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Abstract

We consider a novel class of constraints on chiral superfields to obtain supersymmetric
nonlinear sigma models in four spacetime dimensions, which strictly combine the internal
symmetry breaking with spontaneous supersymmetry breaking. The resultant massless
modes can be exclusively Nambu-Goldstone bosons without their complex partners and
the goldstino that is charged under the internal symmetry. The massive modes show a
peculiar relation among their masses and the scales of symmetry breakings.



1 Introduction

If supersymmetry (SUSY) is realized in nature, it must be broken at some energy scale.

Models of dynamical SUSY breaking have a possibility to explain smallness of the breaking

naturally [?]. These models have some internal (global or gauge) symmetries at least in

the UV region. Below the scale of strong dynamics, the SUSY breaking field in an effective

theory often appears as a singlet under all the low-energy symmetries except for U(1)R. That

is, the effective theory can be described by an O’Raifeartaigh-type model [?]. However, it

may be of interest to keep some internal symmetries, under which the SUSY breaking field

is charged, even below the dynamical scale. In this case, the massless goldstino due to the

SUSY breaking is also charged under these symmetries [?].

Effective theories with spontaneously broken global symmetries may be described by

nonlinear sigma models (NLSM) in a general manner. In the non-SUSY case, one of the ways

to obtain a NLSM is to impose an algebraic constraint on the fields in a multi-component

scalar field theory. In particular, a NLSM describes Nambu-Goldstone (NG) bosons under a

symmetric constraint. For example, the O(N) NLSM in four spacetime dimensions is given

by a symmetric Lagrangian

L =
1

2
φi2φi − V (φi2), (1)

with a constraint

φi2 − a2 = 0, (2)

where φi is a real field with a vectorial index i = 1, · · · , N under the O(N), φi2 ≡ φiφi,

and a denotes a positive constant. Owing to the constraint, the O(N) symmetry is broken

down to O(N − 1) with the corresponding N − 1 NG bosons. A supersymmetric extension

of the above construction is naively achieved by straightforward use of the corresponding

superfields. Namely, we have O(N)-invariant Kähler potential K and superpotential W with

a superfield constraint

XiXi − a2 = 0, (3)

where Xi is a chiral superfield. The above naive extension keeps supersymmetry unbroken

in contrast to the internal O(N) symmetry, which is broken.

In this letter, we consider more general form of constraints such as [(XiXi)m−a2m]n = 0,

where m and n are positive integers. We show that such a constraint can strictly combine

2



the internal symmetry breaking with spontaneous SUSY breaking [?].*1 Let us focus on the

simplest novel constraint

(XiXi − a2)2 = 0. (4)

To obtain a SUSY breaking model with this constraint, we only need the field Xi with the

canonical Kahler potential and the superpotential

W =
µ

2
XiXi, (5)

where µ is a real mass scale. We will analyze the mass spectrum around the vacuum and

show that the resultant massless modes are exclusively NG bosons without their complex

partners*2 and the charged goldstino due to the SUSY breaking.*3

The rest of the paper is organized as follows. In the next section, we will analyze the

constraint to show the SUSY breaking in the model, which suggests a convenient way of

changing variables. In section 3, the mass spectrum of the model will be investigated. In

section 4, we will present a corresponding linear model with additional massive modes. The

final section is devoted to brief discussion.

2 The model

In this section, we specify our SUSY-breaking nonlinear sigma model in detail based on

Eq.(??) and Eq.(??).

2.1 The constraint

We consider a chiral superfield*4 which transforms as a fundamental representation under a

global O(N) symmetry:

Xi = xi(y) +
√
2θψi(y) + θ2F i(y), (6)

*1We can utilize the constraint Eq.(??) to obtain SUSY breaking models with separate SUSY-breaking
fields. For instance, a simple model is given by the superpotential W = µXiY i, where Y i is a chiral superfield
and µ is a mass scale. The field Xi is under the constraint, which gives a part of its lowest component a
nonzero expectation value. On the other hand, the F -term of a part of Y i must develop a nonzero expectation
value by the equation of motion and thus the SUSY is broken. We note that the corresponding example of
UV dynamical model is given by a vector-like model of SUSY breaking [?], where the Xi is provided by the
mesonic degrees of freedom.

*2In contrast, unbroken SUSY tends to make complex partner scalars also massless [?].
*3In this paper, the internal symmetry is not gauged. This provides an O’Raifeartaigh-type SUSY-breaking

model without singlets of the internal symmetry.
*4We follow the conventions of Ref.[?].
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where i = 1, · · · , N and y = x + iθσθ̄ is a four-dimensional coordinate. Let us impose the

superfield constraint Eq.(??). This constraint can be solved as follows. First, we define a

chiral superfield

Z = z +
√
2θψz + θ2Fz

≡ XiXi − a2. (7)

Then the superfield constraint Eq.(??) is nothing but Z2 = 0, which is equivalent to the

relation among the components

z =
1

2Fz
ψzψz. (8)

We here assume non-vanishing Fz, which will be justified retrospectively. Note that this

takes the same form as the generic constraint for the goldstino superfield derived in Ref.[?].

