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General introduction 

Chapter 1 

General Introduction 

Nutrient cycling in a forest ecosystem 

Ecosystem was defined by Tansley (1935) as the whole system (in the senst~ of physics), 

including not only the organism-complex, but also the whole complex of physical factors 

forming what we call the environment of the biome - the habitat factors in the widest sense. 

The ecosystem is considered to be a unit of biological organization made up of all of the 

organisms in a given area interacting with the physical environment. Through the 

interactions between organisms and the environment, energy and materials move among 

intra- and inter organisms. Therefore one of the best methods to evaluate an ecosystem 

is to analyze the energy flow and material circulation (Odum 1969). 

Forest ecosystem has a huge structure built by the primary production of plants. The 

carbon compounds captured by plants were also used to maintain the physiological 

processes of themselves and support all organisms in the forest. In forest E!cosystems, 

more than 90% of energy acquired by plants flow into the decomposition process 

(Wittaker 1970). Most of the materials and energy were accumulated in plants and soil. 

Consequently, the interactions between plants and the soil determine the structure and 

funct ion of the forest ecosystem (Bormann & Likens 1979). To understand the structure 

and function of a forest ecosystem, it is important to study the resource f•::>raging by 

plants in relation to the soil properties (Tilman 1988). In this dissertation, the author 

will examine the interactions between plants and the soil in a forest ecosystem, focusing 

on the accumulation and flow of materials. 

Interaction between plant and soil 

Plant response to soil 

Natural environments show dramatic differences in nutrient availability. For example, 

the amount of nitrogen available to plants ranges 40-fold from a coniferous forest to a 

topical rain fo rest (Vitousek eta/. 1982; Vitousek 1984). To compensate for the 
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differences in nutrient availability, plants modify their nutrient foraging. 

In response to low nutrient availability, plants maximize their nutrient uptake 

through a high root absorp tion capacity per unit root mass (Chapin 1980; Gray & 

Schlesinger 1983; Chapin eta/. 1986) and a high root I shoot ratio (Chapin 1980; Keyes 

& Grier 1981; Cameau & Kimmins 1989). These effects of increased nutrient uptake, 

however, do not fully compensate for the reduced nutrient availabilily, so that nutrient 

concentration of plants and the total amount of absorbed nutrients generally decrease 

with decreasing nutrient availability. 

Plants minimize their nutrient Joss and reduce the nutrient demand at the lower level 

of nutrient availability. Leaf longevity increases with decreasing nutrient availability 

(Chabot & Hicks 1982; Reich eta/. 1992). As nutrient availability decreases, nutrient 

resorption (translocation of nutrients from senescing leaves before abscision) increases 

(Small1972; Hanagan & Van Cleve 1983; Chapin & Moilanen 1991; Pugnaire & Chapin 

1993), and nutrient Joss through leaching decreases (Tukey 1970). These factors 

contribute to the high nutrient-use efficiency of plants growing on infertile soils (Vitousek 

1982, 1984). 

Plants allocate a small part of dry matter and nutrients to leaves in response to the 

low nutrient availability. This small leaf allocation induces low productivity through 

low photo~ynthetic activity. Most plant characteristics of resource-poor environments 

have low potential growth rates and consequently reduced nutrient requirement (Grime 

1977). 

Effect of plant on soil 

Plants exert a profound influence on soil properties Qenny 1980). Plants can contribute 

to the development of soil by stabilizing the soil surface through the extension of root 

systems, and by serving organic matter and nutrients through litterfall (Charley & West 

1975; Hirose & Tateno 1984). 

Individual plant characteristics play an important role in determining soil fertility. In 

general, plant characteristics create positive feedbacks to patterns of nutrient cycling 

through nutrient uptake, use and loss (Melillo 1982; Pastor et al. 1984; Hobbie 1992; 

Vinton & Burke 1995). Plants that occur in low nutrient habitats grow slowly, use 

nutrients conservatively and produce poor quality litter that decomposes slowly. In 

contrast, plants in high nutrient habitats grow quickly, take up and lose nutrient rapidly, 

produce high quality litter that is readily decomposable. 
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Topographic variations of nutrient cycling in a forest ecosystem 

On the global scale, soil properties differ along the climatic (temperature and 

precipitation) gradient or latitude. On a smaller scale, variations in soil properties can 

be seen along a topographic gradient even in a landscape (Robertson et al. 1988, 1993). 

Topography is known to play a critical role in modifying the soil properties (Shimel et al. 

1985; Burke 1989; Zak et al. 1991; Brubaker 1993, 1994). In particular, the topographic 

effects on the movement of water and materials can determine or control the type and 

intensity of soil processes (Pennock et al. 1994). Topographic variations in nutrient 

cycling in forested ecosystems have been shown in the previous studies (Tsutsumi et a/. 

1984; Pastor et al. 1984; Garten et al. 1994). 

Little is known, however, regarding the influence of topography on the spatial 

variations of soil properties and nutrient dynamics in a forest ecosystem. Soil 

properties and nutrient cycling determine the resource environment for plants. 

Topography produces spatial heterogeneity in resources (Robertson et al. 1988, 1993), 

and these spatial heterogeneity in resources enhanced species richness (Tilman 1982). 

For the management of forests containing many types of topographies, it is very 

important to elucidate the spatial variations in soil properties and resource utilization of 

plants along a topographic gradient . 

Objectives of the study 

The major aims of this research study are (1) to examine the patterns of stand structure 

and nutrient cycling in a forest ecosystem along a topographic gradient, and (2) to 

elucidate the variations of interactions between plants and the soil that induce the 

patterns of stand structure and nutrient cycling. 

The interactions of plants with the soil are difficult to examine because the complex 

history of vegetation and soil development in the site inhibits an understanding of cause 

and effect relationship (Bazzaz 1983). The responses of a single plant species to the 

soil environment and their effects on soil properties need to be studied in order to 

elucidate plant-soil interactions. To examine the plant-soil interactions in isolation from 

other longer-term effects, a study plot was established in a 20-year-old Pinus thurzbergii 

Parl. plantation in which natural vegetation was destroyed and surface soil was eroded 
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after repeated logging. In this paper, nitrogen and phosphorus are specifically 

determined because these nutrients are often limiting nutrients for plant growth in forest 

ecosystems (Binkley 1986). 

The according chapters of this dissertation will provide a detailed explanation of the 

results of the various research studies conducted. Below is an overview of the content of 

each chapter: 

• 

• 

• 

• 

• 

In Chapter 2, the topographic variations in soil properties and stand structure 

are examined. The morphological response of P. thunbergii and its effects on the 

forest structure are also investigated. 

In Chapter 3, physiological plasticity of P. thunbergii in nutrient uptake and 

nutrient use in response to nutrient availability are evaluated. 

In Chapter 4, the mechanisms which could account for the increase in nutrient

use efficiency of P. thunbergii in response to the lower nutrient availability are 

explored. Similarly the nutrient resorption efficiency and its relationship with 

factors that control nutrient resorption are examined. 

In Chapter 5, to evaluate the effects of nutrient use by p lants on the 

environmental conditions, the decomposition processes of litter in relation to 

initial nitrogen concentration of litter and topographic positions are analyzed. 

In Chapter 6, general discussion of the topographic variations in the interactions 

between plants and soil, and their effects on the forest ecosystem are provided. 

Summary of the results of the preceding chapters are also contained in this 

chapters. 
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Chapter 2 

Chapter 2 

Topographic Variations of Soil Properties and Stand Structure 

in a Pinus thunbergii Parl. Plantation 

INTRODUCilON 

Plant morphology changes in response to soil properties such as water and nutrient 

availability (Chapin 1980; Bloom eta/. 1985). For example, the ratio of root to shoot 

biomass decreases with increasing soil fertility (Keyes & Grier 1981; Santantonio & 

Hermann 1985; Cameau & Kimmins 1989). Soil properties can vary greatly within a 

plant community and such phenomena result in spatial heterogeneity of the environment 

for plants (Robertson et al. 1988, 1993). The responses of plants to heterogeneous soil 

environments have important consequences for community structure (Tilman 1988). 

Grime (1994) reviewed recent experimental studies of plant responses to resource 

heterogeneity and re-examined the role of morphological plasticity of plants in 

exploiting environmental heterogeneity. 
It is well known that soil properties vary w idely along a topographic gradient from 

ridge top to valley floor (Brubaker et al. 1993, 1994; Garten et al. 1994). Changes in 

productivity and nutrient cycling along a slope have been studied in a deciduous 

broad-leaved forest (Katagiri 1988) and in a conifer plantation (Tsutsumi et al. 1983). 

Decomposition and accumulation of soil organic matter have been studied along a slope 

in an evergreen broad-leaved forest (Nakane 1975). In these studies, however, the long

term interaction between soils and plants included many species. The responses of a 

single plant species to a heterogeneous soil environment and their effects on soil 

properties need to be studied in order to elucidate soil-plant interactions. 

The present study aims to investigate plant-soil interactions along a topographic 

gradient from ridge top to valley floor in a monospecific forest ecosystem. A study plot 

was established in a pine plantation in which natural vegetation was destroyed and 

surface soil was eroded after repeated logging. Therefore, the effects of accumulated 

soil organic matter before planting could be neglected. 

To evaluate the heterogeneity of the soil environment and stand structure, the author 

measured the topographic variation in the following: 1) soil thickness and fine soil 
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content; 2) soil moisture content; 3) accumulation of organic carbon in the forest floor 

and mineral soil; 4) aboveground forest structure; and 5) fine root biomass. The amount 

of soil overlying the bedrock and its texture play an important role in the soil's capacity 

to hold water and nutrients (Burke 1989). The accumulation pattern of organic carbon 

indicates the differences in decomposition rates and water and/or nutrient availability 

(Nakane 1975; Vogt eta/. 1986; Katagiri 1988; Takeda & Kaneko 1988). Above- and 

belowground forest structure, such as tree density, stem diameter, height and volume, 

and fine root biomass were compared along a topographic gradient to evaluate the role 

of morphological plasticity of pine trees in response to heterogeneous environments. 

Soil-plant interactions in a forest ecosystem covering various topographies will be 

discussed by evaluating spatial heterogeneity of the accumulation pattern of organic 

matter in plants and the soil. 

METHODS 

Study site 

The area of Mt. Tanakami, Shiga Prefecture, Japan had been deforested by repeated 

logging. Erosion of surface soil had prevented the restoration of a forest in this area 

(Tsutsumi 1963; Iwatsubo eta/. 1982). In recent decades, an afforestation technique has 

been developed and implemented (Tsutsumi 1969; lwatsubo & Tsutsumi 1982). After 

the construction of terraces along the contours of the hillside to prevent soil erosion, 

saplings of Pinus thunbergii Pari. were planted with Alnus pendula Matsum. and 

fertilizers were applied. A few years after planting, stems of A. pendu/a were cut down 

to prevent competition with P. thunbergii. Pinus lhunbergii now dominates and covers a 

large area of Mt. Tanaka mi. 

