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An extension of the Doi-Peliti formalism for stochastic chemical kinetics is proposed. Using the extension,
path-integral expressions consistent with previous studies are obtained. In addition, the extended formalism is
naturally connected to orthogonal polynomials. We show that two different orthogonal polynomials, i.e., Charlier
polynomials and Hermite polynomials, can be used to express the Doi-Peliti formalism explicitly.
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Introduction. Stochastic chemical kinetics has been widely
used in various research areas. For example, reaction-diffusion
systems based on the stochastic chemical kinetics have
been used in nonequilibrium physics [1]. In addition, recent
development of experimental techniques enables us to observe
various reactions in a cell in detail, and it has been clarified
that some chemical reactions in cells should be treated as
systems with discrete states; continuous approximation cannot
be used [2].

The Doi-Peliti formalism [3–5] is known as a useful
method to treat classical stochastic processes, such as the
stochastic chemical kinetics and reaction-diffusion processes.
The Doi-Peliti formalism has a similar structure with second
quantization methods in quantum mechanics, and many
methods and concepts developed in quantum mechanics are
available in order to study the classical stochastic processes; we
can use perturbation calculations [6], renormalization group
analysis [1], and system-size expansion [7]. However, there
are some unclear points of the formalism: are there concrete
representations for the state vectors and operators used in
the Doi-Peliti formalism? While it has been pointed out that
the Doi-Peliti formalism is equivalent to generating function
approach or Poisson representation [8], the correspondence
would not be unique. If we have various concrete represen-
tations for the Doi-Peliti formalism, it is possible to choose
an adequate one depending on one’s objectives. For example,
efficient statistical inference for stochastic reaction processes
are necessary to analyze experimental data adequately, and
it is important to employ some approximations (for example,
see [9]), and numerical evaluations play an important role.
It will be expected that an adequate choice of expressions
in the Doi-Peliti formalism gives a tractable and efficient
computational method for the parameter estimations.

In this Brief Report, we first propose an extension of the
Doi-Peliti formalism. While the extension includes an addi-
tional parameter, the introduction of the parameter does not
change the coherent-state path-integral formula; all analytical
techniques in previous works are available. The extension
affects only the concrete expressions for state vectors in
the formalism. Second, we point out that the one-parameter
extension of the Doi-Peliti formalism is naturally connected to
orthogonal polynomials. We find that at least two different
orthogonal polynomials, the Hermite polynomials and the
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Charlier polynomials, are available to describe the state vectors
in the formalism. The Hermite polynomials consist of contin-
uous variables, and, in contrast, the Charlier polynomials are
composed of discrete variables. While there would be other
polynomials to describe the Doi-Peliti formalism, these two
famous polynomials will become a basis for future applications
of the Doi-Peliti formalism.

Doi-Peliti formalsm. In the Doi-Peliti formalism, the fol-
lowing bosonic creation operator a† and annihilation operators
a are used:

[a,a†] ≡ aa† − a†a = 1, [a,a] = [a†,a†] = 0, (1)

where [·,·] is the commutator, and the actions of the creation
and annihilation operators for ket vectors |n〉 are defined as

a†|n〉 = |n + 1〉, a|n〉 = n|n − 1〉. (2)

Here, the vacuum state |0〉 is characterized by a|0〉 = 0. While
the actions of two operators on the ket vectors are defined as
Eq. (2), actions on bra vectors 〈n| are defined as follows:

〈n|a = 〈n + 1|, 〈n|a† = 〈n − 1|n. (3)

The inner product for the bra and ket vectors is given as

〈m|n〉 = n! δm,n, (4)

where δm,n is the Kronecker δ.
When we consider a master equation for a chemical kinetics

with only one variable, a probability P (n,t), with which we
find n particles at time t , is developed according to the master
equation [10]. The remarkable idea of the Doi-Peliti formalism
is the usage of a single vector |ψ(t)〉 which is a collection of a
series of an infinite number of P (n,t):

|ψ(t)〉 =
∞∑

n=0

P (n,t)|n〉. (5)

Using the vector |ψ(t)〉, the master equation for P (n,t) is
rewritten in a compact form:

∂

∂t
|ψ(t)〉 = L(a†,a)|ψ(t)〉, (6)

where L(a†,a) is a time-evolution operator for |ψ(t)〉. Because
of the similarity with quantum mechanics, the Doi-Peliti
formalism is also called the second-quantization method or
the field-theoretic approach.

