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Abstract 

Background & Aims: Sinusoidal obstruction syndrome (SOS) is a drug-induced liver injury 

that occurs with oxaliplatin treatment and is associated with postoperative morbidity after 

hepatectomy. The aim of this study was to investigate the effects of sorafenib in a 

monocrotaline (MCT)-induced model of SOS in rat. 

Methods: Rats were divided into groups treated with sorafenib (2mg/kg) or vehicle 36 h and 

12 h before MCT (90 mg/kg) administration by gavage. Liver tissues and blood were 

sampled 48 h after MCT administration to evaluate SOS. Survival after hepatectomy was 

examined and immunohistochemistry and electron microscopy were performed to assess 

sinusoidal injury. 

Results: In the vehicle group, liver histology showed sinusoidal dilatation, coagulative 

necrosis of hepatocytes, endothelial damage of the central vein, and sinusoidal hemorrhage. 

In the sorafenib group, these changes were significantly suppressed, total SOS scores were 

significantly decreased, and the elevation of serum transaminase levels observed in the 

vehicle group was significantly reduced. Survival after hepatectomy was significantly higher 

in the sorafenib group compared to the vehicle group (45% vs. 20%, p=0.0137). 

Immunohistochemistry and electron microscopy revealed a protective effect of sorafenib on 

sinusoidal endothelial cells at 6 h after MCT treatment. Sorafenib also attenuated the activity 

of metallopeptidase-9 (MMP-9) and phosphorylation of c-Jun N-terminal kinase (JNK). 

Conclusions: Sorafenib reduced the severity of MCT-induced SOS in rat through suppression 

of MMP-9 and JNK activity, resulting in an improvement in survival after hepatectomy. 
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Introduction 

The liver is a frequent site of metastasis for colorectal cancer and spread to the liver is 

associated with a poor prognosis. Unlike systemic therapy, hepatectomy offers the potential 

for cure for a subset of colorectal cancer patients with limited liver metastases [1]. Adam et al. 

reported that these chemotherapy regimens allowed 12.5% of patients with unresectable 

colorectal liver metastases (CRLM) to be rescued by liver surgery [2]. Karoui et al. found 

that 60% to 70% of patients who underwent initial curative hepatic resection for CRLM 

developed recurrent disease and 10% to 15% were candidates for repeated hepatic resection 

[3]. These findings suggest that cases of hepatectomy for CRLM with preoperative and/or 

postoperative chemotherapy will increase in the future. 

Sinusoidal obstruction syndrome (SOS) is a drug-induced liver injury [4] that has mostly 

been associated with therapy for hematopoietic stem cell transplantation, with an incidence of 

up to 70% and mortality up to 67% [4, 5]. Use of oxaliplatin in chemotherapy for advanced 

colorectal cancer has also recently been associated with SOS [6] and prolonged preoperative 

chemotherapy including oxaliplatin before hepatectomy for CRLM may cause sinusoidal 

injury and increase morbidity [7, 8]. Thus, prevention and treatment of SOS are required to 

improve the safety of hepatectomy and perioperative chemotherapy for CRLM. Several 

studies have shown that anticoagulants prevent hematopoietic stem cell 

transplantation-related SOS [9-11]. An increase in serum vascular endothelial growth factor 

(VEGF) has been correlated with development of SOS [12] and recent retrospective studies 

[13-15] have found attenuation of SOS by addition of bevacizumab, a monoclonal humanized 

antibody directed against VEGF, to oxaliplatin-based chemotherapy. 

These results lead to the hypothesis that antiangiogenic agents have a protective role 

against SOS. Sorafenib is a multiple receptor tyrosine kinase inhibitor targeting Ras/Raf 

kinase that also inhibits certain tyrosine kinases such as VEGF receptor-2 (VEGFR-2), 



platelet-derived growth factor receptor β, and VEGFR-3. Sorafenib is used as a standard 

treatment for hepatocellular carcinoma and renal cell carcinoma, and the efficacy of sorafenib 

for colorectal cancer is currently under investigation in clinical trials. In addition to its 

anticancer action, several articles have shown effects of sorafenib in the liver, including an 

antifibrotic effect and prevention of portal hypertension [16, 17]. The purpose of this study 

was to investigate the impact of sorafenib in a monocrotaline (MCT)-induced SOS model in 

rat. 

