RMAFEHER) KT LY %
il

KURENAI

Kyoto University Research Information Repository

Reflection Mechanism in Constructive Programming(

Title Dissertation_[1 1)

Author(s) | Kameyama, Yukiyoshi

Citation Kyoto University (0 O 0O 0)

Issue Date | 1996-07-23

URL http://dx.doi.org/10.11501/3117211

Right

Type Thesis or Dissertation

Textversion | author

Kyoto University

Reflection Mechanism
in Constructive Programming

Yukiyoshi Kameyama
April, 1996

Abstract

This thesis studies the role of the reflection mechanism in Constructive Program-
ming.

Constructive Programming is a method of program development based on con-
structive logic in which correct programs are automatically extracted from proofs
of given specifications. Recently it has been widely accepted that the reflection
mechanism is quite useful in Constructive Programming.

RPT. Reflective Proof Theory, is a constructive logic proposed by Sato[34].
Since the reflection mechanism is built-in in RPT, it can be a suitable basis for our
study. In Chapter 2, we first propose a formal system of RP7. We then give several
theorems in the formal system, which show the expressive power of the reflection
mechanism of RPT. Finally, we study metamathematical properties of the formal
system. In particular, the strong normalization theorem and the consistency are
proved for our formal system without inductive definitions.

In Chapter 3, we describe our Constructive Programming System based on the
formal system given in Chapter 2. The system is implemented by the programming
langnage A, which is at the same time the object language of RP7T. We give
an overview of our Constructive Programming System. As a substantial example
of proof development using our system, we demonstrate a mechanized proof of the
Church-Rosser property of the programming language A. We also present a concrete
example of Constructive Programming based on our system, and present a method
to eliminate redundant parts from a program.

In Chapter 4, we will study yet stronger reflection mechanism. Although the
reflection mechanism in RPT is quite useful, we cannot re-define a modified prov-
ability relation internally. The re-definition of the provability relation is the key to
eliminate redundant parts in extracted programs. To solve this problem, we propose
the mechanism of half-monotone inductive definitions. A half-monotone inductive
definition is an extension of the conventional monotone inductive definition so that
we can define the provability relation naturally. We give a theory and a realizability
interpretation of the half-monotone inductive definitions. We also interpret several
theories such as Martin-Lof’s type theory and the Logical Theory of Constructions
using this mechanism. We also apply the mechanism to the provability relations
and show a method of program refinement.

In Chapter 5, we turn our attention to programming languages. The program-

ming language A given in Chapter 2 is a purely functional one in the sense that
there are no side-effects. It is an interesting research problem to introduce im-
perativ{: features into our language. The programming language A! (pronounced
“lambda bang”) was proposed by Sato[36] as an extension of A in which the as-
signment and the while statements are introduced. We give some conservativeness
results on A! in Chapter 5.

In Chapter 6, we give concluding remarks of the thesis.

Acknowledgements

I would like to express my heartful thanks to Professor Masahiko Sato of Kyoto Uni-
versity for encouragements and continual supports. I would like to thank Professor
Takayasu Ito. Professor Taiichi Yuasa, Professor Makoto Tatsuta, Professor Peter
Dybjer, Dr. Carolyn Talcott, Mr. Yasuyuki Tsukada, Mr. Atsuhiko Yamanaka for
helpful comments and pointing out errors in earlier drafts.

Finally, I wish to thank my wife Kaori for patience and encouragements during
the period of writing this thesis.

Contents

1 Introduction 1
1L BoekBrouno e com v w0 i e e e gl b iy G R e 1
1:2 Goaliof This researeh .o o ¢ 5w in a e A e e e e e e 4
1:3 Onrtlinienof thetheshs oo % s 5 aos e i « @) we ety o =il 7 5 = 5

2 Formalizing RPT 7
21 Semantical Theory RPT . .« v oo olbmthii s wis v o b w0 o8 e s 7
22 Fornal Systert REE. - 000 i som mm0 fens mie B e s) oot et s i 5 10

22,1 [The'target of the formalization <.l v sinin s m v« o =0 m s s 10
2:2.2 Termsand their reduction rules .+ . < v 5 i 5 555 55 12
2:2.3 Judgernent and inferencerules . .. vow vs wan B G dw e s 15
224 RPT and RPE ciarcian: ol oot i o ididias ol sain -2 %% 22
2.3 Sevarsl Theorems :RPT o soiis iase v v o i 36 v % 50 om0 6 22
230 Sicombinator ©oal fay: iyt S ard aitidiei RS g o L o 22
232 bet and Russell’s parador. &« v 0 5iaie m i ne wian o 0 oo 23
2.3.3 Useof reflectivetower-1o v cv v o oinie 2m wo o 25
204 VseolxeflechivadbwWard: rall o 2 6 % wes e Paiusd » CF % .5 4 4 25
24 Strong Normalizability of RPT s s s aics wamsm va o4 5 6 26
2.4.1 Strong Normalizability and Weak Normalizability 27
2:4.2° Strong Normalizability of BPT . o o v s iwows a ilaw g o3 27
24.3 Correspondence between Proof-figures and Proof-terms 28
2.4 Formalizing RPTq o o0 o aiosbe s & md@ii i & G100 o 29
2:4.5 Reduability and i85 propertien « . « o <« o v i o ol s ais o 30
2416; Properfiesiof BTy .« 0% { fla sl s der bl S0 o oo b 37
24.7 Propertiesof RPTy and BPT . 20 0s 0nitnbe 08 bt ion 9 38
20 COnCIIBION :c o5 uihs 4 5@ iais e s e o s & e e e S 38

3 Constructive Programming System based on RPT 41
3.1 Introduetion o siana s S aneiieis s e e e s kel 41
3:2 Overview of e SVa eIl o il i s T 4 bl f 5 & & Gk 4 % o 41

3:2.1 Interaction withithe gystemi « « v e w v v nw s o8 w5 o s 43
3.2.2 Automatic Prool Generation' v o « v i « v wiaw a s wis we s o 45
3.3 Mechanized Proof of the Church-Rosser Theorem 46

331 ProofMethod . . . v cowv e swsm v smgsiuised oy wen
34 Program Synthesis: - o . o v w5 @in e 5w ae e 4 ww s w o w0 ele e
3.4.1 The specification of append and its proof
3.4.2 Improvement of extracted programs

3.4.3 Eliminating Redundancy by Program Transformation

B oY S O Tt el i Ty e e o o o T b AR e G S 4

Half-monotone Inductive Definitions

Al IMTORUCHOn . o Bt 5 4 w8 R S RS B A W
42 The hasitrthebrT 5w w5 o5 G 5 & 5 S0 W& e s i @ 2 & i = e o
43 Toductive DERIbIoNS . « o o Gre o 0@ % e e el o % e ey A e e
4.3.1 Monotone inductive definition 000
G2 REHTE OTAGE b s b 55 il wotss e 16 0CTRT AT Goraoa b 2o PO o il
4.3.3 Half-monotone inductive definition
4.3.4 Restricted version of half-monotone inductive definition
43:5 A modellof MDD o i s 1506 ik & 30w & o s St 2o
438 Exanpleof HINVHE o0 J05a s s v s s e b e B
4.4 Realizability interpretation and its soundness for BT4+HMID
4,4.1 Realizability Interpretation. o0
4.4.2 Soundness of Realizability Interpretation
4,4.3 Verification of the HMONO-Q condition
4.5 Provability Relations and its Refinement
4.5.1 Defining a Provability Relation
4.5.2 Re-defining the Provability Relation
4.6 Interpretation of Other Theories
4.6.1 The Logical Theory of Constructions
4.6.2 Interpreting LTC by BT+HMIDg
4.6.3 Reformulating HMIDoaon LTCy
4.6.4 Interpretation of Martin-Lof’s type theory
L ConEBRON v wte g w0 235 28 B 9 e s SR 5 e R W

Conservativeness of A! over \o-calculus

B . InlEOdUCtION alfs (viilic. «us wISLaRSRan s e T kT T e e
5.2 Jdo-caleulus with de Bruiph index . . o ovi vs st un v s o s
5.3 oA and-plot-erleulng ., b w4 B L
5.3.1 A Functional Programming Language A!
5.3:2 Modification 36 Al o G v m sin 0w mienn o e ine ek b
533 Detintben ol A4 o e e % 2 Ve s o e I s e
5.4 Translation of Ao-calculus into the pure-fragment
54.1 Translation of Ao-calculus into plet-calculus

5.4.2 Translation from plet-calculus to A!
5.4.3 Properties of the translation ®.
5.5 Translation of the pure-fragment into Ao-calculus

i

67

B8 NaH TTheOTem | & o i sl e o 5 te s b & s ik T e R & e ke o

5.7 Conclusion

Conclusion

.................................

1

Chapter 1

Introduction

1.1 Backgrounds

Constructive Logic and Constructive Programming

Conslructive Programming is a method of program development based on con-
structive logic in which program extraction from logical specifications and the cor-
rectness of programs are guaranteed|18, 10, 11, 21, 33, 30, 22].

A constructive logic is a logic used for reasoning in constructive mathematics(8,
7]. 1t is not a single logic; rather, it can be any logic which allows the BHK(Brouwer-
Heyting-Kolmogorov)-interpretation[47]: The BHK-interpretation is that, a formula
holds il it has a proof, and a proof of each formula is defined depending on the
outermost logical connective. For example,

(The case V) A proof of a disjunctive formula AV B is either a proof of
A or a proof of B.

(The case 3) A proof of an existentially quantified formula Jz. A(2) 1s (a
combination of) a term ¢ and a proof of A(1).

As an example, the first-order (or higher-order) intuitionistic logic is a constructive
logic while the classical logic cannot be constructive, since the law of the excluded
middle AV =A holds although we cannot decide which of A and = A holds in general.

In a constructive logic, given a proof of Va.3y. A(x,y) we can extract a program
f and at the same time a proof of Ya.A(z, f(2)) from the proof. If we regard z. y and
A(z.y) as the input, the output. and the input-output relation, respectively, then
the formula Ya.3y.A(z,y) means that, “for any input z, there exists an output y
such that the input-output relation is satisfied”. Hence, the formula can be regarded
as specification. By the fact above, we have the proof of Va.A(x, f(x)) which ensures
that the program [satisfies the input-output relation, hence the program f is correct
with respect to the specification. In other words, we can synthesize a verified program
from a proof of the specification formula. This is the principle of Constructive
Programming.

o

CHAPTER 1. INTRODUCTION

There is another way of Constructive Programming which is based on type theo-
ries rather than logical systems. By the well known Curry-Howard isomorphism|[24],
a specification formula and its proof (in a constructive logic) correspond to a type
and a term of the type (in a type theory). Hence, in a type theory we can do
Constructive Programming as well: a specification is written in the form of a
type [lz € 5.8y € T.A(z,y) where Il and ¥ are the product and the sum type-
constructors, S, 7', and A(x,y) are types. If we can give a proof p of this type,
namely we have p: [lr € S.8y € T.A(x.y), then we can extract two terms f and ¢
such that ¢ : Ilz € S.A(x, f(z)) holds. Hence, we can extract a correct program f
with respect to the specification.

In both ways, the paradigm of Constructive Programming is to write a proofl
instead of a program, and then synthesize a correct program. Both ways of Con-
structive Programming have been intensively studied recently: Feferman’s 7;[18],
Hayashi's PX[21], Sato’s SST [33] for untyped logics based on the intuitionistic logic,
and Martin-Lof’s type theory(29], Coguand and Huet's Caleulus of Constructions[11]
for type theories.

Since the aim of Constructive Programming is not only to pursue logical prin-
ciples, but also to apply principles to program development, we need to extend or
modify the basic systems (logical systems or type theories) so that we can express
various kinds of data types and algorithms, and that we can reason about these
structures. Among many theories, Sato’s RPT, Reflective Proof Theory[34] is yet
another constructive logic which is intended to be a basis for Constructive Program-
ming. RPT is based on an untyped first-order logic, but it also has a feature of type
theories in that it explicitly has a term which represents a proof. Therefore we may
regard RPT as a mixture of the two ways. It is interesting to study Constructive
Programming based on RPT.

Constructive Programming System

In Constructive Programming, a programmer does not actually write a program
directly; instead he or she writes a proofl of a specification formula. The proof must
be correctly constructed, otherwise, the correctness of the extracted program is not
guaranteed.

We therefore need a mechanical proof-checker for our proofs. A Constructive Pro-
gramming System is a computer software which supports men to develop a proof in
the paradigm of Constructive Programming. However, a Constructive Programming
system can do more: it may support for inputting long, complex formulas, proving
a certain class of theorems antomatically, extracting a program from a proof, and
executing the extracted program.

Corresponding to constructive logics and type theories, there have been designed
several Constructive Programming Systems; Hayashi and Nakano’s PX system[21],
Nuprl system[10] in Cornell university, Coq system[14] in INRIA, and Pollack’s
LEGO system[28]. Each system has its own characteristics. One demerit of the-
ses systems is that they are implemented by large-fledged programming languages
while the object languages for their logics/type-theories are quite simple. There is

1.1. BACKGROUNDS 3

a big gap between the implementation languages (metalanguages) and the object
languages. hence these systems cannot reason about the systems themselves.
Reflection Mechanism
The reflection principle in logic L is to relate a formula and its formalized form:

Provableg("A") D A

where " A" represents a formalized representation (such as encoding by Godel num-
bers) of A, and the predicate Provabler(.) is a predicate which internalizes the
provability of the logic L.

This “principle” is not really a theorem in L since it does not hold usually.
Adding the principle to the logic L results in a stronger logic L;. We can consider
Provabler, (" A"), and we have the reflection principle again. Adding it to L, results
in a stronger system L,, and this process generates an infinite hierarchy of logical
systems.

The reflection mechanism is useful in developing constructive proofs. For in-
stance, let us consider the following statement (in a usual propositional logic):

If Ais aformula, then A D A is provable.

This statement is a metaformula; namely, it is outside of the logic. Nevertheless
we know that it is true, and we want to make use of the metatheorem to prove
something directly. From the viewpoint of Constructive Programming, we cannot
use this metatheorem to develop proofs. since there is no justification for using this
metatheorem. However, if we have some facility of reflection, namely, if we can
internalize the metatheorem above, and we can guarantee the correctness of the
internalized metatheorem, then we often have a quick and direct proof. There are
many other examples of such a metatheorem.

Another example is the principle of Constructive Programming in a first-order
theory:

From + Va.3y. A(z,y),
we have + Va.A(z, f(z)) for some term f

where F A means that A is provable. This statement itself is a metatheorem since
we cannol express it as a formula in a first-order theory. We therefore have to prove it
outside the logic, hence the correctness of the principle itself cannot be mechanically
checked by a proof-checker for the logic. However, if we can internalize and prove
this statement, then the theorem becomes internal, and we can mechanically check
it. In RPT. we can actually prove a formalized version of the principle above as
follows:

Figr (ki Va3y.A(z,y)) D 3f.(ki Va. Az, f(2)))

1 CHAPTER 1, INTRODUCTION

This expression is just a formalized principle if we ignore the indices 7 and 7 +1. We
will explain the meaning of this kind of expressions in the thesis.

Note that, our approach reflects a modelof the formalized world as in the example
of Provabler (" A") above. In this example, the predicate Provabley("A") is defined
so that it can reflect the provability of the formula A. The axioms and inlerence
rules are not reflected, and the provability is solely reflected. On the contrary, Allen
et al[6]’s approach reflects a whole syntax of the world at a lower level in the sense
that all the axioms and inference rules are faithfully reflected. These two approaches
are gquite different. We will take the first approach, since it is more natural from the
logical point of view (the reflection mechanism in logic takes this approach), and
moreover, we can construct a much simpler theory than the second approach.

Note also that, the reflection treated in this thesis is derived from logic, and
does not have direct connection to the computational reflection which originates
from Smith’s work[39]. We hope that we can find some connection between them in
future.

1.2 Goal of this research

Our aim is to realize the paradigm of Constructive Programming. In order to do
50, we need to have a suitably designed programming language as well as a suitably
formulated constructive logic by which we can reason about properties of a program
in the language. We also have to implement a Constructive Programming System
which supports proof-development in the logic. Further we have to study how to
make an efficient program by Constructive Programming. since naively extracted
programs tend to be quite inefficient.

IFirstly, we have to formalize a constructive logic which is expressive enough to
represent various kinds of data types and algorithms, and at the same time. has
the reflection mechanism. Sato’s RPT is one such logic; it has a strong mechanism
of inductive definitions as well as a built-in reflection mechanism. In order to use
RPT as our underlying logic, we have to give a formal system which corresponds
to RPT.

Secondly, we have to give a Constructive Programming System for (the formal
system of) RPT. In order for the system to reason about its properties, the system
must be implemented by the object langnage of RPT. The system also must have
a good user-interface so that we can actually work on the system. To demonstrate
the effectiveness and the usefulness of our system, we have to construct substantial
examples of Constructive Programming.

Thirdly, we have to give a way to improve the efficiency of extracted programs.
So far much research has been done on this topic[32, 23]. Since they propose a
uniform way of improving programs in a metatheory, the correctness is outside of
the system. It is quite valuable if we can formalize their techniques of improvement,
and prove the correctness internally, since we can extract the improvement function

o

1.3. OUTLINE OF THE THESIS

from the proof of this (internalized) metatheorem. Although RPT has the reflection
mechanism, we cannot use it to re-define the provability relation. We therefore have
to extend the mechanism so that we can define the provability relation internally.

Fourthly, we have to study the programming language again. The programming
language in RPT is a purely functional language A. A is expressive enough to im-
plement our Constructive Programming System. However, to extend the paradigm
of Constructive Programming to real programming worlds, we will have to treat
imperative programming languages such as FORTRAN and C. Sato also proposed a
new version of A, which is a purely functional language with the assignment and the
while statements. We have to analyze the properties of the new A for Constructive
Programming.

1.3 Outline of the thesis

RPT, Reflective Proof Theory is a constructive logic proposed by Sato[34]. Since
the reflection mechanism is built-in, it is a suitable theory for our study.

In Chapter 2, we first propose a formal system of RP7T. As in Martin-Lof's
type theory, RPT was given by Sato[34] as a semantical theory in order to give
foundation of mathematics. By a semantical theory, we mean that every concept
is expressed semantically, and by no means a formal system. Since the semantical
theory is expressed in an intelligible way, it is in most cases easy for men to determine
whether something is true in RP7 or not. However, we need a formal system of
RPT in order to construct a computer implementation. Moreover, if we have a
formal system, then we can compare the system to other systems in a rigid way.

We then give several theorems in the formal system, which shows the expressive
power of the reflection mechanism of RPT. Finally, we study metamathematical
properties of the formal system, in particular the strong normalization theorem for
a subsystem of our formal system. As a corollary, we have the consistency of our
formal system without inductive definitions.

In Chapter 3, we describe our Constructive Programming System based on our
formal system. The system is implemented by the programming language A, which
is at the same time the object language of our formal system. We give an overview of
our Constructive Programming System. As a substantial example of our system, we
demonstrate a mechanized proof of the Church-Rosser property of our programming
language A. We also present a concrete example of Constructive Programming based
on our system, and present a method to eliminate redundant parts from a naive
program.

In Chapter 4, we will study yet stronger reflection mechanism. Although the
reflection mechanism in RPT is quite useful, we cannot re-define a modified prov-
ability relation internally. The re-definition of the provability relation is the key to
eliminate redundant parts of extracted programs. To solve this problem, we propose
the mechanism of half-monotone inductive definitions. A half-monotone inductive

6 CHAPTER 1. INTRODUCTION

definition is an extension of the ordinary monotone inductive definition so that we
can define the provability relation naturally. We give a theory, a realizability inter-
pretation, and several applications of this mechanism.

. In Chapter 5, we turn our attention to programming languages. The program-
ming language A given in Chapter 2 was a purely functional one in the sense thaf
there are no side-effects. It is an interesting research problem to introduce imper-
ative features into our language. The new version of A (called A! in this thesis) is
an extension of A in which the assignment and the while statements are introduced
by Sato[36]. We will give some conservativeness results on A! in Chapter 5.

In Chapter 6, we give concluding remarks of the thesis.

Chapter 2

Formalizing Reflective Proof
Theory

Reflective Proof Theory (RPT in short) is a logical system which is aimed at a basis
for Constructive Programming introduced by Sato[34].

As Martin-Lof’s type theory[29], RPT was given as a semantical theory in order
to give foundation of mathematics. By a semantical theory, we mean that every con-
cept is expressed semantically, and by no means a formal system. The semantical
theory is explained so that it is easy for men to determine whether a judgement is
true in RPT or not. However we need a formal system of RPT in order to imple-
ment a proof-development system such as a proof-checker and a prover. Moreover,
il we have a formal system, we can compare the system to other systems in a rigid
way.

In this chapter we first give RPT, a formal system for RPT. (In the following we
will write RPT for the formal system, and RPT for the semantical theory presented
in [34].) Our formal system is constructed in such a way that RPT is a model of
RPT. We then give several theorems which demonstrate the expressive power of
RET,

We also give several metamathematical studies on the system RPT. Among them
we will prove the strong normalization property for a subsystem of RPT. by which
we can derive several important properties on RPT.

2.1 Semantical Theory RP7T

In this section, we briefly describe Sato’s Reflective Proof Theory (RPT, in short)
in [34].

RPT is an extension of Aczel's Frege structures [2] in the direction of Construc-
tive Programming.

A TFrege structure is constructed from an arbitrary model of the A calculus. Let
M be a domain of the model. By an appropriate encoding, we can assume that

B |

8 CHAPTER 2. FORMALIZING RPT
(:on‘sl.an ts L, A,V,3,V, and 3 are included in M. These constants correspond to the
logical symbols L, A, V., V. and 3.

Then, two subsets P and Q of M (where P 2) are defined. The intuitive

meaning of P is the set of propositions (represented as A-terms), and that of Q is
the set of true propositions (represented as A-terms).

s eP

e L g0

® Aab€ Pifand onlyifa € P and be P.

o Aab e Q if and only if a € @ and b€ Q.

o Vabe Pif and only if a € P and be P.

o Vabe Q if and only if either (i)a € Qand b€ P,or (ii)a € P and be Q.
e Dabe Pifandonlyifa € P andifa € Q. then b € P.

e Dab e @ if and only if either (i) « € P and « g Q,or(ii)a € Pand be Q.

e Ya € Pif and only if ab € P for any term b.

Va € @ if and only if ab € @ for any term b.

Ja € P if and only if ab € P for any term b.

Ju € @ if and only if ab € Q for some term b.

If « € P, then a is called a proposition. and if « € Q, a is called a true proposition.
By regarding a unary propositional function as a set, we can extend the Frege-

style set theory (where set-comprehension is allowed) in Frege structures. Aczel

ltsed Frege structures to analyze Russell’s paradox|[2]. -
Sato proposed RPT with the following extensions to Frege structures:

Extension of the domain

The t(-?rm.-s‘ in RPT are pure A-terms enriched with several terms such as pairs
(cons in Lisp), if « then b else ¢ fi and so on. Since these ne;w tm'ms“caf] Ib.
repref;cntcd by pure M\-terms with some encoding, this extensioﬁ’iq ine%’(*ntlial f ;
the viewpoint of the computational power. However, it is useful fr;)m t.h‘e’view :Oni]
of Constructive Programming, since terms in RPT are programs o

2.1. SEMANTICAL THEORY RPT Y

Explicit proof

Frege structures have two basic judgements “a is a proposition”, and “a is a true
proposition”.

RPT also has two judgements, one of which is exactly the same as the first one.
The other one is of the form “p is a proof of a proposition «”, which is an extension
of the second one in that the proof of a is explicitly shown. This extension is quite
natural if we take the intuitionistic dogma where a proposition is true if and only if
it has a proof.

Formally, the judgements “a is proposition” and “p is a proof of «” are repre-
sented as |=; @ and p F; «, respectively. Here the suffix 7 is the level in the reflective
tower explained below. Note that the symbols = and b usually mean truth in model
and provability in a formal system which are completely different in RP7. The
judgement a k; p in RPT corresponds to the judgement « : p in type theories, and
“u is a realizer of the formula p” in realizability interpretation for type-free logics.

Reflective tower

In a usual logical system, “if p is a proposition (formula), then p D pis a true propo-
sition (formula)” is a true statement, but we cannot represent itself as a proposition
(formula). This kind of metapropositions (schemata) is quite useful in its expressive-
ness. However, if we would naively introduce metapropositions. namely, if we would
simply regard metapropositions as propositions, we would fall into Russell’s paradox,
and the whole system would be inconsistent. In order to avoid the inconsistency.
RPT introduces the level for each proposition, and regards a metaproposition of
level 7 as a level 1 41 proposition. Therefore we have a family of sets of propositions,
each of which is indexed by ordinal numbers. Moreover, if i < j. the set indexed by
7 is a subset of the set indexed by j. Hence the family is an increasing sequence of
sets of propositions. We call this family a reflective tower. By virtue of the reflective
tower, we can successfully construct a consistent theory in which metapropositions
can be expressed.

The reflective tower has a considerable benefit in Constructive Programming. Let
us take an example of this benefit; For a logical system to be used for Constructive
Programming, it must satisfy the so-called term existence property as follows:

Proposition 1 (Term Existence Property) If we can prove Jx.A(x), then we
can effectively obtain a term t and a proof of A(t). O

In order to prove this property for a first-order logic such as Beeson’s EON [7],
one may use techniques such as the realizability interpretation, normalization, and
so on. All these techniques need reasoning in a metalevel (outside of the logical
system itself). On the other hand, we can internally formalize the term existence
property in RPT.

10 CHAPTER 2. FORMALIZING RPT

Proposition 2 In RPT, we can prove the following judgement for some term a (if
[(b) is always a proposition for any term b):

a bipr ((e 32.f(2)) D (32 ki f(2)))

This judgement means that from a proof of the proposition Ja.f(x), we can
(effectively) obtain z with f(z) being true.

Inductive definition

Since recursive data structures are quite important in programming practice, our
logical system must have the mechanism of induction definitions (and corresponding
induction principles).

RPT has a general mechanism of inductive definitions. Inductive definition is
treated in more depth in Chapter 4.

Sato proposed RPT by extending Frege structures with the four extensions
above.

RPT resembles Frege structures in that it is a semantical theory, and is not
a formal system. In order to implement a Constructive Programming System, we
need to formalize RPT. A formalization of RPT is described in the next section.

2.2 Formal System RPT

This section presents the system RPT, which is a formalization of RPT.

2.2.1 The target of the formalization

The semantical theory RPT was given in [34].

By Gadel’s incompleteness theorem, any formalization of RP7T is incomplete.
Hence, our goal in formalizing RPT is to formalize a large part of RPT.

In the original version of RPT [34], the judgement p b; a A b does not necessarily
imply that p is a pair (¢ o pair?(p) = true for some ¢). However, the intended
semantical theory of RPT was that the proof term of a A b should be a pair. (If
p b a holds, then we say p is a proof term of the proposition ¢.) Hence, we put new
conditions on RPT so that proof terms of pA ¢, p & ¢, pV ¢, and Jp must be pairs,
and those of p D ¢ and ¥p must be functions. In this paper, we assume that RP7T
satisfies these conditions.

Compared with RPT, we put the following restrictions to RPT.

1. Restriction on the level of reflective tower

In RPT ., a level in the reflective tower can be an arbitrary ordinal number.
There is an example in [34] which uses the level w+1 where w is the first infinite

b
o

]

FORMAL SYSTEM RPT 11

ordinal number (corresponding to the set of natural numbers). Moreover, there
are variables for levels, and they can be quantified by ¥V or 3. For instance,

t Fy Vi<wVYa((Fia)DaDa)

is a true judgement if we put ¢t = Mirayz.2. This judgement formalizes “for
cach level less than w, if @ is a proposition, then a D « is a true proposition™.

From the viewpoint of real Constructive Programming, we do not need such a
high level (w or a larger ordinal), nor level-variables. We therefore decided to
restrict the level to be integer constants. In the following, the metavariables
t,) for levels represent integer constants (represented by some terms in RPT
through appropriate encoding).

Restriction on Inductive definition

In RPT, a new predicate can be inductively defined under the condition of
“strictly positiveness”. This condition is, for every sub-proposition of the
form A D B in the body of the inductive definition, the predicate variable
(being defined through this definition) does not appear in A. For example,
X(a)V(b=0D X(c)) is strictly positive, while X(«) D b = 0 is not.