In this area, the forest canopy mostly consisted of P. thunbergii, while naturally 

regenerated Pinus densiflorn Sieb. et Zucc. subdominated. Other naturally regenerated 

species such as Cletltra barbinervis Sieb. et Zucc., Quercus serrata Thunb., Ilex pedunculosa 

Miq. and Cltamaecyparis obtusa Endl. constituted a small part of the canopy. The 

subcanopy and shrub layer consisted of evergreen species such as Eurya japonica Thunb., 

Ilex crenata Thunb., /. pedunculosa, Camellia japonica L. and deciduous species such as C. 

barbinervis, A. pendula, Q. serrata, Pourthiaea villosa Decne., Fraxinus sieboldiana Blume 

and Rhododendron reticulatum D. Don. 

The bedrock was granite which had been much weathered. The soil was sandy. The 
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mean annual temperature of the site was 12.4°C and annual precipitation was 1411 mm 

during the years between 1976 and1980 (Iwatsubo eta/. 1982). 

A study plot (34°55'N, 135°58'E, 420 m above sea level) of 40 m x 64 m (Fig. 2. 1) 

was set up in a P. thunbergii plantation which had been established in 1971. The 

direction of the plot was S55~. The plot covered a steep ridge and an underground 

stream. 

There were terraces for planting along the contours. Rocks appeared sparsely in the 

middle slope position. The amount of exposed rocks increased downslope. A riparian 

terrace exists between large wall-like rocks and the north side of the stream. 

..__ 
am 

Fig. 2. 1. (a) Overview of the study plot. Shadowed areas indicate exposed 
rocks. The plot was divided into 4 X 4 m subplots and the 160 subplots were 
categorized into nine microsite types (see Table 2. 1). (b) Topographic map of the 
site and the locations of the 94 soil sampling points. Contour lines are drawn at 
intervals of 1 m. (see Table 2. 1 for abbreviations of microsite types for all 
figures.) 

Topographic classification 

The plot was divided into 160 subplots of 4 m x 4 m. To evaluate the smaller scale 

topographical variation, the elevation of every intersection of the 4 m x 4 m grids was 

measured. A map of exposed rocks in the plot was also made. On the basis of slope 

position (relative position from ridge top to valley floor along a slope), slope direction, 

and amount of exposed rocks, the 160 subplots were categorized into nine microsite 

types (Fig. 2. 1). The mean inclination and the number of subplots in each microsite 

1 0 
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type are shown in Table 2. 1. 

Table 2. 1 Number of subplots taken and mean inclination 

of the nine microsite types 

Microsite type Abbreviation No. Mean 

subplots inclination (0
) 

Lower slope LS 23 13.3 
Stream ST 12 17.8 
Riparian RP 8 19.7 
Rocky RO 19 26.8 
Transitional TR 22 29.0 
Middle slope MS 20 29.7 
Upper slope us 20 29.7 
Ridge RG 21 32.2 
North facing NS 15 34.5 
Whole 160 27.1 

Tree census 

Trees larger than 1 em in DBH (stem diameter at breast height, 1.3 m above the ground) 

were identified in autumn, 1990. Tree height (H) and DBH were measured for the trees 

in the plot. Positions of the stem be1se were mapped. 

Stem volume of a tree (V, dm3) was estimated from H (m) and DBH (em) by the 
following equations (Oohata 1991): 

V = 0.0400 0 0.12 H, 

Do.1 = 0.941 DBH + 0.734, 

where Do.1 is stem diameter at 10% of tree height. 

To compare species diversity between microsite types, Shannon-Wiener's species 

diversity index (H', Pielou 1966) was calculated as follows: 

H ' = - [ P, log2 P; 

where P; is the relative dominance in the number of stems of the ith species. 

Soil sampling and analysis 

The thickness of the soil overlying the bedrock was measured by a soil auger at 94 

points (at every other intersection of the 4 m x 4 m grids, Fig. 2. 1). Soil samples were 

collected at the 94 points in July, 1991. Organic matter of the L-layer (fresh litter) and 

FH-layer (litter fragments and humus) were collected separately from a 20 em x 20 em 

quadrat. Samples of mineral soil were collected by removing a core (11.3 em in diameter 
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and 5 em deep). Soil samples were collected from two layers of mineral soil: 0-5 em and 

5-10 em deep from the mineral soil surface. The soil samples were d ivided into li tter, 

fine root (< 2 mm in diameter), coarse root (~ 2 mm), fine soil (< 2 mm) and gravel (~ 2 

mm). The air-dried weight of each fraction was measured. Five grams of each fraction 

was oven-d ried a t 105°C and weighed to obtain a dry weight ratio. The samples of L

and FH-layers were separately milled and carbon and nitrogen contents were 

determined using a CN-analyzer (Yanaco Mf-600, Kyoto, Japan). 

Statistical analysis 

Analysis of variance (SYST AT 1992) was used to d etermine differences between mean 

values of soil properties of the microsite types. The Tukey's HSD (Honestly significant 

difference) test was used for multiple comparisons. The mean values of soil properties 

in each microsite type were calculated by averaging the values from sampling points 

within each microsite type and on its borders. 

RESULTS 

Species composition 

There were 2546 tree stems (OBH > 1 em) in the plot including P. thunbergii , A. pendu/a 

and 37 other naturally regenerated tree species. Basal area of the plot was 25.2 m2 ha-l. 

Pinus thunbergii constituted 14.3% of the total number of s tems and 67.2% of the total 

basal area. Naturally regenerated P. densiflora constituted 6.3% and 16.9%, respectively. 

The two Pinus species constituted composed 21 % and 84%, respectively. Two 

d eciduous species, C. barbinervis and R. reticulatum constituted 26.8% and 25.0% of the 

number of stems and 6.4% and 1.7% of the basal area. Sprouts of A. pendula 

constituted 11.9% of the number of stems and 2.9% of the basal area. 

Different distribution patterns were observed for the species. The relative basal area 

of P. densiflora was higher in microsite types ST, RP, RO and NS (Table 2. 2; see Table 2. 

1 for abbreviations of microsite types). Alnus pendula was present in all microsite types, 

although the relative basal area was very small. Deciduo us broad-leaved species 

occurred ubiquitously in the plot, while most of evergreen broad-leaved species occurred 

only at lower slope positions near the stream. 
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Grouping of microsite types 

The nine microsite types can be grouped 

into the following three groups based on the 

basal area of P. thunbergii and all trees 

(Fig.2. 2): 

Group 1 (LS, TR, MS, US, RG). The planted 

P. tltunbergii saplings grew successfully. 

The proportion of other species to the total 

basal area was very small. The total basal 

area did not differ significantly between 

five microsite types, although the basal area 

in TR was slightly smaller than those of the 

other four microsite types. 

Group 2 (ST, RO, NS). In this group, the 

0 
LS TR MS US RG ST RO NS RP 
L_ Group 1 _J L Group 2.J Group 3 

Microsite type 

Fig. 2. 2. Basal area of Pinus thunbergii 
trees and trees of other species larger than 
lcm DBH in each m.icrosite type. 

afforestation of P. thunbergii had failed. Naturally regenerated trees such as P. 

densiflora, C. barbinervis and R. reticulatum covered the microsite types. Basal areas in 

this group were smaller than those of Group 1. 

Group 3 (RP). The basal area in RP was much larger than those of other microsite types. 

The larger basal area in RP was due to the presence of large P. densiflorn trees. These 

trees were present before the planting of P. tltunbergii and had grown larger with 

fertilization. 

In this study, the author mainly focused on the five microsite types of Group 1 to 

evaluate interactions between soil properties and P. thunbergii along the slope. 

Species diversity 

The largest value of H' was observed in LS, 

and smallest values in MS and US (Fig. 2. 3). 

For the five microsite types of Group 1, the 

species diversity index decreased upslope, 

although RG showed a slightly larger value 

of H' than MS and US. The value of H' was 

large at ST, while the total basal area in ST 

was very small. Species diversity was 

moderate in RP where total basal area was 

largest. 
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Fig. 2. 3. Comparison of Shannon-Wiener's 
species diversity index H' between the nine 
microsite types. 

Soil thickness and texture 

Variation in soil thickness was observed for 

the nine microsite types (Fig. 2. 4a). The soil 

thickness in the three microsite types at 

lower slope positions (LS, ST and RP) was 

greater (P < 0.01) than in the six microsite 

types at upper slope positions. For these six 

microsite types the mean soil thickness 

ranged between 25 and 35 em and did not 

differ between the microsite types. The mean 

fine soil content in the mineral soil layer 0-5 

em deep was largest in LS (Fig. 2. 4b). The 

smallest value was observed in RO and TR. 

Similar topographic variation was observed 

for fine soil content in the mineral soil 5-10 

em deep. The mean value of the fine soil 

content of the 5-10 em mineral soil layer was 

not significantly different from that of the 

0-5 em mineral soil layer in each microsite 

type. Soil thickness showed larger spatial 

heterogeneity than fine soil content. The 

coefficient of variance for the 94 points was 

105% for soil thickness and 36% for fine soil 

content. 

Soil moisture content 

Soil propertres and stand structure 
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Fig. 2. 4. Soil thickness on the bedrock (a) and 
fine soil content of surface soil 0-5 em deep (b) in 
each microsite type (mean± 1 SE). Bars denoted 
by the same letter are not significantly different 
from each other at P< 0.05 (Tukey's HSD test). 

Moisture content in the L-layer was highest around the stream and decreased upslope 

(Fig. 2. 5). The moisture contents of the FH-layer and the 0-5 em mineral soil layer also 

decreased upslope. The moisture content of the 5-10 em mineral soil layer was almost 

constant for the nine microsite types. The coefficients of variance for the 94 points were 

86%, 61%, 52% and 25% in the L-, FH-, 0-5 em and 5-10 em mineral soil layers, 

respectively. Spatial heterogeneity in soil moisture content decreased with soil depth. 
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L-layer 
a 

ab 

ab 

ab 

a a a 

ST RO NS RP 
L-Group 1 _J L Group 2J Group 3 

Microsite type 

Fig. 2. 5. Moisture contents of the four soil 
layers of each microsite type (mean ± 1 SE). 
Bars denoted by the same Jetter are not 
significantly different from each other at P 
< 0.05 (Tukey's HSD test). Moisture content= 
100 X (fresh weight - dry weight) I dry 
weight. 

Soil carbon accumulation 

The amount of accumulated carbon in the 

L- FH- and 0-5 em and 5-10 em mineral , , 

soil layers was 5.58 ± 2.69, 9.29 ± 7.59, 

3.46 ± 1.70 and 1.35 ± 1.11 ton ha-1 (mean 

± 1 SD), respectively. The amount of 

accumulated carbon in the forest floor 

(L-layer + FH-layer) was much larger than 

that in the mineral soil. The carbon 

concentration of mineral soil (1.26 ± 0.99%, 

mean ± 1 SO) was lower than those of other 

temperate forests (Vogt et al. 1986). 

The total amount of soil carbon was 

smaller at lower slope positions and tended 

to increase upslope (Fig. 2. 6). Variation in 

the amount of accumulated carbon in the 

FH-layer caused the variation in total 

amount across the microsite types. The 

amount o f the FII-layer was larger al 

middle and upper slope positions. The 

amount of accumulated carbon in the 
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Fig. 2. 6. Amount of accumulated carbon in 
each soil layer (mean ± 1 SE). The total 
amounts denoted by the same letter are not 
significantly different from each other at P < 
0.05 (Tukey's HSD test). 

