
Title Reflection Mechanism in Constructive Programming(
Dissertation_全文 )

Author(s) Kameyama, Yukiyoshi

Citation Kyoto University (京都大学)

Issue Date 1996-07-23

URL http://dx.doi.org/10.11501/3117211

Right

Type Thesis or Dissertation

Textversion author

Kyoto University



Reflection Mechanism 
in Constructive Programming 

Yukiyoshi Kameyama 

April, 1996 



Abstract 

This Lhcsis studic•s th<' role of the• reflection mechanic;m in ConstructiYe Program­
mmg. 

('onsfrucfil'( h·ogramming is a method of program developmc·nt based on con­
<;t ruct in· logic in which correct progra.rns are automatically extracted from proofs 
of gi\'('Tl sp<'ciflrations. Recently it has been widely accepted that the reflection 
mechanism i" quit<' useful in Constructi\'e Programming. 

RPT. Rc.fl(tfil'( P1'oof Thcm·y. is a construrli\'e logic proposed by Sator31]. 
Since the reflect ion mechanism is built-in in RPT, it can b(• a s11ita.ble basis for our 
'it udy. In Chapl<'r 2. we first propos<' a formal system of RPT. \\'('then give several 
t h<'orems in the forma I system. which show I he <'Xpressi\'e pow<'r of l he reflect i011 
mechanism of RPT. Finally. we study metamaUl<'matical prop<'fties of the formal 
..;yst<'m. In particular. the strong normalization th<'or<'m and the consistency an' 
pro,·c·d for our formal system without induct i,·e definitions. 

In Chapter 3, W<' describe our Construcli\'C Programming Sysl<'m based on the 
formal system given in Chapter 2. The system is implemented by the programming 
language 1\. which i5 at the same time the object language of RPT. \\'c gi\'c 
an o\·en·iew of our Constructi,·e Programming Syst<'m. As a c;ubstantial example 
of proof dC',·elopnl<'nt using our system. we d<'monstrate a mechaniz<>d proof oft h<' 
Church-Rosser propc•rty of the programming language A. We also present a concrete 
<'xa.rnplc of Construct i"e Prognmnning based on our system, and present a met hod 
to eliminate' redundant parts from a program. 

IH Chapter L we will study yet stronger reflection mechanism .. \lthough t h<' 
reflection mechanism in RPT ic; quite useful. we cannot re-define a modified pro\'­
ability relation internally. The r<·-dcfinition of th<' pro\'ability r<'lation is the k<'y to 
<'liminate rechmd;:wt pa.rts in ext ractcd programs. To solve this probkrn, we propose 
I he mC'chanism of half-monotone inducti\'e deflnit ions. A half-monotone induct i\'<' 
definition is an extension of the conventional monotone inducti\'<' definition 'io that 
\\'<'can define the pro\'ability rei at ion naturally. \\"e gi\'e a theory and a realizability 
interpretation of the half-monoton<' inducti\'e definitions. \\'c also intcrprd s<'\'Ncd 

t hcorics such as J\'fartin- Lof's type theory and the Logical Theory of Construct ions 
w.;ing this mechanism. We also a.pply the mechanism to th<' provability relations 
and show a met hod of program refinement. 

In Chapter .5, \\'<' turn our at tcnlion to programming languages. The program-



ming language A given in Chapter 2 is a purely functional one m the sense that 
there arc no side-effects. It is an interesting research problem to introduce im­
perative features into our language. The programming language A! (pronounced 
"lambda. bang") was proposed by Sato[36J as an extension of A in which the as­
signment and the while statements are introduced. We give some consern1tiveness 
results on A! in Chapter 5. 

In Chapter 6, we give concluding remarks of the thesis. 

Acknowledgements 

I would like to express my heartful thanks to Professor Ma.sahiko Sate of Kyoto Uni­
versity for encoura.gemcnls and continua.! supports . I would like to thank Professor 
Takayasu Ito, Professor Taiichi Yuasa, Professor Ma.koto Ta.tsuta, Professor Peter 
Dybjer, Dr. Carolyn Talcott, Mr. Yasuyuki Tsuka.da, Mr. Atsuhiko Yamanaka for 
helpfu l comments and pointing out errors in earlier drafts. 

Finally, I wish to thank my wife Ka.ori for patience and encouragements during 
the period of writing this thesis. 