As stated in [34], this condition is semantical, rather than syntactic. Let X
be a unary predicate variable, and P be (X[z] D X[z]) A X[x]. Then X[z]
appears in the lefthandside of D, so P is not strictly positive. Since P is
logically equivalent to X[x], which is strictly positive, so is P semantically.
Hence, we can define a new predicate using P in RPT.

However, this example is quite artificial and useless, since we can inductively
define the same predicate using X[x]. Although there might be cases where
the semantical strictly positiveness can be useful, we believe that the syntactic
condition is sufficient for writing specifications for real programs. We therefore
restrict inductive definitions for only syntacticly strietly positive cases. This
restriction allows us to remove ' and F* which were used to express the
(semantic) strictly positiveness in RPT.

Introduction of propositions in the form a |

We often need the proposition “a term « has a value” through inferences. Since
the computation in RPT is call-by-need, it is expressed as:

a =nil V a =true V a = false V pair?(a)= true V fun?(«¢) = true

This proposition is a disjunction of five atomic propositions, and its proof
term is a long one (if it exists). On the other hand, since the proof-term can
be computed from a (if it exists), we do not need the proof term besides a
itsell. In this sense, the proof term does not carry any computational meaning.

12 CHAPTER 2. FORMALIZING RPT

Following Beeson[7], we infroduced a new atomic proposition a | which is
logically equivalent to the proposition above, but the proof term of a | is some
dummy constant.

2.2.2 Terms and their reduction rules

Terms of RPT are defined as follows.
Definition 1 (Term)

it == =x
| nil | null?(?)

| true | true?(!)

| false | false?(!)

| (t.1) | car(t) | cdr(t) | pair?(t)
| Azt | 4(t) | fun?(2)

|t

| 4if ! then ! else t fi

where » is a metavariable for variables. O

Terms nil, car(t) and cdr(l) are the same as those in Lisp. We denote pairs,
A-abstraction, application as (,1), Ax.t, and #(t), respectively. The term ut invokes
a recursive call, for example, the following term is a program for the Append function
in Lisp.

p(AfAx Ay.if null?(x) then y else (car(z), f(cdr(z))(y)) fi)

We say two terms are of the same kind if they are defined in the same row in the
definition above, and of different kinds otherwise. For instance, nil and null?(/)
are of the same kind. while nil and true?(t) are of different kinds. Terms null?({),
true?(l), false?(!), pair?(1), and fun?(?) are called recognizer terms, and are used
for recognizing the kinds of the arguments.

Bound variables, free variables, and substitution are defined as usual. Terms

which do not have free variables are called closed terms. The expression ag, . [b1y. ... by]

is the result of simultaneous substitution of by,....b, for xy.....2, in the term a.
F'V(a) is the set of free variables in a.
We also use the following abbreviations:

ab 2 a(h)
a(by,- .. by) = a(by)---(by)
() £ nid

2.2, FORMAL SYSTEM RPT 13

a 2 a.nil
)

(ab) £ (a.(bnil))
(abe) 2 (a.(b. (c.nil)))
Azy.a 2 AT Ay.a

Aryz.a 2 Az Ay Az.a

We then define canonical terms and normal terms.

Definition 2 (Canonical term)

¢ u= nil | true | false
| (t,t) | At

Definition 3 (Normal term)

n =
| nil | true | false
| (n,n) | Aan

When a normal (canonical) term b is obtained by evaluating a, then we say b is
a normal (canonical) form of the term a.

The evaluation mechanism of RPT is essentially call-by-name. For instance,
when we evaluate pair?(a), the argument a is evaluated to a canonical term. and
not necessarily to a normal term. Hence, the canonical terms are important in the
evaluation of RPT.

We encode the natural numbers as follows:

0 £ ni1
i+12 (nil,i)

Propositions and judgements are also terms via the following encoding.

a=b £ (1ab)
alt] £ (2ab)
b £ (3ib)
abib 2 (5iab)
al = (6a)
anb 2 (Tab)
a8 S (8ab)

14 CHAPTER 2. FORMALIZING RPT
avb £ (9ab)
ad>bh £ (10ab)
Va £ (11d)
Ja £ (12a)

The expression a[b] represents an atomic proposition with ¢ being a user-defined
predicate. The meaning of other expressions will be explained later. We abbreviate
Y(Aax.b), 3(Ax.b), and a D false as Va.b, J2.b, and —a, respectively.

We assume that A, &, V, D associate to the right; for example, @ D b D ¢ is an
abbreviation of a D (b D ¢).

Definition 4 (Evaluation of terms) For two terms a and b, we definc a — b as
in the table below.

Reduction Rule Condition

#(a) — true #(a) is a recognizer term,
a is canonical, and #(a) and
a are of the same kind
#(a) — false #(a) is a recognizer term,
a is canonical, and #(a) and
a are of different kinds

car((a, b)) — a
cdr((a, b)) — b
(Az.a)b — a,[b]
Az.(Ay.a)r — Ay.a x & FV(a)

i — a(jia)
if true then a else b fi — «
if false then a else b fi — b

C[b] — C[C] O— Fod

In the last rule, C[] is a context in a usual sense.

The binary relation — is so-called 1-step reduction. We define two relations —~
and = as the reflexive, transitive closure of —, and the least equivalence relation
which subsumes —*, respectively.

The evaluation does not always terminate as in the usual untyped A-calculus.
We define Q to be (Az.za)(Az.2z) as an example of non-terminating terms.

The programming language A is thus defined. The Church-Rosser Property
(confluency) of A was proved in [34]. In Section 3.3, we will formally prove this
property using our system.

The evaluation in A is nondeterministic. The call-by-name evaluation strategy
is a normalizing strategy. We therefore implemented this strategy on a computer.
In the next Chapter, we use the programming language A to implement our Con-
structive Programming System. Hence, A is a target language of our reasoning in
RPT, and at the same time, our implementation language.

2.2. FORMAL SYSTEM RPT 15

2.2.3 Judgement and inference rules

As in Martin-Lof's type theory, we have judgements as components of proofs (proof-
figures) in RPT.

Definition 5 (Judgement) Lef a and p be terms, and i be a natural number (en-
coded by terms). Then the following two forms are judgements of RPT:

Fip

Ui‘,'ﬂ

The first judgement means that pis a level-z proposition, and the second one means
that a is a proof of a level-: proposition p. For the judgement « t; p, we call a as the
proof term of p. In the following, we use metavariables a, b, ¢, p, ¢, 8,8, for terms.
i, j for natural numbers, J. J; for judgements, f,g,2,y.= for variables.

Inference rules of RPT is written in the natural deduction style. They are clas-
sified into the following categories.

Rules for levels

D

Rules for equality and canonical terms

o

Rules for propositions
4. Rules for proof terms (truth)

Rules for predicates

(1]

We will describe each category in detail.

Rules for levels

|=Jp (£|'“‘n
—_— > — (7 >
I=.P(7) ﬂ,_:_p(J)
gl Sfpore o
alb;p (> J)

I'rom the first two rules, if some judgement holds in a certain level, then it always
holds in a higher level. From the last rule, if the judgement « i p holds, then it
already holds at the level where p becomes a proposition. In other words, whether
a proposition p is true or not (has a proof or not) is determined at the lowest level
where p becomes a proposition.

16 CHAPTER 2. FORMALIZING RPT

Rules for equality and canonical terms

m f\\'hCl‘C a =~ b)

P oy (with the side condition below)

ab;b(d] ck;d=¢ arfdl Fib ebid=e
a b b.le] azle] b b

abib=c Fitd] cFd=e
OFia=0 =i axe]

The side condition of the second rule is t

hat @ and b are canonical terms of different
kinds.

The third and fourth rules (

in the third row) are called the equal-right and the
equal-left inference rules.

phi(a.b) = (e.d) pti(a,b) = (c,d)
phia=c¢ iyl

ptinull?(a) = true pti true?(a) = true

pkia=nil plk;a=true
p i false?(a) = true plipair?(a) = true
plkia=false ptia=(car(a). cdr(a))

pti fun?(a) = true !] :
P #Ha) = False (with the side condition below)

P l_;' fun‘?(a) = true
pFia]

The side condition of the

second last rule is {hat #(a
the form fun?(a).

) is a recognizer term not of

2.2,

FORMAL SYSTEM RPT 17

ptia pkial
OF;pl Ok p=0

(where « is canonical)

0 |‘,' a l
_ | .
‘pl—_,jé(a+ (where #(«) is a recognizer term)
prid
p i car(a) | p ki cdr(a) |

p bipair?(a) = true pl; pair?(a) = true

plia(b)]
pti fun?(a) = true

ptiif a then b else ¢ fi |
(a,0) F; a = true V a = false

phial

D(a)F; ¢ =nilV a = trueV a = false V pair?(a) = trueV fun?(a) = true

In the last rule, D(a) is defined as follows:

D(a) 2 s null?(a) then (true,0)
else if true?(a) then ¢
else if false?(a) then ¢,
else if pair?(a) then c¢;
else ¢y
fi £is £i £i
a 2 (false, (true,0))
Ca g8 (false, (false, (true,0)))
e = (false, (false, (false, (tTue,0))))
e = (false, (false, (false, (false,0))))

Rules for propositions

Most propositions in RPT are the same as formulas in the usual first-order logic:

we have true, false, a |, a = b, |=; p, and a F; p as atomic proposit.ions, and
A&, V., D,V and 3 as logical connectives. The different points are two points:

18 CHAPTER 2. FORMALIZING RPT

¢ The judgements |=; p and a I; p can again be propositions at the level 7 + 1.
In this case p is an arbitrary term, and is not necessarily a proposition.

o If pis a proposition which does not have a proof-term (that is, p is a false
proposition), then p D ¢ and p & ¢ are propositions even if ¢ is not a proposi-
tion.

The proposition p & ¢ is conditional conjunction. 1t has a similar meaning as
the usual conjunction, but it can be a proposition for more cases than the usual one.
In order for p A ¢ to be a proposition, p and ¢ must be propositions. On the other
hand, in order for p & ¢ to be a proposition, p must be a proposition, and ¢ must
be a proposition if p is true. A concrete example of & is given in Section 2.3.2.

= =

Fial

2.2. FORMAL SYSTEM RPT 19

ati (=5 p) akilF;p) .. .
|=_:P () Ui“iazﬂ (?>J)
Rules for proof terms (truth)
Here we assume 7 > j.
a b true at-; false
Ol—[true 0"‘,‘{{:[] ﬂl‘t-p
=i p
0k ('ZJ P)
dry p abt; (bF;p)
albi(ak; p) ab;p

= true

— (i>J)

Fi (5 p)

= false

Eahgt>?

These rules are called the true-intro, the true-elim, the false-elim, the prop-intro,
the level-up, and the level-down inference rules. respectively.

abip bliq

abipAg

(a,b) FipAgq 0k;

pair?(a) = true

Eip Eig EipAg EipAgq
FipAg Eip Eiq
Fir Fi¢ EpvVe |EipVg
FipVy =i p i g
- [T'Iip]

i 2 8 o BV Fip Dy
Eipoyg (z & F'V(q)) ’=-_£P

[z F; p]

EipDq ak;p e Eag

= L (e ¢ V()
Eip&gq Eip&kq akb;p
=i p Fig
IT;TL;;) (2 s an eigen variable) I‘:t f:(,?)
%‘;_) (x is an eigen variable) —IEI—:'('%

akipAg abipAg
car(a) by p cdr(a) b; ¢
abip Figq Eip blig

(true,a) -, pVy¢ (false,b) F; pV q

[P atip] [@ xkid]

abipVyg al;pVyq bl r ckir
0 F; pair?(a) = true DFir

(@ 1s an eigen variable)

These rules are called the A-intro, the A-elim-0, the A-elim-1, the A-elim-2, the V-
intro-1, the V-intro-2, the V-elim-0. and the V-elim-1 inference rules, respectively.
In the last rule, we used the following definitions:

P2 t; car(a) = true
Q £ ok car(a) = false
D = (1f car(a) then Az.b else la.c fi)(cdr(a))

20 CHAPTER 2. FORMALIZING RPT
ks *‘_:‘ P)
% (x is an eigen variable)
abipDyq atipDq brkip
0 b fun?(a) = true a(b) ki q
atip bliq abip&yq

(a,b) Fip & ¢ 0 F; pair?(a) = true

abip&yq abkip&q
car(a) b; p cdr(a) b, q

These rules are called the D-intro, the D-elim-0, the D-elim-1, the &-intro. the
&-elim-0, the &-elim-1, and the &-elim-2 inference rules, respectively.

a(z) ki ple)

aF: Vo (a is an eigen variable)

at; Vp al; Vp
0k fun?(a) = true a(b) b, p(b)

a b p(b)
(b,a) b 3p

at; dp atl; Ap
0 F; pair?(a) = true cdr(a) k; p(car(a))

These rules are called the V-intro, the Y-elim-0, the V-elim-1, the 3-intro. the J-elim-
0, the J-elim-1 inference rules, respectively. ‘ :
'l'.‘hroughout these rules, eigen variables must satisfy the usual eigen variable condi-
tion. Forinstance, for the V-elim-1 rule, we must have « ¢ FV(p)ul'V(q)UFV(r),
and moreover, ¥ must not appear in the right two subproofs except the occurrences
explicitly shown in this rule.
N The rules for propositions determine what is/is not a proof term of a proposition.
Since we regard a proposition which has a proof term as a frue proposition, it can
be said that these rules determine what is/is not a true proposition. 1

The proof-terms are naturally defined using the Curry-Howard isomorphism. For

instance, the proof-term of a conjunctive proposition is the pair of proof-terms of
each conjunct (if exists). {

2.2, FORMAL SYSTEM RPT 2]

Rules for predicates

In RPT, predicates are always defined by inductive definitions.
Let P be AMfAx.F. The term F must be strictly positive with respect to f.
Namely. for every subterm of the form p D ¢ in F'. p must not contain [[ree.

[“‘ Fig1 (V?{'— = f[y])]
|==': ey L . .
m (2, f,w are eigen variables)
bt Fr.¢la, P) bt Pld]
bt; Pla] bF; Fysla, P

Theses rules correspond to the fold and unfold operations.

bt Va.(Fylp] D plz])
indp(b) i Va.(P[z] D p[z])

This rule represents the induction principle. Here indp is a term which is calculated
from P. See [34] for the calculation in detail.
It is straightforward to extend the rules for predicates which have more than one

argument.

Examples of predicates

That “pis aunary propositional function” is represented as the proposition Va.|=; p(x)
in RPT. In order to define a predicate for this proposition, we need to define PF as

follows:
A
PF = A f.Ap. Va.|=i p(x)
Since PF does not refer to f in the body above, this definition is not really inductive.

In this case, the induction principle becomes a trivial rule.
Another example is Nat, the predicate for natural numbers.

Nat 2 Afdz. 2 =0 V Jy. (z = suc(y) A f[y])

where suc(y) = (0,y). We can easily infer Nat[n] is true for each (encoded) natural
number n defined before. The proof-term of the induction principle for Nat is:

CHAPTER 2. FORMALIZING RPT

8]
[

indyat = Ar.p(X faq. r(x)([car(q).
if car(¢) then cdr(q)
else [cadr(g).[caddr(q) .f(cadr(q))(cdddr(q))]] £i))

In this definition we used abbreviations in Lisp such as cadr. It is easily shown that
the induction principle for Nat is equivalent to the usual mathematical induction.

2.2.4 RPT and RPT

As stated before, the target model of our formalization is not really the original RPT
in [34], but RPT with a little modification according to the intended semantics of
RPT stated at the beginning of this section. We have that this formalization is
sound with respect to the modified RPT.

Theorem 1 (Soundness) RPT (after modification) is a model of RPT. O
Corollary 1 (Consistency) RPT is consistent, O

RPT is a model whose domain is the quotient set of the set of terms modulo
the equivalence relation . Since this is a model of RPT, we have the following
corollary.

Corollary 2 We have 0 F; a = b is provable in RPT if and only if a = b holds. O

This corollary means that the equivalence relation = in RPT faithfully represents
the equivalence relation ~ in RPT. The relation a is defined via the operational
semantics, and is an intensional one. We will introduce an extensional equivalence
relation to the set of terms in RPT in Section 3.4.

2.3 Several Theorems in RPT

In this section, we extend the theory RPT, and show several theorems which shows
the expressive power of the reflection mechanism of RPT.

2.3.1 S combinator

In a usual propositional calculus, if A, B and C are formulas. then the following
formula is provable:

FE£(ADB>C)>(A>B)D>ASC

2.3. SEVERAL THEOREMS IN RPT 23

However. we cannot formalize the whole sentence “if A, B and C are formulas, ...
in a usual logic, since it is a metatheorem. On the contrary, we can formalize and
prove the metatheorem in RPT as follows:

.IFUAD!JDC' :'l_UA yl"nADB :l_oA
PIE .T:'"UB:)C‘ ?]L"‘(]B
xz(yz) o C

FoA P
E o AD B Azzz(yz)FeADC
Lo ADBDC Myzaz(yz)Fe (ADB)DADC
Sto F

Py

Here P/ is the proof figure P, where three open assumptions were discharged by the

. A
S-introduction rule, and S = Aryz.xz(yz).

[ubi (FoA)] [whi (FaC)] [vhy (o B
o A o C o B
: P2
ShkoF
0F (S F)

Ps

Auvw.0 by T
MBC uvw.0 FH YVAVBYC.T

where T'is (ko A) D (o B) D (Fa C) D (S ko F).
The proof Py is a formalized version of the metatheorem.

2.3.2 Set and Russell’s paradox

In RPT. we can introduce a set as a unary propositional function, and then we can
develop a constructive set theory.

Let p be a term such that, for any term a, p(a) is a level-i proposition. Then p
generates the level-i set {@ | p(2) is true} by comprehension.

In RPT, this fact can be internally formalized again. Let Set; and €; be the

following:

Set;[p] 2 Va.(k=i pla))

a € p 2 set[p] & pla)

24 CHAPTER 2. FORMALIZING RPT

The proposition Set;[p] means that p is the level-7 set, and « €; p means that p is
a set and a is a member of p.
Note that we used & rather than A in the definition of @ €; p. If we would have
defined a €, p to be Set[p] A p(a), then a €; p is not necessarily be a proposition.
As an example of sets, the set of natural numbers, NatSet is defined as follows:

NatSet = \a.Nat[r]

We can prove that Sety[NatSet] holds and for any natural number n, n €, NatSet
holds.

Russell’s paradox in the naive set theory is that, if we can define the set R as

FAN . . ¥ L
R = {a|a ¢ a2}, then we have inconsistency. The modern set theory, namely, ZF
set theory avoids this paradox by excluding the set comprehension rule; then we
cannol define R as a set in ZF set theory. In RPT, on the other hand, we can define
R as a set; we can still avoid inconsistency since our sets are indexed by levels.

Theorem 2 Let R be Af. ~(f €y f). Then we can prove the following four
Judgements.

a |_| _‘SEto[R]

Mw.a(car(w)) Fy ~(R €5 R)
Au.0 }'2 Setl[R]

(Aw.0, Aw.a(car(w))) F, R, R
where

a’ Au(Av.cdr(v)e)(u, (Av.cdr(v)v))

12 is Russell’s set written in the form of a propositional function. The meaning
of Theorem 2 is that, R is not a set at level-0, but it is a set at level-1 or higher. We

therefore cannot substitute R for f in =(f €, f), and we cannot go further. Hence,
we can avoid Russell’s paradox.

Remark 1 The term a is a closed proof-term in RPT which cannot be normalized.

In other words, the proofs (proof-terms or equivalently proof-figures) in RPT are not
necessarily normalizable. This point will be discussed in the next Chapter.

n

2.3. SEVERAL THEOREMS IN RPT 2!

2.3.3 Use of reflective tower-1

One of the major characteristic points of RPT is that we can internally express
metatheorems by using the reflective tower. In this subsection, we give several
examples of the use of the reflective tower.

The Disjunction Property and the Term Existence Property [7] are important
properties for constructive logical systems. As stated in Section 2.1, these properties
for a first-order logic are proved by metatheoretic arguments. For RPT, we can prove
the internally formalized version of these properties.

In the following we abbreviate the proposition 3a. (z ; p) as F; pif 2 & FV(p).

Theorem 8 The disjunction property “if pVq is provable, then p or ¢ is provable”
is formalized and proved in RPT. Namely, we can prove the following judgement

abi VpVg. (Rip) D(Fig) D2 (FipVe) D(Fip)V(Fig)

for some lerm a.

Proof. Define a as
Apqryz.if cadr(z) then (true,(0,cddr(z)))
else (false, (0,cddr(z))) fi.
Then we can prove the theorem easily. O

Theorem 4 The term existence property “if 3x.p is provable, then we can ¢ffec-
tively find a term t and the proof of p.[t]" is formalized and proved in RPT. Namely,
we can prove the following judgement

a kg VA(PF[f] D (Fi 3z.f(x)) D (3=. ki f(2)))

Jor some term a.

In the formulation of this theorem, we used the predicate PF[f] to have f(x) as
a proposition.
Proof. Define ¢ as Afpg.(cadr(q), (cddr(q),cddr(¢))). Then we can prove the
theorem easily. O

2.3.4 Use of reflective tower-2

We take another example of the use of the reflective tower.

The realizability interpretation is a quite useful technique of program extraction
for a wide range of logical systems such as the first-order intuitionistic logic[7]. Let
a r P mean the term «a is a realizer of the formula P. Then a r P is semantically
similar to the judgement a F; P in RPT.

Harrop formulas are defined as below in the first-order logic:

26 CHAPTER 2. FORMALIZING RPT

Definition 6 (Harrop formula in the first-order logic)

H := true|false|t=t|HAH
I~ P H|Ve-H

where P is an arbitrary formula. O
If P is a Harrop formula, we have the following well-known result.

Theorem 5 (In the first-order logic) Lel H be a Harrop formula, and F'V{(H) C
{z} holds. Then we have H > (t(x) v H) for some term t. O

We can internally formalize this theorem in RPT. In the following, we say p is a
Harrop propositional function if, for any term a, p(a) is a Harrop proposition.

Definition 7 (Harrop propositional function)

HPF, 2 AfAp. p= Az. true
V p= Azx. false
V 3y.3z. (p = (Az. y(z) = 2(x)))
V 3¢.3r. (p=(Az. g(z) Ar(z)) A flg] A f[r])
V 3¢.3r. (p= (M. ¢(x) D r(a)) AVa. (i glz)) A f[r])
V 3¢. (p=Az. Vy. ¢((x.9)) A f[q])

Theorem 6 We can prove the Jollowing for some term a.

a bipa Vp.(HPF;[p] D Vo.(Eiy1 ple)))

Theorem 7 We can prove the Jollowing for some term a.

@ Fivz Vp.(HPFi[p] D 3f Va.(p(z) D (f(x) Figy p(z))))

These two Fhmrems are proved by the induction on the predicate HPF;. The
latter theorem is a formalized version of Theorem 5.

Theorems 6 and 7 still hold if we add clauses A 5 i
the definition of HPF,. e e e

2.4 Strong Normalizability of RPT

In this section we study several metamathematical properties of the formal svstem

I?P'I‘ and‘ its subsystem RPT,. RPTy is essentially RPT without inductive defini-
tions, 50 it can be said as the logical core of RPT.

8]
=]

24. STRONG NORMALIZABILITY OF RPT

2.4.1 Strong Normalizability and Weak Normalizability

Among many properties, the strong normalization (SN) property, every sequence of
normalization is finite, is one of the most interesting one. Here, “normalization”
means normalization of proof-terms or that of prool-figures. A normalization step
of proof-terms is the same notion as reduction of terms. A normalization step of
proof-figures in a natural deduction style logic is to eliminate a redundant part in
proof-figures. For example,

11 ¢
ak; A b+ B
(a,b) Fi AN B
car((a,b)) F; A

A=intro
A=-elim

This proof-figure is normalized to the following proof-figure.

I
ab; A

With this process, the one-step reduction of proof-terms is associated:
car((a,b)) — a

Therefore, normalization of prool-figures and that of proof-terms are closely con-
nected. In most type theories, these two notions are identical. In RPT, the two
notions are not identical. We will come back to this point later.

The normalization process is not deterministic; we can normalize any redundant
part in a proof-figure, or any redex in a proof-term. The SN property is that any
normalization process terminates. On the other hand, the WN (weak normalization)
property is that, for any proof-figure (or proof-term), there exists a terminating
normalization process. Obviously, the SN property subsumes the WN property.

The SN property holds for many logical systems and type theories, and is con-
sidered as one of the most important proof-theoretic properties.

2.4.2 Strong Normalizability of RPT

As shown in Theorem 2, even the weak normalization property fails for RPT.

The reason of this failure is similar to that in Martin-Lof’s type theory: we
can deduce anything from the falsity, therefore. assuming L (the falsity), we can
construct any proof figures which may not terminate,

Svensson observed that, if the normalization process is restricted so that the in-
side of A-terms (of proof-terms) may not be reduced, then the SN property holds[41].
We will restrict the reduction in the same manner as she did.

28 CHAPTER 2. FORMALIZING RPT

2.4.3 Correspondence between Proof-figures and Proof-
terms

In most type theories, a proof-figure and a proof-term 1-to-1 correspond to each
other. In this case, normalization of proof-figures and that of proof-terms are the
same process.

In the case of RPT, they are related, but do not have I-to-1 correspondence
for the reasons explained below. As we will describe in the following, the strong
normalizability for the proof-terms does not hold while we can still prove the strong
normalizability for the proof-figures in a subsystem of RPT. In order to obtain
proof-theoretic properties such as consistency, it is sufficient to have the strong
normalizability for the proof-figures. However, we will recover the 1-to-1 corre-
spondence of the proof-terms and the proof-figures by introducing some auxiliary
function symbols and modifying several inference rules of RPT. By recovering this
correspondence, the strong normalizability of the proof-terms and that of the proof-
figures are equivalent. We will henceforth prove the strong normalizability of the
proof-terms of RPT only. However, our proof can be readily applicable to the strong
normalizability of the proof-figures of the original RPT (without introducing new
function symbols and modifying inference rules).

In this subsection, we shall analyze the three reasons why the 1-to-1 correspon-
dence was lost in RPT, and show how to recover it.

The first reason is the existence of the following equal-left rule:

a;[dlFi b ckid=e
03[61 }_i b

By this rule, we can replace a proof-term to an equal term. It follows that. even
il a,[d] is strongly normalizing, the resulting proof-term a.[e] is not guaranteed so.
Hence, this rule is one source which destroys the correspondence. However, the
application of the equal-left rule can be postponed as in the following lemma.

Lemma 1 Given a proof-figure which consists of an application of the equal-left rule
followed by an application of some rule, then we can transform it to a proof-figure
which consists of applications of the latter rule and the equal-left rule. Namely, we
can crchange the order of the application of inference rules.

This lemma is easily proved by the case-analysis. By this lemma, it is meaningful
to consider a system which lacks the equal-left rule. If we can prove SN of such a
system, then we immediately have WN of the system with the equal-left rule.

The second reason is that, the level-up and level-down inferences do not introduce
any function symbols so that the successive application of the level-up and level-
down inferences is a redex in a proof-figure, but not a redex in a proof-term.

iy TR AR abi(bb;p) . .
al—.-(al—a,p)(:>"') —m;__(?>ﬂ

2.4. STRONG NORMALIZABILITY OF RPT 29

A solution of this problem is to introduce a function symbol for each inference rule
and a corresponding reduction rule:
abt, p at;(bt; p)

up(a) F; (a k5 p) (#>7) down(u) k-, p (i >3)

The corresponding reduction rule is down(up(a)) — a.

The third reason is that some quantifier rules introduce terms in the righthand
side of the provability sign into the lefthand side. For instance, recall that 2 is the
ferm (Ar.xx)(Az.ax). and consider the following proof:

(Q.0) b Jrx ==

Since 0 does not have a normal form, we do not have the weak normalization.
However, a redex in the term Q do not correspond to a redex in the proof-figure (there
is 1o redex in the proof-figure above), we do not have to consider the normalization
process inside the term . We will introduce a new function symbol freeze to make
such a term freeze, that is, not reduced in a normalization step.

If we modify RPT as above, the lost 1-to-1 correspondence of proof-terms and
proof-figures is recovered. Even if we do not have the 1-to-1 correspondence of the
fwo, we can prove the strong normalization theorem of the proof-figures. However,
by recovering the correspondence, our proof becomes much simpler than otherwise.