Soil properties and stand structure 

L-layer did not differ between the nine microsite types. The amount of carbon in the 

mineral soil was slightly larger at the lower slope position. 

Aboveground stand structure 

Development of the aboveground structure of P. thunbergii was compared between the 

five microsite types in Group 1. Basal area, mean DBH, tree height and stem volume of 

P. thunbergii of the five microsite types were plotted against tree density (Fig. 2. 7). The 

tree density of P. thunbergii represents the degree of self-thinning at each microsite 

types, as initial tree density was constant for the five microsite types. Tree density was 

largest at RG and decreased downslope. In contrast, the mean DBH, tree height and 

stem volume increased downslope. The basal area was almost constant for the five 

microsite types. These changes in stand structure indicated that growth rate of 

aboveground parts of P. thunbergii was higher at lower slope positions and decreased 

upslope. 
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Fig. 2. 7. The relationships between (a) basal 
area, (b) mean DBH, (c) mean stem height and 
(d) mean stem volume and tree density of Pinus 
thunbergii. Gradients of Hnes are 0,-1/2,-1/2 and 
-3/2 in (a), (b), (c) and (d), respectively. 
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Fine root biomass 

The amount of fine roots in the FH-, and 

0-5 em and 5-10 em mineral soil layers 

was 0.21 ± 0.29, 1.22 ± 1.00 and 0.33 ± 
0.37 ton ha -l (mean ± 1 SO for the 94 

points), respectively. The proportion of 

fine root biomass in the FH-, and 0-5 em 

and 5-10 em mineral soil layers to the 

total fine root biomass was 12%, 69% 

and 19%, respectively. Fine roots were 

con centrated in the soil s urface. 

According to our field observation, fine 

roots were very rare in soil below 10 em 

in depth. 

The total amount of fine roots tended 

to increase upslope (Fig. 2. 8). For the 

five microsite types in Group 1, the 

amount of fine roots in RG (2.97 ± 1.13 

ton ha-l, mean ± 1 SD) was 7.6 times as 

larger than that in LS (0.39 ± 0.21 ton ha-l) . 

DISCUSSION 

Correlations between soil properties 

~ 
E 
0 
:.0 

~ 
Q) 
c 
u: 

1ZZl FH-Iayer 
):::::::: J Mineral soli 0-Scm 
- Mineral soil 5-IOcm 

ST RO NS 
L.__ Group I ____..J L Group 2.J Group 3 

Microsite type 

Fig. 2. 8. Amount of fine root(< 2 mm in 
diameter) in each layer (mean ± 1 SE). The 
total amounts denoted by the same letter are 
not significantly different from each other 
at P < 0.05 (Tukey's HSD test). 

Soil thickness on bedrock and soil texture play an important role in determining the 

soil's capacity to hold water and nutrients (Burke 1989). Soil thickness and fine soil 

content tended to be larger at lower slope positions (Fig. 2. 4). A positive correlation 

was observed between the two soil properties (Table 2. 3, r = 0.354, P < 0.001). Both 

physical soil properties affected the moisture gradient along the slope. The soil moisture 

content showed a higher correlation with soil thickness (r = 0.580, P < 0.001) rather than 

with fine soil content (r = 0.219, P < 0.05). Downslope movement of soi ls and their 

deposition determine the physical soil properties and moisture gradient along the slope 

(Brubaker et al. 1993, 1994). 
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Table 2. 3 Correlation coefficients between soil properties (n = 94) 

Soil Hnesoil Moisture content Amount of carbon 

thickness content 

0-5 em L· layer FH-Iayer 0-Scm L-layer FH-Iayer 0-5 ern 

Soil thickness ••• . ... .. .. • •• . .... 
Fine soil content in 0-5 an layer 0.354 ... .. 
Moisture content in L-layer 0.614 0.155 .... ... ...... ... ... ... ... ... 
Moisture content in FH-Iayer 0.530 0.309 0.736 ....... .. ... • •• 
Moisture content in 0-5 em layer 0.580 0.219 0.613 0.584 ... .. .... .. ... .. 
Amount of carbon in L-laycr 0.135 0.083 0.258 0.263 0.241 

Amount of carbon in FH-layer -0.359 -0.234 -0.259 -0.220 -0.378 0.088 

Amount of carbon in 0-5 em layer 0.308 0.223 0.346 0.457 0.688 0.156 -0.052 

... p < 0.05, ...... p < 0.01, ......... p < 0.001. 

The amount of accumulated carbon in the forest floor increased upslope. The 

increase was mostly due to an increase in the amount of accumulated carbon in the 

FH-layer (Fig. 2. 6). Development of the FH-layer is an indication of slow rates of litter 

decomposition (Nakane 1975; Vogt eta/. 1986; Katagiri 1988; Takeda & Kaneko 1988). 

Decomposition rates of litter are largely influenced by the water and nutrient conditions 

(Gusz eta/. 1976; Swift et al. 1979). The amount of accumulated carbon in the FH-layer 

was correlated with the moisture content of the L-layer (r = -0.259, P < 0.05), FH-layer 

(r = -0.220, P < 0.05) and 0-5 em mineral soil layer (r = -0.378, P < 0.001). These rather 

small correlation coefficient values suggest that other properties such as the nutrient 

content of litterfall may also influence the rates of litter decomposition. 

Developmeut of staud structure and forest succession 

The mean stem volume of P. thunbergii was proportional to the -3/2 power of the tree 

density for the five microsite types of Group 1 (Fig. 2. 7d). This relationship agreed 

with 'the 3/2 power law of self-thinning' proposed by Yoda eta/. (1963). Furthermore, 

the mean DBH and tree height were proportional to the inverse of square root of the tree 

density. In contrast, the basal area was almost constant for the five microsite types 

(Fig. 2. 7a). These relationships agreed with 'the 3/2 power law system' proposed by 

Yamakura (1985). This suggested that the development pattern of aboveground stand 

structure of P. thunbergii did not differ between the slope positions. 

The aboveground structure of P. thunbergii was most developed in LS. 

Correspondingly, many tree species naturally regenerated in LS (Table 2. 2). The species 
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diversity index was highest in LS (Fig. 2. 3). The index was very small in MS, US and 

RG. Tobita et a/. (1993) studied the limiting factors on the distribution of naturally 

regenerated trees in this plot. They reported that dry soil conditions and development 

of the FH-layer prevented the natural regeneration in the middle and upper slope 

position. Therefore, it was suggested that the topographic variations of the soi l 

properties result in spatial heterogeneity in forest succession. 

Morphological plasticity of P. thunbergii 

The changes in the aboveground structure of P. thu11bergii along the s lope followed the 

3/2 power law of self-thinning. This indicated that the aboveground biomass of P. 

thunbergii was largest at LS and decreased upslope. However, the fine root biomass 

was smallest in LS and increased upslope (Fig. 2. 8). The fine root biomass was plotted 

against the tree height of P. thunbergii for the four microsite types in Group 1 (Fig. 2. 9a). 

Of the five microsite types in Group 1, TR was excluded in Fig. 2. 9a, as tree growth 

might be reduced by the rocky soil conditions in TR and the values of aboveground 
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Fig. 2. ?· (a) ~orphological .. plasticity in above- and belowground 
allocation of Pmus thunberg11 along the slope. Fine root biomass 
was pl?tted. against the mean stem height of P. thunbergii in the 
four rrucros1te types of Group 1. (b) Relationship between carbon 
accumulation in the forest floor and mineral soil and the 
developme~t of the .aboveground forest structure along the slope. 
Ac.cumulation of soil carbon was plotted against the mean stem 
he1ght of P. thunbergii 
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stand structure were smaller for its slope position (Fig. 2. 7). Stem height was 

represented as an index of the aboveground biomass. 

The amount of fine root increased upslope with decreasing tree height (Fig. 2. 9a). 

This inverse relationship between fine root biomass and tree height indicated that 

root/shoot ratio of P. thunbergii was modified in response to a topographic gradient 

along the slope. Root/shoot ratio decreases with increases in site fertility and 

aboveground productivity (Keyes & Grier 1981; Santantonio & Hermann 1985; Cameau 

& Kimmins 1989). The variation in forest structure was caused by the morphological 

plasticity of P. thunbergii in response to environmental heterogeneity along the slope. 

Accumulation pattern of organic matter iu plants and soil 

The total amount of soil carbon was smallest in LS and increased upslope with 

decreasing mean tree height of P. thunbergii (Fig. 2. 9b). The larger amount of 

accumulated carbon in the FH-layer suggested slower litter decomposition and lower 

availability of water and/or nutrients. The development of the FH-layer accounted for 

the increase in the amount of soil carbon. Aboveground biomass was negatively 

correlated with amount of soil carbon. In contrast, fine root biomass was positively 

correlated with amount of soil carbon (Fig. 2. 9). This is also a result of the 

morphological plasticity of P. thunbergii in response to the environmental gradient. 

Soil-plant interactions in the stand, combined with topographic variation, resulted in 

spatial heterogeneity of the accumulation pattern of organic matter in plants and the 

soil. 

The small correlation coefficient value between the amount of accumulated carbon in 

the FH-layer and soil moisture content (Table 2. 3) suggested that nutrient content of 

litterfall might also affect decomposition rates. The nutrient content of litterfall has 

been shown to decrease from lower to upper slope positions (e.g. Welbourn eta/. 1981; 

Tsutsumi eta/. 1983; Katagiri 1988). Changes in nutrient use of P. thunbergii in response 

to environmental gradients may also affect the litter decomposition and accumulation 

pattern of soil carbon. 
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Chapter 3 

Nutrient-Uptake and -Use Efficiency of Pinus thunbergii Parl. 

along a Topographical Gradient of Soil Nutrient Availability 

INTRODUCfiON 

Plants vary widely in their efficiency of nutrient uptake and nutrient use in response to 

nutrient availability (Chapin 1980). Previous studies indicated that as nutrient 

availability increased, the proportion of available nutrients taken up by plants would 

decrease (Chapin et al. 1982; Gray & Schlesinger 1983; Shaver & Melillo 1984) and the 

amount of biomass produced per unit nutrient uptake would decrease (Vitousek 1982, 

1984; Pastor et al. 1984; Silver 1994). These plant responses to the nutrient availability, 

such as changes in tissue and litter chemical compositions, have significant effects on 

ecosystem processes such as accumulation of soil organic matter and nutrient cycling 

(Melillo et al. 1982; Pastor et al. 1984; Vitousek et a/. 1987; Berendse eta/. 1989; Matson 

1990; Binkley & Valentine 1991; Vinton & Burke 1995). 

Topography is known to play a critical role in changing the soil nutrient availability 

(Schimeletal.1985; Burke 1989; Zak eta[. 1991; Brubaker 1993, 1994). Several authors 

have shown the topographic variations in nutrient cycling in forest ecosystems 

(Tsutsumi eta/. 1984; Pastor eta/. 1984; Garten et al. 1994). 