 

Methods 

Reagents 

MCT was purchased from Sigma Aldrich (St. Louis, MO) and used as solution of 10 

mg/ml [18]. Sorafenib was obtained from commercial tablets (Nexavar®, 200 mg). After 

removal of the outer coat, the tablets were dissolved in a vehicle composed of Cremophol EL 

(Sigma Aldrich), ethanol and water (1:1:6) [17]. 

Animals 

Male Sprague-Dawley rats of 8-9 weeks of age and weighing 300 ± 50 g were obtained 

from SLC (Shizuoka, Japan). All experiments were approved by the animal research 

committee of Kyoto University. Animals received humane care according to NIH Guidelines 

for the Care and Use of Laboratory Animals. 

Experimental Protocol 

MCT-treated rats were used as an experimental model of SOS [19, 20]. The protocol is 

shown in Fig. 1. Rats were fasted for 12 h before oral administration of MCT (90 mg/kg), but 

allowed water ad libitum. Subsequently, the rats were allowed food and water ad libitum. To 

evaluate the impact of sorafenib on SOS, the rats were divided into groups (n=20 in each 

group) treated with sorafenib (2 mg/kg) or vehicle orally by gavage 12 h and 36 h before 



MCT treatment. A total of 4 mg/kg was given to each rat in the sorafenib group divided into 

administration at -36 h and -12 h, while rats in the vehicle group were administered the same 

amount of vehicle [16]. Histopathological changes at 48 h after MCT treatment in rats are 

similar to those in human SOS [20]. Thus, rats were sacrificed at 48 h after MCT 

administration and blood and liver samples were collected. Some animals were sacrificed at 

earlier time points. To investigate the impact of preoperative sorafenib on hepatectomy for 

SOS liver, 30% partial hepatectomy was performed in another 20 rats each in the sorafenib 

and vehicle groups at 48 h after MCT treatment. These animals were monitored for 14 days 

and those that lived until the end of this period were considered to be survivors. 

Serum Biochemistry 

 Aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (T-Bil) 

and albumin (Alb) were evaluated in serum samples. 

Liver Histology 

 Liver tissues were fixed in 4% paraformaldehyde, embedded in paraffin and sectioned at 

4 μm. The slides were stained with hematoxylin and eosin and histological assessment of 

SOS was performed blindly by a pathologist (A. M-H.). Histological changes were reviewed 

for sinusoidal dilatation, coagulative necrosis of hepatocytes, endothelial damage of the 

central vein, and sinusoidal hemorrhage [19, 20]. Each of these features was graded on a 

4-point scale: 0 = absent; 1 = mild; 2=moderate; 3 = severe. The total SOS score was 

calculated as the sum of the individual scores. Areas of necrosis were measured using Image 

J (National Institutes of Health) in 10 randomly selected images per low power field 

(magnification ×100). 

Electron Microscopy 

Fixation of liver samples was performed as previously reported [21]. Sections were 

observed by transmission electron microscopy (TEM) (Hitachi H-7650) and scanning 



electron microscopy (SEM) (Hitachi S-4700). 

Assessment of Injury to Sinusoidal Endothelial Cells (SECs) 

Assessment of damage to sinusoidal endothelial cells (SECs) was performed by 

immunostaining for rat endothelial cell antigen 1 (RECA-1: MCA-970R, Sterotec, Oxford, 

UK) [20, 21]. The staining area was quantified morphometrically using Image J. The total 

area of the endothelial cells was calculated from randomly selected images per high power 

field (magnification ×200). 

Zymography 

Matrix metallopeptidase-9 (MMP-9) activity was measured using a gelatin zymography kit 

(Primary Cell Co., Sapporo, Japan) [22]. After the samples (20 μg) were electrophoresed, the 

gels were washed, incubated, stained and destained according to the manufacturer’s 

instructions. The intensity of each gelatinolytic band was quantified using Scion Image 

software (Scion Corp., Frederick, MD). 