Contents 

1 Introduction 1 
1 01 Backgrounds 0 1 
1.2 Goa.] of this research 4 
1.3 Outline of the thesis 05 

2 Formalizing RPT 7 
201 Semaontical Theory RPT 0 I 

202 Forma.) System RPT 10 
202.1 The target of the formalization 10 
20202 Terms and their reduction rules 12 
20203 Judgement and inference rules 105 
2.204 RPT and RPT 22 

203 Se,oera.l Theorems in RPT 22 
20301 S combinator 22 
20302 Set and Russell's paradox 23 
2.303 Usc of reflective tower-1 2.5 
203.4 Use of reflective tower-2 2.5 

2.4 Strong Norma.lizability of RPT 26 
2.'101 Strong Normaliza.bility and \Veak Norma.lizabilit.y ?,.., 

~I 

20402 Strong Norma.lizability of RPT 27 
2.403 Correspondence between Proof-figures and Proof-terms 28 
2.4 04 formalizing RPT 0 29 
2.4 o.s Reducibility and its properties 0 30 
20406 Properties of RPT0 0 37 
2.'107 Properties of RPT 0 and RPT 38 

? -~o::> Conclusion 0 38 

3 Constructive Programming System based on RPT 41 
301 fntroduction 41 
302 Overview of the System 41 

30201 Interaction with the system 43 
30202 Automatic Proof Generation 4°5 

303 Mechani?.ed Proof of the Church-Rosser Theorem 46 



3.3.1 Proof Method ............... . 
3.'1 Program Synthesis ................ . 

3. 1.1 The specification of append and its proof . 
3.1.2 Improvement of extracted programs .... 
3. 1.3 Eliminating Redundancy by Program 'I ransformation 

3 .. 5 Conclusion ........................... . 

47 
48 

49 
.50 
.)0 

.s.s 

4 Half-monotone Inductive Definitions 59 
4.1 Introduction . . . . . .59 

1.2 I'hc basic theory . . . . . . . . . . . 62 
1.3 Inductive Definitions . . . . . . . . . 6 ·1 

4 .3.1 J\1onotonc inductive deflnit ion 6.5 
4 .3.2 Refined order . . . . . . . . . 66 
1.3.3 Ilalf-monotone inductive definition 67 
1.3. I Restricted version of half-monotone inducti,·e definition 68 
4 .3 .. 5 A model of HMID . . . . . . . . . . . . . . . . . . . . 69 
1.3.6 Example of HMID . . . . . . . . . . . . . . . . . . . . 71 

4.4 Reali~a.bility interpretation and its soundness for BT+HMID0 72 
4.4.1 Rca]i:t,ability Interpretation. . . . . . . . . 73 
1. 1.2 Soundness of Realizability Interpretation . 74 
1.1.3 \'erifkation of the HMONO-Q condition 77 

tl .. s Provability Hclations and its Refinement . . 78 
1..5.1 Defining a. Provability Relation . . . 78 
4 .. 5.2 Re-defining the Provability Relation . 80 

4.6 In terpretation of Other Theories . . . . . . . 82 
·1.6.1 The Logical Theory of Constructions 82 
·1.6.2 Interpreting LTC by BT+HMID0 . 84 
4.6.3 Reformulating HMID0 on LTC0 . . 86 
4 .6.4 In terpretation of Martin- Lof's type theory 86 

tl.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . 86 

5 Conservativeness of A! over .Au-calculus 89 
.5.1 In I roduction . . . . . . . . . . . . 89 
.5.2 .Au-calculus with de Bruijn index ... . 
.5.3 A! and plet-calculus ......... . 

.5.3.1 A Function a I Programming Language A! 
5.3.2 1\Iodification to A! ..... ... ... . 
5.3.3 Definition of A! ............. . 

.5. 1 I ranslation of .Au-calculus into the pure-fragment 
.5.4.1 Translation of .Au-calculus into plet-calculus 
5A .2 Translation from plet-calcul us to A! . . . 
-5.1.3 Properties of the translation <l> •••••••. 

.5.3 I ranslation of the pure-fragment into .Au-calculus 

11 

90 
92 
92 
92 
93 
96 
96 
97 
98 

. 103 

.5.6 !\lain Theorem 

.).7 Conclusion . 

6 Conclusion 

lll 

. 1 Q.) 

. 10.5 

111 



Chapter 1 

Introduction 

1.1 Backgrounds 

Constructive Logic a nd Constr uctive Programm ing 
Con.c.;frurlii'C Programming is a method of program development based on con­

struct in' logic in which program <'xtraction from logical specifications and the cor­
r<'cln<";s of programs arc guaranteed[18. 10. 11. 21. 31. 10. 22). 

,\ cons I ructi\'c logic is a logic used for reasoning in const ructi\'e mathcmatics[8. 
7). II is not a single logic: rather. it can be any logic which allows the BHK(Brouwcr­
lleyting-l\olmogoro\·)-interpretation[t7): Thc BliK-interpretalion is that. a formula 
holds if it has a proof. and a proof of each formula is defined depending on the 
outermost logical connecti\'e. For cxamplc, 

(Thc casc V) i\ proof of a disjuncli,·c formula A V 13 is cithcr a proof of 
A or a proof of B. 

