sequential measurement of the two different outputs, I+ and
I−, corresponding to fringes of N -photon interference that are
out of phase with each other:

〈I+(τ )〉 = ηντP (θ1,θ2)

2
{1 + Vf cos[	(θ1,θ2)]}, (42)

〈I−(τ )〉 = ηντP (θ1,θ2)

2
{1 − Vf cos[	(θ1,θ2)]}, (43)

where 	(θ1,θ2) = Nχ − 	f (θ1,θ2), η is the detection effi-
ciency of N -photon coincidence, ν is the incident N -photon
flux per unit time, and τ is the integrated time for N -photon
coincidence counting. The total photon number per unit time
is M = νN .

The angle θ1 can be measured from 〈I+〉 and 〈I−〉 as

〈n(θ1,θ2)〉 = 〈I+(τ )〉 − 〈I−(τ )〉
〈I+(τ )〉 + 〈I−(τ )〉 (44)

= Vf cos[	(θ1,θ2)]. (45)

To measure a small value of θ1, the offset phase χ is set to
satisfy 〈n(θ1 = 0,θ2)〉 = 0; i.e.,

χ = N + 1

2N
π. (46)

In this condition, 〈n〉 is calculated as

〈n(θ1,θ2)〉 = Vf sin

[
2N tan−1

(
tan θ1

tan θ2

)]
. (47)

For a sufficiently small value of θ1 satisfying

|θ1|
tan θ2

� tan
1

2N
, (48)

〈n〉 is found to be

〈n(θ1,θ2)〉 � Vf θ1
∂	f

∂θ1

∣∣∣
θ1=0

(49)

= 2NVf

tan θ2
θ1. (50)

063808-6



NONLINEAR BEHAVIOR OF GEOMETRIC PHASES . . . PHYSICAL REVIEW A 83, 063808 (2011)

Comparing Eq. (50) with Eq. (38), we find that the experi-
mentally obtained value is enhanced by the gradient of the
geometric phase NVf / tan θ2.

In the same manner as Eq. (39), we introduce fluctuation
in the incident N -photon flux ν; i.e., ν → ν[1 + ξ (t)]. This
type of noise may be introduced via intensity fluctuations of
the pump beam driving N -photon generation. The variance in
the total noise around θ1 = 0 is calculated as

〈δn(τ )2〉 = 1

τ

(
1

ηνP (0,θ2)
+ ξ̄ 2

2

)
, (51)

where the technical noises in I+ and I− are assumed to be
uncorrelated with each other. Comparing the above equation
with Eq. (39), we can see that the technical noise is unchanged,
whereas the shot noise is increased by a factor of 1/P (0,θ2) �
(1/θ2)2N because the number of successful measurements is
reduced due to the small success probability of the post-
selection.

The SNR is calculated from Eqs. (50) and (51) as

R = 〈n(θ1,θ2)〉√
〈δn(τ )2〉

(52)

= 2NVf θ1

tan θ2

√
τ

{N/ηMP (0,θ2)} + ξ̄ 2/2
. (53)

As the rate of M increases, the SNR scales as
√

M in the region
where the shot noise is dominant (ηνP � ξ̄−2). On the other
hand, the SNR is saturated in the region where the technical

100
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FIG. 9. The SNR of θ1 measurement with respect to the total
number of photons for two different values of θ2. (a) One- and (b) two-
photon cases. We have taken Vf = 1, η = 1.0, ξ̄ 2/τ = 2.5 × 10−5,
and θ1 = π/180.
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FIG. 10. The SNR of θ1 measurement with respect to the total
number of photons for three different values of N . θ2 is fixed
at π/20. We have taken Vf = 1, η = 1.0, ξ̄ 2/τ = 2.5 × 10−5, and
θ1 = π/180.

noise is dominant (ηνP  ξ̄−2). In the latter region, the SNR
is enhanced by a factor of NVf / tan θ2 compared to Eq. (41).

C. Comparison of measurement using geometric
phase and direct measurement

Figure 9 shows a plot of Eqs. (41) and (53) with respect
to the total number of photons per unit time, M = νN , for
N = 1 and N = 2. The dotted line indicates the SNR of direct
measurement. The dashed and solid lines show the SNR using
the geometric phase for θ2 = π/4 and π/20, respectively. For
N = 1 and N = 2, the SNR using the geometric phase is
smaller than that of direct measurement in the region where
the shot noise is dominant, whereas in the region where
the technical noise is dominant, the SNR is improved by
enhancement due to the geometric phase. In the latter region,
the SNR increases with decreasing θ2. Moreover, the SNR for
N = 2 is two times larger than that for N = 1.