Western Blot Analysis 

Western blot analysis was conducted as previously reported [21] using primary antibodies 

recognizing c-Jun N-terminal kinase (JNK) (#9252; Cell Signaling), phosphor-JNK (p-JNK) 

(#9251; Cell Signaling) and β-actin (sc-47778; Santa Cruz Biotechnology Inc., Santa Cruz, 

CA) at 1:1000 dilution. The intensity of the bands was quantified with Scion Image software. 

Relative ratios of p-JNK were calculated by dividing densitometric values of p-JNK by those 

of JNK. 

Quantification of liver tissue pyrroles 

Liver tissue pyrrole content was examined using a method reported previously [23]. 

Statistical Analysis 

Data are expressed as means ± SD. Differences in measured variables between each group 

were assessed by Student t-test. The probability of survival was calculated with the 



Kaplan-Meier method and examined by log-rank test. P<0.05 was considered to indicate 

significance. JMP for Windows 8.0 (SAS Institute, Cary, NC) was used for all statistical 

analyses. 

 

Results 

Evaluation of liver tissue pyrroles 

A previous article demonstrated that 90% of MCT and its toxic metabolite, MCT pyrrole, 

is excreted within 7 h of MCT administration [24]. We quantified the liver tissue pyrrole 

content at 3 h after MCT treatment to evaluate the toxicological status in each group. The 

tissue pyrrole contents 3 h after MCT administration were 258 ± 106×10
-9

 and 261 ± 31×10
-9

 

mol/g liver in the vehicle and sorafenib groups, respectively (n=5, p>0.05). These results 

indicate that the level of toxic metabolites in the sorafenib group was comparable with that in 

the vehicle group. 

Effect of sorafenib on SOS 

Serum chemistry and liver histology were conducted to evaluate the effects of sorafenib on 

SOS. In the vehicle group, macroscopic findings showed accumulation of bloody peritoneal 

fluid and the color of the liver surface had turned dark red at 48 h after MCT administration, 

reflecting development of SOS (Fig. 2A). These changes were attenuated in the sorafenib 

group (Fig. 2B). 

The results of serum biochemistry tests at 48 h after MCT administration are shown in 

Table 1. Serum AST and ALT levels in the sorafenib group were significantly lower than 

those in the vehicle group (p=0.0026, p=0.0347). Moreover, in the sorafenib group, the T-Bil 

level was significantly lower (p=0.0153) and the Alb level was significantly higher 

(p=0.0071) than the respective levels in the vehicle group. In the vehicle group, serum AST 

and ALT levels at 48 h (n=20) after MCT administration were significantly higher than those 



at 24 h (AST; p<0.0001, ALT; p<0.0001, n=5) and 72 h (AST; p=0.0001, ALT; p=0.0063, 

n=5). In the sorafenib group, serum AST and ALT levels at 48 h (n=20) after MCT 

administration were also significantly higher than those at 24 h (AST; p=0.0005, ALT; 

p=0.0006, n=5) and 72 h (AST; p=0.0037, ALT; p=0.0338, n=5). These results suggest that 

liver damage reached a maximum after about 48 h and that the repair process was underway 

at about 72 h in both groups. 

In the vehicle group, liver histology showed sinusoidal dilatation, coagulative necrosis of 

hepatocytes, endothelial damage of the central vein, and sinusoidal hemorrhage (Fig. 2C, E). 

Mild sinusoidal hemorrhage and sinusoidal dilatation were observed in the sorafenib group, 

but the morphological changes were attenuated (Fig. 2D, F). The scores for each of these four 

histological features and the total SOS score were significantly lower in the sorafenib group 

compared with vehicle group (p<0.0001) (Table 2). The area of necrosis in the sorafenib 

group was also significantly smaller than that in the vehicle group (0.8 ± 1.2% vs. 13.2 ± 

10.7%, p<0.0001) (Fig. 2G). These results show that sorafenib inhibited development of 

SOS. 

Effect of sorafenib on survival after 30% partial hepatectomy 

To assess the influence of sorafenib on remnant liver function in a hepatectomy model, 

Kaplan-Meier curves were calculated for 14-day survival after 30% hepatectomy (Fig. 2H). 