The purpose of present study is to investigate the changes in nutrient uptake and 

nutrient use of Pinus tflunbergii Pari. along a topographical gradient of nutrient 

availability. To evaluate the nutrient uptake and nutrient use of plants in response to 

the soil nutrient availability, three efficiency indices were used as proposed by Bridgham 

eta/. (1995): (1) nutrient-response efficiency (production per unit nutrient availability); 

(2) nutrient-use efficiency (production per unit nutrient uptake); (3) nutrient-uptake 

efficiency (nutrient uptake per unit nutrient availability). Nutrient-response efficiency of 

a plant (PR/ Rav> is determined by the product of its nutrient use efficiency (PR/ Rae> 

and its nutrient uptake efficiency (Rae/ Rav): 

PR/Rav = PR/Rac X Rae/Rav· 

where PR is production, Rae is the amount of nutrient acquired, and Rav is nutrient 

availability. These indices can distinguish the ability of a species to acquire nutrients 
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and its ability to use them in growth once acquired . An exact accounting of nutrient-use 

efficiency requires accura te belowground estim ates of production, but this time

consuming to m easure (Vitousek 1982). Bridgha m et a/. (1995) substituted litterfall 

production for aboveground production (PR) as Vitousek (1982) proposed, and they 

used nutrient return in litterfall as an index of the amount of a nutrient acquired for 

production (R3 , ). 

In this s tudy, we examined nitrogen and phosphorus because these nutrients are 

cycled in fo rest ecosystems largely in litterfall (Vitousek 1982) and they are often 

limiting nutrients for plant growth in forest ecosystems (Waring & Schlesinger 1985). 

We addressed two major questions: (1) Does nutrient-response efficiency increase 

with decreasing soil nutrient availability? (2) If nutrient-response efficiency is higher at 

lower levels of soil nutrient availability, do nutrient-uptake and/or its use efficiencies 

increase with decreasing soil nutrient availability? 

METHODS 

Study site 

The study was carried o ul in a P. thunbergii plantation on Mt. Tanakami, Shiga 

Prefecture, Japan. In this area, the bedrock was granite which had been much 

weathered. The soil was sandy. The mean annual temperature was 12.4°C and annual 

precipitation was 1411 mm during the years between 1976 and 1980 (Iwatsubo eta/. 

1982). A study plot of 64 m x 40 m (Fig. 2. 1) was set up in a P. thunbergii plantation 

which had been established in 1971 (34°55' N, 135°58'£, 420 m above sea level). The 

direction of the plot was S55°E. The plot covered a steep ridge and an underground 

stream. Details of the study plot were provided in Chapter 2. 

Topographic classification 

The plot was divided into 160 subplots of 4 m x 4 m. To evaluate the smaller scale 

topographical variation, the elevation of every intersection of the 4 m x 4 m grids was 

measured. On the basis of slope position (relative position from ridge top to valley 

floor along a slope), slope direction, and amount of exposed rocks, the 160 subplots 

were categorized into nine microsite types (Fig. 2. 1 and Table 2. 2). 

LS: Lower slope site near the stream. 

ST: Stream site at which the water was usually undercurrent. 
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RP: Riparian terrace site between bared 

rocks and the s tream. 

RO: Rocky site on the lower slope. 

TR: Transitional site from middle slope 

site to the rocky site. 

MS: Middle slope site. 

US: Upper slope site on the south side. 

RG: Ridge site. 

NS: Upper slope site on the north side. 

The nine microsite types were 

grouped into the following three groups 

based on the basal area of P. thunbergii 

and all trees (Fig. 3. 1). Group 1 (LS, TR, 

MS, US, RG); The planted P. thunbergii 
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Fig. 3. 1. Basal area of trees larger than 1 em 
in DBH (Diameter at breast height) in each 
microsite type. 

saplings successfully grew and predominated. Group 2 (ST, RO, NS); The planting of P. 

thunbergii had failed. Group 3 (RP); Pinus densiflora Sieb. et Zucc. had already existed 

before the planting of P. thunbergii. 

In this study, the author mainly focused on the five microsite types of Group 1 in 

evaluating the response of P. thunbergii to the nutrient gradient along the slope. 

Soil sampling 

Soil samples were collected at the 94 points (at the every other corner of subplots, Fig. 2. 

1) in the plot in July (for extractable phosphorus) and September (for nitrogen 

mineralization rate), 1991 by removing a core (11.3 em in diameter and 5 em deep). The 

soil sampling was conducted a few days after the rain. The soil samples were collected 

from the mineral soil surface (0-5 em), because fine roots were concentrated in the soil 

surface (Chapter 2). The proportions of fine root biomass in FII-, mineral soil 0-5 em 

and 5-10 em layers to the total fine root biomass were 12%, 69% and 19 %, respectively. 

According to our field observation, fine roots were very rare in the soil below 10 em in 

depth. The fresh weight of the soil sample was measured. The soil samples were 

divided into Jitter, fine root (< 2 mm in diameter), coarse root (~ 2 mm), fine soil (< 2 

mm) and gravel (~ 2 mm). The fine soil was used for the analysis of nutrient availability 

in the soil. The air-dried weight of each fraction was measured. Five grams of each 

fraction was oven-dried at 105°C and weighed to obtain dry ratios. 
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Litterfall collection 

Litterfall was collected in litter traps of area 0.25 m2. Ninety-four such litter traps were 

located at the every other corner of subplots (Fig. 2. 1). The litterfall was collected every 

month from May 1991 until April 1992. Litter samples were air-dried and separa ted 

into following parts; pine needle, seed, flower, branch, bark and corn, other species leaf, 

flower, seed, branch and bark, and fine particle. Pine needle contained the needles of P. 

thunbergii and P. densiflora, because it was difficult to distinguish the litter of P. 

thunbergii and P. densiflora. Five grams of each fraction was oven-dried at 105oC and 

weighed to obtain dry ratios. Pine needle and the other litterfall components were 

milled, and prepared for chemical analysis. 

Chemical analysis 

Nitrogen mineralization rate was determined in a 30 day aerobic incubation. The initial 

amounts of nitrate and ammonium were determined by extracting from 5 g of soil with 

50 ml of 2 N KCl solution (Keeney & Nelson 1982). Subsamples (5 g soil) were 

incubated in a controlled-environmental cabinet at 30°C. Soil moisture was maintained 

initial value of each subsample. After 30 days each subsample was extracted in KCI 

solution as described above. Net mineralization rate was calculated as the change in the 

amounts of nitrate plus ammonium over the incubation period. Available phosphorus 

was extracted from 1 g of soil with 7 ml of 0.03 N NH4F and 0.025 N HCl solution 

(Olsen & Sommers 1982). 

Total carbon and nitrogen contents were determined using a CN analyzer (Yanaco 

MT-600). Litterfall samples for the analysis of phosphorus were digested with 

perchloric acid and nitric acid. Nitrate and ammonium contents in the soil sample and 

phosphorus content were analyzed with a spectrophotometer (Hitachi U-1000). 

Statistical analysis 

Analysis of variance (SYST AT 1992) was used to determine differences among mean 

values in each microsite type. The Tukey's HSD (Honestly significant difference) test 

was used for multiple comparisons. The mean values in each microsite type were 

calculated by averaging the values from sampling points within each microsite type and 

on its borders. 
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RESULTS 

Nutrient availability in soil 

Nitrogen mineralization rate and amount 

of extractable phosphorus were 

substituted for nitrogen and phosphorus 

availabilities in soil, respectively (nitrogen 

mineralization rate is more indicative to 

estima te the nitrogen availability than the 

amount of inorganic nitrogen). Nitrogen 

mineralization rate was largest around the 

stream and tended to decrease upslope 

(Fig. 3. 2). Among the five microsite types 

of Group 1, the nitrogen mineralization 

rate decreased upslope, though TR had 

smaller value for its slope position. 

Amount of extractable phosphorus was 

smallest in NS and there was no 

significant difference among the other eight 

microsite types. Among the five microsite 

types of Group 1, the amount of 

extractable phosphorus tended to 

decrease upslope. 

Litterfall productiott 

The mean annual litterfall in the whole 

plot was 6.15 ± 1.76 ton ha -1 yr-1 (mean ± 

1 SO). The mean values of pine needle, 

other organs of pine, and the others were 

3.56 ± 1.29, 1.33 ± 0.55, and 1.22 ± 0.34 

ton ha -1 yr-1 (mean ± 1 SO), respectively. 

Pine needle and whole pine organs 

composed 57.9% and 79.7% of total 

amount of litterfall, respectively. 

The mean annual litterfall was largest 

in LS and smallest in NS (Fig. 3. 3). The 
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Microsite type 
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Fig. 3. 2. Nitrogen mineralization rate and 
amount of extractable phosphorus in each 
rnicrosite type (mean ± 1 SE). Bars denoted 
by the same letter are not significantly 
different from each other at P < 0.05 
(Tukey's HSD test). 
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Fig. 3. 3. Amount of litterfall in each 
microsite type(mean ± 1 SE). The total 
amount denoted same letter are not 
significantly different at P < 0.05 (Tukey's 
HSD test). 
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value in NS was significantly smaller than 

those in other microsite types (P < 0.05). 

There was no significant difference among 

the other eight microsite lypes (P < 0.05), 

though the values in RO and TR were 

slightly smaller. 

Nutrient return in litterfall 

Amounts of nitrogen and phosphorus 

contained in litterfall were 43.5 ± 18.3 

and 3.25 ± 1.29 kg ha -1 yr·I (mean ± 1 

SO), respectively. The amount of nitrogen 

in litterfall was larger at lower slope 

positions and decreased upslope (Fig. 3. 

4). The amount of phosphorus in litterfall 

was also larger at lower positions and 

decreased upslope. 

Nutrient-uptake efficienet; 

The nutrient return in litterfall I soil 

nutrient availability ratio, or nutrient 

uptake per unit nutrient availability, is 

used as an index of nutrient-upta ke 

efficiency (Bridgham et a/. 1995). 

Nitrogen-uptake efficiency was higher at 

upper slope positions (Fig. 3. 5). Among 

the five microsite types of Group 1, the 

nutrient-uptake efficiency increased 

u pslope, though the value in TR was 

relatively higher for its slope position. 

Phosphorus-uptake efficiency was far 

highest inNS, and there was no significant 

difference among the other eight microsite 

types. 
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Fig. 3. 4. Nutrient return in litterfall in each 
microsite type (mean ± 1 SE). Bars denoted 
the same letter are not significantly 
different at P < 0.05 (Tukey's HSD test). 
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Fig. 3. 5. Nutrient return in litterfall I soil 
nutrient availability ratio in each microsite 
type (mean ± 1 SE). Bars denoted the same 
letter are not significantly different at P < 
0.05 (Tukey's HSD test). 

Nutrient-use efficiency 

The mass I nutrient return ratio of 

litterfall, or litterfall production per unit 

nutrient uptake, is used as an index of 

nutrient-use efficiency (Vitousek 1982). 

Nitrogen-use efficiency was smallest in 

LS and increased upslope (Fig. 3. 6). 