2.4.4 Formalizing RPT,

We present RPTy as a variant of RPT. The motivation of this modification was
described in the last subsection.
We first add three terms into those of RPT.

Definition 8 (New Term)
t u= up(t) | down(l) | freeze(t)

Definition 9 (Neutral Term) A term a is called neutral if it is of the form car(b),
cdr(b), b(¢), or down(b), and is not normal.

Note that. a neutral term cannot be normal unlike the usual definition. This modi-
fication is erucial in our proof of the SN property.

Definition 10 (New Reduction Rules) New reduction rules in RPTo are the
following two rules:

down(up(a)) — «a
freeze(a) — «

30 CHAPTER 2. FORMALIZING RPT

Note that, the relations —, —=, and = in this Section are those extended by these
rules.

Theorem 1 The new calculus satisfies the Church-Rosser property.

Definition 11 (Restricted Reduction) a — b if b is oblained by a sequence of
reductions of the term a where no redex in Av.t nor freeze(t) is reduced.

Note that — is not Church-Rosser, since
(Az.Ay.z)(car((0,0))) — Ay.car((0,0)),

and

(Ax.y.a)(car((0,0))) — (Az.Ay.a)(0) — Ay.0.

The inference rules of RPTy are those of RPT with the the inductive definitions
deleted, the following rule added, and the level-up, the level-down, the V-elim-1, and
the J-intro rules modified.

pF; up(a) = up(b)
ptia=25b

The modification of the four rules are as follows:

Gy b abi(bkp) . _ .
@b @b 0 Gem@r, p 7
atiVp a b p(t)
a(freeze(t)) k- p(t) (freeze(t),a) ; Ip

The modification for these four rules are mainly introducing the function symbols
up, down, and freeze.

The system RPTy is RPTy without the left-equal rule.

In the following, we shall prove the strong normalizability for RPTg, and then
obtain some proof-theoretic results for RPTg and RP7T0.

2.4.5 Reducibility and its properties

This subsection presents the main theorem of this section, from which we have the
SN property for RPTg.

The technique is based on Tait-Girard's method of computability predicates [19].
However, we are unable to directly apply the technique to RPT, since we cannot
use the induction on the logical complexity of propositions. Instead, we will use the
induction on the metaness level and the complexity of propositions.

2.4, STRONG NORMALIZABILITY OF RPT 31

Definition 12 (Reducibility Set) For an i-th level proposition A, we define a
reducibility set Redi(A) as a set of closed terms. This definition is by induction on

the proof of |=i (A)

e A istrue,
Red;(A) is defined, and is equal to S where S is the sef of closed terms which
strongly normalize to 0,

o A is false,
Red(A) is defined, and is equal lo {}.

e Aisb=c¢c,

Red,(A) is defined, and is equal to S if b= ¢, and is equal lo {} otherwise.

e Ais BAC,
Redi(A) is defined if and only if both Redi(B) and Red;(C) are defined. a €
Red,(A) holds if and only if there exist ¢ and d such that a = (e, d), and
car(a) € Red;(B) and cdr(a) € Red;(C).

e AisBVvC,
Red;(A) is defined if and only if both Redi(B) and Redi(C) are defined.
a € Red;(A) holds if and only if there exist ¢ and d such that a = (e, d),
and either car(a) =~ true and cdr(a) € Red;(B). or car(a) =~ false and
cdr(a) € Red;(C).

e AisBDC,

Red;(A) is defined if and only if Red(B) is defined, and either Red(B) is
empty, or Red;(C) is defincd.

a € Red,(A) holds if and only if there exist y and d such that a = Ayd, a is
strongly normalizing, and for all b € Redy(B), a(b) € Red;(C) holds.
e Ais B&C,

Red;(A) is defined if and only if Redi(B) is defined, and either Red;(B) is
emply, or Red;(C) is defined.

a € Red,(A) holds if and only if there exist ¢ and d such that a = (e,d). and
car(a) € Red;(B) and cdr(a) € Redi(C)

e AisVB,
Red;(A) is defined if and only if for every closed lerm b, Red;(B(b)) is defined.

a € Red,(A) holds if and only if there exist y and d such that a = Ay.d, and
for every closed term b, a(freeze(b)) € Red;(B(b)).

32 CHAPTER 2. FORMALIZING RPT

e A s 3B,
Red,(A) is defined if and only if for every closed term b, Red;(B(b)) is defined.
a € Red;(A) holds if and only if there exist ¢ and d such that a = (c.d), and
cdr(a) € Red,(B(car(a))).

o Ais|=; B,
Red (A) is defined if and only if j < 1.
Redi(A) is equal to S if Red;(B) is defined, and {} otherwise.

e Aishl; B,
Redi(A) is defined if and only if j < 1.

a# € Redi(A) holds if and only if Red,(B) is defined, down(a) € Red;(B), and
there eists a term ¢ such that b= ¢, and ¢ € Red;(B).

o if A= B and Red,(B) has been defined, then Red,(A) is equal to Red:(B).
This finished the definition of Red,(A).

This inductive definition is well-defined, since the set of terms A for which Red;(A)
has been defined is monotone at each level 1.
We then define the CR properties as in the standard method.

Definition 13 (The CR properties) (CR1) if a € Red;(A) then a is strongly
normalizing.

(CR2) if a € Redi(A), and a — &, then ' € Redi(A).

(CR3) if a is neutral, closed, and for every a' such thal a —, o', «’ € Red,(A),
then a € Red,(A).

Here, a —+; @' is the one-step reduction for —+. We refer these properties as (CR).

Lemma 2 For each natural numberi and a proposition A, the sel Red;(A) salisfies
the CR properties.

Proof.

The lemma is proved by the double induction; namely, the induction on the level.
and the induction on the definition of the set Red(A).

We assume that the lemma has been proved for each level j < i,

In the following, we do not mention the “well-typed” requirements in the defini-
tion of Red;. For example, a € Red;(B A C) must be in the form of (e, d) for some

c and d. In proving (CR2) and (CR3), it is automatically guaranteed by virtue of
the modified definition of neutrality.

e Ais true,

Trivial.

1. STRONG NORMALIZABILITY OF RPT 33

A is false,

There is no a € Red;(A), so CR trivially holds.

Ais b=c,
If b= ¢, then ¢« € Red;(A) means a is strongly normalizing to 0, so CR holds.

Otherwise, Red;(A) is empty, so CR holds.

Ais BAC,

1. Suppose a € Red;(BAC'). We have car(a) € Red;(B), and by the induction
hypothesis, car(a) is strongly normalizing, so is a.

2. Suppose a € Red,(B A C'), and a —; a'. Since car(a) € Red;(B) and
car(a) —, car(d’), car(a’) € Red;(B). Similarly, cdr(a’) € Red(C), and
then ¢’ € Red;(B A C).

3. Suppose «a is neutral, and for every «’ such that a —, ¢’, @’ € Redi(BAC').
Since a is neutral, every 1-step-reduct of car(a) is of the form car(a’) where
a—»ya’. Since car(a’) € Redi(B), we have car(a) € Red;(B) by the induction
hypothesis. Similarly we have cdr(b) € Red,(C) and then a € Red, (B A C).

Ais BvC,

1. Suppose a € Red;(BVC). We have cdr(a) € Red(B), or cdr(a) € Red,(C).
By the induction hypothesis, cdr(a) is strongly normalizing in either case, so
1S a.

2. Suppose a € Red;(BV C'), and a —; a’. Assume car(a) ~ true. Since
cdr(a) € Red;(B) and cdr(a) —; cdr(a’), we have cdr(a’) € Red;(B). We
also have car(a’) = true, so we have a’ € Red,(B vV C). Similarly for the case
of car(a) = true.

3. Suppose a is neutral, and for every a’ such that « —+ o', d’ € Red;(BVv C).
Fix such an «'. Then, either car(d¢') ~ true and cdr(a’') € Redi(B), or
car(a’) = false and cdr(a’) € Red/(C). Assume the former is the case.
Since « is neutral, every 1-step-reduct of cdr(a) is of the form cdr(a’) where
a—a'. Since cdr(a') € Red;(B), we have cdr(a) € Red;(B) by the induction
hypothesis. We also have car(a) = true, so a € Red;(BV C).

Similarly for the latter case.

Ais B D.C,
1. Trivial.
2. Suppose a € Redi(B D C), and a —+ a'. For every b € Red;(B), a(b) €

Red;(C') holds. By the induction hypothesis, a'(b) € Red;(C) holds for all
such b. Also «' is clearly strongly normalizing, so ¢ € Red;(B D C).

34

CHAPTER 2. FORMALIZING RPT

3. Suppose a is neutral, and for every ' such that a —, @', we have o’ €
Red,(B D C). Fix such an «’. Since ¢ is strongly normalizing, so is a.
For every b € Red;(B), we have a'(b) € Red;(C). Since a is neutral, a(b)
reduces to a term of the form a'(b) or a(b’) where b —+; ¥. By the induction
hypothesis, b is strongly normalizing, so we eventually get o'(§') € Red;(C)
by the induction on the length of the normalizing sequence of b. Finally, we

have « € Red;(B D C).
Ais BE&IC,
Similar to the case of A.

Ais VB,

1. Suppose a € Red,(VYB). Then, we have a(freeze(0)) € Red,(B(0)), hence
a(freeze(0)) is strongly normalizing, so is a.

2. Suppose ¢ € Redi(VB), and « —» d’. Since a(freeze(b)) —», d'(freeze(b)).
a'(freeze(b)) € Red;(B(b)) for every closed term b. So a' € Red;(VB).

3. Suppose a is neutral, and for every a’ such that ¢ —; ', we have ¢’ €
Redi(VYB). So, a'(freeze(b)) € Red;(B(b)) for any closed term b. Since a is
neutral, a(freeze(b)) reduces to the form «/(freeze(b)), so a(freeze(b)) €
Redy(B(b)). Hence, we have a € Red,(VB).

Ais 3B,

1. Suppose a € Redi(3B). We have cdr(a) € Red;(B(car(a))), and by the
mduction hypothesis, cdr(a) is strongly normalizing, so is a.

2. Suppose a € Redi(3B), and a —», @'. Since cdr(a) —; cdr(a’), cdr(a’) €

Red;(B(car(a))). So we have cdr(a’) € Red;(B(car(d'))), hence a’ € Red,(3B).

3. Suppose « is neutral, and for every a’ such that a —», /, we have o' €
Red;(3B). Since a is neutral, every 1-step-reduct of cdr(a) is of the form
cdr(a’) where a« —»; a’. Since cdr(a’) € Red;(B(car(a'))), we have cdr(a) €
Red;(B(car(a))). Then we have « € Red,(3B).

A is *:J' B,

Similarly to the case of ¢ = b.
Ais bk; B,

1. Suppose a € Redi(bt-; B). Then, down(a) € Red;(B), so by the induction
hypothesis, a is strongly normalizing.

% S}lppose a € Redi(bt; B), and a — «’. Then down(a) € Red;(B), and by
the induction hypothesis, down(a’) € Red;(B). Hence, a' € Red;(b i B)

3. Suppose a is neutral, and for every ' such that « —»d',d € Redi(bt; B).
Then, down(a') € Red,(B). Since «a is neutral, every l-step-reduct of down(a)

2.4. STRONG NORMALIZABILITY OF RPT 35
is of the form down(a’), and by the induction hypothesis, down(a) € Red;(B).
Hence, we have a € Red;(b}; B).

o il A~ B and Red,(B)

Since we have the Church-Rosser Theorem for =2, this case is trivial.

This completes the proof. O
We define T'rans(.J) for a judgement J as follows:

o Trans(l=; a) is “Red;(a) is defined”, and

e Trans(a b, b)is “Red;(b) is defined and a € Red;(b)".
The following theorem is the main theorem of this chapter.

Theorem 2 [f we have a proof of the judgement J with assumptions Jy,-++.J,, in
RPT5 ., then, we have that Trans(J,0),-- -, Trans(J,0) imply Trans(J0) where 0 is
any ground substitution.

In this theorem, a ground substitution is a substitution where substituted terms are
closed terms only.

Proof.

This theorem is proved by the induction on the length of the proof.

For a strongly normalizing term «, we will use the notation len(a) which repre-
sents the maximum of length of reduction sequences starting from a.

The induction proceeds by the case analysis of the last inference rule. In the fol-
lowing, we omit the trivial cases and list non-trivial cases only. In general, inference
rules for levels, equality and canonical terms, and propositions are easily handles,
since they do not contain proof-terms. Moreover, most elimination inference rules
(such as the A-elim-1 rule) are straightforward, since the definition of Red;(A) is in
the form of the elimination style.

Case (prop-intro).

Since Red,(p) is defined, and 0 € S, we have the conclusion.

Case (level-up).

By the reduction down(up(a)) — «, we have the conclusion.

Case (level-down).

This rule is essentially an elimination rule, so it is straightforward.

(Case (A-intro).

Suppose a € Red;(p), and b € Red;(q) for closed terms a,b. p.¢ and an ordinal
number ¢ which is less than a.

Consider the term car((a, b)). « and b are strongly normalizing. By the induction
on len(a) + len(b), we have (a,b) € Redi(p A q).

36 CHAPTER 2. FORMALIZING RPT

(Basis) a and b are normal. Then the only 1-step reduction ol car((a,b)) is a,
which is in Red;(p).

(Step) car((a., b)) 1-step reduces to car((a’, b)), car((a.¥)), or a. As for the first
two cases, since a' € Red;(p) and ¥ € Red;(¢) hold. we have the conclusion using
the induction hypothesis. As for the third case, we have ¢ € Red;(p). Therefore, in
any case, the results of 1-step reduction are all in Red;(p), so is car((a,b)).

Similarly, we can prove cdr((a.b)) € Red;(q), and hence, (a.b) € Redi(p A q).

Case (V-intro-1).

Suppose a € Red,(p) and Red,(q) is defined. Then, we have Red,(pVq) is defined.

The term cdr((true,a)) 1-step reduces to cdr((true,a’)) or a. For the first
case, we can use induction hypothesis to prove cdr((true,«’)) € Red;(p) since a is
strongly normalizing. For the latter case, we already have ¢ € Red;(p). Hence we
have cdr((true,a)) € Red;(p) and get the conclusion.

Case (V-intro-2).

Similarly to the Case V-intro-1.

Case (V-elim).

Suppose al) € Redi(pd V ¢f). Suppose further, il 0 € Red;(car(a¢) = true)
and r¢é € Redi(pg), then bo € Redi(ro), and if 0 € Red;(car(ay) = false) and
iy € Redi(qi), then eyp € Redy(rv) for any ground ¢ and .

From the first assumption, we have either car(af) =~ true and cdr(afl) €
Redi(ph), or car(al) ~ false and cdr(af)) € Red;(q0). Suppose we have the
first case. Using the second assumption with @ being f with z := cdr(af), we get
bylcdr(a)|0 € Red;(rf) with any ground 6.

We will prove (if car(a) then Aa.b else Ar.c)(cdr(a))o € Red;(ro) for any
ground o by the induction on len(car(a)o) + len(cdr(a)o).

(Base) car(a)o must be true, so the whole term is reduced to (Aa.b)(cdr(a))o.
and then b,[cdr(a)]o. Then, by the fact above, this is in Red;(ro).

(Step) The whole term can be reduced at redexes car(a)o, the if ferm, or
cdr(a)a. In the first and the third cases, we can use the induction hypothesis.l In
the second case, the term becomes (Az.b)(cdr(a))o. We can prove this term is in
Redi(ro) by the induction on len(cdr(a)eo).

Similarly for the other case.

This finishes the Case V-elim.

Case (D-intro).

Suppose Red;(p) is defined. and for any ground substitution 0, if 20 ¢ Red,(ph)
then af € Redi(¢f). Under the restricted reduction, we have (Aa.a)f is rlola‘malj
Then, all we have to prove is that, for any b € Red;(pf), we have ((\z a)0)(b) €
Red;(¢0). We can prove this by induction of len(af) + fenkb]. '

Case (&-intro).

Similar to the case of A.

Case (V-intro).

Suppose af € Red(pf) for any ground 0.

2.4, STRONG NORMALIZABILITY OF RPT 37

We will show (Az.a)(freeze(b))¢ € Red;((Av.p)bo) for any ground ¢. The key
case is «, freeze(b)|o. By taking f as ¢ with ¢ := freeze(b), we have the result.

Case (3-intro). Suppose afl € Red;(p.[t]@) for any ground 0.

We will show cdr((freeze(t),a))o € Red;((Ax.p)car((freeze(t),a))o) for any
ground ¢ by the induction on len(a). Note that Red;((\x.p)car((freeze(t),a))o)
is equal to Red;(p:[t])o.

The term cdr((freeze(l),a))d can be reduced to either a¢ or cdr((freeze(t), d'))o
where a¢ —; d’¢. In the first case, we have the result by setting # in the assump-
tion be ¢. In the second case, we also have the conclusion by using the induction
hypothesis.

This finishes the proof. O

2.4.6 Properties of RPT;

Theorem 3 If a k; b is proved in RPT5 withoul assumptions, a is strongly nor-
malizing in the sense of —=, or equivalently, a proof figure of a b; b is strongly
normalizing.

Proof.

['rom the last theorem, we have afl € Red;(b0) for any ground substitution 0.
Hence af is strongly normalizing (in the sense of —) for any such 8. It follows that
a is strongly normalizing. O

Theorem 4 RPT; is consistent.

Proof.
By the theorem above, if we had a proof of « |-; false, then Red;(false) would
have an element, but it contradicts to the definition of Red;(false).

Corollary 3 (Subformula property) If a F; b is proved in RPT; without as-
sumptions, all the propositions in its proof figure are sub-propositions of b.

Our definition of Red; contains “well-typed” statements so that we have the
following result.

Theorem 5 The proof terms are “well-typed” in the following sense;

1. ifab;bAc, al; b& e, orat; 3bis proved in RPT; withoul assumptions,
then a is a pair, namely, is equal to a term of the form (b, c).

2. ifat; bVe, then a is a pair, and its car-part is equal to either true or false.

3. ifab; bD e oral;Vae.bis proved in RPTy without assumptions, then a s
a function, namely, is equal to a term of the form Ay.c.

Corollary 4 (Disjunction Property) If a F; bV ¢ is proved in RPT; without
assumptions, then we have either cdr(a) l; b or cdr(a) b ¢ in RPT; .

38 CHAPTER 2. FORMALIZING RPT

Proof.

From the main theorem, we have a € Red;(bV ¢). By the definition of Red;, a
is reduced to the form of (d,e), and that d ~ true, or d ~ false. Since d is also
strongly normalizing, we can reduce d as far as possible, and will get true or false.
In the first case, we can make a proof of ¢ I, b, and in the second case, ¢ F; ¢.

2.4.7 Properties of RPT; and RPT

By Lemma 1, a proof in RPTj can be equivalently transformed into a proof which
contains the equal-left rule at the last inference only. Hence, we have the following
theorems.

Theorem 6 The proof terms in RPTy is weakly normalizing.

Theorem 7 RPT, is consistent. The subformula property and the disjunction prop-
erty hold for RPT,.

As we stated before, RPTj is not exactly equivalent to RPT without inductive
definition. But the structure of proof-figures of RPT is the same as that of RPTy,
and we can prove the SN theorem for the proof-figure of RPT without inductive
definitions and the equal-left rules in the same manner as RPTj .

Theorem 8 RPT without the inductive definition is consistent. The subformula
property and the disjunction property hold for RPT without the inductive definition.

Remark 2 In order to obtain proof-theoretic results about the full RPT, namely,
RPT with arbitrary inductive definitions, we have to extend our results to include
inductive definitions, It is our future work.

2.5 Conclusion

In this chapter, we have presented RPT, a formal system of Sato’s RPT. By putting
three reasonable conditions, RPT does correspond to RPT.

There have been studied other constructive logics; Martin-Lof’s type theory
ITT,[29]. Feferman’s Ty [18], Hayashi and Nakano’s PX [21], Sato’s SS8T[35], and
Coquand and Huet’s Calculus of Constructions (CoC)[11]. ITT, and CoC have type
theories while Ty, PX, and SST are untyped theories. Since RPT is based on un-
typed A-caleulus, we can define arbitrary partial recursive functions in RPT. More-
over, RPT gives an interpretation of logical connectives under the Curry-Howard

isomorphism, so it has a feature of type theories. Therefore, wa may say RPT has
features of both type and untyped theories.

2.5. CONCLUSION 39

The reflection mechanism of RPT is quite useful as was demonstrated by many
examples in this Chapter. In particular, we formalized and proved many metathe-
orems such as Term Existence Property and Disjunction Property. We also formal-
ized a metatheorem about Harrop formulas in the first-order logic, which is useful
in program refinement techniques,

We also studied proof-theoretic properties of RPT without inductive definitions.
To do so we presented a formal system RPTy and RPTg. Every proof-figure of
RPTy is transformed into a proof-figure of RPT; and an application of the equal-
left Tule. The calculus of RPTg is so designed that the redexes in the proof term
one-to-one correspond to the redexes in the proof-figure.

We defined a modified “reducibility candidate” property, and proved Red;(p)
satisfies it. From this theorem, we got several flundamental proof-theoretic properties
for RPTg, including the strong normalization property in a restricted calculus, the
consistency., and the subformula property. We proved the similar properties for
RPTy. too. The same technique can be applied to RPT itsell, hence these results
indicate that our formalization is a reasonable one. We have not proved prool-
theoretic properties for the full RPT system (with inductive definitions). It is our
future work.

40

CHAPTER 2.

FORMALIZING RPT

Chapter 3

Constructive Programming
System based on RPT

3.1 Introduction

In this chapter, we describe our Constructive Programming System for the formal
system RPT.

A Constructive Programming System is a computer software which provides
supports for men to develop a program (proof) in the paradigm of Constructive
Programming. There are two reasons why we need a Constructive Programming
System.

The first one is to ensure the correctness. In order to do Constructive Program-
ming, we need to give a correct proof of a specification formula. If the proof contains
errors, then the correctness of the extracted program is not guaranteed. Therefore
we need a mechanical proof-checker which checks each inference step.

The second one is that a proof of a realistic specification tends to be quite large.
Moreover it often contains many similar parts. Therefore it would be quite helpful
for a computer software to provide some supports to men in developing a large proof.

We have designed and implemented a Constructive Programming System which
supports proof-development in RPT, Our system also contains a certain level of
automatic proof generation.

We will describe an overview of the Constructive Programming System. We also
give a proof of Church-Rosser theorem for the terms in RPT, and finally give an
example of Constructive Programming.

3.2 Overview of the System
The target logical system of our implementation is RPT. It follows that our tar-

get (object) programming language is A. We also chose A as the implementation
language of our system, so the two languages are identical in our case.

41

42 CHAPTER 3. CONSTRUCTIVE PROGRAMMING SYSTEM

Since Edinburgh LCF[20] was implemented on top of ML, almost all the proof
development systems have been implemented by much stronger (much more expres-
sive) programming languages than the object language which the system can reason
about. In the case of LCF, ML is much stronger than the object language PPlambda.
If we would want to prove some properties of the system itsell, we would need to
design an even stronger logical system. Fven worse, this process does not terminate.

On the other hand, the object and implementation languages of our system are
identical. We can therefore express properties of our system itsell inside RPT. and
then prove them using our system.

Our implementation language is slightly extended from the original A: we in-
troduced the pattern-matching mechanism, assignment statements, and the error-
handling mechanism. However the pattern-matching mechanism is just a syntax-
sugar, and can be always eliminated from the program. The main role of the assign-
ment statement is to keep the history of already proved results, therefore dereference
of a variable (to which the value of a past proofl was assigned) can be eliminated by
the substitution of the variable by the past proof. Finally, the error-handling mech-
anism is not invoked if the proof-checker succeeds (namely our proof is correctly
formulated). Hence, if we successfully prove some theorem using our system, then it
can be regarded as an ontput of a system which is implemented by a pure language
of A.

Each term in the object language must have a representation in the implemen-
tation language. In our case every term in A must have a representation in A itself.
The representation must be a normal term, so the representation function cannot
be the identify. We use the quote mechanism for the representation function. The
(meta)function quote one-to-one-maps every term in A to pair-terms. The pair-
terms are terms constructed by nil and () only. Unlike the quote mechanism in
Lisp, the result of the computation of quote(a) in A is quote(a) itself.

FFor improving the readability, our system uses the Japanese character-set for
displaying logical connectives. However, we cannot input those characters without a
Japanese-input method. Hence, the input by a user and the output from the system
differ. We list this difference in Table 3.1.

As shown in the table above, if we input the judgement s F; {. then the proof-
term s is not displayed, hence the output of our system looks like ordinary first-
order logic. This is useful since we usually do not care the structure of the proof-
term of the current theorem. In particular, we do not want to explicitly name
an assumption variable when we assume some proposition. Instead, the system
generates an appropriate name for the assumption, and its name is not shown in
the display. However, the proof-term does exist inside the system. We can show it
explicitly by giving a command to the system (the “proof” command)

3.2. OVERVIEW OF THE SYSTEM 13
RPT Input to the system | Output
from the
system
dl false 1|0
T true T
a=h (eql a &) d= b
pla] | (pred p @) pla)
AAB | (and A B) AAB
A&LB | (cand A) A& B
AV B | (or A B) AV B
ADB | (imp A B) ADB
Vx. A (all (lambda (a) A)) | Vo.A
dx. A (ex (lambda (2) A)) a2.A
Eip | I=p I=p
abip | 1-p - p

Table 3.1: Logical Connectives in Input and Output

3.2.1 Interaction with the system

Our system is an interactive proof generator, not a proof-checker (which checks a
proof after inputing a complete proof), nor an automatic prover (which generates a
proof from a formula automatically). The direction of our inference is forward. We
construct a proof from leaves to the root.

Commands at the toplevel of the system are those corresponding to the inference
rules of RPT as well as commands which shows the hidden information (the current
level and the current proof-term).

RPT:100> true-intro
Result:100: |- T
RPT:101> proof
proof-term is 0
RPT:101>

In this example, RPT:100> is a prompt of our system. The number 100 is the history
number. the number of proofs so far generated since ths system started. In reply
to this prompt, the name of an inference rule, true-intro, was input by a user,
then the system returned 0 ¢ true. The expression Result:100: is the header of
this replv and the actual content is |- T only, which is the righthand side of the
sequent 0 Fy true. The proof-term 0 and the level 0 are not shown. To display
the proof-term, the user inputs the command proof, and then got the result. Note
that, this command did not increase the history number, since no new proof has
been generated.

44 CHAPTER 3. CONSTRUCTIVE PROGRAMMING SYSTEM

Commands which correspond to inference rules of RPT usually take several ar-
guments, and return the righthand side of the inferred sequent if succeeds. The
arguments specify the subproofs of this application, and other necessary information
so that the system can uniquely identify the form of the inference. If the command
does not succeed, namely, the application of the inference rule is not appropriate.
then it does not return anything and raises an error.

For most arguments, default values are supplied by the system if no arguments
are provided by the user. For instance, the following input means that, to apply the
A-introduction rule to the subproofs numbered 70 (two steps before this application)
and 71 (one step before this application).

RPT:72> (and-intro =2 -1)
Since these are the default values of this rule, we can simply input as follows:
RPT:72> and-intro

If the system cannot supply default valued, it displays another prompt. For instance,
the following example shows that the system is waiting for the user to input a term,
since the prop-eql rule (showing that « = b is a proposition) is applicable to any
term, and the system does not know which term should be used at this point.

RPT:74> prop-eql
term?

Our system does not merely provide interactive proof-checker/proof-generator:
it also supports facility of computation, and program extraction. Morcover, we
extended the system RPT with some derived rules. For example, the 3~e]imina.‘tion
rule in the style of the usual first-order logic is not primitive, but a derived rule. Since
it is a useful rule, we included it as a primitive command. Another example is the
A-introduction rule for more than 2 propositions. We can introduce a conjunctive
proposition which consists of more than 2 conjuncts at a time. Similar derived
rules are available for the elimination, and for other logical connectives such as V.
Since these rules are not primitive inference rules in RPT, and are not guaranteed
by any rigid way, we implemented these rules as combination of primitive inference
rules. Obviously this implementation is inefficient. since it alwavs expands the rule
and checks the expanded form while the validity of the derived ;ules are clear. This;
point is an important motivation of introducing more powerful reflection mechanism
in Chapter 4.

A concrete example of our system will be given later.