The probability of survival in the sorafenib group was significantly higher than that in the 

vehicle group (45% vs. 20%, p=0.0137), indicating that sorafenib improved survival rate 

after partial hepatectomy in the SOS model. 

Electron Microscopy 

Electron microscopy was performed to evaluate the time course of morphological changes. 

At 1 h after MCT treatment, rounding up of SECs was observed (Fig. 3A, B). This is assumed 

to be the initial morphological change in SOS [19]. SECs were distorted to a dish-like shape 



and the gaps between the SECs were slightly widened. At 6 h after MCT administration, 

SEM and TEM showed dilatation of sinusoids, enlargement of fenestrae, exposure and 

dilatation of the spaces of Disse, and a red blood cell penetrating through the gap into the 

spaces of Disse in the vehicle group (Fig. 3C, E, G). In contrast, these changes were 

attenuated and SECs were well preserved in the sorafenib group (Fig. 3D, F, H). At 48 h after 

MCT administration in the vehicle group, electron microscopy showed extreme congestion, 

degeneration of hepatocytes, deterioration of hepatic cell cords, and lifting of disrupted SECs 

through red blood cells that had accumulated in and filled the spaces of Disse (Fig. 3I, K). In 

the sorafenib group, congestion was mild, although sinusoidal lining cells were disrupted (Fig. 

3J, L). These results indicate that sorafenib had no impact on initial rounding up of SECs, but 

delayed subsequent SEC collapse with preservation of the tightness of the spaces of Disse at 

6 h after MCT administration. These effects resulted in inhibition of congestion at 48 h. 

Quantitative evaluation of sinusoidal endothelial cells 

Electron microscopy showed disruption of the sinusoidal lining at 6 h after MCT 

administration in the vehicle group. Therefore, immunohistochemical analysis of RECA-1 

was performed using samples obtained at this time point to evaluate damage to SECs (Fig. 

4A). The relative RECA-1-positive areas of normal liver and liver in the vehicle and 

sorafenib groups were 0.25 ± 0.03, 0.17 ± 0.01 and 0.23 ± 0.02, respectively (n=5). RECA-1 

expression in the vehicle group was significantly lower than those in normal liver (p<0.001) 

and in the sorafenib group (p<0.005). RECA-1 expression did not differ significantly between 

normal liver and the sorafenib group (Fig. 4B). These results indicate that sorafenib reduces 

MCT-induced damage to SECs. 

Assessment of MMP-9 activity and phosphorylation of JNK 

To examine the mechanism of the protective effect of sorafenib on SECs, we focused on 

MMP-9 activity, which is induced through VEGF upregulation and can be suppressed by 



sorafenib [25-31]. According to gelatin zymography (Fig. 4C, D) at 6 h after MCT treatment, 

the relative MMP-9 activity in the vehicle and sorafenib groups were 4.1 ± 2.0 and 1.7 ± 0.8, 

respectively (n=5, p=0.0342). Moreover, the relative MMP-9 activities in the vehicle group 

were also significantly higher than those in the sorafenib group at 12 h (n=5, p=0.0077) and 

48 h (n=5, p<0.0001) after MCT administration. These results indicate that sorafenib 

suppressed MMP-9 activation. 

We also examined phosphorylation of JNK at 6 h after MCT administration because 

activation of the JNK pathway is required for MMP-9 induction in SECs [25-35]. In western 

blot analyses (Fig. 4E, F), the relative phosphorylation ratios of JNK in the vehicle and 

sorafenib groups were 3.7 ± 0.8 and 1.2 ± 0.6, respectively (n=5). In the sorafenib group, 

phosphorylation of JNK was significantly reduced compared with the vehicle group 

(p<0.001). These results indicate that suppression of JNK and MMP-9 activity underlies the 

early protective effect of sorafenib against damage to SECs. 

Discussion 

In the MCT-induced SOS model, the first step in development of SOS is SEC-specific 

injury caused by covalent binding of MCT pyrrole, a metabolite of MCT, to F-actin and 

causing depolymerization of the F-actin in SECs [19]. In developing the model, Deleve et al. 