Phosphorus-use efficiency increased 

upslope from lower to upper slope 

positions. 

Nutrient-response efficiency 

The ratio of litterfall mass I soil nutrient 

availability, or litterfall production per 

unit nutrient availability, is used as an 

index of nutrient-response efficiency 

(Bridgham eta/. 1995). Nitrogen

response efficiency increased upslope, 

though TR had higher value for its slope 

position (Fig. 3. 7). Phosphorus-response 

efficiency was far highest in NS, and there 

was no significant difference among the 

other eight microsite types. 

D ISCUSSION 

Soil nutrient availability tended to be 

lower at upper slope positions (Fig. 3. 2). 

Nutrient-uptake, its use and its response 

efficiencies tended to be higher at upper 

slope positions (Fig 3. 5, 3. 6, and 3. 7). 

These patterns implied that plants might 

increase the three efficiencies in response 

to the lower soil nu trient availability. To 

elucidate the response of P. tlwnbergii to 
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the soil nutrient availability, the relationships between the three efficiencies and nutrient 

availability within the five microsite types of Group 1 in which P. thunbergii 

predominated were examined (Fig. 3. 8). 

The nutrient-response efficiency was negatively correlated with soil nutrient 

availability (r = -0.929, P < 0.0005 for nitrogen and r = -0.700, P < 0.0005 for 

phosphorus, Fig. 3. 8). The author has two explanations for these negative correlations. 

(1) P. thunbergii changes the nutrient-response efficiency in response to the nutrient 

availability. (2) If these correlations simply resulted from autocorrelations between Y 

and X axes, these correlations would imply that litterfall production is not related to the 
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Fig. 3. 8. Relationships between nutrient-response, its uptake 
and its use efficiencies, and soil nutrient availability within the 
Group 1. 
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soil nutrient availability. Nutrient-response efficiency is determined by the product of 

its nutrient-uptake and its nutrient-use efficiencies. To explain what mechanism could 

account for these negative correlations between nutrient-response efficiency and soil 

nutrient availability, the relationships between nutrient-uptake and its use efficiencies 

and soil nutrient availability are examined. 

The correlation coefficients between nutrient-uptake efficiency and soil nutrient 

availability were significant (r = -0.970, P < 0.0005 for nitrogen and r = -0.803, P < 

0.0005 for phosphorus, Fig. 3. 8). These negative correlations would indicate that 

increase in nutrient-uptake efficiency might be a response of P. thunbergii to the lower 

soil nutrient availability. This suggestion is logical if nutrient uptake is limited. Nutrient 

return in litterfall, or nutrient uptake, decreased with decreasing soil nutrient availability 

(r = 0.308, P < 0.01 for nitrogen and r = 0.272, P < 0.05 for phosphorus), indicating that 

nutrient uptake was limited at lower levels of nutrient availability. This result 

supported the suggestion which is consistent with previous studies showing that 

nutrient-uptake efficiency increased with decreasing nutrient availability (Chapin et al. 

1982; Gray & Schlesinger 1983; Shaver & Melillo 1984). The increase in nutrient-uptake 

efficiency was thought to be achieved by the increase in fine root biomass (Chapter 2). 

The high root I shoot biomass ratio is the response of low nutrient availability and 

increase nutrient uptake (Chapin 1980). 

The correlation coefficients between nutrient-use efficiency and soil nutrient 

availability were significant (r = -0.375, P < 0.005 for nitrogen and r = -0.277, P < 0.05 

for phosphorus, Fig. 3. 8). These negative correlations suggested that P. thunbergii also 

increased nutrient-use efficiency in response to the lower soil nutrient availability. These 

results were consistent with the previous researches on forest ecosystems (Pastor et al 

1984; Silver 1994) and with experimental studies of individual species (Shaver & Melillo 

1984; Birk & Vitousek 1986; Tanner et al. 1992). 

The relationships between nutrient-uptake and its use efficiencies, and soil nutrient 

availability expressed that the change in nutrient-response efficiency was a response of 

P. thunbergii to the soil nutrient availability. The author thus inferred that P. thunbergii 

increased litterfall production per unit nutrient availability resulting from increase in 

both nutrient-uptake and its use efficiencies in response to the decrease in soil nutrient 

availability. 

Nutrient-use efficiency had smaller correlation coefficients with the soil nutrient 

availability than nutrient-uptake efficiency did. The nutrient-use efficiency, however, 

varied widely from 65.9 to 263.1 for nitrogen and from 1152 to 3771 for phosphorus 
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(Nutrient concentrations in litterfall were 0.38% - 1.52% for nitrogen, and 0.027% -

0.086% fo r phosphorus). These variations in nutrient-use efficiency along a topographic 

gradient would have effects on the accumulation o f organic matter and nutrient cycling 

in the forest ecosystem. High nutrient-use efficiency under low nutrient availability 

drives infertile ecosystems toward even greater nutrient deficiency (Shaver & Melillo 

1984), because low litter nutrient content reduces decomposition rate and subsequent 

release of available nutrient (Gosz eta/. 1973; Melillo et al. 1982; Gholz eta/. 1985). 

These positive feedback loops could promote the accumulation of organic matters at 

upper slope positions (Chapter 2). On the other hand, at lower slope positions, the 

turnover of organic matter in the forest floor was very fast. Thus the physiological 

plasticity of a plant species in response to the nutrient gradient could enhance the 

spatial variation in nutrient cycling. 
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Chapter 4 

Nutrient Resorption from Pinus thunbergii Pari. needles 

along a Topographic Gradient 

INTRODUCTION 

Nutrient resorption from senescing leaves is an important adaptation to infertile soils, 

since it reduces nutrient loss (Chapin 1980) and increases the plant's nutrient-use 

efficiency (Vitousek 1982). Though many studies have attempted to correlate nutrient 

resorption efficiency with soil nutrient availability, many details of resorption ecology 

remain to be resolved. In some studies resorption was considered to be more efficient in 

trees growing on infertile soil (Small 1972; Flanagan & Van Cleve 1983; Boerner 1984; 

Chapin & Moilanen 1991; Dalla-Tea & Jokela 1994). In other studies plants growing on 

more fertile soil have higher proportional resorption (Chapin & Kedrowski 1983; Lajtha 

1987; Nambiar & Fife 1987). In still other cases the efficiency of resorption is not 

influenced by soil nutrient availability (Birk & Vitousek 1986; Aerts & Caluwe 1989; 

Lajtha & Klein 1989; Schlesinger et al. 1989; Chapin & Moilanen 1991). 

A reason of these inconsistent results is the ways of these studies which have made 

it difficult to differentiate between phenotypic and genotypic responses to soil fertility 

(Pugnaire & Chapin 1993). 

In Chapter 3, increase in nutrient-use efficiency with decreasing soil nutrient 

availability from lower to upper slope positions within an even-aged Pinus thunbergii 

Parl. plantation were observed. It was pointed out that the increase in nutrient-use 

efficiency was a phenotypic response of P. thunbergii trees to low nutrient availability. 

In the present study, the author focused on the phenotypic response of P. thunbergii 

trees to the nutrient gradient in the plantation. 

The aims of this study are to examine the differences in nutrient contents in green 

and senescent needles, and nutrient resorption efficiency among different slope 

positions, and to evaluate the mechanisms which could account for the increase in 

nutrient-use efficiency with decreasing soil nutrient availability. In addition, the 

relationship between resorption efficiency and other factors that could control nutrient 

resorption such as plant nutrient status (Chapin & Kedrowski 1983; Lajtha 1987) and 

needle mass (Helmisaari 1992) were also discussed. In this study, the author addressed 
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three major questions: 
(1) Do P. t11unbergii trees growing on low nutrient availability soils have smaller nutrient 

content in green and senescent needles? 

(2) Do P. thunbergii trees growing on low nutrient availability soils have higher 

proportional resorption than do trees growing on more fertile soils? 

(3) Is nutrient resorption efficiency positively correlated with nutrient content and/ or 

mass of green needle? 

METHODS 

Study site 

The study was carried out in a P. thunbergii plantation on Mt. Tanakami, Shiga 

Prefecture, Japan. In this area, the bedrock was granite which has been weathered 

deeply. Soil materials were sandy. The mean annual temperature was 12.4°C and 

annual precipitation was 1411 mm during the years between 1976 and1980 (lwatsubo et 

at. 1982). A study plot of 64 m x 40 m was set up in a P. tltunbergii plantation which 

had been established in 1971 (34°55' N, 135°58'£, 420 m above sea level). The direction 

of the plot was S55°E. The plot was laid across a steep ridge and dn underground 

stream. Details of the study plot have been reported in Chapter 2. 

The plot was divided into 160 subplots of 4 m x 4 m. To evaluate the smaller scale 

topographical variation, the elevation of every intersection of the 4 m x 4 m grids was 

measured. On the basis of slope position, direction, and amount of exposed rocks, the 

160 subplots were categorized into nine microsite types (Chapter 2.). In this study, the 

author chose four microsite types (LS; lower slope, MS; middle slope, US; upper slope 

and RG; ridge) to evaluate the effects of slope positions on the response of P. thunbergii 

to the nutrient availability. Some characteristics of vegetation in each microsite type 

were shown in Table 4. 1. Total basal area was almost constant around 30m2 ha-l. Tree 

density was smallest in LS and increased upslope. Mean stem height of P. thunbergii 

was highest in LS and decreased upslope. 

Nutrient availability 

To examine the soil nutrient availability, nitrogen mineralization rate and amount of 

extractable phosphorus in each microsite type were shown in Table 4. 2. Nitrogen 

mineralization rate decreased upslope from 2.56 kg ha-l 30days-1 in LS to 0.46 kg ha-1 
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Table 4. 1 Some characteristics of vegetation in each microsite type. 

Microsite type 

l.S MS us RG 

Total basal area (m2ha-1) 26.8 29.8 31.6 29.3 

Basal area of P. thunbergii (m2ha-1) 21.8 28.1 27.1 24.7 

Number of P. thunbergii (ha-1) 1228 1979 2913 3624 

Mean height of P. thunbergii (m) 12.3 10.2 8.6 7.1 

Table 4. 2 Nitrogen mineralization rate and amount of extractable phosphorus in each 
microsite type (mean ± 1 50). 

Microsite type 

lS M5 us RG 

N mineralization (kg ha-130days-1) 2.56±1.61a 1.73±2.09ab 0.84±0.62bc 0.48±0.40c 

Extractable P (kg ha-l) 4.25±1.46a 3.61±1.72a 3.58±1.39a 3.21±1.67a 

Means denoted by same letter are not different at P < 0.05 in Tukey's HSD test. 

30days-1 in RG. The amount of extractable phosphorus tended to decrease upslope 

from 4.25 kg ha-1 in LS to 3.21 kg ha-t in RG, though there was no significant difference 

among the microsite types. 

Green needle sampling 

Green needles of P. thunbergii were collected from 6 trees in each microsite type after 

needle maturation in the beginning of October. A first-order branch containing 4 age 

classes (0-, 1-, 2-, 3-year) were collected from the uppercrown of each tree. Plant 

material was taken immediately to the laboratory. Green needles were separated into 

the 4 age classes. The needles belonging to the same age class within each tree were 

combined for analysis. 