3.2. OVERVIEW OF THE SYSTEM 45

3.2.2 Automatic Proof Generation

Although our system does not aim to generate proofs automaticly, several simple
automatic proving procedures have been built-in our system.

o Proving some term is a proposition
A characteristic point of RPT is that, the propositionhood is not defined solely,

but it depends on the truthhood. For instance, a D 0 is a proposition if a is a
false proposition. Hence, we need a proof for propositionhood.

However, we can define a large class of terms where the propositionhood does
not depend on the truthhood, hence is decidable. Namely, for terms ¢ O b
and a & b, if both subterms « and b are propositions, so are the whole terms.
Our system contains this decision algorithm. Therefore, in most cases. the
propositionhood is automatically proved.

e Computation

Given a representation (quote’d form) of a term «, the system can compute
it at any time. This computation is achieved by the formalized interpreter
and does not depend on the interpreter of A itself. Hence, we can arbitrarily
change the computation strategy by giving some message to the system.

e Simplification of propositions

Our simplifier operates on propositions, and transforms them to logically
equivalent ones. It consists of normal simplification and E-simplification.

Normal simplification is to transform a proposition to a simpler form. For
instance, true A A can be simplified to A, and car((A, B)) to A.
We then describe E-simplification.

We call a proposition of the form Jay, -+, 3Jz,.(A; V-V A,,) an E-proposition.
Suppose some A; is an equality proposition ¢ = b. For instance, the following
is an k-proposition:

€ = ey Izlu={c,) Ay= 10,2) AP2])

Let p be a proposition, and ¢ be an E-proposition. Suppose a k; p and b |, ¢
have already been proved. If the following procedure succeeds with a new
proposition r, then we obtain a proof of a I; r by E-simplification.

1. Rename all the bound variables in e so that they do not crash with free
variables in p and e.

o

Let S be the set of equalities in (the atomic formulas of) e. Let # be the
most general unifier of S.

3. Apply the normal simplifier to pf. Let r be the resulting proposition.

46 CHAPTER 3. CONSTRUCTIVE PROGRAMMING SYSTEM

4. If no bound variable in e appears in r, then the procedure succeeds with
r. Otherwise, it fails.

Y,

As a concrete example of the E-simplification, Let ¢; be as above, and p; be
pair?(u) = true A fun?(cdr(u)) = true V ps.

We assume that p, does not contain u free. The most general unifier of the
sel of equalities in ¢, is

0 2 {u = (2,(0.2)),y := (0,2)}

Then p, 0 is pair?((x. (0,2))) = true A fun?(cdr((z, (0,z)))) = trueVp,, and
then it simplifies to p,. Since, p; does not contain variables @,y and z, the
result of E-simplification of py is ps.

E-simplification does not do much work. However, E-propositions are of-
ten contained in inductively defined predicates, so we can make use of k-
simplification at the proof of induction steps. In particular, we used it exten-
sively in proving the Church-Rosser theorem ol A.

3.3 Mechanized Proof of the Church-Rosser The-
orem

The Church-Rosser Property is one of the most fundamental properties for term
rewriting systems and functional programming languages. Let D be a set and R be
a binary relation on D. Let =g be an equivalence relation induced by R. Then R is
Church-Rosser if, for any terms a, b, ¢ € D such that a =5 b and a =y ¢ hold, there
exists a term d € D such that bRd and cRd hold.

This property guarantees that the result of any computation from a term « is
unique. The uniqueness of computation is significant for term rewriting systems and
functional languages to have a meaningful semantics.

A similar property is the following Diamond property.

Definition 14 (Diamond Property) Lel D be a set and R be a binary relation
on D.

Then R has the diamond property if for any terms a,b, ¢ € D such that aRb and
alRc hold, there exists a term d € D such that bRd and cRd hold. O

If 12 satisfies the Diamond property, then it satisfies the Church-Rosser property.
Hence, we will concentrate on the diamond property in the following.

There are several works in which mechanical proofs of the Church-Rosser prop-
erty have been given. For example, Shankar(38] proved the Church-Rosser property
for the pure A calculus using the famous Boyer-Moore theorem prover|9].

The difference of his work and ours is that, we prove the Church-Rosser prop-
erty for our programming language A itself, and we use the novel technique due to

Takahashi.

3.3. THE CHURCH-ROSSER THEOREM 47

3.3.1 Proof Method

There have been proposed many techniques to prove the Church-Rosser property.
Among them, Takahashi’s method[42] is one of the best one as far as we know. Her
method is quite simple, yet applicable for a wide range of reduction systems. Sato[34]
used it to prove the Church-Rosser property of A. The method is summerized as
follows:

1. Define a parallel reduction — of terms as an extension of the original reduction.

Parallel reduction is such a reduction that reduces an arbitrary number of
redexes af the same time. Since it does not specify the number and the po-

"

sitions of redexes, this reduction is non-deterministic. It is called “parallel”.
since it can reduce more than one redexes at a time. For instance, if we
parallel-reduces the term (Ar.x2)(car((y.z))), then the result is one of this
term itself, (car((y, z)))(car((y,2))). (A\a.xz)y. or yy.

The parallel reduction must contain the original reduction, and must be con-
tained in the reflexive-fransitive closure of the original reduction.

i i » *

2. For each term «a, define the “most reduced” term a”.

Intuitively. the “most reduced” term is such a term that, all the redexes in «

are reduced simultaneously, For instance,

((Ax.za)(car((y. :})))* = yy
3. Prove the following properties on — and *.

e« —ua
o a — cand b— dimply a,[b] — ¢,[d]

. . *
o « — bhimplies b — «

Then we have that — satisfies the Diamond property.

4. Show that, if a relation has the Diamond property, so does its reflexive and
transitive closure.

We have mechanized Sato’s proof in our system as follows:

1. Define the representation of the terms of A as pairs.

All the terms in A are already represented as pairs by the quote mechanism.
But we must again represent the terms of A in order to treat their properties.

The quote mechanism is again used for this representation. Based on this
representation, we define predicates for (representation of) terms, parallel
reductions, and so on.

A48 CHAPTER 3. CONSTRUCTIVE PROGRAMMING SYSTEM

2. Prove that the parallel reduction has the Diamond property.

3. Prove that the reflexive-transitive closure of — has the Diamond property.

Obviously, the reflexive-transitive closure of — coincides the original reduction
—+, therefore, this finishes the proof of the Church-Rosser property of —~.

The mechanized proof that — has the Diamond property is by induction on the
structure of the term. Since A has various kinds of term construction, this induction
needed many cases as the induction steps. However, many of them are similarly
proved, and the essential complexity was not so high. We used the E-simplification
procedure to prove each case of the induction steps,

In the following, we will describe the last part of the proof.

Theorem 8 We can prove the following for some term a:
a by YS.VA.(Unary(S) D Binary(A) D Persis(A.S) D

Diamond(A, S) D Diamond(Trans(A).S))

where
Unary(S) £ V. o S[a]
Binary(A) = Va.Vy.l=o Az, y]
Trans(A) 2 Af Az Ay(x =y V Iz A2, 2] A f[z,y])
Persis(A,S) g Az, y.(Alz,y] D S[x] D S[y])
Diamond(A,S) 2 Va.(S[2] O Vy.Vz.(Alz, y] A Alz, 2] D Fu(Aly, u] A Alz,u])))
(|

In this theorem, the unary predicate S represents the (quote'd) termhood, and
Persis(A,S) means that the binary relation A respects the termhood S. This
theorem means that, if a binary relation A has the Diamond property, then its
transitive closure Trans(A) also has the Diamond property. i

Theorem 8 holds for any binary relation, hence we can apply it to relations other
than —. This kind of generality is one of the characteristic points of RPT.

The proof of Theorem 8 has been mechanically checked by our system. It took
approximately 170 steps. We list a sketch of the mechanized proof in Appendix.

3.4 Program Synthesis

In thie section, we describe a complete example of Constructive Programmin g using
our system. The synthesized program is append of lists.

3.4. PROGRAM SYNTHESIS 49

3.4.1 The specification of append and its proof
The specification of the append program is written as the following proposition in
RPT:

Va.(List[z] D Vy.(List[y] D 3:.Append[r,y,z]))

Here two predicates List and Append are defined as follows:
MAz(z=nilV Iz, 3r,. &= (z,72) A flz2])

Af Az Az, p=nil A y=2=z
M 32y 3eq(z = (Epa) A Il flee2] A 2 =(221)))

List

> e

Append

We proved the specification formula above using our system. It took about 80
steps including the definitions of List and Append, and several naming operation of

intermediate theorems.
Let T,,, be the proof-term of the specification above. Its precise form is as

follows:

i Afxq.
(Ar.if car(r) then
Ayl. [y true 0 . 0]
else
Ayl.
[[cadr(r) . car(cddddr(r)yl)]
false
cadr(r)
caddr(r)
0
car(cddddr(r)yl)
cdr(cddddr(r)yl)
- 103
fi)
[car(q) .
if car(q) then cdr(q)
else
[cadr(q)
caddr(q)
cadddr(q)
f(caddr(q)) (cddddr(q))]
X i
]

50 CHAPTER 3. CONSTRUCTIVE PROGRAMMING SYSTEM
The term T, requires four arguments:

e List x,

e a proof ¢ that o is a list,

List y. and

a proof [that y is a list.

The return value of 7, is a proof of 3z.Append[z, y. z]. Therefore. the result of
append'ing two lists x and y is car(7, @ (ria))u(rise(y))) Where ri(z) is a proof
that x is a list.

3.4.2 Improvement of extracted programs

The program 71,,, is guaranteed to be correct with respect to the specification;
however it is by no means satisfactory, since it is inefficient, and it requires ex-
tra arguments other than x and y. We will discuss the first problem in the next
subsection. Here we discuss the second problem.

Theorem 9 The following holds for some term a:
a by (List[z] D rug(2) ko List{z])

where rys is defined as follows:
Piist = (M [M.
if null?(z) then (true,0)
else [false.[car(z).[cdr(z).(0, f(cdr(x)))]1]] fi) O

This theorem claims that a proof of listhood of 2 is obtained by a computation using
x. Therefore, we do not need riy(x) besides .

Similar theorems hold for other practically useful data types such as natural
numbers, lists, and trees.

3.4.3 Eliminating Redundancy by Program Transforma-
tion

Our next goal here is to eliminate redundant parts from the naively extracted pro-
gram 7,,,,. We achieve it by transforming the program preserving the correctness.
The intensional equivalence relation ~ given in Chapter 2 is too fine for this
purpose. We need a more coarse, extensional equivalence relation.
In a call-by-value calculus, the values (results of computation) are normal terms.
Then, we can define an extensional equality as follows: Let I and G be unary
functions. They are extensionally equal if, for any normal terms n and m, F(n) ==

3.4. PROGRAM SYNTHESIS 51

m il and only if G(n) =" m. F and G are not necessarily intensionally equal. If /
and G are extensionally equal, we may replace F' by G in any context.

The extensional equality of A is defined similarly as this extensional equality.
However. our definition is more complex than this, since the computation of A is
call-by-name rather than call-by-value. and the values are canonical terms rather
than normal terms. For instance, let I be the following term:

(p(Af.An.(n, f(sue(n)))))0

where suc(n) represents the successor of n. The term I represents an infinite list
of natural numbers. Both terms 2 and I are not terminating, so they are equal
by the above extensional equality. [owever, they do not necessarily have the same
meaning. For example, il we substitute one of them for = in pair?(z), then the
results are different. It follows that we need a more sophisticated definition of the
extensional equality.

Here, we will introchice a new equality ~ by regarding A as a lazy computation
system in the sense of [25].

Definition 15 (Preorder in lazy computation system) Lel R be a binary re-
lation on closed lerms. Then a binary relation T[R) is defined as follows:
sTR) L&
(s —*nil D t —" nil)
A (8 =" true D { —" true)
A (s —" false D t —" false)
A Vsii82. (8 =7 (s1,82) D Uy ta. (1 =7 (Lista) A (s REty) A (s2 R 1))
AVa. (s =" Ax.a D 3b. (1 =" Ay.b A Yu. (az[u] R by[u])))
where s, 82.11. 2. u range over closed terms, and a,b range over terms'.
A preorder < on closed terms is the largest firpoint of R = T[R]. O

In the above definition of T'[R], every occurrence of R is strictly positive, so the
equality # = T[R] has the largest fixpoint.

We can extend the preorder < to open terms; Let F'V(F)UF'V(G) be {xy, -+, 7, }.
Then F < G il, for any closed terms d;, -, d,, Fg[ti] < G'g[t;].

As an example of <, for any term , we have 2 < t. We also have I < (0, (z,y)).

Definition 16 (Extensional equality in lazy computation system) Two ferms
F and G are extensionally equal if F < G and G < F. We write F' ~ G if they are
crtensionally equal. O

Theorem 10 We have the following:
1. < is reflexive and transitive.

2. a=bimplies a < b.

3. ~ s an equivalence relation. O

'In this definition, the logical connectives A and V are not formal ones in RPT.

52 CHAPTER 3. CONSTRUCTIVE PROGRAMMING SYSTEM

The proof of the fist clause makes use of the fact that < is the largest fixpoint.

Following the terminology of [23], A is operator extensional. Hence, ~ is a
congruence relation, namely, ~ commutes with the construction of terms. Moreover.
A satisfies several conditions stated in [25] such as the deterministic condition, hence
~ coincides with the observational equivalence?.

In the following, we will give transformation rules which are correct with respect
to the extensional equality ~.

Theorem 11 Lel x.y. =, u,v,w be variables, and a,b be terms. Lel fun be one of
car , cdr, null?, true?, false?, pair?, or fun?. Then we have

fun(if = then y else z fi) ~ if x then fun(y) else fun(z) fi,

(if then y else = fi)(w)

~ if x then y(w) else z(w) fi,
if (1f 7 then y else = f1) then i else v 1

~ 1f x then (if y then u else v fi)
else (if - then u else v fi) fi, and

if » then a else b fi

~ if r then a,[true| else b,[false| fi

(|

Proof. .

We will prove the case for car of the first equation only.

Let @ be a substitution which substitutes closed terms for 2, y. =.

£ car(if r then y else =z f1)f

M2 (if o then car(y) else car(z) fi)f

We first show L < M. If L does not have a canonical form, then L < M trivially
holds. Hence we assume L has a canonical form. By the reduction rules of A, we
have either (i) #0 —* true and for some terms a, b, yf —~ (a,b), or (ii) 0 —~ false
and for some terms a, b, 20 —~ (a,b). In either case, we have L —* a and M —~ a,
hence we have L < M.

We can show M < L similarly, O

The terms in both sides of equations in Theorem 11 are not equal in the sense
of =. Hence, I' ~ GG does not imply F' =~ G.

We then define strict terms. Intuitively, a strict term ¢ with respect to f is that
needs the value of [in its computation.

Definition 17 (Strict Term) For a variable f, a strict term ¢ is defined as fol-
lows:

c i= f

*Two terms a and b are observationally equivalent if, for any context C(-), C(a) and C(b) reduce
to canonical forms of the same kind, or they do not reduce to canonical forms.

3.4. PROGRAM SYNTHESIS 53

null?(c) | true?(c) | false?(c)

pair?(c) | fun?(c)

|

|

| car(e) | cdr(c)
| eft)

| if ¢ then ! else ¢ fi

where t 1s a term. O

Theorem 12 Suppose the following hold for a term F', mutually distinct variables
foxiy oo @y, terms e;a, b (1 <i<n,1 <j<k):

PV(F) = {f}

FV(a)=10
FV() C {wr, - 2n)
FVie) C{f,x1,-- 7.}

c s strict wiﬁi respect t?.f
ci[F] ~ alez[b'],- - -, ez[b¥], 7)

Then the following holds.

esln(M)] ~ G(3)
where G is defined as follows:

G £ u(rgAT.a(g(Bl), -+, g(6F), 7))

Theorem 12 plays a central role when we eliminate redundancy in recursive
functions which uses pu. For instance, let /” be the following term:

Az.if null?(x) then (b.c)

else [p(car(f(pred(x)))). ¢(f(pred(z)))] £fi

where pred(x) is the predecessor of z, and FV(p) = {z}. Let F' be u(Af.F),
then apply F’ to a natural number n. During the iteration of recursive calls, the
intermediate values are always of the form of a pair. The pair F'(n) uses only
the first component of the pair F'(pred(n)), Therefore, if we want to have the first
component of the pair, namely, car(/”(n)), then we do not have to compute the
second component. Formally speaking, let / be the following:

Az.if null?(z) then b
else p(g(pred(z))) fi

54 CHAPTER 3. CONSTRUCTIVE PROGRAMMING SYSTEM

Intuitively, we can replace car(u(Af.F)z) by u(Ag.H)x. We do not have

car(p(Af.F)x) = p(Ag. 1)x

however, we have

car(p(Nf.F)x) ~ p(Ag.H)

hence this replacement is justified with respect to ~.
This example is an instance of Theorem 12 where ¢, I and GG are car(fz), I and

u(Ag.H). Also we used Theorem 11 in the transformation of
¢s[F] ~ if null?(x) then b else plcar(f(pred(x)))) fa

Theorem 18 For mulually distinet variables [,y a1, -« 2y, terms F. G, a. b . ¢
1 <i<m1<j<k), if the following holds:

F = A al (B,), -, f(bF.).)
G=u(A[.F)

FV(a) =0
PV() C (a4, %)
FV(e) C {21, s 2m,)

then we have 5 N
G(Z,y) ~ p(Ag AT.a(g(d'), -, g(b*),7))(T)

[

This theorem means that, if some variables are not used during the iteration
of recursive calls, then the variable (y in the above theorem) can be eliminated.
Intuitively it is obvious, and it is proved similarly as Theorem 12.

Improving efficiency of the append program

Let I be the body of yin T,,,. and ¢ be car(fa(ryu(x))yl). Then, by using Theorem
11, the term ¢y[F] can be simplified, and then we have the following by Theorem
128

car(Toppr(riw(z))yl)
~ p(Ag Az, y,l. if null?(z) then y
else (car(z),g(cdr(z),y,l)) fi)

In the righthand side of the above equation, the variable [is not used. Hence by
Theorem 13, we have:

car(Typa(rius(@))yl)
~ p(Ag.Az,y. if null?(z) then y
else (car(r),g(cdr(z),y)) fi)

The last definition is the same as the usual hand-written program of append.

3.5. CONCLUSION 55

Discussion

The optimization technique given in this section is built-in for our Constructive
Programming System. In fact, we can obtain the final append program from the
term car(7,,,x(rise(x))yl) completely automatically. We can therefore, obtain an
efficient and correct program.

However, the correctness of the technique in this section relies upon several
metatheorems such as Theorem 12. If we want to be completely formal, then we
have to formalize the extensional equality ~, which is defined as the largest fixpoint.
It is left for future work.

In general, it is quite difficult to optimize inefficient programs automatically.
However. our method can cover the cases considered in [44], and we believe that if
is applicable to a wide range of programs,

3.5 Conclusion

In this chapter, we presented a Constructive Programming System based on RPT.
and showed a formal proofl of the Church-Rosser property in RPT. We also pre-
sented a concrete example of Constructive Programming as well as an optimization
technique of a naively extracted program.

There have been proposed several computer softwares which support proof de-
velopment in constructive logic; Nuprl system[10] for Martin-Lof's type theory, PX
system|[21] for Feferman’s 75, Coq system[14] for an extension of CoC, and others.

Compared with these existing systems. the characteristic points of our system
are (1) the system is implemented by the object language A so that we can reason
about the properties of the system itsell, and (2) the underlying logic RPT has the
built-in reflection mechanism, hence we can internally express metaproperties in our
system. We have demonstrated the use of the reflection mechanism in our system.
Recently it has been widely recognized that the reflection mechanism is quite useful
in both theories and practices[6].

We plan to prove larger examples using our system so that we can extract more
realistic programs. In order to do so, we will have to improve our system at two
points: (1) introducing backward-reasoning, and providing various kinds of tactics.
and (2) improving the user-interface including graphical user interface.

Appendix The mechanized proof of Theorem 8

In this appendix, a summary of a proof of Theorem 8 is given.
A line beginning with a semicolon (;) is a comment line, which was attached by
hand. Other lines are input by a user or output by the system.

Result:1: |- V x.(l= s[x])
; Assume this proposition

56 CHAPTER 3. CONSTRUCTIVE PROGRAMMING SYSTEM

Result:3: |- Vx. Vy.(l= Alx,yl)
; Assume this proposition

Result:5: |- Vx.Vy.(Alx,y]l D slx] D slyl)
; Assume this proposition

Result:14: |- Vx.(S[x] D Vz. Vy.(lx,y] A Alx,2z] O
3 u.(Aly,ul A Alz,ul)))
: Assume this proposition

RPT:21> (defindpred TransA (x y) it X)
pred-name: TransA

pred-body: x=y V 3 z.(Alx,z] A TransA[z,yl)
0K

; Define the predicate TransA

RPT:26> (name BasicPropl (all-intro it w))
Result:26: |- V w.TransA[w,w]
; Name the proof of this proposition as BasicPropl

RPT:35> (name BasicProp2 (all-intro (all-intro it y) x))
Result:35: |- Vx.Vy.(Alx,y] D TransA[x,y])
; Prove x->y D x->*y

RPT:69> (defpred Propi (x y) it)

pred-name: Propl

pred-body: S[x] D V z.(Alx,z] DO 3 u.(TransAly,u]l A TransA[z,u]))
0K

; Name the proof of this proposition as Propl

RPT:80> (name IH (assume (prop-and (prop-pred A (x z))
(prop-pred Propi (z y))) a3))

Result:80: |- A[x,z] A Propilz,yl]

; Induction Hypothesis in the proof of Propil

RPT:117> (name Proof-of-Propi)
Result:117: |- V x. V y.(TransAlx,y] O Propilx,yl)

RPT:123> (defpred Prop2 (x y) it)
pred-name: Prop2

pred-body: S[x] DO V z.(TransAlx,z] O 3 u.(TransA[y,u]l A TransAlz,ul))

0K

3.5. CONCLUSION

ot
|

; Define the above predicate Prop2

RPT:133> (name IH2 (assume (prop-and (prop-pred A (x z))
(prop-pred Prop2 (z y))) ai3))

Result:133: |- A[x,z] A Prop2[z,y]

; Induction Hypothesis in the proof of Prop2

RPT:175> (name Proof-of-Prop2)
Result:175: |- V x. V y.(TransA[x,y] O Prop2[x,yl)
; the Diamond property

CHAPTER 3. CONSTRUCTIVE PROGRAMMING SYSTEM

Chapter 4

Half-monotone Inductive
Definitions

This chapter studies an extension of inductive definitions in the context of a type-free
theory. It is a kind of simultaneous inductive definition of two predicates where the
defining formulas are monotone with respect to the first predicate, but not monotone
with respect to the second predicate. We call this inductive definition half-monotone
in analogy of Allen’s term half-positive.

We can regard this definition as a variant of monotone inductive definitions by
introducing a refined order between tuples of predicates. We give a general theory
for half-monotone inductive definitions in a type-free first-order logic. We then give
a realizability interpretation to our theory. and prove its soundness by extending
Tatsuta’s technique.

The mechanism of half-monotone inductive definitions is shown to be useful
in interpreting many theories, including the Logical Theory of Constructions, and
Martin-Lol's Type Theory. We can also formalize the provability relation “a term
p is a proof of a proposition P" naturally. As an application of this formalization,
several techniques of program/proof-improvement can be formalized in our theory,
and we can make use of this fact to develop programs in the paradigm of Constructive
Programming. A characteristic point of our approach is that we can extract an
oplimization program since our theory enjoys the program extraction theorem.

4.1 Introduction

An important problem in constructive programming is that extracted programs
often contains redundant parts. Namely, a naive extraction usually produces an
inefficient program. Much research has been done on this topic; Subset Types[10, 30],
Separation of Spec and Prop types[32], and SUIT (Singleton, Union and Intersection
Types)[23] in type theories, and Diamond suit (double negation)[21], and Extended
projection[43] in type-free theories. These techniques introduce new types (in type
theories) or new realizability interpretations (in type-free theories) by which we

59

60 CHAPTER 4. HALF-MONOTONE INDUCTIVE DEFINITIONS

can eliminate redundant parts in programs. In other words, each of these systems
gives a fixed, uniform way of program improvement. In order to introduce a new
technigue for improvement, they must re-define the whole system and re-prove its
consistency (in type theories), or re-define the realizability interpretation and re-
prove its soundness (in type-free theories). These tasks belong to meta-theories,
and go bevond the original theory.

Our aim is to formalize various program improvement techniques in a single
framework. Namely, we want to have a mechanism to define and reason about
the relation “a term a is a program (proof) of a type (proposition) A”. Since this
is a metatheoretic notion, our theory should include a certain kind of reflection.
If such a theory is formulated, we can add a new optimization technique to the
system by re-defining the relation, and prove, for instance, equivalence of the old
and new definitions. Moreover, if the metatheory is also constructive in nature,
we can extract an optimization program [rom the proof in the metatheory. The
reflection mechanism is quite useful in proof/program development, as pointed out
by Allen et al[6].

However, the natural definition of these relations leads us outside the realm of
positive inductive definitions as shown below. We call a pair of the following two
relations a provability relation.

A is a proposition (written as Prop(A))
a is a proof of A (written as Proves(a.A))

In Martin-Lof's type theory[29], these relations correspond to the judgements A Set
and a € A. In a usual first-order logic, they correspond to a metamathematical
statement “A is a formula® and a formula “a realizes A”. If we formulate Prop(x)
and Proves(x,y) naturally, they look like:

Prop(y) «
Ju.Tv. Prop(u) A y = (udv) A Ve. (Proves(e,u) D Prop(v))

Proves(z,y)
Ju.dv. Prop(u) A y=(udv)
A Ve. (Proves(e,u) D Proves(z(e), v))

where D represents a constant corresponding to logical implication, and « repre-
sents logical equivalence. In order to regard these clauses as an instance of simul-
taneous inductive definitions for two predicates, the right hand side of < should
be monotone. However, in the above formulation, an oceurrence of Proves(e,u)
appears in the left side of D, which means that it is a negative occurrence. T:his

4.1. INTRODUCTION 61

kind of inductive definitions does not {all in an ordinary scheme of positive inductive
definitions.

Several researchers have attacked this problem in different contexts.

Beeson|[7] used two kinds of techniques; the first one uses the ordinal numbers
in classical set theory. The other one simultaneously defines a pair of the pred-
icates Proves and its negation Proves by a monotone inductive definition, and
then —Proves(x.y) «+ Proves is proved using the law of excluded middle. Both
techniques rely on classical logic.

Aczel[2] proposed Frege structures. Frege structures have two basic notions, “a
term a is a proposition” and “a term « is a true proposition”. In order to construct
Frege structures in set theory, he encountered similar difficulty. As a solution, he
introduced a new order between a pair of predicates. With respect to this order,
the pair of defining formulas of the two notions above becomes monotone, therefore
the least fixpoint exists. Although his metatheory was classical, he stated that
the construction might be considered constructive. Hayashi and Nakano[21] used
a similar order to construct models for their theory PX. Our method is similar to
their works in that we regard our inductive definitions as monotone by changing the
definition of the order. What is new in our theory is that we give a general form
of such a style of inductive definitions, and that we do everything in a constructive
framework in the sense that our theory has a sound realizability interpretation,
and enjoys the program extraction theorem. In this chapter, we will interpret a
formalized version of Frege structures (the Logical Theory of Constructions[3]) in
our theory.

Allen[4, 5] gave a type-free interpretation for Martin-Lof’s type theory. He en-
countered a similar situation as ours, and called the necessary scheme of inductive
definitions half-positive. By using an inductive definition for higher order predi-
cates, he was able to use ordinary (strictly positive) inductive definitions to interpret
Martin-Lof's type theory. His arguments can be understood by classical set theorists
as well as constructivists who accept monotone inductive definitions. Although his
motivation was different from ours, we shall compare his work and ours in Section
6. Smith[40] formalized Allen’s interpretation in a Martin-Lof’s type theory plus
recursive types.

Dybjer(15, 16] presented a general formulation of a recursive-induction mech-
anism so that the universe hierarchy becomes definable in Martin-Lof-style type
theory. The motivation of our theory is similar to his approach, and we shall also
compare his work and ours in Section 6.