[19] assumed that this disassembly of the actin cytoskeleton was followed by the rounding up 

of SECs. In our study, SEM findings at 1 h after MCT treatment were consistent with this 

view, since SECs were transformed to a dish-like shape and the gaps between SECs were 

slightly widened in both the vehicle and sorafenib groups. This initial morphological change 

is followed by the loss of SECs caused by mechanical stress. The disruption of the SECs 

leads to pericentral embolization, sinusoidal congestion, and disturbance of hepatic 

microcirculation, which produces fully developed SOS. A previous study also showed that 

disassembly of F-actin in SECs induces release of MMP-9, mainly from the SECs themselves, 



and an MMP inhibitor has been found to inhibit MCT-induced SOS [36]. This suggests that 

release of MMP-9 from SECs and the resulting degradation of extracellular matrix (ECM) in 

the spaces of Disse may facilitate loss of SECs concomitantly with mechanical stress. 

The current study showed that sorafenib treatment reduced MCT-induced liver injury, but 

electron microscopy at 48 h after MCT administration showed that sorafenib did not 

completely suppress SEC damage, which is the primary cause of SOS. However, quantitative 

evaluation of SECs using immunohistochemical analyses of RECA-1 demonstrated that 

sorafenib reduced loss of SECs at 6 h after MCT treatment, when the primary SEC collapse 

progressed in the vehicle group. These results suggest that sorafenib treatment does not block, 

but does delay, the loss of SECs, which results in attenuation of embolization, congestion and 

necrosis. Electron microscopy and zymography at 6 h after MCT treatment showed that 

sorafenib suppressed the activity of MMP-9 and attenuated dilatation of the spaces of Disse. 

Thus, although sorafenib did not prevent structural changes of SECs, it did suppress 

degradation of the ECM in the spaces of Disse and blocked the uplift of SECs, which is 

thought to be an accelerating factor in SEC loss. This may explain the basis of the effect of 

sorafenib on slowing down the collapse of SECs and attenuating development of SOS. 

VEGF activates JNK in endothelial cells via VEGFR-2 and Cdc42 to release MMP-9 

[25-28, 30, 31]. F-actin depolymerization and mechanical stress also induce production of 

MMP-9 from SECs through the Ras/Rac1/Cdc42/JNK/c-JUN/AP-1 pathway [31-35]. 

Sorafenib is an inhibitor of several kinases, including VEGFR-2, and therefore has the 

potential to inhibit the JNK pathway and reduce MMP-9 induction [25-32]. Our study 

revealed that sorafenib suppressed MMP-9 induction concurrently with reduction of JNK 

phosphorylation. This supports the hypothesis that the Ras/Rac1/Cdc42/JNK/c-JUN/AP-1 

pathway and MMP-9 induction are important in the pathogenesis of SEC collapse, and 

blocking of these effects may account for the protective effect of sorafenib in the SOS model. 



However, it is likely that multiple pathways contribute to activation of JNK and conflicting 

effects of sorafenib on JNK have been reported [37]. Thus, a further study is needed to clarify 

the precise effects of sorafenib on JNK signaling and to establish the detailed mechanism of 

the pathogenesis of SOS. 

Duckett et al. found that 400 mg sorafenib concomitantly dosed with midazolam, a 

CYP3A4 substrate, did not significantly increase the AUC of midazolam in humans [38]. 

However, since sorafenib is primarily metabolized by CYP3A4 and MCT is also metabolized 

by CYP3A4 to its toxic metabolites [39], it is possible that MCT toxicity may be decreased 

due to CYP3A4 depletion by sorafenib. Thus, we evaluated the liver pyrrole content. The 

results showed that sorafenib has no impact on the amount of toxic MCT metabolites. 

The dose and schedule of sorafenib in this study were selected on the basis of previous 

reports [16, 40] showing that sorafenib has a half-life of 24 to 48 h and that 2 mg/kg/day is 

effective for inhibiting angiogenesis. However, pre-loading with sorafenib at 12 and 36 h 

prior to toxin exposure is not a current standard in clinical oncology practice. In addition, 

hepatectomy is usually performed after several months of systemic exposure to oxaliplatin. In 

a liver enzyme study in a small number of rats, we found that pre- and pre/post-treatment 

with less than the clinical dose of sorafenib (12 mg/kg/day) showed a propensity to decrease 

the serum levels of liver enzymes, whereas 15 mg/kg/day did not have this effect (data not 

shown). We note that these studies were performed in a small number of rats and with limited 

schedules, and therefore further work is needed to determine the appropriate treatment 

schedule for clinical application. 