Senescent tteedle collection 

Senescent needle was collected in 94 litter traps of area 0.25m2 in the study plot 

(Chapter 3). The senescent needle was collected every month from May 1991 until April 

1992. The collected needles (over lyear) were air dried, pooled, milled and prepared for 
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chemical analysis. 

Laboratory analysis 

The length and weight of green needle were measured (100 needles of each age class) for 

determination of the needle mass per unit length. The mass per unit length of senescent 

needle was also determined. Subsamples of the needles were dried at 105°C for 2 days 

to determine the dry ratio. Needle samples for the analysis of phosphorus were 

digested with perchloric acid and nitric acid. Total carbon and nitrogen content in 

needle were analyzed using a CN analyzer (Yanaco Mf-600). Phosphorus content in 

needle was analyzed by the molybdenum blue procedure using a spectrophotometer 

(Hitachi U-1000). 

Data processing 

Resorption efficiency (%) was calculated as: 

Resorption efficiency (%) = (Cg - Cs) I Cg x 100, 

where Cg is nutrient content in green needle per unit length (g cm-1), Cs is nutrient 

content in senescent needle per unit length (g cm-1). Cg was calculated by averaging the 

values of all age classes in each tree, since nitrogen and phosphorus content per unit 

length in green needle did not differ between the needle a~e class. Cs was calculated by 

averaging the values in litter traps within each microsite type and on its borders. 

Therefore, error terms for resorption efficiency among trees could not given. 

This approach does not account for leachjng of nutrients from green and senescent 

needles. Leaching of nitrogen and phosphorus is usually very little (Parker 1983). 

Statistical analysis 

Analysis of variance (SYST AT 1992) was used to determine differences among mean 

values in each microsite type. The Tukey's HSD (Honestly significant difference) test 

was used for multiple comparisons. 

RESULTS 

Nutrient concentration itt needle 

Nutrient concentration decreased greatly during senescence (Fig. 4. 1). The differences in 

nutrient concentration between green and senescent needles were 0.40% - 0.46% for 
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nitrogen and 0.026% - 0.038% for 

phosphorus. 

Nitrogen concentration in green needle in 

LS was higher (P < 0.05) than those in the 

other microsite types which were at upper 

slope positions. Among the other three 

microsite types the nitrogen concentration in 

green needle did not differ significantly. The 

mean nitrogen concentration in senescent 

needle was higher in LS and decreased 

upslope. 

Phosphorus concentration in green needle 

tended to be higher at lower slope positions, 

though there was no significant difference 

among the microsite types (P < 0.05). 

Phosphorus concentration in senescent 

needle was larger (P < 0.05) at lower slope 

positions (lS and MS) and smaller at higher 

slope positions (US and RG). 

Dry weight of needle per unit lengtlt 

Dry weight of needle per unit length also 

decreased during senescence (Fig. 4. 2). The 

differences in dry weight of needle per unit 

length between green and senescent needles 

were 0.09- 1.78 mg cm-1. 

Dry weight of green needle per unit length 

increased upslope from 3.6 mg cm -1 in LS to 

4.6 mg cm-1 in RG. Dry weight of senescent 

needle decreased upslope from 3.5 mg cm-1 

in LS to 2.8 mg cm-1 in RG. 

Nutrient content in needle per unit length 

Nitrogen content in green needle per unit 

length did not differ significantly among the 
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microsite types around 30 11g em I (Fig. 4. 

3). Nitrogen content in senescent needle per 

unit length decreased upslope from 18.3 llg 

cm-1 in LS to 7.61J.g cm-1 in RG. Phosphorus 

content in green needle per unit length did 

not differ significantly among the microsite 

types around 2.5 llg cm-1. Phosphorus 

content in senescent needle per unit length 

had decreased upslope from 1.73 11g em 1 in 

LS to 0.74 11g cm-1 in RG. 

Nutrient resorption efficiency 

We calculated the resorption efficiency 

based on changes in nutrient contents per 

unit needle length, because the dry weight 

decreased during senescence (Fig. 4. 2). 

Nitrogen resorption efficiencies 

increased upslope from 42.6% in LS to 

76.5% in RG (Fig. 4 . 4) . Phosphorus 

resorption efficiency also increased upslope 

from 27.8% in LS to 72.1 % in RG. 

DISCUSSION 

Relation to nutrient-use efficiency 
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Fig. 4 . 3. Nutrient content in green and 
senescent neroles per unit length in 
each microsite type (mean± 1 SE). 
Means denoted the same letter are not 
significantly different at P < 0.05 
(Tukey's HSD test). 

Nutrient concentrations in senescent needle was lower at upper slope positions (Fig. 4. 

1) indicating that nutrient-use efficiency of needle production (needle mass per unit 

nutrient, or inverse nutrient concentration in needle) was higher at upper slope positions. 

Increase in nutrient-use efficiency of litter production in low nutrient sites is thought to 

be partly due to greater biomass production per unit of nutrient (low nutrient 

concentration in tissue) in nutrient poor sites and partly due to more effective resorption 

of nutrient in such sites (Vitousek 1982, 1984). 

The decrease in tissue nutrient concentrations with low nutrient availability was 

shown in some previous studies (e.g., Chapin 1980). In this study, the nitrogen and 
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phosphorus concentrations in green needle 

were not significantly correlated with soil 

nutrient availability r = 0.818, P > 0.17 for 

nitrogen and r = 0.858, P > 0.13 for 

phosphorus). These correlations suggested 

that the contribution of the greater needle 

production per unit nitrogen and 

phosphorus to the increase in nutrient-use 

efficiency of P. thunbergii was small. 

The nitrogen and phosphorus resorption 

efficiencies increased upslope (Fig. 4. 4), 

and inversely related to the soil nutrient 

availability (r = -0.952, P < 0.05 for 

nitrogen, r = -0.980, P < 0.02 for 

phosphorus, Fig. 4. 5). These results 

indicated that the increase in nutrient-use 

efficiency is controlled by increase in 

resorption efficiency in each microsite nutrient resorption efficiency. The increase 

type. in nutrient resorption efficiency with 

decreasing nutrient availability agreed with Pugnaire & Chapin (1993) who showed that 

a high nutrient resorption is a phenotypic response to low nutrient availability. 

Factors affectit~g resorptiott 

Though some factors that could control nutrient resorption have been examined, 

consistent results were not seen. Plant nutrient status affected the nutrient resorption 

efficiency (Chapin & Kedrowski 1983; Lajtha 1987) and some did not (Schlesinger 1989; 

Chapin & Moilanen 1991). In other studies, carbohydrate flux strongly influenced the 

nutrient resorption efficiency (Chapin & Kedrowski 1983; Chapin & Moilanen 1991; 

Herrnisaari 1992). 

In this study, the correlations between nutrient resorption efficiency and nutrient 

content in green needle per unit length was not significant (r = -0.271, P > 0.73 for 

nitrogen and r = -0.525, P > 0.47 for phosphorus). These correlations revealed that 

nutrient resorption efficiency was not controlled by the nutrient status in green needle. 

These results was consistent with Lajtha and Klein (1988) and Chapin & Moilanen 

(1991) who found no relations between nutrient resorption efficiency and plant nutrient 
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status. 

The changes in dry mass per unit 

length during senescence were correlated 

with those in nutrient content (r = 0.994, 

P < 0.01 for nitrogen and r = 0.995, P < 

0.01 for phosphorus). These results 

implied that nutrients were resorbed from 

needles following the resorption of mobile 

carbohydrate (Chapin & Kedrowski 

1983; Chapin & Moilanen 1991; 

Helmisaari 1992). Needle mass loss 

during senescence correlated with the 

green needle mass per unit length (r = 
0.969, P < 0.03), suggesting that needles 

with greater dry mass contained a greater 

portion of carbohydrates (Hermisaari 

1992). 

The dry mass of green needle per unit 

length increased with decreasing soil 

nutrient availability (r = -0.951, P < 0.05 

for nitrogen, r = -0.962, P < 0.04 for 

phosphorus). Mooney & Gulmon (1992) 

showed the inverse relationship between 

leaf weight per unit leaf area and the 

nutrient availability as a response of plants to nutrient gradient. The increase in needle 

dry mass per unit length with decreasing nutrient availability suggested that P. thunbergii 

altered the needle structure in response to low nutrient availability. 

In conclusion, the increase in nutrient resorption is a phenotypic response of P. 

thunbergii to low nutrient availability. The changes in nutrient resorption efficiency 

should control the change in nutrient-use efficiency. The nutrient resorption efficiency is 

more closely related to needle dry mass per unit length than nutrient content in foliar 

needle. The nutrient resorption efficiency could be facilitated by an increase in dry mass 

per unit length in green needle with a decrease in the soil nutrient availability. 
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ChapterS 

Effects of Nitrogen Concentration and Environmental Condition 

on Decomposition Rates of Pine Needle Litter 

INTRODUCTION 

The decomposition of plant litter is an important factor controlling the nutrient cycling 

in forest ecosystems. The decomposition rate determines the rate at which nutrients 

become available for uptake by plants, and plays an important role in determining 

ecosystem productivity. Decomposition rates of litters are regulated by the interaction 

between litter quality, environmental conditions and soil organisms (Swift et al. 1979). 

The litter quality changes greatly with the nutrient-use of plants (Vitousek 1982, 

1984). In general, plants create positive feedbacks between litter quality and 

decomposition rate (Pastor et al. 1984; Hobbie 1992). Plants that occur in low nutrient 

habitats grow slowly, use nutrients conservatively and produce poor quality litter that 

decompose slowly. The feedbacks between litter characteristics and soil nutrient levels 

have important implications for forest species dynamics and ecosystem development 

through time (Pastor & Post 1988). 

The effects of litter quality on decomposition have been demonstrated in studies 

mainly focusing the effects of nitrogen and lignin (Berg & Staaf 1980; Berg et al. 1982; 

Melillo et al. 1982; McClaugherty & Berg 1987; Berg & Ekbohm 1991). 

The purpose of this study is to examine the influence of environmental conditions 

and nitrogen concentration of litter on the decomposition rates and patterns of chemical 

changes in litter during the decomposition processes. The author also discussed its 

implications in nutrient cycling. 

It is often difficult, however, to separate the above-mentioned effects in nature, 

because litter quality is dependent on the site conditions and individual features of litter 

are dependent on each other. In the previous study (Chapter 3 and 4), Pinus thunbergii 

Parl. needle litter with different chemical compositions was collected in an even aged 

plantation which was laid across a steep ridge and valley bottom. In the present study, 

the author placed these needles with different nitrogen concentra tions on different 

topographic positions. Therefore the effects of nitrogen concentration of litter and 

topographic positions can be evaluated excluding the effects of species. 
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METHODS 

Study site 

The study was carried out in a P. thunbergii plantation on Mt. Tanakami, Shiga 

Prefecture, Japan. In this area, the bedrock was granite which has been weathered 

deeply. The soil was sandy. The mean annual temperature was 12.4°C and annual 

precipitation was 1411 mm during the years between 1976 and1980 (Iwatsubo et al. 

