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the crystals of tryptophan, it was diluted with water to dissolve the crystals
and used for analysis. Chorismate was also quantified by HPLC (UV detection

at 275 nm) using the same column and mobile phase.

RESULTS AND DISCUSSION

Effect of amplified DS on tryptophan production.

C. glutamic KYI089%4 is a tryptophan-producing strain that 1s derived
through multiple rounds of mutagenesis from strain KY9456 (7), a phenylalanine
and tyrosine double aux roph with a lesion in the chorismate mutase gene.

The producer is derepressed with respect to tryptophan repression and so

overexpresses tryptophan-biosynthetic enzymes by a fewfold relative to the

expected that amplification of DS, which initiates the pathway by condensing
phosphoenolpyruvate and erythrose-4-phosphate to yield 3-deoxy-D-arabino-
heptulosonate 7-phosphate, could increase the net carbon flow down the
pathway, thereby raising tryptophan production.

To explore this possibility, plasmid pCAl that contains the gene for the
feedback-insensitive DS, which had been cloned from the regulatory mutant
C. glutamicum KY10694 (10), was introduced into strain KY10894 by protoplast
transformation and the resultant transformant was examined in its DS activity
and tryptophan productivity (Table 1). Enzyme assays with the crude cell
extracts confirmed that the transformed cells overproduced DS by about
eightfold relative to the control host cells. The transformed strain indeed

exhibited an increased productivity of tryptophan but the production level was

wild-type strain, C. glutamicum ATCC 130  (Table 1). As compared with the far lower than we expected. Instead chorismate, the terminal metabolite in
wild-type enzyme the first key enzyme ANS of the pathway 1s slightly

desensitized to inhibition by tryptophan, whereas the second one PRT remains
unchanged in sensitivity to { ¢ end prod U inhibition (Table 1). However, TABLE 1. Levels and feedoack-sens ities of the key enzymes and metabolite accumulation

since the tryptophan sensitivity of PRT is sti | much lower than that of ANS, in C. glutamicum KY10894: dits >combinant ivatives.

PRT is considered free substa 1ally from the feedback inhibition within the

. . C ; Characteristics
cells. When strain KYI 94 is cultivated under conditions of phenylalanine

Strain DS ANS PRT Met olite accumulation”
and tyrosine limitations, the symergistic inhibition of DS 1s bypassed and (plasmid) .\ .

Sp.act® Sp.act. 50% int  ition~ Sp. act. 50% inhibiton  Tryptophan Chorismate Anthranilate
thus carbon is channelled into the common pathway to chorismate, thence to ! {(mM} {0/ (o) (a1}
tryptophan through the genetically tered terminal pathway. This strain has ATCC13032 16.0 0.83 0.003 0.70 0.19 0.0 0.0 0.0
the ability to produce tryptophan at a titer of approximately 8 g per liter in KY10894 18.2 27 0.008 13 019 8.1 0.0 0.0
test—tube cultivation with TP1 medium that contains 6% glucose (Table 1}. KY10894 (pCA1)  141.9 2.4 0.008 13 019 9.0 12 0.0

In improving strain Ky 894, the author first attemted to identify a KY10894 (pKW1)  150.2 29 5 0.008 129 0.19 6.1 04 26

rate-limiting step by analyzing what intermediate along the overall pathway to KY10894 (pKWO9) 146.8 261 0 o i o o -

tryptophan was excrete in the fermentation broth. However, no intermediates

a - . .
were detectable. One possible explanation for this result 1s that the Expressed as nanomoles of product per milligram of protein per minute.

. . bConc:emraticuns of tryptophan giving 50% inhibition.
metabolite flux toward tryptophan woul have been restricted at the earliest

. i . ¢ Production was carried out in test tubes as described under Materials and Methods.
step in the common pathway, namely, the DS reaction. If that is true, 1t 15

46 (7










































biosynthetic gene on the plasmid and its absence from the chromosome. The
advantage of this system is that it provides selection for plasmid maintenance
in complex media containing serine, because the amino acid is consumed rapidly
by C. glutamicum cells. The data presented in this study strongly suggest
that the presence of the serine-biosynthetic gene on the plasmid can be
successfully used to provide selective pressure for maintenance of the plasmid
even in large-scale industrial fermentation. Moreover, considering that
serine is generally a central interme ate in cell metabolism, this plasmid
stabilization system should be applicable to other genetically modified
bacteria.

The best recombinant strain thus far constructed can produce tryptophan
at a titer of 50 g/liter after 80 h in jar-fermentor cultivation without the
addition of tibiotics. The specific productivity and the yield were 0.63
g/liter per hour d 20.0%Z, respectively. In any point of view, the ability
of the strain to produce tryptophan directly from sugar is the I :hest that

has ever been obtained by fermentation with microorganisms.

SUMMARY

Introduction of plasmid pKW99, which coexpresses the deregulated 3-deoxy-
D- ' ino-heptuloson .e 7-phosphate synthase and tryptoph -biosynthetic

enzymes, into tryptophan-producing Corynebacterium g. tamicum KY] 94 resulted

in a marked increase (54%) in yield of tryptophan production (43 g/liter), but
incurred two problems. One was a decline in sugar consumption at the late
stage of fermentation, and the other the loss of { 2 plasmid in the absence of
selective pressure. The retarded sugar assimilation was found to be
attributed to the death of cells that arose from the detrimental action of
indole, the 1 .t intermec ate in t - tryptophan pathway, accumulated as a
by-product. A chain of these events simultaneously disappeared when serine,

the other substrate of the final reaction by tryptophan synthase, was added.

T4

These results indicated that a limiting supply of serine was the cause of the
decline in the sugar consumption. Thus, to increase carbon flux into serine,
the gene for 3-phosphoglycerate dehydrogenase (PGD), the first enzyme in the
serine pathway, was cloned from wild-type C. glutamicum ATCC 31833 and joined
onto pKW99 to genmerate pKW9901. Strain KY10894 transformed with pKW9901
favorably consumed sugar through fermentation with accumulating little indole.
Furthermore, on the basis of the observation that serine in the medium was
consumed rapidly by the recombinant cells, the author developed a unique
plasnmid stabilization system composed of KY9218 (a PGD-deficient serine-
requiring strain of KY10894) and pKW9901: In its combination, cells lacking
the plasmid should not proliferate in the fermentation medium which does not
contain serine. Even if selective pressure was not applied, the modified
strain KY9218 with pKW9901 stably maintained the plasmid during fermentation
and produced 50 g/liter of tryptophan in a 61% increased yield relative to

strain KY10894.
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