In this chapter we present a general mechanism of inductive definitions by which
one can define the provability relation and similar notions naturally. The mechanism
is based on a form of a monotone inductive definition with a refined order between
predicates. We call this mechanism half-monotone inductive definitions. We define
a realizability interpretation to our theory, and prove its soundness by following
Tatsuta’s work[46]. We shall demonstrate how various concepts can be defined in
our theory; in particular, we show that the Logical Theory of Constructions and

62 CHAPTER 4. HALF-MONOTONE INDUCTIVE DEFINITIONS

Martin-Lof’s type theory can be interpreted. We also show that we can improve the
efficiency of programs by defining a refined provability relation. Our theory enjoys a
sound realizability interpretation, so that we have the program extract ion theorem.
By this theorem, we can extract programs from proofs of formalized metatheorems.

This chapter is organized as follows. Section 4.2 gives our basic theory BT.
Section 4.3 introduces our inductive definition mechanisms, HMID and HMID,
into BT, and gives its model. Section 4.4 presents a realizability interpretation,
and proves soundness for a restricted version BT+HMID,. Section 4.5 formalizes
provability relations in our theory. We also show that program improvement 18
possible in BT+ HMID,. Section 4.6 interprets the Logical Theory of Constructions
and briefly mentions the interpretation of Martin-Lof’s type theory in BT+HMID.
Section 6 compares our work with Allen’s and Dybjer's works, and gives concluding
remarks.

4.2 The basic theory

We define our basic theory BT in this section.

BT is an intuitionistic first-order theory for computation. Although our final goal
is to formalize Frege structures|2], Reflective Proof Theory[34] and similar theories,
we shall give our basic results in the framework of ordinary first-order logic. since it
is easier to understand.

The definition of terms in our language is a slight modification of Sato’s[34].
Terms are essentially type-free A-terms with o and 3 conversions. We adopt the
call-by-name semantics, but the material of this chapter can easily be applied to the
call-by-value semantics.

We assume that there is a countably infinite set of variables and a finite set of
constants, and that nil, true, and false are constants. We also assume that a
unary function symbol ¢? is uniquely associated with each constant c.

Definition 18 (Term)

T

| el

| (tita) | cax(t) | cdr(t) | pair?(t)
| At | 4i(ts) | £un2(2)

l

if {; then i, else 13 fi

where x is a variable and ¢ 1s a constant.

Terms (t1,12), car(t), and cdr(t) correspond to cons, car, and cdr in Lisp. We
use the standard abbreviation for lists; (1;) for (¢,,nil), and {t, t,) for (ty, (t2,nil))
and so on. Terms Az.t, {(t) and (1f ¢, then {, else t; fi) are as usual. Terms of
the form of ¢, (t;,1,), or Az.t are called canonical. For a canonical term t, the terms

4.2. THE BASIC THEORY 63

c?(t),pair?(l) and fun?(f) are equal to true if they are in either form of c?{e),
pair?((s,u)) or fun?(Az.s), and equal to false otherwise. We assume a call-by-
name evaluation mechanism; for example, car((nil.)) is equal to nil regardless of
{. A term of the form a,[t] denotes the result of substitution as usual.

We then define formulas and abstracts. We assume, for each natural number
n, there is a countably infinite set of predicate variables with arity n. Predicate
variables are used for inductive definition. Since they are not quantified by V or 3.
BT is a first-order theory.

Definition 19 (Formula and n-ary Abstract)

Fruo= L |th=t(1]
| RAL|FKRVE|F/DF
| Va.F'| 3z.F
| Aty st)

A = F

AY Az X

| AgAr=t

| pX".A"

(for each n > 0)

where a, L and X™ arve mela variables for a variable, a term, and an n-ary predicate
variable.

A formula of the form L, t; = 1,, or t | is called afomic. a | means that the
term a has a canonical form. The formula A™(t,.- - .1,) represents the application
of n terms ty,--+,l, to an abstract A". The superscript n for predicate variables
and abstracts is often omitted. We sometimes call an abstract a predicate. We write
a list of n distinct variables zy.---,x, as x, and a list of n terms ¢;,---.t, as t.
Similarly, the formula A(t;.---,t,) is abbreviated as A(t). —-A and A « B are
abbreviations for A DL and (A D B) A (B D A), respectively. The formula Ax[B]
represents the formula A with B substituted for X. We often omit the subscript X
if it is apparent from the context. It is also written as A{X := B}.

In the following, we will use meta-variables x,y,z,w for variables, s.f,u for
terms, A, B. F. G for formulas and abstracts, and X, Y for predicate variables. The
precedence of connectives is in the order A,V,D,V,3 (the former is stronger). We
also assume O is right associative, namely A D B D € means A D (B D C').

The formal system of BT is given in the natural deduction style. We have the
following three classes of axioms and inference rules:

e Axioms and Rules for terms

64 CHAPTER 4. HALF-MONOTONE INDUCTIVE DEFINITIONS

e Rules for equality

e Rules for logical connectives

These axioms and rules are quite standard for first-order intuitionistic logic, and
therefore omitted. We do not adopt a logic of partial terms, so quantifiers range
over arbitrary terms, not necessarily canonical nor normal terms.

If a formula F is proved from a set of formulas Ay,---, A, in a theory 7. we will
write it as Ay, -+, A, Fr F.

4.3 Inductive Definitions

In this section, we present an extended mechanism of simultaneous inductive defi-
nition, which plays a central role in our theory.

As we explained in Section 4.1, we need a simultaneous definition of two predi-
cates Prop and Proves. The definition should allow negative occurrences of predi-
cate variables in the template!, which means the template may sometimes be non-
monotonic. This kind of definitions is not legal in conventional formal theories for
positive inductive definitions.

However, the intuitive meaning of the pair (Prop,Proves) has some kind of
monotonicity; Prop(AAB) is defined by using Prop(A) and Prop(B). which are al-
ready defined. Prop(ADB) is defined by using Prop(A), Prop(3), and Proves(x. A).
Since the set of those r satislying Proves(r, A) is defined at the time of defining
Prop(A) and will never be changed after defined, we may consider that Prop(AD B)
is defined by using already defined concepts only.

To formalize this idea, we define a refined order <p on a pair of unary and binary
predicates (P, @) as follows:

(Po, Qo) <p (P, Q1) £ V. (Po(z) D Pi(x)) A Va,y. (Qolz,y) D CQuilm,y))
A Va. (Po(x) D Vy.(Qolz.y) & Qi(x,y)))

It is essential to have two predicates which have an overlapping argument. The
second predicate (Qy can be larger than @)y only outside of the domain of Py, which
means that those y satisfying Q(2,y) is determined at the time P(z) becomes true.
With respect to <p, the naive definition of (Prop, Proves) becomes monotone, and
we can regard it as a legal inductive definition. We call a monotone inductive
definition wrt <p a half-monotone inductive definition following Allen’s term half-
positive[5].

Aczel(2] used a similar order <, in his semantical framework. For two sets S
and 7' with T C S, the order <4 is defined as follows:

(So. To) <a (S1,Th) £ SoCS1AV2ES. (reTyerazeTy)

It is easily seen that <, is a special case of <p: For a pair of sets (Si, 1), we define
A A
P(z) = x € S; and Qi(z,y) £re T; Ay = 0. Then (So,To) <4 (S, T)) are

"We call the defining formula in an inductive definition a template.

4.3. INDUCTIVE DEFINITIONS 65

equivalent to (P, Qo) <g (P, Q) provided that T; C S; (for i = 0,1) holds. Hence,
our order can be regarded as a generalization of Aczel’s.

In this section, we first review Tatsuta’s theory and realizability interpretation
for ordinary monotone inductive definition in a context of a type-free first-order
theory. We then introduce a half-monotone inductive definition and construct a
model of the extended theory. A realizability interpretation and its soundness proof
will be given in the next section.

4.3.1 Monotone inductive definition

Tatsuta[46] introduced into Beeson’s EON|[7] a mechanism of monotone inductive
definitions. Then he defined a g-realizability interpretation, and proved its soundness
for a restricted version. We first reformulate his results using our theory BT instead

of EON.

Definition 20 (Natural order between abstracts) Let Fy, Py be n-ary abstracts,
and x be «a list of n distinct variables. Then we define

Po<n P 2 ¥x.Po(x)D Pi(x)

This relation is an order modulo logical equivalence, namely we identify two predi-
cates which are logically equivalent. The subscript N indicates this order is a natural
one.

Definition 21 (Monotonicity wrt. <y) Let A be an n-ary abstract, which pos-
sibly contains an n-ary predicate variable X. Then we define

MONO(A: X) & Xy<n X1 D Ax[Xo] <w Ax[Xi]

where Xo and X, are fresh n-ary predicate variables.

We often omit X in MONO(A; X). Wesay A is monotone in X if MONO(A; X)
holds.

The mechanism of monotone inductive definitions (MID, in short) is that, for
any A satisfying MONO(A; X), we have the least solution of Vx.(A(x) « X(x)).
We denote this solution as uX.A. Since there was a technical difficulty in attaching
realizers to the full MID in a first-order theory, Tatsuta formulated an additional
condition called MONO-Q, and allowed MID only when MONO-Q(A; .X) is sat-
isfied. Roughly speaking, MONO-Q(A; X) is the condition that the relation “e
realizes A(x)" is monotone in the relation “c realizes X(x)". Since MONO(A; X)
does not subsume MONO-Q(A; X), this is a proper restriction.

The rules for MIDy, a restricted version of MID, are as follows.

MONO(A) MONO-Q(A)

Vx. Ax[pX.Al(x) « (pX.A)(x) (-eq)

66 CHAPTER 4. HALF-MONOTONE INDUCTIVE DEFINITIONS

MONO(A) MONO-Q(A) Ax[C] <y C

A — (p-ind)

where C' is an arbitrary n-ary abstract. The first rule states that y.X.A is a solution
of Vx. A(x) +» X(x). The second rule states that pX.A is a least solution. Tatsuta
gave a realizability interpretation of the theory with MIDy in the theory with MID,
and proved its soundness.

MID and MIDg can be extended to a simultaneous inductive definition straight-
forwardly.

Remarks

MIDy, is an extension of positive inductive definitions (where all the occurrences
of X in A must be in syntactically positive positions), since every positive A satis-
lies MONO(A) and MONO-Q(A). Moreover, the extension is proper as shown by
Tatsuta's example, pX. L A (X D X), which is not positive, but trivially satisfies
MONO and MONO-Q conditions. However, he has shown no substantial example
which demonstrates the difference between positive and monotone inductive defini-
tions. Therefore, practical use of his results was not known. In the following. we will
extend his MID (MIDy) to obtain HMID (HMID,, resplectively). Our definition
of the realizability interpretation is essentially due to Tatsuta's. What is new is that
our theory with HMID, has many uses in defining notions such as the provability
relation.

Tatsuta also gave a realizability interpretation to full MID in a second-order
theory. This interpretation is quite straightforward, since one can directly define
the least solution of ¥x. A(x) « X(x) as V.X. (Vy.Aly) D X(y)) D X(x) in a
second-order theory. He also discussed the difference of these two in terpretations.
Here, we do not get into the long-standing debate between first-order {heories plus
induction principles (intnitionistic mu-calculus) versus second-order theories with
the above encoding of the least fixpoint. We just quote Tatsuta's remark that a
realizer of MID in a first-order theory has a loop structure (a recursive call) inside

it, while one in a second-order theory (via the above encoding) does not have a loop
structure. See [46] for details.

4.3.2 Refined order

Here we define the refined order discussed at the beginning of this section, and will
use it in inductive definitions.

Definition 22 (Refined order?) Let (Po. Qo) and (P,
with arities n and n+m. Then we define (Po. Qo) <p (
of the following three formulas.

Q1) be pairs of predicates
Py, Qy) as the conjunction

*This relation is also an order modulo logical equivalence.

1.3. INDUCTIVE DEFINITIONS 67

1. Vx. Py(x) D Pi(x)
2. Vx,y. Qo(x,y) D Qi(x.y)

3. Vx,y. Po(x) D @i(x,y) D Qolx,y)
where x (y) are sequences of n (m) distinet variables.

The first two conditions are the same as the conditions for the natural order
<. The difference arises in the third one. This condition together with the second
(T_(;ll(]itiOH savs, for any x salisfying Po(x), the predicates Qo(x.y) and Q_dx.y} are
equivalent. In other words, @, is larger than Qo only outsi.(lc of the (l(?ma.m (defined
by Py). We call this order a refined order or an R-order. in short. We say that the
second predicate @; depends on the first predicate F;. . .

We can extend the R-order to the case of more than 2 predicates, for ms‘t ance, (J;
depends on P;, and R; depends on @Q;. To formalize a general scheme, we mtroih.u.e
a notion of a dependency function. For a natural number n, a depcndcng fum..t.;’mi
df is a finite function from {1,--+,n} to the set of natural numbers, which satisfies
0 < df(i) < i. We say n is the degree of df.

Definition 23 (Refined order in general case) Lef df be a depf.ndf::u'y frm:'-
tion of degrec n. For two sequences of predicates (P‘,--',l) an;ld (Q())
whose aritics correspond, we define (P, P") SR(n) (@ Q) as:

(P'ﬂ{"l" P') <p (Q'm‘],()‘) holds for each i (1 <t < n)

where P° and Q° are Ax. L.

If df(z) = 0, the condition becomnes P' <y @Q*. Note that, the orders g;\-?a.ntl lgn
can be written as <p1 dfv) and SRre2.d1a) where dfx(1) = 0,dfp(1) = 0.dfr(2) = 1.

Example . | o E
Let df be a dependency function of degree 4 with df(1) = df(2) = 0,d[f(3) = 1

and df(4) = 3. Then the order (Po. Qo, Ra. So) <ria.4p) (Py, @1, B S1) 35

Po<nx P A Qo <n @1 A (Po,Ro) <n (PisRy) A (Ro,So) <p (Ri. 5h)-

We call this order R4-order.

4.3.3 Half-monotone inductive definition
of our theory. Let A; and X; be an n;-ary abstract

i 1] -xf'-(Ah"'QAR;-Ylo"'six'n)
. dicate variable for 1 < ¢ < n. Then, pX; 2 A :
?;n;lna:: -ila:,r:ribzﬁact with Xj,--+, X, bound by this u operator. This form will be

i 3 t of a least fixpoint.
sed for representing the i-th componen . o,
s The defl;nition of monotonicity does not change, but we present 1t here for com

pleteness.

We first extend the language

68 CHAPTER 4. HALF-MONOTONE INDUCTIVE DEFINITIONS

Definition 24 (Monotonicity wrt. <p) Let (A, B) be a pair of n-ary and n+m-

ary abstracts, each of which possibly contains n-ary and n+m-ary predicate variables

X and Y. Then we define

HMONO(A, B;: X.Y)
(X0, Yo) < (X3, Y1) D

(Ax.y[Xo, Yol Bxy[Xos Yol) <p (Axy[X1. Vi), Bxy [X1, Ya])

>

We often omit X and Y in HMONO(A, B; X,Y). We may similarly define the
HMONO condition for the case of the generalized order <g(y 47
Let us abbreviate as follows:

My £ WX (A, B X, Y)
My 2 uY.(A, B X,Y)
it — eq £ vx. (Mx(x) «» A[Mx, My)(x)) AVxy. (My(x,y) < B[Mx, My|(x,y))

Then the inference tules for a hall-monotone inductive definition are as follows:

HMONO(A. B)
K—eq

(yt-eq-0)

HMONO(A, B) (A[F,G), B[F,G]) <g (F.G)

-ind-0
(Mx, ﬂﬂ‘,) SR (F‘, G) (,U in)

where I and G are arbitrary n-ary and n + m-ary predicates.

As usual, the first rule states (Mx. My) is a solution of an equation, and the
second rule states the pair (My, My) is the least solution with respect to the order
<R-

Similarly, we can define the pi-eq-0 and p-ind-0 rules with respect to an arbitrary
order <pe,.4f)-

The union of p-eq-0 and p-ind-0 for an arbitrary order <g, 4 is called HMID.
Since the order <p(, 4p) 1s an extension of <y, HMID is an extension of MID.

4.3.4 Restricted version of half-monotone inductive defi-
nition

As in MID, we need additional conditions for giving a sound realizability interpre-

tation. The first condition HMONO-Q is a corresponding condition to MONO-Q

in MIDg. The second one is that, we can nse the p-ind rule only when the abstract

(v is the least fixpoint My, and the order is <p (of degree 2). Under these conditions,
the rules become:

HMONO(A, B) HMONO-Q(A, B)
TR (p-eq-1)

4.3. INDUCTIVE DEFINITIONS 69

HMONO-Q(A, B)
HMONO(A, B) (A[F, My], B[F. My]) <n (F, My)
My <y F

(p=1ind-1)

In the latter rule, we write two conditions horizontally for a typographic reason.

The precise form of HMONO-Q(A,B) is described in Section 4.4; here we just
remark that HMONO-Q(A, B) becomes MONO-Q(A) when B is identically true.

Under the conditions HMONO and HMONO-Q, the first rule states that
(Mx, My) is a solution, and the second one states that it is the least one. Since
pi-ind-1 restricts the use of induction principle only for the first predicate (/" in the
above definition), we cannot infer the minimality of My-.

Let us consider that the first predicate My defines a domain, and the second
predicate My defines a property on that domain. Then we need an induction for
Mx ., but not for My. We have no interest in the behavior of My (x,y) where Mx(x)
does not hold, since such an x is outside of the domain. In Sections 4.5 and 4.6, we
shall show the above formulation is sufficient for most purposes.

The p-ind-1 rule subsumes the following more convenient form:

HMONO(A, B) HMONO-Q(A, B) A[F, My] <x F F <y My
My <y F

The union of the p-eq-1 and p-ind-1 rules (for <p order) is called HMID,. Note
that HMIDy is an extension of MIDy.
Remark

Note that, for our purposes, a positive inductive definition is worthless since we
cannot have a meaningful syntactic condition which subsumes the third condition
in the definition of <p:

Va,y. Po(2) D Qi(z,y) D Qolz,y)

This contrasts to the corresponding situation in type theory by Dybjer[16]. In his
theory, the condition for the inductive definition is given by a purely syntactic way.
We shall compare his theory and ours in the conclusion.

4.3.5 A model of HMID

Let us explain how to construct a model of BT+HMID.

We begin with an arbitrary model of BT there is a domain [, and all the terms
are interpreted as elements of D). An n-ary predicate is interpreted as a subset of
D". Let P(S) be the powerset of S. Given a degree n, a dependency function df
and a sequence of arities my,- -+, my, we define an order C,, 4+ on Dom as follows,

where Dom is P(D™) x -+ x P(D™").

T0 CHAPTER 4. HALF-MONOTONE INDUCTIVE DEFINITIONS

Definition 25 (Order C, 4) ForS; C D™, and T; C D™ (1 <1 < n), we define
(12 80) Ty (Lioe- . To) if, for each i with 1 < i < n, the conjunction of the
Jollowing conditions hold,

1. Sapiy € Ty
T e
3. TlSan = Sil Sy
where T'|S = {(s.t) | s€ SA(s.t) €T}

The order C,, i just corresponds to the B(n, df }-order. We may sometimes omit
the subscript in C,, 4.

Definition 26 (Monotone Operator) A sequence of functions F; : Dom — P(D™*)

(for 1 < i < n)is monotone if and only if, for all 5;.T; T D™,

(S1s- o2y Sa) Cawy (Thy oo+ Ti) implies

(F1(Sa-es s Spdaeos Pl 815 8)) B (O Txy 25 Ta)so o (Lo 5T))
Lemma 3 The following holds:

1. C s an order on Dom.

2. The least elemenl erxists in Dom. Moreover, every directed subset of Dom has
a least upper bound (lub) wrt T,

3. There exists a least firpoint for each monotone operator wrt C,

Proof. The lirst clause of the lemma is straightforward. The second clause
means that Dom with C is a complete partial order (cpo), which implies the third
clause (in classical set theory).

As for the second clause: let A be a directed set in Dom. Let L; be
U{X; | (X, -, X,) € A). We will prove that (Ly,--+, L,) is the lub of A.

Suppose it is not an upper bound of A. Then there exists (Sy.«-+,5,) € A such
that (Sy.--+.S,) E (Ly,-++, L,) does not hold. From the definition of L;, we have
that L;[Su) is properly larger than S;|Su for some i. Then we have that there
exists (71,+++,T,) € A such that Ti|{s} is properly larger than S;|{s} for some i
and some s € Syyi). Bul this contradicts to the directedness of A, since we do not
have an upper bound of (Sy,---.S,) and (T},---,T,). The minimality is apparent
from the definition.

We can also prove that (0,---,0) is the least element in Dom.

In contrary to the set inclusion order, a least upper bound for an arbitrary subset
wrl Cpn4r) does not always exist, since the union of two sets may have too many

14.3. INDUCTIVE DEFINITIONS 71

elements. In particular, the whole domain (D™ .--., D™») is not always greater
than an arbitrary element in Dom.

We can interpret a monotone operator in BT+HMID by a monotone operator
in the model. From the lemma, we can interpret each inductively defined predicate
as a least fixpoint of the corresponding operator. It is easy to see the rules ji-eq-0
and pi-ind-0 are satisfied. As a consequence, we have the following theorem.

Theorem 14 (Consistency)
1. We can construcl a model of BT +HMID from any model of BT.
2. BT+HMID (therefore, BT+HMID,) is consistent.

Our model construction is based on classical set theory to ensure the existence
of a least fixpoint for each monotone operator. IHence it does not differ so much
from Aczel's[2] and Hayashi and Nakano's[21]. The aim of this section is just to
show the consistency of our theory in its general form. Our claim that our theory
is constructive in nature is not due to this model construction, but due to the
realizability interpretation defined in the next section.

4.3.6 Example of HMID

Natural Numbers
Nat, the predicate for natural numbers, is defined as follows. Let A be the
following template:

Az. =0V 3y. (y = suc(x) A X(y))

where suc(x) is encoded by (0,2). Then, Nat can be defined as ¢ X.A. Since A is
positive in X, HMONO and HMONO-Q conditions are automatically satisfied.
The nsual induction principle follows from p-ind-1.
Prime Numbers

The next example is a predicate for prime numbers.

At first thought, it is defined by:

Prime(n) « Nat(n) A 1<n A ¥Ym. (1 <m <nD - Div(m,n))

where Div(m,n) means “m divides n".
At the next stage, we want to replace it by the following one:

Prime(n) « Nat(n) A 1 <n A Vm < n.(Prime(m) 2 — Div(m,n))

Since the latter contains a negative occurrence of Prime, it is not directly acceptable

by conventional theories.
On the contrary, we will show that we can define it by HMID as follows.

CHAPTER 4. HALF-MONOTONE INDUCTIVE DEFINITIONS

=1
{{)

An.n=0 V 3Im.n =suc(m)A X(m)

An. X(n) A 1<n
AVYm < n. (X(m)A(Y(m) D = Div(m,n})))

e e

B

In this example, the argument n is the overlapping argument for A and B. We
assume here that < and Div are defined in a standard way. The second one B(n) is
intended to mean that n is a prime number.

The defining formula for A is the same as one for Nat, so one may think it
is unnecessary. However, this is the trick to use the HMID mechanism. In this
defimition, A(n) determines a domain, and B(n) determines a prime number in the
domain. The domain gradually increases by repeated application of A. We have to
use dependency on the argument n between two predicates in order to guarantee
the monotonicity with respect to the refined order.

For these A and B, the HMONO(A, B) and HMONO-Q(A, B) conditions
hold as shown below. Hence, we have the least fixpoint (My. My) for the equation
(A(x), B(x)) & (X(a),Y(2)). We define Prime as My. Using the induction rule,
My (x) « Nat(x) is easily proved, and we get

Prime(n) < Nat(n) A 1 <n A Vm < n.(Prime(m) D - Div(m,n))

as a desired result.
Verification of the HMONO(A, B) condition

Suppose that (Xo, Yo) <g (X1,Y)) holds. Since the defining formula for A con-
tains only a positive occurrence of X, it is easily seen Ax|[Xo] <y Ax[X,]. From the
assumption, we have Vz. (Xo(z) D (Yo(2) « Yi(z))). Hence By y[Xo. Y5 is equiva-
lent to Byxy[Xo, Y1], and we have By y[Xo, Yo] <y Bxy[X,.Y;]. We also have, for
an arbitrary m such that Xo(m) holds, By y[Xo, Yo](m) < Bxy[X,, Yil(m), and we
have the conclusion.

The verification of the HMONO-Q(A, B) condition is postponed until Section
4.4.3.

4.4 Realizability interpretation and its sound-
ness for BT+HMID,

In this section, we define a realizability interpretation for BT4+HMID, in BT+HMID.

and prove its soundness. We use so called q-realizability interpretation[7] instead
of r-realizability. The following interpretation is essentially the same as Tatsuta's
one except that we use total term logic instead of partial term logic, and that the
inductive definition is extended to the R-order.

1.4. REALIZABILITY INTERPRETATION 73

4.4.1 Realizability Interpretation

We assume that, with each predicate variable X of arity n, a predicate variable X~
of arity n + 1 is uniquely associated. X will be used for representing the abstract
Axe. e q X(x).

Given a term ¢ and a formula A in BT4+HMIDy, the q -realizability e q Ais
a formula which is defined by induction on the structure of A as follows:

A . : .
l.eq A = e=nil A A where A is atomic.

| O]

eq Z(t) £ Z(t) A Z*(t,e) where Z is a predicate variable.

o

ceqAADB

(car(e) q A) A (cdr(e) q B)

[
—

.eqAVEB

(car(e)) | A (car(e) = true D (cdr(e) q A))
A (car(e) # true D (cdr(e) q B))

.eqADB £ Vr. AN(r q A) D (elr) q B)

o

Va.(e(x) q A)

e

6. € qVa.A

e

7. e q 32.A (cdr(e) q A.[car(e)]) A Ax[car(e)]

A

. eq{Ax.A)(t) = eq At]

oo

@

e q (uX.(Ax.A xy.B)(t)) 2
(uX=(Ax.A, Axr.(r q A),\xy.B,A\xys.(s q B); X, X",Y,Y"))(t.¢)

10. e q (pY.(Ax.A, Axy.B)(t,u)) &
(pY ™. (Ax.A, Axr.(r q A), Axy.B, Axys.(s q B); X, X", Y, Y"))(t,u,e)

All but clauses 2, 9, and 10 are quite standard. Let us explain these three
definitions following Tatsuta.

Clause 2 is for a predicate variable which will be used through inductive defini-
tion. Clauses 9 and 10 represent the realizability of inductively defined predicates.
The realizability interpretation for inductively defined predicates u X.A is defined so
that the realizer of (uX.A)(t) and that of Ax[uX.A](t) are the same. So we want to
define € q (uX.A)(1) as e q Ax[uX.A](t). However, by expanding ¢ q Ax[u.X.A](1),
we shall encounter ¢ q (#.X.A)(s)., which we are defining now. By defining X*(¢,¢)
as e q X(1), we have another inductive definition X*(¢,¢) <> (e q A(t)), which may
contain X~ recursively. (This is a valid definition by the HMONO-Q condition,
which ensures the monotonicity in this form.) This is the intuition of the clauses 9
and 10.

Remark

7 CHAPTER 4. HALF-MONOTONE INDUCTIVE DEFINITIONS

We defined the clauses 9 and 10 for the R-order only, and not for the general
R(n. df)-order, since our realizability interpretation is for BT+HMID;. and not
for the full theory BT4+HMID. We think our realizability interpretation may be
extended to the general case in the same pattern as these clauses, but we have not
done the details since the theory BT4+HMID; is sufficient for our needs.

If the formula (e q A) is proved, we say “the formula A is provably realized by

the term ¢”. Now we can define the condition HMONO-Q.

Definition 27 (HMONO-Q) The condition HMONO-Q(Ax.A. Axy.B) is defined
as (he quadruple of abstracts (Ax.A, Axr.(r q A), \xy.B, Axys.(s q B)) is monolon¢
wrl. R4-order.