1982). A study plot of 64 m x 40 m was set up in a P. thunbergii plantation which had 

been established in 1971 (34°55' N, 135°58'E, 420 m above sea level). The direction of 

the plot was S55°E. The plot covered a steep ridge and an underground stream. 

Details of the study plot have been reported in the previous chapters. 

Litter bag methods 

Decomposition processes of pine needle litter were studied using the nylon mesh bag 

technique. Needle litter of P. thunbergii tree were collected in 94 litter traps as described 

in Chapter 3. Nitrogen concentration of needle litter in each litter trap was measured 

(Chapter 4). Needle litters in some litter traps were combined for preparing three types 

of samples with different nitrogen concentrations (type L, type M and type H). Initial 

nitrogen concentrations of type L, M and H were 0.40 ± 0.02%, 0.61 ± 0.03% and 0.80 ± 

0.05% (mean ± 1 SO), respectively. Five grams of air dried needle litters were placed 

into litter bags (each 15 em X 15 em in area with mesh size 3 mm). 

The three types of litter bags were placed at lower and upper slope positions in the 

plot. At each slope position, 10 sampling plots of 1 m X 1 m were established to 

contain 10 litter bags of each type. After the removal of newly fallen litter, the litter 

bags were fastened to the forest floor by metal pins to prevent and to ensure a good 

contact between litter bags and the organic layers. 

Litter bags were collected every 3 months from March 1992 to February 1993. On 

each sampling occasion, 10 litter bags of each type and position were collected (i.e. one 

litter bag of each type was collected from each sampling plot). 

Laboratory analysis 

Samples of initial and decomposing needles were milled, and prepared for chemical 

analysis. Subsamples of needles were oven-dried at 105°C and weighed to obtain dry 

weight ratios. Total carbon and nitrogen contents were determined using a CN analyzer 

(Yanaco MT-600). 
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Decomposition of pine needle litter 

The decomposition rate of needle litter was estimated using the exponential decay 

model of Olson (1963): 

OM I DMo = exp (-kt) 

where k is the decay constant, tis the month, DMo =original mass of dry matter, OM= 

mass of dry matter after given period. 

Statistical analysis 

Analysis of variance (SYST AT 1992) was used to determine differences among mean 

values in each microsite type. The Tukey's HSD (Honestly significant difference) test 

was used for multiple comparisons. 

RESULTS 

Changes in litter weights and water content 

About 60% of the original mass remained at 

the end of the experiment (Fig. 5. 1). The 

decomposition rate of litter was always 

higher at lower slope position (Fig. 5. 2 and 

Table 5. 1). The differences in remaining 

weight between the slope position increased 

with exposed time, and the differences were 

significant after 9 months, though the 

difference for type L was not significant. 

In the first 3 months there were no 

significant differences in decomposition rates 

among the needle types (Fig. 5. 2). At 6 

month, the remaining weight of type L was 

larger than those of the others at both upper 

and lower slope positions (P < 0.05). After 9 

months, there were no significant differences 

in remaining weight among the needle types. 

Water content of litter was always 

significantly larger at lower slope position (P 
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Table 5. 1. Decomposition rates for Pinus thrmbergii needle 

Lower position 

During TypeL TypeM 

0-3 months 0.027 0.032 

3-6 months 0.060 0.072 

6-9 months 0.048 0.038 

9-12 months 0.004 0.005 
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Fig. 5. 2. Changes in weight of Pinus 
thunbergii needles enclosed in litter 
bags (mean ± 1 SE). • Significant 
differences between the slope position 
at P < 0.05 (Tukey's HSD test). 

Upper position 

TypeH TypeL TypeM TypeH 

0.037 0.024 0.028 0.029 

0.075 0.049 0.067 0.069 

0.039 0.050 0.030 0.030 

0.011 0.001 0.005 0.005 

< 0.05, Fig. 5. 3). There were no significant 

differences in water content among the 

needle types. 
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Fig. 5. 3. Changes in water content 
of Pinus thunbergii needle litter 
(mean± 1 SE). See Fig. 5. 1 and Fig. 
5. 2 for symbols. 

Cltattges in nitrogen concentration 

Changes in nitrogen concentration during 

decomposition was related to accumulated 

litter mass loss (Fig. 5. 4 and Table 5. 2). 

Nitrogen concentration increased linearly 
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Clzanges in nitrogen mass 

Decomposition of pine needle litter 

with accumulated mass loss in all types of 

needle at both slope positions. To 

compare relative rates of concentration 

increases the author used the slope 

coefficient. High coefficient values reflect 

high increase rates and vice versa. The 

slopes of the regression lines for all types 

of needle were larger at upper slope 

position (P < 0.05). The slopes of the 

regression lines relating nitrogen 

concentration to accumulated mass loss 

did not differ significantly among the three 

types of needle. 

Table 5. 2 Slopes of the regression lines 

relating nitrogen concentrations to 

accumulated mass loss for decomposing Pinus 

thunbergii needles. 

Needle type Lower position Upper position 

TypeL 0.01119 0.00060 

TypeM 0.01204 0.00095 

Type H 0.01094 0.00077 

Remaining nitrogen in needle of type H and type M decreased in the first 3 months (Fig. 

5. 5). Remaining nitrogen of type L slightly increased throughout the observation period. 

After 3 months, the d ifferences in the remaining nitrogen of needles in all three types 

were decreasing as compared to the initial values. However, after 3 months, in the 

upper slope position, the remaining nitrogen was almost constant. At lower position, 

the remaining nitrogen increased gradually. The differences in remaining nitrogen of 

needles among the three types did not change greatly at both upper and lower slope 
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positions after 3 months. 

DISCUSSION 

Needle mass loss 

After 12 months weight rema1mng 

differed significantly between slope 

positions, though there were no 

significant difference among the type of 

needles (Fig. 5. 1 and Fig. 5. 2). 

Water contents in needles of all types 

were always higher at lower slope 

position. These results suggested that 

contribution of environmental conditions 

to the decomposition rates was larger 

than that of litter chemical composition. 

Berg & Staaf (1980) proposed a two

phase decomposition model in which the 

former phase was regulated by the litter 

nutrient concentrations and the latter 

phase by the lignin concentration. In the 

later stage, the decomposition rates were 

inversely related to nutrient concentration 

(Berg & Ekbohm1991). In the present 

study, the decomposition rate of needle with higher nitrogen concentrations were faster 

than those with lower nitrogen concentrations during 3 - 6 month period (Table 5. 1). 

On the other hand, the decomposition rate of needle with higher nitrogen concentrations 

were slower than those with lower nitrogen concentrations during 6- 9 month period. 

These resuJts supported the model of Berg & Staaf (1980), and agreed with Berg & 

Ekbohm (1991). 

Nitrogen dynamics 

Nitrogen concentrations of needle litter increased linearly with the accumulated mass 

loss. The slope for nitrogen increase was steeper at lower s lope position (Fig. 5. 4). 

Nitrogen mineralization rate at lower slope positions was higher than that at upper 
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positions in this plot (Chapter 2). These results indicated that decomposing 

microorganisms uptake available nitrogen at higher rate at lower slope positions (Berg & 

Tamm 1994). The slope for nitrogen increase did not differ regardless of the nitrogen 

concentration in needle (Fig. 5. 5 and 5. 4). These results suggested that increase in 

nitrogen concentration in litter was not affected by the substrate but by the biotic and 

abiotic environmental conditions. 

Remaining nitrogen in needle decreased in the first 3 months, though the nitrogen in 

needle with lower nitrogen concentration increased slightly (Fig. 5. 5). The nitrogen loss 

of needle with higher nitrogen was larger than those with lower nitrogen concentration. 

The nitrogen loss was thought to be caused by leaching of easily soluble materials. The 

lower nitrogen concentration of needle litter was achieved by higher proportion of 

resorption during senescence (Chapter 4). Easily soluble nitrogen in the needle with 

lower nitrogen concentration might had been resorbed during senescence. 

The smaller release of nitrogen from the needle with lower nitrogen concentration 

could feedback through the lower nitrogen availability in soil to lower nitrogen 

concentration in litter. 
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Chapter 6 

General Discussion 

In this chapter, 1) the patterns of soil properties and stand structure along a 

topographic gradient, and 2) the topographic variations in interactions between plants 

and the soil will be discussed in view of the results presented in the preceding chapters. 

Figure 6. 1 and Table 6.1 show the differences in nutrient cycling caused by the 

variations in the interactions between plants and the soil along a slope. 

Nutrient in litterfal 
Large 

Decomposition rate 
Fast 

Increase in 
Nutrient-use efficiency 

Mass of fine root 
Large 

Increase in 
Nutrient-uptake efficiency 

Fig. 6. 1. Nutrient cycling and nutrient use of plants along a slope. Some of nutrient flows are 
indicated by arrows. 
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Table 6.1 Comparison of nutrient cycling and nutrient use of 
plants in a Pinus thunbergii plantation along a slope. 

Slope position 

Lower Upper 

Soil depth ) 

Fine soil content ) 

Moisture content in soil ) 

Carbon in forest floor < 
Carbon in mineral soil ) 

Nutrient availability ) 
Tree height ) 

Fine root < 
Nutrient return in litterfall ) 

Nutrient-uptake efficiency < 
Nutrient-use efficiency < 
Nutrient-response efficiency < 
Nutrient resorption efficiency < 
Decomposition rate of litter > 

Topographic variations in soil properties 

The soil properties varied largely with slope position from ridge top to valley bottom. 

Soil thickness, fine soil content and soil moisture content were larger at lower slope 

positions (Chapter 2). The patterns observed were thought to be caused by water and 

material movement from upper to lower position. The influence of topography on the 

movement of water and soil can influence or control the type and intensity of soil 

processes (Huggett 1975; Pennock eta/. 1994). The amount of accumulated carbon in 

the forest floor increased upslope, while the amount of accumulated carbon in the 

mineral soil layer decreased upslope. The nutrient availability in the soil decreased 

upslope for nitrogen and phosphorus (Chapter 3). 

At upper slope positions, downslope runoff and lateral flows of water within the 

soil, led to water deficiency. As a consequence of lower water content in the soil, the 
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lower decomposition rate of organic matter (Chapter 5) and lower nutrient availability 

occurred at upper slope positions. 

Topographic variations in stand structure 

The mean stem diameter, height and volume of P. thunbergii increased downslope with 

decreasing tree density (Chapter 2). The changes in the aboveground structure of P. 

thunbergii along the slope followed the 3/2 power law of self-thinning (Yoda eta/. 1963), 

suggesting that development pattern of aboveground stand structure of P. thunbergii did 

not differ among the slope positions. 

The amount of fine root increased upslope (Chapter 2). The increase in the amount 

of fine root corresponded to the decrease in the soil water content and nutrient 

availability (Chapter 2 and 3). 

Aboveground structure of P. thunbergii was more developed at lower slope positions 

in relation to soil water content and nutrient availability (Chapter 2 and 3). In 

accordance with the development of aboveground structure of P. thunbergii, many tree 

species naturally regenerated, and the species diversity was higher at lower slope 

positions (Chapter 2). In addition to the lower nutrient availability, the dry soil 

conditions and development of FH-layer prevented the natural regeneration at middle 

and upper slope position (Tobita et a/. 1993). The topographic variations of the soil 

properties induced the spatial heterogeneity in forest succession. 