Figure 10 shows the SNR with respect to M for N = 1
(dotted line), 2 (dashed line), and 3 (solid line). The maximum
SNR for the same θ2 is proportional to N . Thus, whenever a
sufficiently intense beam satisfying ηνP  ξ 2/2 is used, the
SNR can be improved via the nonlinearity of the N -photon
geometric phase.

V. SUMMARY

We have shown that the N -fold geometric phase manifests
in the N -photon interference fringe. In our experiment using
photon pairs, we obtained the geometric phase for two photons,
and confirmed that it is two times larger than that for one
photon. The gradient of the phase shift for two photons is also
two times steeper than that for one photon. We compared the
SNRs for a direct measurement and for a measurement using
the nonlinear behavior of the geometric phase for N photons.
We demonstrated that the measurement using the nonlinear
behavior of the geometric phase has practical advantages under
certain types of technical noise. Moreover, it has been shown
that the SNR using N photons can be N times larger than that
for the one-photon case.
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APPENDIX: MEAN VALUE AND FLUCTUATION
OF PHOTON COUNTING

In what follows, 〈 · 〉 and δ ·, respectively, show the
ensemble mean value and the zero-mean fluctuation. We
represent the photon counting rate at given time t as

i(t) = 〈i〉 + δi(t). (A1)

The fluctuation δi(t) contains the technical noise ξ (t) in
addition to the shot noise ε(t). The correlation function of
the fluctuation is expressed as

〈δi(t)δi(t ′)〉 = 〈ε(t)ε(t ′)〉 + 〈ξ (t)ξ (t ′)〉, (A2)

where the shot noise and technical noise are assumed to be
uncorrelated with each other. Assume that photon detection is
a random process and that ξ (t) can be modeled as white noise:

〈ε(t)ε(t ′)〉 = 〈i〉δ(t − t ′), (A3)

〈ξ (t)ξ (t ′)〉 = ξ̄ 2δ(t − t ′), (A4)

where δ(t) is the Dirac delta function and ξ̄ 2 is the power
spectrum of the technical noise.

Integrating the coincidence count over time τ , we obtain

I (t,τ ) = 〈I (τ )〉 + δI (t,τ ), (A5)

where its ensemble mean value and fluctuation are

〈I (τ )〉 = 〈i〉τ, (A6)

δI (t,τ ) =
∫ t+τ

t

δi(t ′)dt ′. (A7)

The variance of the noise in I (t,τ ) is given by the ensemble
mean value of δI (t,τ )2:

〈δI (τ )2〉 =
∫ τ

0

∫ τ

0
〈δi(t ′)δi(t ′′)〉dt ′dt ′′ (A8)

= (〈i〉 + ξ̄ 2)τ. (A9)

To measure a certain parameter, consider the ratio of
the difference to the sum between two outputs I1(t1,τ ) and
I2(t2,τ ):

n(t1,t2,τ ) ≡ I1(t1,τ ) − I2(t2,τ )

I1(t1,τ ) + I2(t2,τ )
(A10)

� 〈n(τ )〉 + δn(t1,t2,τ ), (A11)

with

〈n(τ )〉 = 〈I1(τ )〉 − 〈I2(τ )〉
〈I1(τ )〉 + 〈I2(τ )〉 , (A12)

δn(t1,t2,τ ) = δI1(t1,τ ) − δI2(t2,τ )

〈I1(τ )〉 + 〈I2(τ )〉 , (A13)

where we assume that δI1,δI2 � 〈I1(τ )〉 + 〈I2(τ )〉. The
variance of the noise in n(t1,t2,τ ) is given by

〈δn(τ )2〉 = 〈[δI1(t1,τ ) − δI2(t2,τ )]2〉
[〈I1(τ )〉 + 〈I2(τ )〉]2

. (A14)
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[29] B. Hessmo and E. Sjöqvist, Phys. Rev. A 62, 062301 (2000).
[30] X.-Y. Ge and M. Wadati, Phys. Rev. A 72, 052101 (2005).
[31] M. S. Williamson and V. Vedral, Phys. Rev. A 76, 032115 (2007).
[32] Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett. 60,

1351 (1988).
[33] O. Hosten and P. Kwiat, Science 319, 787 (2008).
[34] P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, Phys.

Rev. Lett. 102, 173601 (2009).
[35] D. J. Starling, P. B. Dixon, A. N. Jordan, and J. C. Howell, Phys.

Rev. A 80, 041803 (2009).
[36] A. Feizpour, X. Xing, and A. M. Steinberg, e-print

arXiv:1101.0199.