In terms of the component fields of Xi, this relation is rewritten as

xixi − a2 = 2(2xiF i − ψiψi)−1(xjψj)2. (9)

2.2 SUSY breaking

We next investigate the SUSY breaking in our model. The superpotential is given by Eq.(??).

In the vacuum, the constraint Eq.(??) leads to

⟨xi⟩2 = a2, (10)

while the F -term for the field Xi is given by

⟨F i⟩† = −µ⟨xi⟩, (11)

where the corrections due to the constraint is vanishing under ⟨ψi⟩ = 0. We see that a part of

⟨F i⟩ must be nonzero in the vacuum due to the constraint and hence SUSY is spontaneously

broken in this model. The claim ⟨Fz⟩ ̸= 0 is also confirmed.

2.3 Changing variables

We now provide a convenient change of variables to be adopted in the following analyses.

Let us assume without loss of generality that only the chiral superfield X1 in Xi has nonzero

expectation values to satisfy the constraint Eq.(??) and the F -term equation Eq.(??) as

⟨X1⟩ = a + θ2F, where F = −µa. The chiral superfield Z defined in Eq.(??) has an
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expectation value ⟨Z⟩ = 2aFθ2 in the vacuum. We expand these fields around the vacuum

as X1 ≡ ⟨X1⟩+ X̃1 and Z ≡ ⟨Z⟩+ Z̃. Then Eq.(??) results in

2⟨X1⟩X̃1 = Z̃ − (X ī)2 − (X̃1)2, (12)

where ī = 2, · · · , N . By iterative use of this equation, the variable set can be changed from

Xi to Z̃ and X ī so as to be valid up to arbitrarily higher-order fluctuation terms of the fields.

This serves to analyze the mass spectrum around the SUSY-breaking vacuum in the next

section and also to construct a possible linear model, which we will provide in section 4.

3 Mass spectrum

We now investigate the mass spectrum of the model around the vacuum that breaks both

the SUSY and the O(N) global symmetry spontaneously. The variable X̃1 can be replaced

with Z̃ and X ī using Eq.(??) repeatedly:

X̃1 =
1

2
⟨X1⟩−1

(
Z̃ − (X ī)2 − (X̃1)2

)
=

1

2
⟨X1⟩−1

(
Z̃ − (X ī)2 − 1

4
⟨X1⟩−2Z̃2

)
+ · · ·

=
1

2
⟨X1⟩−1

((
1 +

1

2
⟨X1⟩−2⟨Z⟩

)
Z̃ − (X ī)2

)
+ · · ·

=
1

2a
Z̃ − 1

2
⟨X1⟩−1(X ī)2 + · · · , (13)

where the ellipses denote the higher-order terms that do not contribute to masses of the fields.

In the third equality, we utilized the constraint as Z̃2 = −2⟨Z⟩Z̃. It is thus straightforward

to replace X1 in our original Lagrangian with Z̃ and X ī:

L =

∫
d4θ

[
X1†X1 +X ī†X ī

]
+

(∫
d2θ

µ

2
XiXi + h.c.

)
=

∫
d4θ

[
1

4a2
Z̃†Z̃ +X ī†X ī +

(
⟨X1⟩†

2a
Z̃ − 1

2
⟨X1⟩†⟨X1⟩−1(X ī)2 + h.c.

)]
+ · · ·+

(∫
d2θ

µ

2
Z̃ + h.c.

)
, (14)

where the ellipsis denotes the higher-order interaction terms. Let us further redefine the

superfield Z̃ as Z̃ → 2aZ̃ to canonically normalize the field. Then, we obtain the Lagrangian

in terms of the component fields as

L = z̃†2z̃ − iψ̄z̃σ̄
m∂mψz̃ + F †

z̃Fz̃ + (xī)†2xī − iψ̄īσ̄m∂mψ
ī + (F ī)†F ī

+

(
1

2
µ2xī

2
+ µF īxī − 1

2
µψīψī + h.c.

)
+ · · · . (15)
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Wemay use the equations of motion for F ī and Fz̃ with the restricted scalar mode z̃ eliminated

by means of the constraint Eq.(??). That leads to

L = −iψ̄z̃σ̄
m∂mψz̃ + (xī)†2xī − iψ̄īσ̄m∂mψ

ī

−µ2|xī|2 +
(
1

2
µ2xī

2
− 1

2
µψīψī + h.c.

)
+ · · · . (16)

The fermion ψz̃ is massless and none other than the goldstino in this model.*5 The other

fermions ψī have nonzero masses µ. Diagonalizing the scalar fields xī to the mass eigenstates,

we find that half of the fields have nonzero masses
√
2µ, while the remainings are massless.

These are the N − 1 NG bosons of the spontaneously broken O(N) symmetry.