Interaction between plant and soil 

Morphological plasticity 

Aboveground biomass of P. thunbergii decreased upslope, while the amount of fine root 

increased upslope with the decrease in soil water content and nutrient availability 

(Chapter 2 and 3). The inverse relationship between fine root biomass and aboveground 

biomass indicated that root/shoot ratio of P. thunbergii was modified in response to a 

topographical gradient of water and nutrient availability. At upper slope positions in 

which water and nutrient availabilities were lower, P. thunbergii had higher root/shoot 

ratio to acquire more water and nutrient. Gross allocation to below-ground, however, is 

not known in this study, and few studies have been conducted on gross allocation of 
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production to below-ground in forests (Keyes & Grier 1981; Santantonio & Hermann 

1985; Cameau & Kimmins 1989). Further investigation of below-ground including root 

turnover and mycorrhizal colonization is needed. 

Effect of plant morphological response on soil 

The res ponses of plants to heterogeneous soil environments have important 

consequences for community structure (Tilman 1988). In this study, the morphological 

plasticity of P. thunbergii in response to environmental heterogeneity along the slope was 

observed. The trade-off in allocation of captured resources between above- and below

ground caused the variation of forest structure along the slope. Aboveground structure 

of P. thunbergii was more developed and many tree species naturally regenerated at 

lower slope positions. The regeneration of other broad-leaved species has also 

important implications for decomposition processes. The leaves of broad-leaved 

species were more easily decomposable than those of pine trees (Berg & Staaf 1980). 

The higher decomposition rate of litter could feedback into the higher nutrient 

availability {Pastor et al. 1984; Shaver & Melillo 1984). 

Physiological plasticity 

To evaluate the response of P. tlwnbergii to the nutrient gradient, nutrient-response 

efficiency (production per unit nutrient availability), nutrient-uptake efficiency (nutrient 

uptake per unit nutrient availability), and nutrient-use efficiency (production per unit 

nutrient uptake) were examined along the topographical gradient of nutrient availability 

(Bridgham et al. 1995. Chapter 3). 

All three efficiencies increased upslope with decreasing soil nutrient availability. The 

increase in nutrient-response efficiency was achieved by both increases in nutrient

uptake and nutrient-use efficiencies. At lower levels of nutrient availability, P. 

thunbergii increased litterfall production per unit nutrient availability by increasing in 

both the ability to acquire nutrients and ability to use them in growth once acquired. 

The increase in nutrient-uptake efficiency is thought to be achieved by the increase in 

fine root biomass and nutrient uptake per unit root mass (Chapin 1980). In the present 

study, the increase in fine root biomass contributed to the increase in nutrient-uptake 

efficiency of P. thunbergii, though it is not shown whether nutrient uptake per unjt root 

mass decreases as the nutrient availability decreases (Chapin 1980; Gray & Schlesinger 

1983). 

The increase in nutrient-use efficiency of Jitter production in low nutrient sites is 

58 

General d1scussron 

deduced to be partly due to greater biomass production per unit of nutrient (low 

nutrient concentration in tissue) in nutrient poor sites and partly due to more effective 

resorption of nutrient from senescing leaf in such sites (Vitousek 1982, 1984). ln the 

present study, the increase in nutrient-use efficiency of P. thunbergii was achieved by the 

increase in nutrient resorption efficiency (Chapter 4). The contribution of greater needle 

production per unit nutrient to higher nutrient-use efficiency was small. 

In previous studies, though the relationships between resorption efficiency and some 

factors that could control nutrient resorption such as plant nutrient status (Chapin & 

Kedrowski 1983, Lajtha 1987) and needle mass (Helmisaari 1992) were examined, 

consistent results were absent. In this study, the nutrient resorption efficiency was not 

controlled by the nutrient status in green needle. Nutrients were resorbed from needles 

following the resorption of mobile carbohydrate. The nutrient resorption efficiency could 

be facilitated by the increase in dry mass of green needle per unit length (containing a 

greater portion of carbohydrates) in response to low nutrient availability. 

Effect of plant physiological response on soil 

The response of plant to nutrient availability along the slope position may exert 

important ecosystem processes. Nutrient uptake by plants plays an important role in 

promoting tight nutrient cycling (Borman et al. 1977). Nutrient-uptake efficiency was 

higher at upper slope positions with lower nutrient availability. Increase in nutrient

uptake efficiency can increase the proportion of available nutrient acquired by plant 

within an ecosystem. Then nutrient losses from an ecosystem would decrease. 

The nutrient use-efficiency of plants increase upslope. High nutrient-use efficiency 

under low nutrient availability drives infertile systems toward even greater nutrient 

deficiency (Shaver & Melillo 1984), because low litter nutrient content reduces 

decomposition rate and subsequent release of available nutrient (Gosz et al. 1973; 

Melillo et al. 1982; Gholz et al. 1985). These positive feedback loop leads to tight 

nutrient cycle system which holds nutrient in the forest floor and decreases the loss of 

nutrients from ecosystem to outside (Millar eta/. 1979). 

To test the positive feedback loop, the effects of initial nitrogen concentration of 

litter on the decomposition process were examined (Chapter 5). The decomposition rate 

of needle litter over 12 months did not differ regardless of the initial nitrogen 

concentration in needle, though the decomposition process differed. However, about 

60% of the original mass remained at the end of the experiment. The effects of initial 

nitrogen concentration on the decomposition process in later stage was unknown. The 
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influence of litter quality such as lignin and cellulose on the process of the concomitant 

mineralization and humus formation in FH-layer should be studied. 

The nitrogen release from needle with higher nitrogen concentration was larger than 

those with lower nitrogen concentration in the first 3 months. The smaller release of 

nitrogen fro m the needle with lower nitrogen concentration led to the lower nitrogen 

availability. The lower nitrogen concentration of needle litter was achieved by higher 

proportion of resorption during senescence. These results suggested that the higher 

nutrient resorption efficiency could feedback to the lower nutrient availability. 

The downslope movement of water and materials along a slope caused the topographic 

variations in the soil properties and nutrient availability. In response to the variable 

environmental condition, plants alter their resource use in morphological and 

physiologica l ways. These responses of plants feedback to the envi ronmental 

conditions. The differences in the interaction between plant and soil along a 

topographic gradient made the topographic variations of nutrient cycling in a forest 

ecosystem. 
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SUMMARY 

Chapter 1 

Forest ecosystem is a result of interactions between plants and soil. Topography plays 

an important role in constituting the spatial variation in the forest ecosystem. In this 

study, focusing on the interactions between plants and soil, the topographic variations 

in stand structure and nutrient cycling were revealed in a Pinus thunbergii Pari. 

plantation on Mt. Tanakami, Shiga, Japan. 

Chapter 2 

Soil properties and above- and belowground forest s tructure were examined. The soil 

properties and stand structure varied greatly with slope position from ridge top to 

valley floor. Soil thickness, fine soil content and soil moisture content were greater in 

lower slope positions. The amount of organic carbon in the forest floor was greater in 

upper slope positions. The organic carbon content in the mineral soil was slightly 

greater in lower slope positions. These changes in soil properties suggested an upslope 

decrease in decomposition rate and water and/or nutrient availability. The 

aboveground structure of P. 1/zunbergii was more developed at lower slope positions. 

The mean stem diameter, height and volume of P. thunbergii increased downslope with 

decreasing tree density. However, fine root biomass increased greatly upslope. This 

inverse relationship between tree height and fine root biomass indicated morphological 

plasticity of P. tlzunbergii in exploiting environmental heterogeneity. Variations in 

soil-plant interactions in the stand along various topographies caused spatial 

heterogeneity in the accumulation pattern of organic matter in plants and the soil. 

Chapter 3 

To examine responses of plants to nutrient availability, the author investigated changes 

in soil nutrient availability, litterfall production and nutrient content in litterfall along a 

topographic gradient in a Pinus thunbergii Pari. plantation. Responses were evaluated in 

terms of three efficiency indices: (1) nutrient-uptake efficiency (the ratio of nutrient 

return in litterfall I soi l nutrient availability); (2) nutrient-use efficiency (the mass I 
nutrient return ratio of litterfall); (3) nutrient-response efficiency (the ratio of litterfall 
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mass 1 soil nutrient availability). These indices can distinguish the ability of a species 

to acquire nutrients and its ability to use them in litterfall production. Nitrogen and 

phosphorus availabilities in soil were lower at upper slope positions. The three 

efficiencies were higher at upper slope positions and negatively correlated with soil 

nutrient availability for both nitrogen and phosphorus. The increase in nutrient

response efficiency was achieved by both increases in nutrient-uptake and nutrient-use 

efficiencies. 

Chapter 4 

Nitrogen and phosphorus resorption from needles of Pinus thunbergii Parl. trees planted 

on four different slope positions (LS; lower slope, MS; middle slope, US; upper slope 

and RG; ridge) were examined in relation to soil nutrient availability. Nitrogen 

concentration in green needle was greater at LS. Phosphorus concentration in green 

needle did not differ between the slope positions. Both nitrogen and phosphorus 

concentrations in senescent needle decreased from lower to upper slope positions. 

Nutrient resorption efficiencies (resorbed nutrient I nutrient content in green needle) 

increased from lower to upper slope position (42.6 - 76.5% for nitrogen and 27.8 -

72.1% for phosphorus) with decreasing soil nutrient availability. Nutrient resorption 

efficiency was found to be related to the needle dry mass per unit length. There was no 

clear correlation between nutrient resorption efficiency and the nutrient content in green 

needle. 

Chapter 5 

To test the feedbacks between litter quality and nutrient availability, the effects of initial 

nitrogen concentration of litter on the decomposition process were examined by an 

experimental study using litterbags. After 12 months, weight remaining of Jitter was 

smaller at the lower slope position, while the weight remaining of litter did not differ 

regardless of the initial nitrogen concentration in litter. Water contents in litter were 

always higher at lower slope position. The decomposition process was different 

according to the the type of litter. At the 6th month, the remaining weight of lower 

nitrogen litter was larger than those of the others. After 9 months, there were no 

significant differences in remaining weight among the needle types. Nitrogen 

concentration increased linearly with accumulated mass loss. The increase in nitrogen 
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concentration and decrease in remaining weight was greater at lower slope position. The 

increase in nitrogen concentration in litter did not differ regardless of the initial nitrogen 

concentration in litter. The nitrogen release from litter with higher nitrogen concentration 

was larger than those with lower nitrogen concentration. 

Chapter 6 

The topographic variations in the soil properties, stand structure, and interactions 

between plants and soil were discussed on the basis of the preceding chapters. The 

downslope movement of water and materials along a slope caused the topographic 

variations in the soil properties and nutrient availability. In response to the variable 

environment, plants alter their resource use in morphological and physiological ways. 

These responses of plants feedback to the environmental conditions. The differences in 

the interaction between plants and the soil along a topographic gradient made the 

topographic variations of nutrient cycling in a forest ecosystem. 
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