We write pX.(Ax.A, Ax,y.B) and pY.(Ax.A,\x,y.B) as Lo and Ly, and
uX.Q. nX".Q. nY.Q, and pY=.Q as Mg, M. M; and Mz where Q is
(Ax. A, Axr.(r q A), Axy. B, Axys.(s q 1))

Lemma 4 Assuming the HMONO and HMONO-Q conditions hold, we have
thal Lo(x) <+ My(x) and Li(x.y) ++ Ma(x,y)

Proof. We easily have (Lo. Li) <p (Mg, M3). We shall prove the opposite di-
rection. We have (Lo, My, Ly, Ma) <py (Mo, My, My, M3). Applying these elements
to (Ax. A, Axr.(r q A), Axy.B, A\xys.(s q B)), we have

(L{]', AXI‘.(J" q A)g. L| 3 /\xys.(_s q B)ﬂ) SR,‘ (:.V!g. .'1’4('._ fl’fg, ;1"!:_{)

where 0 is {X := Lo, X™ := M,,Y := L;, Y~ := M;}. By the definition of <p, and
(Lo, L) <g (My. M,), we can replace the right-hand-side by (Lo, My, Ly, M3), and

get
(Lo, Axr.(r q A)0, Ly, Axys.(s q B)0) <py4 (Lo, My, L3, M3)

Taking this formula as an assumption of the p-ind-1 rule (besides the HMONO
and HMONO-Q conditions), we obtain (Mo, My, My, M3) <py (Lo, My, Ly, M) by
p-ind-1. This formula implies (Mo, M;) <gp (Lo, Ly).

4.4.2 Soundness of Realizability Interpretation

We will prove the following soundness theorem.

Theorem 15 (Soundness of g-realizability for BT +HMID,)
Let Ay ---, Ay, F' be formulas. If

Ay A bgr HMID, F
holds, then we have
Ah' ISR Arn("ri q A‘l)a' i ’s(mn q An) FBT-&-HMID LD F

for some term r.

1.4, REALIZABILITY INTERPRETATION 75

Since the only essential difference between Tatsuta's theory and our theory is
HMID;,. we only have to consider HMIDj to prove this theorem.

Lemma 5 Suppose that the following conditions hold for A and .

HMONO(A, B)
HMONO-Q(A. B)

Lhen, the p-cq-1 rule is realized.

Proof. By the induction on the abstracts A and B, we can prove that the same
term is a realizer of both sides of the p-eq-1 rule.

Lemma 6 The p-ind-1 rule is realized.

Proof. Suppose that the following conditions hold for A and B.

HMONO(A. 13)
m q HMONO(A. B)
HMONO-Q(A. 3)

We also assume the following for an n-ary abstract F'.

(A[F, My, BIF, My]) <g (F, My)
a q (A[F, My), B[F, My]) <g (I, My)

By pi-ind-1, the first one implies My <y F. which in turn implies My <y
A[f' x'l’t'yl.

The second one implies
Vxr.(A[F. My] A (r q A[F, My]) D (car(a)xr q F(x))) (4.1)

Since we assume HMONO-Q. the quadruple (Ax. A, Axr.r q A, Axy. B, Axys.s q BB)
has a least fixpoint. We know that the first and the third elements of the least fix-
point are My and My by Lemma 4. We abbreviate the second and the fourth
elements as Ly and Ly.

Our goal is to show the following formula:

Vxr. My(x) A Lx(x.r) D (fxr q F(x)))

for an appropriate term f. .

Let H be Axr.(Lx(x,r) A (Mx(x) D (fxr q F'(x)))). Applying the quadruple
(My, H, My, Ly) to the y-ind-0 rule (in the case of R4-order) with a little calcula-
tion, it becomes:

76 CHAPTER 4. HALF-MONOTONE INDUCTIVE DEFINITIONS

,\xr.(r q A[‘\r‘_ W,])ﬂ <N H
Ix <y H

where 0 is {X := My, X~ := H}. Then all we have to prove is
Vx,.r. (r q A[X. My])0 D H(x.r)

for an appropriate term f. This is equivalent to conjunction of the following formu-

las:
Vx.r. (r g A[X, My])0 D Lx(x,7) (4.2)
vx,r. (r q ALX, My])0 D Mx(x) D (fxr q F(x)) (4.3)

By HMONO-Q condition, we have the simple monotonicity for (r q A[X.Y]) in
X", Hence, we can replace H by Ly in 0, and we obtain the goal (4.2).

In the following, we will prove the goal (4.3). We fix x and r, and assume
(I’ q {1[.\,, ;’L‘f)’])o.

By expanding m q HMONO(A, B), and putling

Xo 2 My

X; £ H

X & F

X7 £ dxr(Mx(x)A Lx(x,7)A(r q F(x)))
Y, £ My (i=0,1)

Yy £ Ly (i=0,1)

we get My(x)A Lx(x,r) D (t q A)¢ where
) = (X = F X" = dxr. (Mx(x) A Lx(x,7)A(r q F(x))),Y := My,Y" := Ly}

and
= (car(m((f, (Axys.s, Axyrs.s))))xr

By the simple monotonicity in X3, we may replace ¢ by
B2 (X = F X" = xr(r q F(x)).Y := My,Y" = Ly)

Note that (1 g A)v is equivalent to (f g A[F, My]). From (4.1) and this formula,
we have Mx(x)ALx(x,r) D car(a)xt q F'(x). We already have (2), so we can delete
Lx(x.r) from this formula. By the fixpoint theorem, we can take f as a fixpoint
of the equation fxr = car(a)xt. Then we have M(x) D (fxr q F(x)) which is the
conclusion of the goal (4.3).

By these lemmas, we have the soundness theorem. We also have the following
corollaries.

1.4. REALIZABILITY INTERPRETATION T

Corollary 1 (Disjunction Property and Term-Existence Property) 1. Dis-
Junction Property holds in BT+HMIDy; namely, from a proof of the formula AV B,
we can decide which of A or B holds.

2. Term Eristence Property holds in BT+ HMIDy; namely, from a proof of the
formula 3z. A(x), we can effectively find a term t such that A(t) holds.

Corollary 2 (Program Extraction Theorem) From a proof of the formula
Va.3y. A(r,y) in BT+HMID,, we can effectively find a term f and the proof of
Va. Alx, f(x)) in BT+HMID.

By Program Extraction Theorem, we can derive programs in our theory BT+HMID,
in the style of constructive programming.

4.4.3 Verification of the HMONO-Q condition

In this subsection, we verify the HMONO-Q condition for the prime number ex-
ample in Section 4.3.6.
Let A and B be the same as in the prime number example.
Suppose (Xg, X3.Y0. Ys) <py (Xi, X7, Y1, Y]7). Then, our goal is to prove the
following formula:
(A, Anr.(r q A(n)), B, Ans.(s q B(n)))0
<p4 (A Mnr.r q A(n)), B, Ans.(s q B(n)))0,
where 0;1s { X ==X, X" =X, ¥ =K, Y = Y"L
Since X appears positively in A, it is easily seen that Afy <y Af, and
Anrr q A(n))0o <y Anr.(r q A(n))f, hold. We also have (A, B)0y <pr (A. B)b;,
which is the HMONO condition.
The remaining goal is to prove the following:
(B, Ans.(s q B(n))o <n (B, ns.(s a B(n)))0,
This is conjunction of three formulas, but here we shall prove the following one only.
Ans.(s q B(n))fy <y Ans.(s q B(n))0,
The formula (s q B(n)) is expanded to the following:
X(n)A X"(n,car(s)) A (cadr(s) q (1 <))
AVYm,r.((m<n)A(rgqm<n)D

X(m) A X*(m,car(cddr(s)mr))

AYu.(Y(m)AY"(m,u) D (cdr(cddr(s)mr)u q ~Div(m,n)))). Since
the only occurrence of Y= appears in the subformula Y{(m) A Y*(m,u) and Yp(z)
implies Vu.Yg(z,u) « Y (z,u), we have Ans.(s q B(n))ly <y Ans.(s q B(n))f;
where 0, is {X := Xo, X~ := X3,V := Yo, Y" := ¥}, We also have Xy(z) implies

o(z) & Yi(z). so we have Ans.(s q B(n))0; <y Ans.(s q B(n))03; where 04 is
{X = Xo, X" := X5,Y 1= V},Y* := ¥'}. The occurrences of X and X~ are
positive, and we finally have Ans.(s q B(n))f; <y Ans.(s q B(n))#,. Combining
these results, we get Ans.(s q B(n))fy <y Ans.(s q B(n))f;, which is the conclusion.
Remark

78 CHAPTER 4. HALF-MONOQTONE INDUCTIVE DEFINITIONS

This proof did not use the components of A and B in detail; it only mentioned
the occurrences of X and Y. That the HMONO(A, B) and HMONO-Q(A, B)

conditions hold come from the following facts:

e X appears positively in A and B

e Y may appear negatively in B, but the only negative occurrence of Y has a
preceding occurrence of X.

The second fact can be made more precise: If every occurrence of Y is in a sub-
formula of the form of X(z)A (Y (x,y) D +++) where z is the overlapping argument,
then we say Y has a preceding occurrence of X. (In the above example, we did
not have an extra argument y in Y, but it is easily seen that the proof will not be
affected by existence of such an argument.) We can see these two facts are keys to
prove the two conditions, and whenever these two facts hold, we have the HMONO
and HMONO-Q conditions.

One may think the verification of the HMONO-Q condition is too complex
and hence our induction mechanism is hard to nse, However, all the examples we
have considered [all in this uniform pattern, and we believe its verification is not so
problematic.

4.5 Provability Relations and its Refinement

In this section, we define a basic version of provability relation and its variants using
HMID, mechanism.

4.5.1 Defining a Provability Relation

We shall simultaneously define a unary predicate Prop and a binary predicate Proves
which formalizes the following two concepts.

Prop(p) represents “p is a proposition”
Proves(a,p) represents “a is a proof of p”

In ordinary predicate logic, the first concept is defined by itself, and does not
depend on the second one. However, we are mainly interested in systems like Frege
structures, Martin-Lof’s Type Theory, or Sato's RPT (Reflective Proof Theory[34]).
One of the characteristic points of these theories is that the above two coneepts
essentially refers to each other, so we cannot define the first concept independently.

We will henceforth assume that all logical connectives are encoded by appropriai:e
terms using corresponding constants, for instance, aAb is (crab) where ¢, is a
constant uniquely associated with A.

4.5. PROVABILITY RELATIONS AND ITS REFINEMENT 9

A). z= 1
V da.3b. r = a=b
V 3a. 2 = N(a)
V dy 3z 2 = (yAz) A X(y) A X (=)
V 3y.3z = (yVz) A X(y) A X(2)
V dy3z a2 = (yD2) A X(y) A V(Y (w.y) D X(2))
V 3y. 2= (Vy) A Va. X(y(a))
Vdy r= (Elr)] AVa.X(y(a))

B £ \re. X(z)A
(Ja.3b. * = (a=b)Aa = bAr =nil
V Ja. 2 = N(a) A Nat(a) Ar =nil
V Jy.3z.3a.3b. & = (yAz) Ar = (a.b) AY(a,y) AY(b.z)
V 3y.3z.3a.3b. 7 = (yVz) Ar= (a,b) Aa |
A (a=trueD Y(bhy)) A(a # true D Y(b.z))
V Jy.3z. = (yOz) A X(y) A fun?(r) = true
A Vw.(Y(w,y) D Y(r(w),2))
V 3y. 2 = Vy AVa. Y(r(a),y(a))
V 3y3a3b. v =y Ar = (a,b) AY(a,y(b)))

Here, Nat is the predicate defined before. Quantified formulas such as V. p(x)
and Ja.p(x) are represented by V(Aa.p) and I(Az.p), respectively. We can add other
kinds of propositions such as (a«). We did not do so simply because we want to
show the essential feature of the mechanism.

Both templates contain negative occurrences of Y. BT+HMID, allows such
occurrences provided HMONO(A, B; X.Y) and HMONO-Q(A, B; X, Y) are sai-
isfied. Note that, in the above formulation, we bravely changed the order of the
overlapping argument z and the non-overlapping argument r in Y. Strictly speak-
ing, @ must come first, but it can be adjusted easily.

Lemma 7 For the above A and B, HMONO(A, B;: X.Y) HMONO-Q(A, B; X, Y)
hold.

This lemma is proved in just the same as the case for Prime Numbers. The only
negative occurrence of ¥ in A is in the subformula of the form X (y)AVw.(Y (w,y) D
c+v), so Ax[Xo.Yo] is equivalent to Ax[Xq,Y)] provided that (Xo, Yy) <gp (X;. Y1)
From this observation, we have Ayx[Xo. Yy] <y Ax[X,,Y)]. Similarly, we have other
cases and reach the conclusion.

80 CHAPTER 1. HALF-MONOTONE INDUCTIVE DEFINITIONS

From this lemma, we can safely define (Prop. Proves) by the HMID, mecha-

nism.

Definition 28

Prop £ uX. (A B X.Y)
Proves = pY. (A, B; X,Y)
True 2 Az.Jr. Proves(r,r)

The pair (Prop, Proves) is a provability relation.

We can infer that Prop is the least fixpoint of A, while we cannot infer Proves
is that of B, by the restriction for the p-ind-1 rule. If we would omit the first
conjunct X() in the definition of B, the following (intuitively true) fact would not

be provable in BT4+HMID,.
Va.(True(x) D Prop(z))

However. we need induction only for Prop in practice, so p-ind-1 is sufficient for all
our needs.

4.5.2 Re-defining the Provability Relation

It is well known that Harrop formulas do not carry computational meaning. Hence,
we may attach as a proof-term a dummy constant nil to Harrop formulas. This
optimization technique is quite useful as is shown in (Ref. [21]). Here we define a
refined relation and prove equivalence of the original one and this version.

H &Xe. 2=1
V Ja.3b. ¥ = (a=bh)
V dy.3z. 2 = (yAz) A X(y) A X(z2)
V 3y.3z. @ = (yDz) A Prop(y) A X(z)
V 3y o= (Vy}) AVa.X(y(a))

This is a usual positive inductive definition, so HMONO(//; X) and HMONO-Q(//; X))

are clearly satisfied. Let Harrop be u.X.H.
We can prove the following important properties of Harrop formulas.

Theorem 16
1. Harrop(x) D Prop(r)
2. 3f.Ya.(Harrop(z) D True(x) D Proves(f,z))

1.5. PROVABILITY RELATIONS AND ITS REFINEMENT 81
These are proved by the induction on Harrop.
We then define the following new template B.
FaX :
B, = JMrz. B(z,r) Vv Harrop(z) A True(z) A r = nil
Using (A, B;), we define a new provability relation.

Definition 29

Prop, £ uX.(A B;;X.Y)
Proves, 2 nY.(A, B;: X,Y)
True, E Ax.dr.Proves,(r,z)

The pair (A, B,) also satisfies HMONO and HMONO-Q, so we can make use
of pi-eq-1 and p-ind-1.

We have the following theorem, which shows equivalence of two provability rela-
tions.

Theorem 17 We have that
Vx. Prop(z) ++ Prop,(x),

and
Va. (Prop(a) D 3f.Vr. (Proves(r,z) D Proves;(f(r),z))
A 3g.Vr. (Proves,(r,z) D Proves(g(r).z)))

Proof. (Sketch) Let IH(x) (standing for induction hypothesis) be the following

formulas:
Prop(z) A Prop,(z)
A 3f.¥r.(Proves(r,x) D Proves,(f(r),r))
A 3g.¥r.(Proves,(r,z) D Proves(g(r),z))

We can prove Ya.Prop(z) D IH(z) and Va.Prop,(x) D IH(x) by the induction on
Prop and Prop,. Using Theorem 16, we can always create a candidate proof for a
Harrop formula, hence we can calculate g from the proof of Harrop(z).

We can improve the code further; for instance, we can optimize a program cor-
responding to a disjunctive formula if it is decidable. For example, let us see the
following formula.

Ax. (x=0A Alz)) V Jyz.(z = (y,2) A B(x))

Suppose A and B are Harrop propositions. This formula contains disjunction
and the existential quantifier, so it is not Harrop by definition. However, its proof
carries no more information than x. We can, therefore, add this kind of propositions
to Harrop propositions, and successfully reduce the program (proof).

82 CHAPTER 4. HALF-MONOTONE INDUCTIVE DEFINITIONS

Moreover, we can proceed to optimization of arbitrary self realizing formulas®.
If we know a formula is self-realizing (which is a semantic notion, on the contrary
to Harrop formula, which is a syntactic notion in ordinary logic.), then a realizer for
this formula is redundant and we can eliminate it. This kind of optimization seems
to have practical use, yet we have not studied this topic in detail.

In constructive programming, we often encounter inefficient programs. As is
shown in the previous subsections, we can define several kinds of (Prop.Proves)
in the theory BT+HMID,, and can prove equivalence of them. This corresponds
to re-defining a new realizability interpretation, and proving its soundness. so the
results of optimization may be the same. However, the point here is that we can
prove meta-theorems such as equivalence of two definitions within the theory. Note
that, we can further extract an optimization program from the meta-theorems by
the program extraction theorem, which follows from the realizability interpretation.
This point is one of major good points in our theory. For example:

Corollary 3 In the previous theorem, we can effectively find functions f and g from
the proof.

This is an immediate consequence of the previous theorem together with the
program extraction theorem.

Extracting programs from proofs as well as meta-proofs seems a guite promising
paradigm in constructive programming. In this chapter, we just presented foun-
dation of a candidate theory, realizability interpretation, and its relation to other
theories. However, we may be able to do reflective constructive programming in
future based on the technique presented in this chapter.

4.6 Interpretation of Other Theories

In this section, we show how other theories can be interpreted by the HMID,
mechanism. We first interpret the Logical Theory of Constructions, and then we
briefly mention how to interpret Martin-Lof's type theory.

4.6.1 The Logical Theory of Constructions

The Logical Theory of Constructions (LTC)(3] is a special logic which has Aczel’s
Frege structures as its origin, and is used to interpret Martin-Lof’s Type Theory
ITT. We may say LTC is a formalized version of (a generalization of) Frege struc-
tures.

LTC is actually a family of theories, LTCy, LTC;, - - -, LTC,,. LTGC; is the basic
theory, and LTC;4, is a reflected version of LTC;. LTC,, is the union of each finite
level of reflection.

3A self realizing formula is a formula A(z), for which there exists a term f. the formula
Ve, f(x) q A holds.

1.6. INTERPRETATION OF OTHER THEORIES 83

Terms of LTC is essentially combinatory terms with primitive function symbols
for natural numbers, lambda terms, and others. Some of them such as 0, Suee.), g s
Inl, Inr are canonical. There are non-canonical function symbols corresponding to
these canonical symbols. There are constants which internally represent logical con-
nectives such as A, D and so on, Atomic formulas are L, a = b, a ~» b, a = b. For
a typographic reason, we use a different symbol = from the original paper[3]. In
LTC, for 7 > 1, we have two more atomic formulas 7'(e) and P,(a) (for j < 7).

We briefly summarize intuitive meaning of atomic formulas. The formula a = b
means a and b are definitionally equal. The evaluation mechanism is call-by-name.
and it is captured by ~+. The formula a ~ b means that a term « evaluates to a
canonical form b. Since this relation ~ evaluates a term into a canonical form only (a
canonical term is a term whose outermost function symbol, and it possibly contains
redexes), we have another relation = which represents “full evaluation”. Two atomic
formulas are important for reflection: “a term « is a proposition™ (denoted as P,(«a))
and “a term « is a true proposition™(denoted as 7'(«)). Since reflection is repeated
at finitely many times, P;(a) has a suffix ¢ which represents the level of reflection.
Besides them, there are ordinary first-order logical connectives as well as quantifiers
for functions ¥' and 3'. The predicate for natural numbers Nat(a) can be defined
as dn.(a = n).

The logic of LTC, is an ordinary intuitionistic predicate calculus with equality.

Extending LTC, by reflection, we get LT'C;. The rules (called reflection rules)
for Pi(a) and T'(a) are as follows. These rules give connection of internal logic (a in
T'(a)) to external logic (logic of LTCy).

o! ®!
Pi(c) T(e) « V.

where ®! and W, are defined by the following table.

c ¢! 78
(a=b) i (a = h)
(a~>b) T (a~s b)
{a=>b) T (a=b)

g n i
(aAb) Pi(a) A P,(b) T(a) A T(b)
(aVb) Pi(a) A Py(b) T(a) V T(b)
(a:')b) Pi(a) A (T(a) D Py(b)) | T(a) D T(b)
(V(p)) Va.Py(p(z)) Va.T(p(x))
(3(p)) Vz.Pi(p(x)) 3.7 (p(x))
(V'(p)) Y P (p(f)) V' LT (p(f)
(3'(p)) V! [P(p(S])) 3 L1 (p(f))

Next, we give rules for LTC; for i > 1. In the following, ®. and V! is in a row
of the above table or the following new table.

84 CHAPTER 4. HALF-MONOTONE INDUCTIVE DEFINITIONS
; : Py(e .
¢.: : ¢|‘,: J(C) (J < J)
Plc) T(c)eW¥. Pile)

c oLl Y.
P(a) (withj <i) | T | Pi(a)

LTC, (for i > 0) is the theory defined as above. We therefore have an increasing
hierarchy of theories LTCy, LTC,,---. As a limit, we have LTC,. the union of
LTC; for i > 0. Note that we have no induction rules.

4.6.2 Interpreting LTC by BT+HMID

After defining the provability relation in the previous section. it is now straightfor-
ward to interpret LTCy by BT+HMID,.

Variables in LTCy is uniquely translated into variables in BT+HMIDy. All the
terms in LTCy is injectively interpreted as so_m(‘ terms in BT4+HMID,. For the
sake of simplicity, we assume that terms like P;(a) and T'(a) are already contained
in the language of LTCy (with no rules about reflection).

To interpret the notion of terms, two predicates Term and Func are inductively
defined; Term(a) means a is an interpretation of a term, and Func(a) means « is an
interpretation of a function. Two more predicates are inductive defined; Eval and
FullEval. They are used to interpret ~» and =. We do not give their detailed
definitions here.

Every formula in LTCy is translated into a term in BT4+HMID, preserving the
structure and the set of free variables. For example, Jy. a2 = Succ(y) is translated
into I(Ay. (x=SUCC(y))) where Suce(.) is translated into SUCC(.).

We now define two templates.

Ag T

V Ja.3b. @ = (a=b)
V Ja.3b. & = (a~»b)
V Jda.3b. x = (a=b)

I

V dy.3:. z = (yAz) A X(y) A X(2)

V 3y.3z. 2 = (yVz) A X(y) A X(2)
Vy3:z.x = (y0:) A X(y) A (Y(y) D X(2))
Vv 3y. ‘r—-(VJ)AVa (Term(a) D X(y(a)))
Vidy = {3y AVa.(Term(a) D X(y(a)))
V 3y. x = (V'y) AV/.(Func(f) D X(y(/)))
V dy. a = (3'y) AVS.(Func(f) D X(y(f)))

1.6. INTERPRETATION OF OTHER THEORIES 85

By £)Xzx. X(z)A
(3a.3b. x = (a=b) A (a = b)
V Ja.3b. ¥ = (a~+b) A Eval(a. b)
V Ja.3b. a = (a=b) A FullEval(a.b)
VIy3dz = (yAz) AY(y) A Y(z)
V 3y.dz a = (yVz)AY(y) VY(z)
Vv 3y.3z x = (y32) A X(y) A (Y(y) D Y(2))
= T (Vy) AVa.(Term(a) D Y(y(a)))
V Jy. a (3:;) A Ja.(Term(a) A Y (y(a)))
V Iy a = (V J)AVf(Func ([Y DYy [f)
= (3

=T) A3f.(Func(f) AY(y(f)))

We take the least fixpoint as pX.(Ag, Bo: X,Y) and uY.(Aq. By; X.Y), and call
them Prop, and True,. We omit the verification of HMONO and HMONO-Q

conditions since it is almost the same as before.

Theorem 18 (Soundness of Translation) Lef I be a formula in LTC,. Then.
Prop, (1) is provable in BT4+HMIDy, and if F' is provable in LT C,, then Truey(/')
is provable in BT+HMID, where F' is the translation of I.

Each rule in LT G, is easily justified. Since LTCy does not have any induction
rules. the restriction of the p-ind-1 rule is not a problem.

We then go to the level 1. We assumed that the langnage of LTCy already
contained terms like P;(a), so the languages of LTC; are the same, and we continue
to use the same definition of Term and so on.

We define the templates A, and B, as follows:

A £ Az Ag(2)
V Ja. Term(a) A = = Py(a)
V Ja. Term(a) A 2 = T(a)
By £ \r. By(z)

V Ja. Tern(a) A @ = Py(a) A Prop,(a)
V Ja. Term(a) A = =T(a) A Trueo(a)

We define Prop, 2 uX.(Ay, By; X,Y) and Trueg 2 uY.(Ay, By; X,Y). Again, we
omit the verification of HMONO and HMONO-Q conditions.
By repeating this kind of construction, we have the translation of LTC; for each

: 20, and LTC,.

86 CHAPTER 4. HALF-MONOTONE INDUCTIVE DEFINITIONS

Theorem 19 (Soundness of Translation) Lef I be a formula in LTCE Jori 2
0. Then, Prop.(I") is provable in BT+HMIDy, and if I is provable in L.TC,-, H_’f”
True;(F') is provable in BT+HMID, where F' is the i-th level translation of I

4.6.3 Reformulating HMID, on LTGC,

Reflection in logic is internalization of a metatheory of the logic itself. In this respect,
our theory is not really reflective, since our metatheory is BT+HMIDy, while our
target logic is LTC-like logic (where an implicational formula a D b may sometimes
be a formula even if b is not a formula) up to now.

In order to have the same kind of logic as internal and external ones, we may
adopt LTCy as our meta-theory, namely we may consider something like LTC, +
HMID. It seems quite straightforward to move the HMID mechanism onto LTCqy
The resulting theory LTC, + HMID, would subsume LTC; (7 > 0) since we can
internally define each P, and 7' by half-monotone inductive definitions.

This approach (indicated by P. Dybjer) seems quite interesting. In fact. we plan
to move our results to M. Sato’s Reflective Proof Theory, which is closely related to
LTC. This work in detail is for future work.

4.6.4 Interpretation of Martin-Lof’s type theory

We can also interpret Martin-Lo['s type theory ITT in our theory.

Since ITT can be interpreted by LTCI[3], we can indirectly interpret ITT in
our theory by using LTC as an intermediate theory. However, we can give a direct
interpretation of ITT in our theory. The technique is just the same as in the
previous section for LTC; we first define how all the terms in ITT is translated.
We then define a predicate which means the set of (translated) terms by induction.
Next, we define predicates which mean “A is a type”, and “«a is a member of a type
A" simultaneously. Here, we have negative occurrences of the predicate variable
corresponding to ‘a is a member of a type A” when we interpret £ and II types, but
it is treated just the same as in the definition of A; and B; for LTC. Finally, we
can interpret a first universe in the same way as A, and B; for LTC. We can repeat
this construction at finitely many times to interpret ITT; for each 7 > 0.

We also have this interpretation is sound; namely if a judgement J is provable
in ITT;, we can prove its translation in BT4+HMIDy.

Here, we omit the details for the lack of space.

4.7 Conclusion
We have studied a general form of half-monotone inductive definition in the con-

text of a type-free first-order theory. It is an extension of monotone, simultaneous
inductive definition, and is indispensable for defining provability relation within a

1.7. CONCLUSION 87

theory, rather than a built-in relation. A characteristic point of this form is to allow
a negative occurrence of a predicate variable which is being defined.

We changed the order between (tuples of) predicates so that such a kind of
inductive definition is still monotone. The order is a slight modification of one
proposed by Aczel[2], Hayashi and Nakano[21]. What is new in this chapter is to
give a general theory of such styles of inductive definitions, and also give a sound
realizability interpretation to show our theory is really constructive. We have shown
that the Logical Theory of Constructions3] can be interpreted in our theory quite
naturally. We have also shown that provability relations which are useful for program
improvement are definable in our theory. Our formulation of HMIDy is sufficient
for this purpose. As an application, we can prove equivalence of two definitions
of provability relations, and can extract optimization programs by virtue of the
program extraction theorem.

Although there are many related works. we briefly compare our work with two
of them, which, we think, are most closely connected.
Comparison with Allen’s Work

Allen[4, 5] interpreted Martin-Lof’s type theory with universes in a type-free
framework. He inductively defined a binary predicate = which takes a term 7" and a
binary predicate ¢. Intuitively, 7(T, ¢) means “T" is a type, and ¢ is an equivalence
relation on the type T (therefore a partial equivalence relation on the whole do-
main). For some fixed 7, the membership relation a € A in Martin-Lof’s type theory
will be interpreted by 7(A,¢) A o(a,a) for some ¢ where A and a are interpreted
by A and a. Having this interpretation in mind, 7 is inductively defined. This
inductive definition does not contain any negative occurrence of predicate variables
being defined, hence is monotone in the usual sense. Allen constructed a model of
Martin-Lof's type theory using this inductive definition. Since ¢ is a predicate over
individuals (terms), T is a second-order predicate, hence the whole theory becomes
impredicative. Smith[40] formalized Allen’s interpretation in CTTR, Martin-Lol’s
type theory with recursive types.