We can obtain the same result in a component computation. Let us restrict ourselves to

the bosonic components under ψi = 0. Then the scalar potential is given by V =
∣∣µxi∣∣2 due

to the superpotential Eq.(??) in spite of the constraint Eq.(??), which can be written as

(x1)2 = a2 − (xī)2. (17)

Substituting this expression into the scalar potential, we obtain

V = µ2
(
|a2 − xī

2
|+ |xī|2

)
. (18)

We now expand the fields xī with their real and imaginary parts as xī = (ξ ī+ iηī)/
√
2 where

ξ ī and ηī are real fields. Then the potential is given by

V = µ2

√(
a2 − 1

2
ξ ī

2
+

1

2
ηī

2
)2

+
(
ξ īηī

)2
+

1

2
µ2(ξ ī

2
+ ηī

2
)

= µ2a2 + µ2ηī
2
+O

(
ξ4, ξ2η2, η4

)
. (19)

We see that there are no quadratic terms of ξ ī, which correspond to (N − 1) NG bosons, as

is expected.

4 A linear model

We proceed to consider an example of linear models which is with no constraint and effectively

realize our constraint after integrating out certain massive modes. The Lagrangian is given

by

L =

∫
d4θ

[
Xi†Xi + f(Z,Z†)

]
+

(∫
d2θ

µ

2
XiXi + h.c.

)
. (20)

*5This corresponds to ⟨xi⟩ψi = ⟨x1⟩ψ1 in the original variables.
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Here, the superfield Z is defined by Eq.(??) and all the fields Xi are independent degrees of

freedom. That is, the superfield constraint discussed so far is not imposed in this section. To

obtain a meta-stable vacuum at z = 0, we assume f(Z,Z†) to take a higher-order form in Z

and Z† such as

f(Z,Z†) =

(
b

M4
Z†Z2 +

c

M6
Z†Z3 + h.c.

)
+

d

M6
Z†2Z2, (21)

where b, c, and d are real constants and M denotes a mass scale. As in the previous section,

we can change the variables from X̃1 to Z̃ and X ī using Eq.(??) repeatedly:

X̃1 =
1

2

⟨
X1

⟩−1
Z̃ − 1

8

⟨
X1

⟩−3
Z̃2 +

1

16

⟨
X1

⟩−5
Z̃3 + · · · . (22)

Then the Lagrangian is rewritten as

L =

∫
d4θ

[
Z†Z +

{
8a3

(
b

M4
− 1

16a4

)
Z†Z2

+16a4
(

c

M6
+

1

32a6

)
Z†Z3 + h.c.

}
+ 16a4

(
d

M6
+

1

64a6

)
Z†2Z2

]
+ · · ·+

(
−
∫
d2θ FZ + h.c.

)
, (23)

where we have used µ = −F/a and rescaled the field Z as Z → 2aZ to canonically normalize

the field. Note that we here adopt Z rather than Z̃ as a variable.

Hence the scalar potential is given by

V = K−1
Z,Z†F

2

= F 2

[
1−

{
16a3

(
b

M4
− 1

16a4

)
z + h.c.

}
−

{
48a4

(
c

M6
+

1

32a6

)
z2 + h.c.

}
−64a4

(
d

M6
+

1

64a6

)
z†z + 256a6

(
b

M4
− 1

16a4

)2 (
z + z†

)2
+ · · ·

]
, (24)

where KZ,Z† is the derivative of the Kahler potential in Eq.(??) with respect to Z and Z†.

To have a meta-stable vacuum at z = 0, firstly we have to cancel out the linear terms in z.

Thus we are led to set*6

b =
M4

16a4
, (25)

to obtain the masses of two real scalars as

m2
± = F 2

{
−64a4

(
d

M6
+

1

64a6

)
± 96a4

(
c

M6
+

1

32a6

)}
. (26)

*6It is not so special to have such a parameters choice. What we need is just some non-zero VEV of x1,
which is actually determined by the higher dimensional operators.
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The vacuum stability around z = 0 requires

2

(
d

M6
+

1

64a6

)
± 3

(
c

M6
+

1

32a6

)
< 0. (27)

When this condition is satisfied, we may integrate out the massive scalars by using the

equation of motion for z to reproduce our nonlinear model. In fact, Eq.(??) yields

3

(
c

M6
+

1

32a6

)
F †
z (2zFz − ψzψz) + 2

(
d

M6
+

1

64a6

)
Fz

(
2z†F †

z − ψ̄zψ̄z

)
+ · · · = 0, (28)

where the ellipsis denotes the correction terms, which can be neglected for m± → ∞. Thus

the decoupling limit of z implies

2zFz − ψzψz = 0, (29)

which coincides with the constraint Eq.(??). With this relation, all the higher-order terms

Eq.(??) vanish and the model is reduced to the nonlinear model discussed in the previous

sections.

5 Discussion

We obviously have various possible extensions of the present nonlinear models to be investi-

gated. Some examples are in order. The internal symmetry can be gauged, which results in

gauge interactions of the charged goldstino. Other symmetry groups and symmetry breaking

patterns should be considered. General description based on nonlinear realization might

be constructed by means of supergroups. Coupling with supergravity*7 may be intriguing

with or without gauging. It might be possible to construct dynamical SUSY-breaking models

which realize the nonlinear models at low energy. We even suspect that simultaneous internal

and SUSY breaking may be of some interest also in realistic particle physics models.
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