Here, we briefly explain some basic definitions for a
coherent-state path-integral expression, which are especially
useful in the Doi-Peliti formalism. In order to derive the
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path-integral expression, coherent states and a decomposition
of unity play essential roles. The coherent states are defined as

|z〉 ≡ eza† |0〉 =
∞∑

n=0

zn

n!
|n〉, (7)

〈z| ≡ 〈0|ez∗a =
∞∑

n=0

(z∗)n

n!
〈n|, (8)

where z is a complex number, and z∗ is the complex conjugate
of z. Using the coherent states, the decomposition of unity is
obtained as follows:

1 =
∞∑

n=0

1

n!
|n〉〈n| =

∞∑
n=0

∞∑
m=0

1

m!
|n〉〈m|δn,m

=
∫

d2z

π
e−|z|2 |z〉〈z| , (9)

where we used

δn,m =
∫

d2z

πn!
e−|z|2z∗mzn , (10)

with the integration measure d2z = d(Re z)d(Im z). Using the
decomposition of unity, it is straightforward to obtain the path-
integral expression; for details, see Ref. [1].

Note that there are some differences between the Doi-Peliti
formalism and quantum mechanics. One of them is the
calculation scheme for expectation values of observables; an
expectation value of observables in the Doi-Peliti formalism
is obtained by using a projection state:

〈P| ≡ 〈0|ea =
∞∑

n=0

1

n!
〈n|. (11)

For example, the average of n is given by
∑∞

n=0 nP (n,t) =
〈P|a†a|ψ(t)〉.

Extension of Doi-Peliti formalism. Starting from the same
commutation relation (1) and the same definitions for the
ket vectors (2), it is possible to add one parameter λ to the
formalism. That is, we define the following inner product
instead of Eq. (4):

〈m|n〉 = λnn! δm,n. (12)

According to the replacement of Eq. (4) with Eq. (12), the
actions of the creation and annihilation operators on bra vectors
〈n| change as follows:

〈n|a = 〈n + 1|λ−1, 〈n|a† = 〈n − 1|nλ. (13)

The derivation of Eq. (13) is as follows: First, we have
〈n + 1|a†|n〉 = 〈n + 1|n + 1〉= (n + 1)λn+1 because a†|n〉 =
|n + 1〉. Second, we assume the action of the creation operator
on the bra vector as 〈n + 1|a† = 〈n|α, where α is a scalar
value. Then, 〈n + 1|a†|n〉 = α〈n|n〉 = αn!λn, and we have
α = (n + 1)λ. Hence, the second equality in Eq. (13) is
obtained. Using the similar discussions, the first equality in
Eq. (13) is easily checked.

We here note that the path-integral expression must not be
changed due to the above one-parameter extension because
the final expression of the path-integrals consists of integrals
only for parameters in the coherent states, i.e., z and z∗; the
final expression does not depend on the definition of |n〉 and

〈n|. (For the similar reason, a definition of the “inclusive”
scalar product is not changed, which is introduced in Ref. [11]
and more useful compared with Eq. (12) in the applications
and discussions for factorial moments.) Actually, there is no
need to change the definitions of the projection state and
the coherent states. Since the actions of the creation and
annihilation operators for the bra vectors are modified as
Eq. (13), we have |n〉 = (a†)n|0〉 and 〈n| = 〈0|(aλ)n. Hence,
from the same definitions with the usual Doi-Peliti formalism,
we obtain slightly different expressions for the projection state
and the coherent states when we write them explicitly using
the bra vectors 〈n| as follows:

〈P| ≡ 〈0|ea =
∞∑

n=0

1

λn

1

n!
〈n|, (14)

|z〉 ≡ eza† |0〉 =
∞∑

n=0

1

n!
zn|n〉, (15)

〈z| ≡ 〈0|ez∗a =
∞∑

n=0

1

n!
〈n|

(
z∗

λn

)n

. (16)

The above expressions suggest that there is no need to change
the definitions of the projection states and coherent states. In
addition, the decomposition of unity is calculated as

1 =
∞∑

n=0

1

λn

1

n!
|n〉〈n| =

∫
d2z

π
e−|z|2 |z〉〈z|. (17)

The unity in the extended Doi-Peliti formalism has the same
expression with the usual Doi-Peliti formalism in terms of the
coherent states, and therefore we obtain the same path-integral
expressions even in the one-parameter extension, as expected.