Nakano et al. demonstrated that prolonged preoperative oxaliplatin-based chemotherapy 

caused sinusoidal injury and was associated with higher morbidity and longer hospitalization 

[8]. Additionally, a recent report showed that SOS was associated with early tumor recurrence 

and decreased long-term survival [41]. Thus, prevention of SOS is an important issue. 



Several human trials have shown that heparin plus tissue plasminogen activator, defibrotide, 

and prostaglandin E1 have preventive effects on SOS, but these agents are not widely used 

because of side effects, availability, and ineffectiveness for fetal SOS [9-11]. Glutathione, 

MMP inhibitors, and phosphodiesterase III inhibitors have been shown to inhibit SOS in a rat 

model, but these agents are yet to be used for SOS in humans [20, 36, 42]. In the last 5 years, 

several retrospective studies [13-15] have reported that addition of bevacizumab to 

oxaliplatin-based chemotherapy reduces development of SOS, but the mechanism of 

prevention is unclear and the validity of this effect has been questioned [43]. Thus, further 

studies of bevacizumab are required, but these cannot be performed in a rat model because 

bevacizumab is a humanized agent with species-specific effects [44]. As for sorafenib, it is 

probable that inhibition of VEGF and downstream factors such as JNK or MMP-9 may 

account for prevention of SOS by bevacizumab. However, sorafenib has targets other than 

VEGF, such as Raf kinase, MEK and ERK, which might also be important for its effects on 

the liver. Furthermore, clinically, bevacizumab is given concurrently with oxaliplatin, 

generally over several months prior to hepatectomy, which is quite different from our study 

schedule. Therefore, it is premature to assume the same mechanism for bevacizumab and 

sorafenib, and further studies are needed to resolve this issue. 

Improvement of anticancer treatment outcomes requires an effective combination of 

cytotoxic agents and molecular-targeted drugs. Current chemotherapy regimens are able to 

convert some cases of initially unresectable CRLM into candidates for curative hepatectomy, 

which makes it important to investigate treatment combinations with minimal side effects that 

allow safe hepatectomy and perioperative chemotherapy, leading to improved outcomes. In 

our study, pretreatment with sorafenib attenuated MCT-induced SOS and improved survival 

after hepatectomy. However, the similarity of MCT-induced SOS and oxaliplatin-induced 

SOS is unclear and there are no reports of oxaliplatin-induced animal SOS models. 



Evaluation of the protective effect of sorafenib against oxaliplatin will require studies using 

co-administration of sorafenib and oxaliplatin in such a model. 

In summary, we demonstrated a protective effect of sorafenib on an MCT-induced model 

of SOS in rat. Prophylactic administration of sorafenib may delay loss of adherent viable 

SECs from the sinusoidal lining, thereby attenuating pericentral embolization and SOS. 

Pretreatment with sorafenib also significantly improved survival after partial hepatectomy in 

the rat model. These results suggest that addition of sorafenib to oxaliplatin-based 

chemotherapy may have a therapeutic potential for prevention of SOS.  
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Figure Legends 

Fig. 1. Experimental protocol for assessment of sinusoidal obstruction syndrome (SOS) 

and 30% partial hepatectomy. MCT, monocrotaline; VHC, vehicle; SORA, sorafenib. 

 

Fig. 2. Therapeutic effects of sorafenib on monocrotaline-induced SOS in rats. 

Representative macroscopic views of the liver in the vehicle (A) and sorafenib (B) groups. 

The arrowhead in (A) indicates bloody peritoneal fluid. HE staining (×100, ×200) in the 

vehicle (C, E) and sorafenib (D, F) groups. (G) The relative area of necrosis quantified in a 

low power field (×100). Data are expressed as means ± SD (n=20, p<0.001). (H) 

Kaplan-Meier curves for 14-day survival in the vehicle (dotted line) and sorafenib (full line) 

groups after 30% partial hepatectomy performed 2 days after MCT treatment (n=20, p<0.05). 