Allen’s technique is superior to our theory in that he did not need any extra
condition other than monotonicity while we need HMONO-Q condition. As a
result, his theory might be more elegant if the only purpose is the interpretation of
Martin-Lof’s type theory. However, we believe that, our predicative theory has its
own tight because of the following reasons.

(1) In order to formalize something, we always look for as weak a theory as
possible. Since a first-order theory with a least fixpoint operator (mu-calculus) is
strictly weaker than the second order calculus[31]. our first-order theory with half-
monotone inductive definitions is strictly weaker than Allen and Smith’s higher order
framework. Our theory is therefore preferable in this respect.

(2) We believe that the form of our inductive definition is more natural and easier
to understand than theirs.

In our theory, Proves(a, A) is directly defined by a half-monotone inductive
definition. while in Allen’s interpretation, a € A is defined as “7(A, @) A ¢(a, a) for

88 CHAPTER 4. HALF-MONOTONE INDUCTIVE DEFINITIONS

some ¢” where 7 is defined by a monotone inductive definition (for a higher order
predicate).

Comparison with Dybjer’s Work

Dybjer[15, 16] had a motivation which is similar to ours. He extended his
recursive-induction mechanism[17] so that the universe hierarchy becomes defin-
able in Martin-Lof-style type theory. As he mentioned, it can also incorporate the
definition of (Prop,Proves). In some respects, his method is more flexible than
ours. since he allows arbitrary recursive function for describing the second predicate
(2 in Proves(z,y)) while we stick to make all definitions inductive, and also he
required no extra conditions like HMONO-Q (syntactic conditions are necessary).
His method was possible because, in Martin-Lof-style type theories, a clause in each
Introduction Rule always introduces a constructor symbol, so that the domain could
never be overlapped through the process of inductive generation. We are working in
a type-free theory, and the inductive definition mechanism is applicable to a wider
range. As a result, we have to confine ourselves to inductive definitions, rat her than
inductive-recursive definitions. Besides this point, the differences between his work
and ours are that (1) his theory is based on type theory while our base theory is
untyped. (2) He allows only strictly-positive occurrences for the first predicate vari-
able in his inductive definition, while we allow more general one (monotone inductive
definition with HMONO-Q condition).

Dybjer[16] also gave a model for his theory. It is an interesting future problem
to study the relationship of his model construction and our method.

Concluding Remarks

This work has been done in connection to Sato’s RPT /A work[34]. RPT (Re-
flective Proof Theory) is a type-free constructive theory, but its spirit is very close
to Martin-Lofl’s type theory and Frege structures. It has two judgements Prop(p)
and Proves(a,p) *. If we introduce an HMID-like mechanism into RP7 . we would
be able to define (Prop, Proves) in RPT, and can extend the theory of program
improvement in RPT. We plan to amalgamate our induction mechanism into RP7T
smoothly.

*The original system had an infinite hierarchy of Prop; and Proves; where i ranges over ordinals,
but we omit the subsecripts here.

Chapter 5

Conservativeness of A! over
\o-calculus

A is a unique functional programming language which has the facility of the encap-
sulated assignment, without losing referential transparency [34]. The let-construct
in A! can be considered as an environment, which has a close relationship to the
substitution in the calculus for explicit substitution Ae-caleulus in [1].

This chapter discusses the relationship between these two calculi. We first define
a slightly modified version of A! which adopts de Brunijn’s index notation. We
then define an injective map from Ao-calculus to A!, and show that the Bela-
reduction and the o-reductions in Ao-calculus correspond to the f-reduction and
let-reductions in A!, respectively. Finally, we prove that, as equality theories, A!
is conservative over Ao-calculus.

5.1 Introduction

Al is a unique functional programming language which has the facility of the en-
capsulated assignment, without losing referential (ransparency [34]. We can assign
a value to a variable in a similar way as imperative programming languages. By
this facility, A! programs can be quite efficient compared with programs written in
ordinary functional programming languages. In spite of the existence of assignment,
Al does not lose mathematically good features. Namely, it has a clear semantics,
and it is referentially transparent in the sense that the equality is preserved through
substitution. (See [34] for details.) We believe that A! is a good starting point of
treating assignment in a mathematically well-founded manner.

In A!, the let-construct plays a fundamental role. The evaluation of the let-
construct (let ((x «)) b) can be naturally considered as evaluating b under the
environment = = a. This concept of environment is closely related to substitution in
Ao-calculus[1]. Ao-calculus is an extension of A-calculus where substitution has its
own syntax. and explicitly described. Ao-calculus is mathematically well founded,
since it is conservative over A-calculus.

89

90 CHAPTER 5. CONSERVATIVENESS OF A!

This chapter discusses the relationship between A! and Ao-calculus. First, we
define a slightly modified version of A!. The version we present in this chapter adopts
de Bruijn’s index notation, and has a slightly extended let-reductions compared
with the original definition given by Sato[36]. Next, we define an injective map
® from \o-calculus to A!. Then, we show that the Beta-reduction and the o-
reductions in Ao-calculus correspond to the B-reduction and let-reductions in Al.
Finally, we prove that, as equality theories, A! is conservative over Ao-calculus.
Namely, we have that s = ¢ in Ao-calculus if and only if ®(s) = ®(1)in AL,

In the following, we use metavariables ¢, s, u for Ao-terms, 0, ¢, for Ao-substitutions,

a. b, ¢ for A!-terms, n, m for natural numbers.

5.2 JMo-calculus with de Bruijn index

We quote the untyped Ao-calculus in de Bruijn’s index notation from [1]. We assume
that readers are familiar with de Bruijn’s notation and Ao-calculus. See also [1] and
(13).

Definition 30 (Term ! and Substitution @)

2= 1 |du | At | t16]
0 == id| T |t:0| 0809

In de Bruijn’s notation, all the bound variables disappear if they are just after
A, or otherwise replaced by indices 1, 2, ---. The indices represents the number
of A-binders between the occurrence of the bound variable and the A-binder which
actually binds this occurrence. For example, the term Az.\y.xy will be represented
by A(A(21)) in this notation. The term 1 represents the first index. An index larger
than 1 is represented by combination of 1 and T. The terms tu and A are as usual
except that there appears no bound variable after A\. The term ¢[#] is the term ¢
to which the substitution 0 is applied.

Each substitution intuitively represents a simultaneous substitution for indices.
The substitution 1d is the identity substitution. The substitution T is the “shift”
operator, which substitutes n + 1 for each index n. The substitution ¢ - # is “cons”
of a term { and a substitution 0, which intuitively represents the substitution {1 :=
t,2 := 5,3 := $3,-+-} where § means {1 := 5,2 := s3,-+-} Finally, # 0 6 is the
composition of two substitutions.

Definition 31 (Context ()

C
e

(YICt|tC|AC|CL0] |tlO]
(JIC-0|t-©|0©00 000

5.2. Ao-CALCULUS WITH DE BRULIN INDEX 91

' A context €' has just one hole (). To emphasize it, we sometimes use the notation
C(). We may replace the hole with a term ¢ or a substitution @ in a context C()s
which is denoted as C(t) or C(0).

Definition 32 (1-step reduction —)

Beta (Al)s — t[s-1d]
VarlD 1(id] — 1

VarCons 1[t-0] —t
App (1s)[0 — (L[0])(s[0])
Abs (AL)[O) — A(t[1 - (0o 1))
Clos t[0] [o] — t[0o ¢]
ldl, idof — 0

Shiftld Toid —1

ShiftCons To(t-0)—0

Map (t:0)yoyx — t[x]-(Poy)
Ass (lop)ox —0o(dox)

Rules other than Befa are called o-rules or o-reductions. Reduction relations
for the Beta-rule and the o-rules are written as —g and —,. Beta-reduction corre-
sponds to the usual 3-reduction in A-calculus, but it does not actually perfom the
substitution. It merely adds a new substitution s-id to the term £. This substitution
will be later resolved by o-reductions.

Definition 33 (Reduction —) The relation — is the least relation satisfying the
following conditions:

1. — is reflexive and transitive.
2.t — s implies C(1) — C(s).
3. 0 — ¢ implies D[] — D[2].

The equality = is the equivalence relation induced by —-,

Theorem 20 (Abadi et al) The o-reduction is confluent and terminating. The
Ao-calculus is confluent.

The o-normal form of a Ao-term ¢ is the normal form of ¢ under the o-reductions,
and is written as o(t).

92 CHAPTER 5. CONSERVATIVENESS OF A!
5.3 A! and plet-calculus

5.3.1 A Functional Programming Language A!

Al is a type-free functional programming language which has the facility of the
encapsulated assignment. We can assign a value to a variable in a similar way with
imperative languages. In spite of the existence of assignment, A! does not lose
mathematically good features. Namely, it has a clear semantics by Church-Rosser
Theorem, and it is referentially transparent in the sense that the equality is preserved
through substitution. In this chapter, we reinforce this viewpoint by the fact that
Al is a conservative extension of Ao-calculus. The terms in Ao-calculus can be
naturally translated into A!, however, it is not clear that the equality is preserved
through this translation, since the introduction of assignment to A! forces us to fix
evalnation order to some extent while Ao-calculus allows strong reductions, which
may reduce subterms inside A in an arbitrary context. Therefore, conservativeness
of A! over Ao-caleulus is an interesting problem.

5.3.2 Modification to A!

This subsection explains the two different points between the original version of A!
and the modified version used in this paper.

The first difference is that we use de Bruijn's index notation in the modified
version. while variable names were used in the original version. In the new version,
a variable is represented as a natural number (an index).

The other modification is explained below. Consider the following equation
(taken from [34]):

(let ((x t)) (apply a b))
= (apply (let ((x 1)) a) (let ((x 1)) b))

In this example, t, a, and b represent some terms in A!. In a natural translation
from Ao-calculus, this equation is expected to hold in any context. If ¢ does not
have assignable variables, the equation (without any context) holds. However, this
equation does not hold in an arbitrary context. Consider the following equation
(which is incorrect in the original A!):

(lambda (y) (let ((x y)) (apply a b)))
= (lambda (y) (apply (let ((x y)) a) (et ((x y)) b))

In the original A!, we have no way to evaluate the subterm
(let ((x y)) (apply a b)), sincey is not closed. From the Church-Rosser Prop-
erty of the original A!, we can show that the equation above does not hold, which
means the original version is not conservative over Ao-calculus under a natural trans-
lation. It follows that the original A! is not conservative over the pure A-calculus:

5.3. A" AND PLET-CALCULUS 93

two equal A-terms Ay.(Az.xa)y and Ay.yy are translated into two A !-terms which
are not equal®.
This example motivates our modification. We allow reductions of a term

(let ((x t) a), not only in the case that t is closed (and « is arbitrary), but also
in the case that ¢ and a are read-only. A read-only term is a term which does not
have side-effect. Note that a read-only term a may contain assignment even il a
has assignment. In this case. every variable in the assignment must be bound by
let-construct or lambda-construct in «. By extending let-reduction in this way, we
can reduce, for example, the term like:

(lambda (y) (let ((x y)) (apply a b)))
— (lambda (y) (apply a.[y] b.[y]))

where a.[y] means the usual substitution if @ and b are read-only. We can show
that the resulting calculus still satisfies the Church-Rosser Property, and has the
referential transparency. We simply call this modified version A!, and use the term
the “original™ version if we mention A! in [34].

5.3.3 Definition of A!

The set of N-terms is defined for each natural number N as follows:

Definition 34 (Term ay of A!)

ay. = n fn=1
(set! nay) ifn<N
(let ((an)) an41)
(while ay any ay)
(if ay ay an)
nil
(null? ay)

(pair ay ay)

(car ay)

(cdr an)
(lambda () aq)
(fun? ay)
(apply an an)
(mu ay)

|
l
|
|
|
|
l
| (pair? ay)
|
!
l
|
l
|

1t follows that Theorem 4.6 in [34] also needs the modification to the definition of A!.

94 CHAPTER 5. CONSERVATIVENESS OF A!

Intuitively, an N-term ay is a term whose assignable variables are less than or
equal to N. We sometimes call an N-term simply as a term. The term (set! n
an) rtepresents assignment for the variable n to the value ay. In order to keep
referential {ransparency, we restrict the assignable variables to be bound by a let-
construct or a lambda-construct. Term constructs such as while, if, nil, pair,
car, cdr, lambda, and apply have usual meaning. Terms such as (null? «a) are
predicates which decide whether a is nil or not, and return true or false. The
term (mu «) is the p-operator which invokes a recursive call. A term which is
constructed from variables, 1ambda-construct, apply-construct, and let-construct
is called a pure term. The terms nil, (pair ay by), and (lambda () ay) are
called constructor terms, and the terms (null? ay), (pair? an), and (fun?
ay) are called recognizer terms. We also say that nil and (null? ay) are of the
same kind. Likewise, (pair ay by) and (pair? ay), are of the same kind, and
(lambda () ay) and (fun? ap) are of the same kind. Other combinations of
pairs of these terms are of different kinds.

The reduction rules of A! are listed in the Appendix of this chapter. The con-
fluency of the original A! was proved in [34], and the confluency of this modified
version is proved similarly. The equality in A! is the least equivalence relation which
contains —. Instead of explaining the reductions rules in detail, we give a simple
example here. Readers are encouraged to read [34] for thorough understanding of
the original A!.

Example 1 (Reduction in A!) Lett be the following term.

(lambda ()
(apply
(apply
(lambda () (lambda () (pair 1 (pair 2 3))))
1)
nil))

If we use the notation with variable names, t is written as follows:

(lambda (x)
(apply
(apply
(lambda (y) (lambda (z) (pair z (pair y x))))
x)
nil))

The following sequence is a reduction sequence starting from .

t — (by Rule 12)
(lambda ()

5.3. A! AND PLET-CALCULUS 95

(apply
(et ((1))
(lambda () (pair 1 (pair 2 3))))
nil))
— (by Rule 17)
(lambda ()
(apply
(let ((1))
(l1ambda () (pair 1 (pair 3 3))))
nil))
— (by Rule 16)
(lambda ()
(apply
(lambda () (pair 1 (pair 2 2)))
nil))
— (by Rule 12)
(lambda ()

(let ((nil))
(pair 1 (pair 2 2))))
— (by Rule 17)
(lambda ()
(let ((nil))
(pair nil (pair 2 2))))
— (by Rule 16)
(lambda () (pair nil (pair 1 1)))

In this chapter, we are mainly concerned with the fragment of A! consisting of
pure terms, which are sufficient for the translation from Ae-caleulus. The fragment
is called the pure-fragment. The pure-fragment is closed under reduction.

In the translation given later, we will need an intermediate calculus, which we
temporarily call plet-calculus (parallel-1et calculus).

Definition 35 (Term a of plet-calculus)

¢ 3= n tfHE =21
| et ((ay) Caz) -+« (ap)) b)
| (lambda () a)
|

(apply a b)

Since plet-calculus is solely used for the translation, we do not define reduction
rules for it.

96 CHAPTER 5. CONSERVATIVENESS OF A
5.4 'Translation of A\o-calculus into the pure-fragment

5.4.1 Translation of \o-calculus into plet-calculus

This subsection presents a translation from Ao-terms to plet-terms. We begin with

an auxiliary definition.

Definition 36 (Degree 8(a)) For cach plet-term a, its degree &(a) is a nalural
number defined as follows:

(n)

6((let (Cay) «+ (ap)) H)
§((lambda () a))
5((apply a b))

Intuitively, 6(a) is the maximum index of free variables in «. If @ does not have
[ree variables, 8(«a) is defined to be 1 rather than 0.

n ifn>=1

maxz(6(ay), -, 6(ap), 6(b) — k)
max(1,6(a) —1)
maz(d(a),8(b))

e He n> e

Definition 37 (Translation (') For each Ao-term t. a plet-term a is dcfined as
follows:

it 2 4
(ts)! £ (apply t! sh)
(A) £ (lambda () th)
(t01)t £ (Let 9EEN) 4ty

The translation for substitution —®) is defined as follows.

Definition 38 (Translation 0")) For a substitution 0 in \o-calculus and a nat-
ural number n (n > 1), 0" is a list of singleton-lists of plet-terms defined as
follows:

jg» 2 CCL) (2Y = - (n))
WS (@) (B v (nat))
(a-0)™ 2 (Cat) (by) (By) -+~ (b) Ch+2))
if 07 is ((by) (by) ++ (b))
(0od)™ = ((Qet '™ a))-+-((Tet ™ w)))

if 0™ ds (Car) (az) -+ Cag))

and m is max(8(ay), -+, é(ay)).

3.4. TRANSLATION OF \o-CALCULUS 97
Proposition 3 The translation —1 is injective,

Proof. First note that, for each substitution # and natural number n, the length
(as a list) of 6 is equal to or more than n. It follows that the length of (a-0)™) is
more than n+ 1, so («-0)™ cannot be identical to id™ nor 1), Moreover. its last
element is a natural number k + 2, and differs? from the last element of (00 0)",
Hence, the images of —") for four classes of substitutions do not overlap. Using this
fact, we can prove that, t' and 0 (for each n) are injective by the simultaneous
induction on the complexity of the term ¢ and the substitution 6. O

5.4.2 Translation from plet-calculus to A!

Iirst we define a* for each plet-term a. Intuitively, a* is the term a with each free
variable shifted (added by one), for example,

(apply 3 (lambda () (apply 1 2)))*

is (apply 4 (lambda () (apply 1 3))). To define at, we need to define an aux-
iliary function af,, which adds one for each free variable in @ whose value is more
than m.

Definition 39 (a})

n n 1fn<<m
n+1 ifn>m
(Let (((ar)}) -+ ((ax)f)) b

(lambda O af ;)

n
(Qet (Cay) -+ (ap)) BF
(l1ambda () a)}

S i

e e e 1ne e

(apply « h); (apply a} b%)

We simply write af as a*.

Definition 40 (Translation * from plet-calculus to A!)

n

(let () B~
(let (Cay) -+ C(ar—1) Car)) b~

n
(let (b") 1)

(let ((ar)) ©)

ects (Tet ((ay™) oo Cap ™)) B)"
(lambda () a”)

(apply a” b7)

(lambda () a)”
(apply a b)~

e e < 1> e s

“This is the reason why we attached the (meaningless) term k + 2 in the definition.

98 CHAPTER 5. CONSERVATIVENESS OF A!

In the following, we sometimes regard plet-terms as pure terms in A! (through the
translation).
The translation @ from Ao-calculus to the pure-fragment is defined as follows.

Definition 41 (Translation ® from Ao-calculus to A!)

o(t) £ @ty

Theorem 21 —* is injective. Hence ® is injective.
Proof. Clear.

Remark 3 [If a non-injective map were allowed as the translation ®, part of our
resulls (the first part of Theorem 22) would become trivial as shown below.

In Ao-calculus, the set of o-normal forms can be regarded as the set of pure \-
terms, so the map o(_) can be regarded as the translation from Ao-terms to pure
A-terms. We have that, s = t holds if and only if o(s) = o(t) holds. A! is also
conservative over pure A-calewlus *. Namely, there is a map VU from pure A-terms
to A'-terms such that a = b holds if and only if Y(a) = V(b) holds. Let ® be the
composition of o and V; then we have that s =t holds in Ao-calculus if and only if
®(s) = ®(t) holds in A'. O

5.4.3 Properties of the translation ®

Here, we prove that the translation ® preserves the equality. First we state an
extension of Lemma 4.2 in [34].

Lemma 8 Let a and b be pure N-terms for some natural number N.
Then, the term (let ((a)) b) reducestob{l:=a,2:=1,3:=2,-+ k:=k—1)}
using let-rules only, where k is §(b).

Here {1 := 4,2 := 1,3:= 2.+ k= k — 1} denotes the simultaneous substi-
tution. Note that a and b are not necessarily 0-terms. As was stated in Section
5.3.2, this lemma does not hold for the original A!, since we cannot reduce the term
(let ((a)) b) if a is not closed. On the contrary, the version we present in this
chapter satisfies this lemma, since all pure N-terms are read-only, which enables us
to reduce the term (let ((a)) b).

Similarly, we have the following lemma.

Lemma 9 Let ay---a; and b be pure N-terms, and k be 6(b). If n > k, then
(et ((ay) -+ (an)) b) reduces to b{1 := a;,2 := ay,+++ b = ar} using let-
rules only.

3This claim does not hold for the original A, but it does hold for the modified version presented
in this chapter.

5.4. TRANSLATION OF \Ao-CALCULUS 99

Note that, we regard plet-terms as A!-terms through the translation ()= in
Lemma 9.

These lemmas are proved by the induction on b.

Proposition 4 For cach term-reduction rule t — s in Ao-calculus, ®(1) = P(s)
holds in A\. For each substitution-reduction rule 0 — ¢ and a term s in Ao-calculus,

O(s[0]1) = ®(s[e]) holds in A1,
Proof. This proposition is proved by the case-analysis.

(Beta) The left hand side (LHS, in short) of Beta is translated into
(apply (lambda () t') sP)
which g-reduces to
(let ((sh) 1)

By Lemma 8, this is equal to ({1 :=s",2:=1,3:=2,-.:}.
The right hand side (RHS, in short) of Beta is translated into

(let ((s") (1) -+ (n—1)) th)

Calculation of indexes shows that this is equal to ¢{1 := s7,2:=1,3:=2,--.}.

(VarID) LHS is translated into (et ((1)) 1) which reduces to 1. RHS is trans-
lated into 1.

(VarCons) LHS is translated into (et ((t')---) 1) which reduces to t!. RHS
is translated into tt.

(App) Suppose 0N s ((ay) -+ (ax)).
LHS is translated into (let ((ay) (az) - (ax)) C(apply tf sf)).
RHS is translated into

(apply
(let (Cay) Caz) --+ (ap)) th)
(et ((ay) (ap) -+ Cam)) st

where [and m are §(tt) and §(s").
By Lemma 9, (let ((a;) -+ (ax)) t1) is equal to

100

CHAPTER 5. CONSERVATIVENESS OF A!
tH1:=ay, -+ l:=a;r}
and similarly for st. Hence, by Lemma 8, LHS and RHS reduce to

(apply (H{1:=a;, -~ l:=a;}
sH{1:=a,,~ -, m:=a,})

(Abs) Suppose 0O ig ((ay) -+ (ap)).

LLHS is translated into (let ((ay) -++ (az)) (lambda () t1)). This reduces

to

(lambda ()
it{2:=a,{1:=2,2:

1
Ly
f——r

k+ 1li=a;{1:=2,2:=3,---}}).
RIS is translated into
(lambda ()
(let ((1)
(QQet ((2) (3) -+2) a1))

((Qet ((2) (3) --) a)))
tt))

The latter term reduces to the former by Lemma 9.

(Clos) Suppose 06 5 ((ay) «++ (a;)), and 6™ is ((b) --- (b)) where n is

max(ay, -, a).

LIS is translated into

(et (Cby) -+ (b))
(let (Cay) -+ (ap)) th))

RHS is translated into

(et (((let ((by) -+ (b)) 1))

(et (Cby) -+« (b)) ap)))
it

LHS and RHS reduce to

5.4. TRANSLATION OF Mo-CALCULUS 101
tt{1:=a,{1:=by,- wki=by},
li=ar{1:=by, - ki=b}}.

(IdL) Let n be 8(s). Suppose 00 is ((hy) -+ (b)). Then, s[ido 0] is translated
mto

(let (((let ((by) --- (b)) 1))

: (et () -+ (b)) n)))
s")

Since k > n, this reduces to (let ((by) --- (b,)) s') Then this term is

identical to (s[0]) by Lemma 9.

(ShiftId) Let n be é(s). The term s[T o id] is translated into

(let (((let ((1) «-- (n + 1)) 2))
((Qet ((1) - (n + 1)) 3))

((Qet ((1) -+ (n+ 1)) n+ 1))
shH

This reduces to (et ((2) --- (n+41)) s') which is identical to (s[T 1)

(ShiftCons) Let n be 6(s). Suppose 01 is ((by) -+ (bi)).
Then, s[To (t:0)] is translated into

(let (((let (N (b)) -+ () (k +2)) 2))
(et (1) (by) -+ (be) (K + 2)) 3))

(et ((t1) (by) -+ (b)) (kK4 2)) n+ 1)))
st

We also have £ > n + 1, and the term above reduces to
(let ((by) --- (b)) sh

which is equal to (s[01).

(Map) Let n be (s). Suppose (") is ((ay) -+ Cax)), and '™ is (o) +-+ (b))

where m is max(8(1),8(ar), -+ 0(ax), k + 2).
Then, s[(t-0)o x] is translated into

102 CHAPTER 5. CONSERVATIVENESS OF A!

(let (((let ((B) --- (b)) t1))
(et ((by) -+ (b)) ay))

(et ((by) -+ (b)) ax))
((let ((by) -+ (b)) Kk + 2)))
sh)

s[t[y] - (A o)] is translated into

(let (((let ((hy) -+ (b)) 1)
(et ((by) -+ (b)) a1))

(et ((by) -+« (b)) ax))
(k + 2))
sh)

where (1) is p, X® is ((by) -+ (b,)), max(6(a,),:-~,8(ax)) is r, and x) is
(Cby) =00 (b))

We have that p <o < I, r < ¢ <[, and n < k, therefore, by Lemma 9, both
of these terms are equal to

st{1:=tt{1:=b;, -, p:=b,},

(Ass) Let n be 6(s). Suppose 0(") is ((ay) --- (ay)), 3 is ((b;) --- (b)), and
Y™ is ((¢;) --+ (ew)) for appropriate o and p.

Then, s[(0 o ¢) o x] is translated into

(let (((let ((cy) «+- (em))
(let (Cby) -+ (b)) ay))
(et (Cey) -+ (em))
(et ((by) -+ (b)) ap)))
sty

s[0o(¢ox)] is translated into

5.5. TRANSLATION OF THE PURE-FRAGMENT INTO Mo-CALCULUS 103
(let (((let (((let ((ey) «-- (em)) b))

(Qet ((e) - (em)) BD))
a))

((Qet ((QQet ((er) -+ (ewm)) b))

(et () -+ Cen)) b))
ag)))
sh

Both of these terms reduce to

.‘it{i:=al{1:=hl{1::01!...1?-”:=Cm}:.'.,l:=b;{1:=c“...1m:=cm}}.‘

Li=ap{1:=b{l:=c;, - mi=en), Li=b{ii=ey, -, mi=cy, }}

Note that, we have used only let-rules for proving the cases for o-rules. Note
also that, the 1-step Beta reduction can be simulated by the 1-step B-reduction with
some let-rules. O

Proposition 5 Lel { and s be Ao-terms. If t = s, then (1) = ®(s) in AV,

Proof. We first prove that, the result of Proposition 4 can be extended to an
arbitrary context. Namely, for a context C(), if 1 — s, then ®(C(t)) = ®(C(s))
where t and s are terms or substitutions. These are straightforward if the used
reduction rule is a o-rule. However, in the case of Beta-rule, there occurs a subtle
point; for example, ((A2)3)[T] is translated into

(let ((2) (3) (4)) (apply (lambda () 2) 3)).

On the other hand, the result of applying Beta rule to it is 1[T] which is translated
into (et ((2)) 1). We can use Lemma 9 to overcome this difficulty, and can prove

the equality of ®(C'(t)) and ®(C(s)).

Finally, we can extend the result for 1-step reductions to the general case, and

get the desired proposition. O
By checking the proofs, we know that, if ¢ = s is shown by e-rules only, then

(1) = ®(s) is shown by let-rules only.

5.5 Translation of the pure-fragment into Ao-calculus

We now define the reverse translation, namely the translation from the pure-fragment
of A! to Ao-calculus.

104 CHAPTER 5. CONSERVATIVENESS OF At

Definition 42 (Translation V)

¥(n) £ 101"]
W((let ((@)) b)) = U(b)[¥(a)- id]
W((lambda () @) 2 A¥(a)
U((apply a b)) £ W(a)¥(b)

n

e ———,
In the first clause, 1[77 1 is n-times application of substitution, that is, 1 8 I o

Proposition 6 We have the following;
1. W is injective.
2. Let a and b be pure N-terms in A, If a = b, then W(a) = Y(b) holds.