In the following discussions, we restrict the additional
parameter λ as a positive real variable, i.e., λ > 0, in order
to see the connection to the generating function approach and
the orthogonal polynomials.

Expression from generating function. If we set λ = 1 in
the extended Doi-Peliti formalism, an explicit representation
based on the generating function approach has been already
known [8]. That is, we interpret the creation and annihilation
operators as

a† ≡ x, a ≡ d

dx
, (18)

and the ket and bra vectors are written as follows:

|n〉 ≡ xn, 〈m| ≡
∫

dx δ(x)

(
d

dx

)m

(·), (19)

where δ(x) is the Dirac’s δ function.
As far as we know, no one has found other explicit

representations for the Doi-Peliti formalism. Although the
correspondence in Eqs. (18) and (19) has been used to discuss
duality relations in stochastic processes [12], it uses the Dirac’s
δ function, and hence it may be intractable for numerical
computations. In what follows, we give two representations
based on orthogonal polynomials.

Hermite polynomials. One of the representations is obtained
from the Hermite polynomials [13]. The Hermite polynomials
are defined as

Hn(x) = (−1)nex2 dn

dxn
e−x2

, (20)
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where n ∈ N,x ∈ R. Introducing a scaling variable λ ∈ R, we
define the following rescaled Hermite polynomials:

H̃ (λ)
n (x) ≡

√(
λ

2

)n

Hn

(
x√
2λ

)
. (21)

Using the property of the Hermite polynomials, it is straight-
forward to verify the following three-term recurrence formula:

H̃
(λ)
n+1(x) = xH̃ (λ)

n (x) − λnH̃
(λ)
n−1(x). (22)

In addition, the rescaled Hermite polynomials satisfy the
following orthogonality relation:∫ +∞

−∞
H̃ (λ)

n (x)H̃ (λ)
m (x)μ(λ)(x)dx = λnn!δn,m, (23)

where

μ(λ)(x) = 1√
2πλ

e−x2/(2λ). (24)

As one can easily see, the orthogonality relation (23)
corresponds to the inner product (12) in the one-parameter
extension of the Doi-Peliti formalism. Actually, if we define

|n〉 ≡ H̃ (λ)
n (x), 〈n| ≡

∫ ∞

−∞
dxμ(λ)(x)H̃ (λ)

n (x), (25)

a† ≡ x − λ
d

dx
, a ≡ d

dx
, (26)

all properties in the one-parameter extension of the Doi-Peliti
formalism are recovered. For example, the action of the
creation operators on the bra vector, 〈n|a† = 〈n − 1|nλ, is
verified by using the recurrence formula (22) and a partial
integral.

Charlier polynomials. Another representation is obtained
from the Charlier polynomials [13]. The definition of the monic
Charlier polynomials is

C(λ)
n (x) =

n∑
k=0

(−λ)n−kx(k)

(
n

k

)
, (27)

where x(k) = x(x − 1) · · · (x − k + 1) and n ∈ N,x ∈ N.
Note that the variable x is not a real value but a natural number,
which is different from the Hermite polynomials. The Charlier
polynomials satisfy the recurrence formula

C
(λ)
n+1(x) = (x − n − λ)C(λ)

n (x) − λnC
(λ)
n−1(x) (28)

and the orthogonality relation
∞∑

x=0

C(λ)
n (x)C(λ)

m (x)
λx

x!
e−λ = λnn!δm,n. (29)

We here introduce the following definitions for the bra and
ket vectors:

|n〉 ≡ C(λ)
n (x), 〈n| ≡

∞∑
x=0

λx

x!
e−λC(λ)

n (x). (30)

In order to recover the properties of the one-parameter
extension of the Doi-Peliti formalism, we define the creation
and annihilation operators as

a†f (x) ≡ xf (x − 1) − λf (x), af (x) ≡ f (x + 1) − f (x).