MCT; monocrotaline; VHC, vehicle; SORA, sorafenib. 

 

Fig. 3. Findings in electron microscopy. Scanning electron microscopy (A, B, C, D, I and J) 

and transmission electron microscopy (E, F, G, H, K and L) at 1 h (A, B), 6 h (C-H) and 48 h 

(I-L) after monocrotaline administration. Original magnification: A, ×8000; B, ×6000; C, 

×5000; D, ×2500; E, ×2500; F, ×4000; G, ×2500; H, ×2000; I, ×2000; J, ×4000; K, ×2500; L, 

×4000. Asterisks indicate spaces of Disse, S; sinusoidal endothelial cell, MCT; 

monocrotaline; VHC, vehicle; SORA, sorafenib. 

 

Fig. 4. Immunohistochemistry of RECA-1. (A) Representative photographs of normal liver, 

and liver in the vehicle and sorafenib groups at 6 h after MCT treatment. (B) The relative 

RECA-1-positive area was quantified morphologically (n=5, **p<0.001, ***p<0.005). (C) 

Measurement of MMP-9 activity by gelatin zymography. Gelatinolytic activities of normal 

liver and liver in the vehicle and sorafenib groups at 6 h, 12 h and 48 h after MCT treatment. 



MMP-9 activity was quantified by measuring the diminished absorbance of Coomassie 

blue-stained gelatin gels (6 h: n=5, *p<0.05; 12 h: n=5, *p<0.05; 48 h: n=5, *** p<0.001). 

(E) Western blots of p-JNK, JNK and β-actin in liver tissue from the vehicle and sorafenib 

groups collected 6 h after MCT treatment. (F) The relative p-JNK/JNK levels were quantified 

by densitometry (n=5, ***p<0.001). (G) Proposed mechanism of SOS. MCT, monocrotaline; 

VHC, vehicle; SORA, sorafenib; RECA-1, rat endothelial cell antigen 1; MMP-9, Matrix 

metallopeptidase-9; p-JNK, phospho c-Jun N-terminal kinase; JNK, c-Jun N-terminal kinase; 

SEC, sinusoidal endothelial cell; SD, space of Disse; ECM, extracellular matrix; SOS, 

sinusoidal obstruction syndrome; * p<0.05; ** p<0.005; *** p<0.001; N.S., not significant. 
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Table 1. Serum biochemistry at 48 h after monocrotaline treatment 

Variable Normal Range Vehicle Sorafenib p-value 

AST [IU/L] 87 - 114 9010 ± 3720 5490 ± 3180 0.0026 

ALT [IU/L] 28 - 40 3680 ± 1580 2610 ± 1500 0.0347 

T-Bil [mg/dl] 0.10 – 1.00 0.21 ± 0.12 0.13 ± 0.05 0.0153 

Alb [g/dl] 3.30 – 4.60 3.10 ± 0.28 3.36 ± 0.31 0.0071 

 

Data are expressed as the mean ± SD (n=20). AST, aspartate aminotransferase; ALT, alanine 

aminotransferase; T-Bil, total bilirubin; Alb, albumin.



Table 2. SOS scores for HE staining at 48 h after monocrotaline treatment 

Variable (range) Vehicle Sorafenib p-value 

Sinusoidal dilatation (0 – 3) 2.6 ± 0.5 1.8 ± 0.7 0.0001 

Coagulative necrosis of hepatocytes (0 – 3) 2.8 ± 0.4 1.6 ± 0.8 <0.0001 

Endothelial damage of the central vein (0 – 3) 2.9 ± 0.4 1.7 ± 0.6 <0.0001 

Sinusoidal hemorrhage (0 – 3) 2.9 ± 0.4 1.7 ± 0.6 <0.0001 

Total SOS score (0 – 12) 11.1 ± 1.3 6.6 ± 2.3 <0.0001 

 

To quantify the severity of SOS, histological changes for the four parameters were classified 

using a scoring system described elsewhere [19, 20]. Data are expressed as the mean ± SD 

(n=20). 
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