063808-8

http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1103/PhysRevLett.58.1593
http://dx.doi.org/10.1038/360307a0
http://dx.doi.org/10.1103/PhysRevLett.60.2339
http://dx.doi.org/10.1103/PhysRevA.76.052109
http://dx.doi.org/10.1103/PhysRevA.76.052109
http://dx.doi.org/10.1016/0034-4877(86)90055-8
http://dx.doi.org/10.1103/PhysRevLett.85.2845
http://dx.doi.org/10.1080/09500348714551321
http://dx.doi.org/10.1006/aphy.1993.1093
http://dx.doi.org/10.1103/PhysRevLett.57.937
http://dx.doi.org/10.1103/PhysRevLett.61.19
http://dx.doi.org/10.1103/PhysRevLett.61.19
http://dx.doi.org/10.1103/PhysRevLett.60.1214
http://dx.doi.org/10.1103/PhysRevLett.66.588
http://dx.doi.org/10.1016/0375-9601(94)00914-B
http://dx.doi.org/10.1016/0375-9601(94)00915-C
http://dx.doi.org/10.1103/PhysRevA.80.012113
http://dx.doi.org/10.1103/PhysRevA.80.012113
http://dx.doi.org/10.1143/JPSJ.80.034401
http://dx.doi.org/10.1103/PhysRevLett.71.1530
http://dx.doi.org/10.1103/PhysRevLett.71.1530
http://dx.doi.org/10.1016/0030-4018(95)00489-U
http://dx.doi.org/10.1016/0030-4018(95)00489-U
http://dx.doi.org/10.1016/S0370-1573(96)00029-4
http://dx.doi.org/10.1103/PhysRevE.60.2322
http://dx.doi.org/10.1103/PhysRevE.60.2322
http://dx.doi.org/10.1016/S0030-4018(99)00426-5
http://dx.doi.org/10.1016/S0030-4018(99)00426-5
http://dx.doi.org/10.1088/1367-2630/11/9/093025
http://dx.doi.org/10.1016/0921-4526(91)90705-J
http://dx.doi.org/10.1016/0375-9601(89)90539-2
http://dx.doi.org/10.1103/PhysRevA.52.2551
http://dx.doi.org/10.1103/PhysRevA.52.2551
http://dx.doi.org/10.1103/PhysRevA.62.022109
http://dx.doi.org/10.1103/PhysRevA.62.062301
http://dx.doi.org/10.1103/PhysRevA.72.052101
http://dx.doi.org/10.1103/PhysRevA.76.032115
http://dx.doi.org/10.1103/PhysRevLett.60.1351
http://dx.doi.org/10.1103/PhysRevLett.60.1351
http://dx.doi.org/10.1126/science.1152697
http://dx.doi.org/10.1103/PhysRevLett.102.173601
http://dx.doi.org/10.1103/PhysRevLett.102.173601
http://dx.doi.org/10.1103/PhysRevA.80.041803
http://dx.doi.org/10.1103/PhysRevA.80.041803
http://arXiv.org/abs/arXiv:1101.0199


NONLINEAR BEHAVIOR OF GEOMETRIC PHASES . . . PHYSICAL REVIEW A 83, 063808 (2011)

[37] P. K. Aravind, Opt. Commun. 94, 191 (1992).
[38] B. C. Sanders, Phys. Rev. A 40, 2417 (1989).
[39] J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen,

Phys. Rev. A 54, R4649 (1996).
[40] A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein,

C. P. Williams, and J. P. Dowling, Phys. Rev. Lett. 85, 2733
(2000).

[41] K. Edamatsu, R. Shimizu, and T. Itoh, Phys. Rev. Lett. 89,
213601 (2002).

[42] P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni,
and A. Zeilinger, Nature (London) 429, 158 (2004).

[43] T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and
S. Takeuchi, Science 316, 726 (2007).

[44] J. P. Dowling, Contemp. Phys. 49, 125 (2008).
[45] C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044

(1987).
[46] D. Branning, S. Bhandari, and M. Beck, Am. J. Phys. 77, 667

(2009).

063808-9

http://dx.doi.org/10.1016/0030-4018(92)90012-G
http://dx.doi.org/10.1103/PhysRevA.40.2417
http://dx.doi.org/10.1103/PhysRevA.54.R4649
http://dx.doi.org/10.1103/PhysRevLett.85.2733
http://dx.doi.org/10.1103/PhysRevLett.85.2733
http://dx.doi.org/10.1103/PhysRevLett.89.213601
http://dx.doi.org/10.1103/PhysRevLett.89.213601
http://dx.doi.org/10.1038/nature02552
http://dx.doi.org/10.1126/science.1138007
http://dx.doi.org/10.1080/00107510802091298
http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1119/1.3116803
http://dx.doi.org/10.1119/1.3116803