(31)

Some techniques in discrete mathematics are needed to
verify Eqs. (2) and (13) for the above definitions. It is well
known that the difference operator [14]

�u(x) ≡ u(x + 1) − u(x) (32)

acts on the Charlier polynomials as

�C(λ)
n (x) = C(λ)

n (x + 1) − C(λ)
n (x) = nC

(λ)
n−1(x), (33)

so that a|n〉 = n|n − 1〉 is verified. In addition, the com-
bination of the recurrence formula (28) and the difference
equation [13],

−nC(λ)
n (x) = λC(λ)

n (x + 1) − (x + a)C(λ)
n (x) + xC(λ)

n (x − 1),

(34)

gives

C
(λ)
n+1(x) = xC(λ)

n (x − 1) − λC(λ)
n (x), (35)

which corresponds to a†|n〉 = |n + 1〉. In order to check
〈n|a† = 〈n − 1|nλ, a partial summation is available. Using
the shift operator defined as

Eu(x) ≡ u(x + 1), (36)

the partial summation is given by [14]∑
u�v = uv −

∑
�uEv. (37)

We here note that a†|n〉 is interpreted as

xC(λ)
n (x − 1) − λC(λ)

n (x) = −x�C(λ)
n (x − 1) + xC(λ)

n (x)

− λC(λ)
n (x).

Hence, 〈n|a†|m〉 is expressed as
∞∑

x=0

e−λλx

x!
C(λ)

n (x)
[− x�C(λ)

m (x − 1) + xC(λ)
m (x) − λC(λ)

m (x)
]

=
[
e−λλx

x!
C(λ)

n (x)(−x)C(λ)
m (x − 1)

]x=∞

x=0

+
∞∑

x=0

[
�

{
e−λλx

x!
C(λ)

n (x)x

}
EC(λ)

m (x − 1)

+ e−λλx

x!
C(λ)

n (x)
{
xC(λ)

m (x) − λC(λ)
m (x)

}]

=
∞∑

x=0

[{
e−λλx+1

x!
C(λ)

n (x + 1) − e−λλx

(x − 1)!
C(λ)

n (x)

}
C(λ)

m (x)

+ e−λλx

x!
C(λ)

n (x)
{
xC(λ)

m (x) − λC(λ)
m (x)

}]

=
∞∑

x=0

e−λλx

x!
λ
{
C(λ)

n (x + 1) − C(λ)
n (x)

}
C(λ)

m (x)

=
∞∑

x=0

e−λλx

x!
λnC

(λ)
n−1(x)C(λ)

m (x), (38)

where we used Eq. (33) to obtain the final equality. Hence, the
action of the creation operator a† on the bra vector, 〈n|a† =
〈n − 1|nλ, is verified. The action of the annihilation operator
a on the bra vector, 〈n|a = 〈n + 1|λ−1, can be checked in a
similar manner.
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Concluding remarks. We have presented a one-parameter
extension of the Doi-Peliti formalism, and the extended for-
malism is deeply related to orthogonal polynomials. Although
the correspondence with the generating function approach has
already been known, essentially different representations for
the one-parameter extension of the Doi-Peliti formalism have
been obtained; especially, the Charlier polynomials consist of
only discrete variables, and hence this representation may be
useful in order to construct efficient numerical methods. The
additional parameter λ would be used to choose an adequate
basis, which is important in numerical evaluations. In addition,
it has been shown that the Charlier polynomials have an
explicit relation with a certain type of birth-death process, and
an adequate choice of the additional parameter is necessary
to express the transition probability in a simple form [15].

It would be an important future work to reveal relation-
ships between these mathematical results and the Doi-Peliti
formalism.

In this Brief Report, we discussed only univariate cases,
and researches for multivariate cases will be interesting future
works. Although a naive treatment would be the usage of
a simple product of univariate polynomials, there may be
suitable multivariate polynomials for some specific cases.

The Doi-Peliti formalism has wide applications, as shown
in previous many studies. We believe that the extension and
representations in this Brief Report can also be used for
applications of the Doi-Peliti formalism.
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