Proof. We first prove the theorem for the case of « — b. It is proved by the
induction on the derivation of @ — b. We only have to consider Rules 1, 3, 5, 7, 12,
16, 17, and 19.

(Rules 1, 3, 5, 7) These cases are proved easily.

(Rule 12) Suppose a is (apply (lambda () ¢) d), bbe (let ((d)) '),
¢ — ¢ and d — d'. Then, ¥(a) is (A¥(c))¥(d), and W(b) is W()[W(d') - 1d].
By the induction hypothesis and the Beta rule in Ao-calculus, these terms are
equal.

(Rule 16) Suppose a is (let ((e)) &), 1 & F'V(d). d — e, and bis e7. We
have W(a) is W(d)[W(c) - id]. We can show that, all the occurrences of 1
in W(d) are followed by one or more T's, hence W(d)[W¥(e) - id] is equal to
W(d){2 := 1,3 := 2,---}, which is again equal to ¥(d~). We have 1 & FV(e),
and, therefore, d= — e~. By the induction hypothesis U(d~) = W(e™), hence
Y(a) = W(b).

(Rule 17) Suppose a is (et ((¢)) d), pld,p) = 1, ¢ = &, d = d', and ¢ =
di[c't], bis (et ((¢)) e). Then, ¥(a) is W(d)[¥(c) - id], which is equal to
W(d")[¥(c') - id], by the induction hypothesis. By the induction on the term
W(d'), we have that the o-normal forms of this term and the term ¥(e)[W(¢')-
id] are identical. Hence we have that ¥(a) and ¥(b) are o-equal.

(Rule 19) This case is proved in a similar way as Rule 17.

We can extend the result above to the equality ¢ = b, O

5.6. MAIN THEOREM 105

5.6 Main Theorem

This section presents the main theorem of this chapter.

Proposition T For each Ao-term 1, Y (D(t)) =t holds. Morcover, the equality is
shown by the let-rules only.

Proof. This proposition is proved by the induction on the term ¢. O

Theorem 22 Let t and s be Ao-terms. Then, t = s holds if and only if ®(1) = ®(s)
holds.

Moreover, if t is shown to be equal to s using o-rules only, ®(1) and ®(s) are
shown to be equal using let-rules only. Ift is shown to be equal to s by several limes
applications of the Beta-rule, ®(t) and ®(s) are shown to be equal by the same times
applications of the B-rule, and some applications of 1let-rules.

Proof. The first part follows from Propositions 5, 6 and 7. The second part
follows from the remarks for these propositions. O

Remark 4 Theorem 22 shows that the pure-fragment of A! and Ao-calenlus have
a close relationship; as equality theories, A\ (the version presented in this chapter)
is conservative over Ao-calculus,

However, we can see several differences between them. Firstly, the reduction
rules do not directly correspond, namely, t —+ s in Ao-caleulus does not necessarily
imply ®(1) — ®(s) in A'. Secondly, substitutions are objects in Ao-calenlus, and
can be directly treated, while its corresponding expression
(et ((a)) ()) is not a term in A'. This reflects that, in A! we only consider the
environment with some term, and never treat one as an independent object. One
of the design goals of A! is to treat assignment in a mathematically well founded
manner, which means we want to keep the referential transparency in our sense, and
therefore, we do not separate terms and environments.

As in Ao-calculus, we have a complete normal-order strategy for the reductions
in A!, which we plan to implement on a computer. O

5.7 Conclusion

We have shown the rigid relationship between “explicit substitution™ (Ao-calculus)
and our functional language A!. We first presented a modified version of A! so that
we may reduce let-terms under the “read-only” condition. We used de Bruijn’s
index notation in this presentation. We then gave a translation from Ag-calculus
into the pure-fragment of A!, and a reverse one. We proved that, throngh these
translations, o-rules correspond to let-rules, Beta-rule corresponds to f-rule, and
finally A! is conservative over Aa-calculus. We also presented a brief sketch of trans-
lation for calculi with variable names. Together with the Church-Rosser property

106 CHAPTER 5. CONSERVATIVENESS OF A!

and the referential transparency presented in (34], our result establishes that A! is

a well-founded programming language with assignment.
As a future work, we should extend RPT so that reasoning about A!-programs

can be formalized in RPT, and then extend our Constructive Programming System
to include such reasoning. By doing these things, we can synthesize A!-programs
(with the assignment and the while statements) by the way of Constructive Pro-

gramming.

Appendix: The Definition of A! in de Bruijn’s
notation

The Appendix gives several definitions including the reduction rules of Al in de
Bruijn’s index notation.

A position is a finite sequence of positive integers, with ¢ being the empty se-
gquence. For instance, 121 is a position.

Fach subterm in a term is specified by a position in a usual way. We use the
notation t/p for the subterm of a term ¢ at the position p. For instance,

(apply (apply a b) ¢)/22is a, and
(apply (apply a b) c¢)/cis (apply (apply a b) o).

For a term a and a position p, v(a, p) intuitively means the number of surrounding
binders (let or lambda) at the position p, and is defined as follows.

Definition 43

v((let ((b)) ¢),211¢q) 2 v(b,q)
v((et ((B) ©),3¢) £ vlc,q)+]1
v((lambda) 6),3¢) 2 v(b,q) +1
v((f by <o+ bu)yig) = w(biiy,q) where f is not let nor lambda,
A

v(a,p) 0 otherwise

Suppose a/p is a variable 7. This occurrence of a variable is called bound if
t < v(a,p), and free otherwise.

Next, we define a natural number p(«, p) for a term a and a position p. In a term
a, there may be several occurrences of a variable, and each may take a different value.
We, therefore, sometimes need to know the absolute value of a variable-occurrence
if we look at this occurrence from outside of a. The number p(a, p) is defined to be
¢t — v(a,p) where a/p is a free occurrence of a variable in a, and i is the variable.
Otherwise, p(a, p) is undefined.

IV (a) is the set of p(a, p) where p ranges over all the free occurrences of variables
in a.

5.7. CONCLUSION 107

Let us take an example. Let a be (let ((2)) (pair 1 2)). Then (a,211) is
0, the occurrence at 211 of « is free, and p(a,211) is 2. v(a,32) is 1, the occurrence

a.t.32 of a is bound, and p(a,32) is undefined. v(a,33) is 1, the occurrence at 33 of
a is free, and p(a,33) is 1.

For a term a, two terms at and a~ are the term a with each free variable added
by one, and subtracted by one, respectively. For instance,

at is (let ((3)) (pair 1 3))
a” is (let ((1)) (pair 1 1))

A precise definition of a* is given by Definition 39.
An N-term ais called N-closedif F'V(a)N{1,---,N} = 0. The set Cy represents
the set of N-closed terms. An N-term a is called N-read-only if, for any subterm

in the form (set! n b), n is bound in a. Ry represents the set of N-read-only
terms.

Definition 44 (Substitution) Let a and d be terms, and p be a position. We will
define a term ay[d] as follows:

o Ifpise, apld) is d.

o Otherwise,

— ifa is (1ambda () b),
then ay[d] is (lambda () b,[d*]) if p is 3¢, and is undefined otherwise.

— if'a is:(Let ((B)) ¢),
then a,[d] is (Let ((b,[d])) ¢) if p is 211q. a,[d] is (Qet ((B)) c,[dt])
if pis 3q. a,|d] is undefined otherwise.

—ifais (f by -+ by) where [is not let nor lambda,
ap(d) is (f by -+ b [d) -+ by) ifpisjg, 2<)<m+1, andi isj—1.

— otherwise

ap|d] is undefined.

Substitution for multiple occurrences @y, ..., [b] is defined to be a,, [b] if k& = 1,
and (ap, [0])p, - p: [0] if & > 1.

We next define the set Ly(a) for each N-term a in A!. Intuitively, if p €
Yn(a), the subterm a/p should be evaluated at the next step by the let-reduction.
Note, however, that we fix the evaluation order only for one occurrence of the let-
construct. If other rules are applicable, or there are other let-constructs which
do not interfere with this let-construct, we may evaluate other subterms than one
specified by Sy(a). For a position p and a set S, pS is the set {pg | ¢ € S}.

108 CHAPTER 5. CONSERVATIVENESS OF A!

Definition 45 If a € Cy, then Xy(a) is 0. Otherwise,

4

Tnn) = {¢}
3¥n+1(h) if a € Cy,
E:\'((let ((a)) b)) = 2]13_,\'((.1‘.) U SENH(-{I) ?f ac RN and b € H._.'\,'+| §
211X y(a) otherwise.
] A {e} if a€ Cy,
Zp\astl nva)), = { 3V n(a) otherwise.
Yn((lambda () «)) < {e}
Y n((while a b ¢)) = 2 n(a)
Sn((ifabe)) £ 28n(a)
3N (h) ?f a € Cy,
Sn((apply a b)) 2 { 25x(a)U3Tn(b) if a € Ry and b€ Ry,
28 v (a) otherwise.
3Xn(b) if a € Cy,
Sn((pair a b)) £ { 2Sn(a)U3En(b) if a€ Ry and b€ Ry,
2Y v(a) otherwise.

1>

En((f a)) 2Yn(b) where [is a term construct not listed above

Note that, for a pure, open term a, ¥x(a) is not empty.
The 1-step reduction relation — in de Bruijn notation is defined as follows:

Definition 46 1. If n is a variable (an index), then n —y n.

2. Ifa =y d and s is one of fun?, null?, pair?, car, cdr, and mu, then

(s a) =n (s d)

3. Ifa =y d and b —y e and s is one of pair, apply, then
(s a b) —n (s d e)

4. Ifa 5y d, b—>yeand c —y [and s is if orwhile, then
(sabe) oy (sde [)

5. If a —, d, then (lambda () «) —y (lambda () d)
Ifa =N d, then (set! n a) —y (set! n d)

If a -5 d and b — x4, €, then (Qet ((a)) b) -y (let ((d)) €)

I

Ifa € Ry, (s a) is a recognizer term of some kind, and a is a constructor term
of the same kind, then (s a) —y true.

9. Ifa € Ry, (s a) is a recognizer term of some kind, and a is a constructor term
of a different kind, then (s a) —y false.

5.7. CONCLUSION 109

10. Ifa € Ry, b€ Ry, and a —n d, then (car (pair a b)) —y d.
11. Ifa € Ry, b€ Ry, and b —x ¢, then (cdr (pair a b)) —y €.

12. /f (Qambda () @) € Ry, b€ Ry, a —xuy d and b —y €, then
(apply (lambda () a) b) —y (let ((e)) d)

13. Ifa € Ry and a —x d, then (mu o) —yn (apply d (mu d)).
14. If b —x ¢ then (if true b ¢) —n €.
15. If ¢ —x f then (if false b ¢) —y [.

16. Ifa € Ry, 1 € FV(b), b€ Cynyy, and b — x4y €, then
(let ((a)) b) —-n e~

17. If a =N d, p € En4i(b), p(b.p) =1, b —=ny ¢, and cither (i) a € Cy, or (ii)
a€ Ry and b € Ry, then (et ((a)) b) -y (let ((d)) ep[d*])

18. If p € Enyi(b), b/p= (set! n), b—nyi e ¢/p= (set! n g),
plb,p2) = 1, and either (i) a € Cy, or (it) a € Ry and b € Ryyy, then
(let ((a)) b) =y (let ((¢7)) e,lg])

19. If a =N d, p € En4i(b), b/p = (Qambda () f), v(b,p) = m, b —n4 €,
FV(fin{m+3,---.m+2+ N} =0, vie,p) = n, ¢/p = (lambda () g),
positions py.---,pr are all the free occurrences in g satisfying p(g.p;) = n+ 2,
and either (i) a € Cy, or (ii) a € Ry and b € Ry, then

n+2
pemm—S—,

(let ((a)) b) =y (et ((d)) e,[(lambda Vg, ..., [dT TP

20. Ifb—xecand c—y [, then
(while true b ¢) —»y5 (Qet ((x ¢)) (while f e [)).

21. (while false b ¢) —y nil.

We often omit the subscript N in —y. We call the rule 12 S-rule, and the rules
16, 17, 18 and 19 let-rules. As in Ao-calculus, 3-rule just adds a new environment
to a term, and does not perform substitution. Later, let-rules will resolve this
environment and perform the substitution. In let-rules, we may evaluate a subterm
at a position in the set ¥(a). Rules 17 and 19 do substitution for occurrences of
the variable bound by this let. Rule 18 is the execution of assignment. Rule 16
eliminates let environment if there are no occurrences of the variable bound by this

let.
Note that let-rules are extended from the original A! by the reason stated in

Section 5.3.2.

110

CHAPTER 5. CONSERVATIVENESS OF A1

Chapter 6

Conclusion

Summary of the thesis

We have studied the paradigm of Constructive Programming based on Sato's Re-
flective Proof Theory (RPT), and also studied extensions of our framework. RPT
is a type-free first-order theory for Constructive Programming. RPT extended
Aczel’s Frege structures in three directions; explicit proof-terms, the built-in reflec-
tion mechanism, and the inductive definition mechanism. These three extensions
are quite important in developing the paradigm of Constructive Programming.

In Chapter 2, we proposed a formal system RPT for the semantical theory RPT.
Our formal system captures essential features of RPT. We showed that many
substantial theorems can be internally proved in RPT. In particular, we showed
that the disjunction property and the term-existence property are expressed and
proved in RPT. Since these properties are metatheorems in other theories such as
first-order logic, these results showed the expressiveness of the reflection mechanism
in RPT.

We also studied metamathematical properties of RPT. For logical systems, the
strong normalization property is one of the most important properties. We showed
that the weak normalization property does not hold for a naive formulation of RPT.
We analyzed this failure, and proposed an appropriate restriction for the reduction
relation for the proof-terms. We proved the strong normalization theorem for a
subsystem of RPT, namely, RPT without inductive definitions and the equal-left
rule. We then proved that the weak normalization property holds for RPT without
inductive definitions. As a corollary, we obtained the consistency of each system.

In Chapter 3, we described an overview of our implementation of the Constructive
Programming System based on RPT. Our system provides supports for men to
develop proofs in RPT; it checks the correctness of the proof, and also it proves
several kinds of theorems automatically. Moreover, our system extracts programs
from proofs automatically, improves efficiency of the programs for many cases, and
provides the execution environment of programs. One of the characteristic points of
our system is that it is implemented by the programming langnage A, which is at
the same time the object language of RPT.

111

112 CHAPTER 6. CONCLUSION

We presented a mechanized proof of the Church-Rosser property of our calculus
A. We also presented a concrete example of Constructive Programming taking the
append program as an example. we first developed a proof of a given specification
formula using the system, and then the system automatically extracted a program
from the proof, and transformed it to a more efficient one. We described the theory
which justifies the program transformation.

In Chapter 4, we studied a stronger reflection mechanism than RPT. We pro-
posed the mechanism of half-monotone inductive definitions, which can be used to
re-define the provability relation internally. We gave a theory and a realizability
interpretation. As an application of this mechanism, we showed that a refinement of
provability relation can be defined, and that we can formally state the relationship
between an original and a refined provability relations. Moreover, we can extract an
optimization program from this relationship.

In Chapter 5. we studied properties of our programming language A!. In order
to extend our results to more realistic programs, our language must have the as-
signment and the while slalements as in imperative programming languages. Sato
designed A! as an extension of A by these statements. A! has a close relationship
to the Ao-calculus of the explicit substitution by Abadi et al. We studied some
conservativeness results on A! over the Ao-calculus and the pure A-calculus.

Future Work

For future work, we have the following directions:

The first one is to extend RPT so that it can directly reason about the program-
ming language A!. Then we can extract correct programs with the assignment and
the while statements by our system.

The second one is to amalgamate the mechanism of half-monotone inductive
definitions to RPT. We already interpreted the Logical Theory of Constructions, a
formalized theory for Frege structures using our mechanism, therefore it should be
possible to construct the theory RPT with the half-monotone definitions smoothly.

The third one is to extend our Constructive Programming System so that these
extensions for RPT are reflected.

Also we should work on improvement of the proof-system itself. For the system
to be more powerful, we should exploit automatic proof generation for RPT, and
the user-interface of the system.

Bibliography

[1] M. Abadi, L. Cardelli, P-L. Curien, and J.-J. Levy, “Explicit Substitutions”,

17th Annual ACM Symposium on Principles of Programming Languages, pp.
31-46, 1990.

(2] P. Aczel, “Frege Structures and the Notions of Proposition, Truth and Set”,
The Kleene Symposium (Barwise, J., et al. eds.), North-Holland, pp. 31-59,
1980.

(3] P. Aczel, D. Carlisle, and N. Mendler, “Two {rameworks of theories and their
implementation in Isabelle”, Logical Frameworks (G. Huet and G. Plotkin eds.),
Cambridge University Press, pp. 3-39, 1991.

[41] S. Allen, “A non-type-theoretic definition of Martin-Lof’s types”, Proc. 2nd
Annual Symposium on Logic in Computer Science, IEEE Computer Society
Press, pp. 215-221, 1987.

[5] S. Allen, “A non-type-theoretic semantics for type-theoretic langnage”, Ph. D.
Thesis, Cornell University, 1987.

[6] S. Allen, R. L. Constable, D. Howe, and W. Aitken, “The Semantics of Reflected
Proof”, Proc. 5th Annual Symposium on Logic in Computer Science, IEEE
Computer Society Press, pp. 95-105, 1991.

[7] M. Beeson, Foundations of Constructive Mathematics, Springer-Verlag, 1985.
[8] E. Bishop, Foundations of Constructive Analysis, McGraw-Hill, 1967.
[9] R. S. Boyer and J. S. Moore, A Computational Logic, Academic Press, 1979.

[10] R. L. Constable, et al., Implemenling Mathematics with the Nuprl Proof Devel-
opment System, Prentice-Hall, 1986.

[11] T. Coquand and G. Huet, “The Calculus of Constructions”, Information and
Computation, Vol. 76, pp. 95-120, 1988.

[12] P.-L. Curien, “Categorical Combinators”, Information and Control 69, pp. 188-
254, 1986.

113

114 BIBLIOGRAPHY

[13] N. G. de Bruijn, “Lambda-calculus Notation with Nameless Dummies, a Tool
for Automatic Formula Manipulation”, Indag. Mat., 34, pp. 381-392, 1972.

[14] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Paulin-Mohring, and B. Werner,
“The Coq Proof Assistant User’s Guide, Version 5.8," Project Formel, INRIA-
Rocquencourt, 1993.

[15] P. Dybjer, “Universes and a General Notion of Simultaneous Inductive-
Recursive Definition in Type Theory”, Proc. of the 1992 Workshop on Types
for Proofs and Programs (B. Nordstrom et al eds.), Baastad, 1992.

[16] P. Dybjer, “A General Notion of Simultaneous Inductive-Recursive Definition
in Type Theory”, Draft, 1993.

[17] P. Dybjer, “Inductive Families”, Formal Aspects of Computing, Vol 6, pp. 440-
465, 1994,

[18] S. Feferman, “Constructive Theories of Functions and Classes”, Logic Collo-
quium '78 (Boffa, M., et al. eds.), North-Holland, pp. 159-224, 1979.

(19] J.-Y. Girard, Y. Lafont, and P. Taylor, Proofs and Types, Cambridge, 1989.

[20] M. J. Gordon, R. Milner, and C. P. Wadsworth, Edinburgh LCF, Lecture Notes
in Computer Science 78, 1979.

(21] S. Hayashi and H. Nakano, PX: a computational logic, MIT Press, 1988.

(22] S. Hayashi and S. Kobayashi, Foundations of Constructive Programming (in
Japanese, Kouseiteki Puroguramingu no Kiso) Yusei-sha, 1991.

(23] S. Hayashi, “Singleton, Union and Intersection Types for Program Extraction”,
Information and Computation Vol. 109, Nums 1 and 2, pp. 174-210, 1994.

[24] W. A. Howard, “The Formulae-as-types Notion of Constructions”, in To II.
B. Curry: FEssays on Combinatory Logic, Lambda Caleulus and Formalism,
Academic Press, pp. 479-490. 1980.

[25] D. J. Howe, “Equality in Lazy Computation Systems”, Proc. 4th Annual Sym-
posium on Logic in Computer Science, IEEE Computer Society Press, pp. 198
203, 1989.

(26] Y. Kameyama and M. Sato, “Reflective Proof Theory and its Proof System”
(in Japanese), Computer Software, JSSST, Vol. 12, No. 2, pp. 32-51, 1995.

[27] Y. Kameyama, “A Type-Free Theory of Half-Monotone Inductive Definitions”,
International Journal of Foundations of Computer Science, Vol. 6, No. 3, pp.
203-234. 1995.

BIBLIOGRAPHY 115

(28] / Luo and R. Pollack, “LEGO Proof Development System: User’s Manual”,
LFCS Technical Report ECS-LFCS-92-211, Edinburgh University, 1992.

[29] P. Martin-Lof, Intuitionistic Type Theory, Bibliopolis, 1984.

[30] B. Nordstrom, K. Petersson and J. Smith, Programming in Martin-Léf’s type
theory, Oxford, 1990.

[31] D. Park, “Finiteness is Mu-ineffable”, Theoretical Compuler Science, Vol 3, pp.
173-181, 1976.

[32] C. Paulin-Mohring, “Extracting F,’s programs from proofs in the calculus of
construction”, Proc. 16th Annual ACM Symposium in Principles of Program-
ming Languages, pp. 89-104, 1989.

133] M. Sato and Y. Kameyama, “Constructive Programming in SST”, Proc. the
Japanese-Czechoslovak Seminar on Theoretical Foundations of Knowledge In-
formation Processing, Prague, pp. 23-30, 1989.

[34] M. Sato, “Adding Proof Objects and Inductive Definition Mechanisms to Frege
Structures”, Proc. International Conference on Theoretical Aspects of Com-
puter Software, Lecture Notes in Computer Science 526 (T. Ito and A. Meyer
eds.), Springer, pp. 53-87, 1991.

[35] M. Sato and T. Sakurai, Foundation of Theory of Programs (Puroguramu-no-
Kisoriron, in Japanese), Iwanami-Shoten, 1991.

[36] M. Sato, “A Purely Functional Language with Encapsulated Assignment”.
Proc. International Symposium TACS 94, Lecture Notes in Computer Science
789 (M. Hagiya and J. C. Mitchell eds.), pp. 179 -202, 1994.

[37] M. Sato and Y. Kameyama, “Conservativeness of A over Ao-caleulus”, Logic,
Language and Computation, Lecture Notes in Computer Science 792 (N. D.
Jones, M. Hagiya, and M. Sato eds.), pp. 73-94, 1994.

[38] N. Shankar, “A Mechanical Proof of the Church-Rosser Theorem”, Journal of
Association for Computing Machinery, Vol. 35, No. 3 , pp. 475-522, 1988.

[39] B.C. Smith, “Reflection and Semantics in Lisp”, Proc. 11th Annual ACM Sym-
posium on Principles of Programming Languages, pp. 23-35, 1984,

[40] S. Smith, “Reflective Semantics of Constructive Type Theory (Preliminary Re-
port)”, Lecture Notes in Computer Science 613, Springer, pp. 33-45, 1991.

[41] C. Svensson, “A Normalization Proof for Martin-Lof’s Type Theory”, Ph D.
Dissertation, Dept. of Computer Science, University of Goteborg, 1990.

116 BIBLIOGRAPIY

[42) M. Takahashi, “Parallel Reductions in A-Caleulus", Journal of Symbolic Com-
putation, Vol. 7, pp. 113-123, 1989.

[43] Y. Takayama, “Extended Projection: a New Technigue to Extract Efficient
Programs from Constructive Proofs”, Proc. Conference on Functional Program-
ming Languages and Computer Architecture ACM Press, 1989.

[44] Y. Takayama, “Extended Projection Method for Proof Complier” (in Japanese)
Computer Software, JSSST, Vol. 7. No. 4, pp. 19-38, 1990.

[45] M. Tatsuta, “Program Synthesis Using Realizability™, Theoretical Computer

Science, Vol. 90, pp. 309-353, 1991.

[46] M. Tatsuta, “T'wo Realizability Interpretations of Monotone Inductive Defini-
tions”, International Journal of Foundations of Computer Science, Vol. 5, No.
1, pp. 1-21, 1994.

[47] A. S. Troelstra and D. van Dalen, Constructivism in Mathematics, Vol. 1, 2.
1988.

List of Publications by the
Author

Major Publications

1.

™)

M. Sato and Y. Kameyama, “Constructive Programming in S§T", Proceed-
ings of the Japanese-Czechoslovak Seminar on Theoretical Foundations of
Knowledge Information Processing, Prague, pp. 23-30, 1989.

M. Sato and Y. Kameyama, “Conservativeness of A over Ao-calculus”. Logic,
Language and Computation, Lecture Notes in Computer Science 792, (N. D.
Jones, M. Hagiya, and M. Sato eds.) pp. 73-94, 1994.

A. Yamanaka, Y. Kameyama, and M. Sato, “Implementation of a Purely Func-
tional Language A with Encapsulated Assignment” (in Japanese), Proceedings
of Workshop on Functional Programming JSSST'94, Lecture Notes/Software
Science Series 10, (M. Takeichi ed.), Kindai-Kagaku-sha, pp. 201-216, 1994,

. Y. Kameyama and M. Sato, “Reflective Proof Theory and its Proof System”

(in Japanese), Computer Software, JSSST, Vol. 12, No. 2, pp. 32-51, 1995.

Y. Kameyama, “A Type-Free Theory of Hall-Monotone Inductive Definitions”,
International Journal of Foundations of Computer Science, Vol. 6, No. 3, pp.
203-234, 1995.

Oral Presentations

15

2.

3.

Y. Kameyama, “Axiomatic System for Concurrent Logig Programming Lan-
guages”, US-Japan Workshop of Logic on Programs, Hawaii, 1987.

M. Sato and Y. Kameyama, “Constructive Programming based on S§7 /A",
(in Japanese) IPSJ SIG on Foundation of Software, 31-6(1-10), 1989.

Y. Kameyama, “Formalizing Metamathematical Theorems based on Construc-
tive Logic RPT" (in Japanese), Proceedings of Annual Convention of IPSJ,
Vol. 1, pp. 47-48, 1991.

117

118

_—

6.

|

10,

1.

2.

13.

BIBLIOGRAPHY

Y. Kameyama, “Proof System of RPT™ (in Japanese), Annual SLACS Work-
shop, Sendai, 1991.

. Y. Kameyama, “Traffic Analysis of JAIN network” (in Japanese). Proceedings

of Symposium on Inter-connectivity of Academic Networks in Japan. pp. 19-
28, March 1992.

Y. Kameyama, “Tohoku-INET: Current Status and Future Problem” (in Japanese),

Proceedings of Workshop on Regional Networks, Computer Center, University
of Tokyo, 1992.

. Y. Kameyama, “A New Assignment Method of IP Addresses” (in Japanese),

Proceedings of 1P Meeting '92, Fujisawa, pp.32-34, 1992.

Y. Kameyama, “Constructive Programming System based on Reflective Proof
Theory” (in Japanese), Functional Logic Programming Symposium, Tsukuba,
1993.

Y. Kameyama, “Inductive Definition with Negative Occurrences and its Ap-
plication”, Annual SLACS Workshop, Nara, 1993.

Y. Kameyama, “Program Optimization using an Extension of Simultaneous-
Inductive Definition”, Functional and Logic Programming Symposium, Su-
sono, July, 1994,

Y. Kameyama, “Optimization of Extracted Programs in Constructive Pro-
gramming” (in Japanese), 11th Conference Proceedings of JSSST, D4-4, pp.
177-180, 1994.

Y. Kameyama, M. Tatsuta, and M. Sato, “On Strong Normalizability of
Catch/Throw Caleuli” (in Japanese), JSSST Special Interest Group on Pro-
gramming Theory, Keihanna-Plaza, 1995.

Y. Kameyama, and M. Sato, “The Strong Normalizability of an Intuitionistic
Natural Deduction System with the Catch and the Throw Rules”, Workshop
on Constructive Programming, Kyoto University, 1996.

Other Publications

1.

Y. Kameyama and M. Hirabaru, “Academic Inter-university Network: JAIN”,
(in Japanese) Operations Research, Vol. 37, No. 12, pp.599-602, 1992.

IPSJ: Information Processing Society, Japan
JSSST: Japan Society for Software Science and Technology
SLACS Workshop: Workshop on Symbolic Logic and Computer Science

	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067