(Tbc case 3) A proof of an existentially quantified formu l C~3:r . A(:r) is (a. 
combination of) a term t and a proof of A( f). 

:\san cxamplc. the first -order (or high<·r-ordcr) intuitionic;tic logic is a constructivc 
logic whilc the classical logic cannot be constructive, sine<' th<' law of the excluded 
middle 1 v-.,1 holdc; although we CC'tnnot dccid<' which of J\ and -.A holds in gencrC'tl. 

In a constructi\'e logic, given a proof of V.r.3y. A(:r, y) \\'<'can extract a progrC~m 
.f and at the same time a proof ofV:1· . .A(.r, .f(:r)) from the proof. If we regard :r. y and 
A(.r. y) as the input. the output. and the input-output relation, respectively. then 
the formula V:1·.3y.A(:r.y) meanc; thal. .. for any input :r, there exists an output y 
su< h t hC'tt I he input-output relation is satisfied". lienee. the formula can be regarded 
as spccification. By the fact abo\'e. we ha\'C the proof ofV:r.A(:r. f(.r)) which ensures 
I hat I hc program J satisfies the input-output rei at ion . hence the program f is correct 
with rcspcct to the specification . In other words, we can synthcsizc a VC1'ified program 
from a proof of the specification formula. This is the principle of Constructive 
Programming. 



2 CHAPTER 1. 1.\ '/ HODl CTIOS 

l'here is a not h<·r way of Constructive Programming which i" bascd on type theo­
ries rather than logic<ll systems. f3y the we'll known Curry-Howard isornorphism[24], 
a specification formula and its proof (in a cons! ructive logic) correspond to a type 
and a. term of tJw type (i11 a. type theory). lienee, in a lypc theory wc can do 
Constructivc Programming as well: a specification is written in the form of a 
type ll :r E S.~y c 'J.A(.r,y) where II and ~are the product and the sum type­
constructors. S. /', and A(:r. y) arc type~'>· If we can give a proof p of this type. 
namely we have• p: ll.r E S.~y E T.A( .r. y). then we can extract two terms .f and q 

c;uch that q: l l.r c S'.,1(.r..f(:r)) holds. ll<·nce, we can extract a correct program .f 
with respect tot lw specification. 

In both ways, the pcnadigm of Constructive Programming is to write a proof 
ins( ca.d of a prognnn, and t.hcn synthesir.e a correct program. Both w<tys of Con­
stntclivc Programming have been intensively studied recently: F<.fennan's 70[18), 
I lnyashi 's PX[21 ]. Sa to's SST[33] for untyped logics based on the int uitionislic logic. 
and f\[artin-Lof's type t heory[29]. Coquand and lluet's Calculu<> of Constructions[ll] 
for type theories. 

Since the ann of Con<;t ructive Programming is not only to pursue logical prin­
ciples, but also to applv principles to program de\'(~lopment. wc need to extend or 
modify the ba<>ic systems (logical systems or type theories) so that we can express 
various kinds of data types and algorithms, and that we can reason about these 
stntct ures. Among many theories, Sato's RPT, Reflective Proof Thcory[34] is yet 
another constructive logic which is intended to be a basis for Constructive P rogram­
ming. RPT is based on an untyped first-order logic. but it also has a feature of type 
theories in that it explicitly has a term which represents a proof. '[ hercfore we may 
regard RPT as a mixture of the two ways. It is interesting to <;l udy Constructive 
Programming based on RPT. 

C onstructive P rogramming System 
In Constructive• Progrnmming, a programmer docs not nctually write a. program 

direct ly; instead lw or she writes a. proof of a. specification formula. Th<' proof must 
be correctly const 1'1lelc·d, otherwise. the correctness of the extracted program is not 
guaranteed. 

\\'e therefore n<'cd a mechanical proof-checker for our proofs. A C'onslruclirc P1·o­
gmmming System is a computer software which supports men to develop a proof in 
the paradigm of Cono;t ruct ive Programming. However. a Constructive Programming 
syc;tcm can do rnorC'. it may support for inputting long, complex formulas, proving 
a certain clas<; of theorems automatically, extrncting <t program from a proof. and 
<'X<'cuting the extracted program. 

Correspmtding to constructive logics and type theories, there have been designed 
several Constntctivc Programming Systems; ll ayashi and Nakano's PX system[21]. 
Nuprl system[l 0] in Cornell uni,·ersity. Coq systcm[14] in IN Il iA. and Pollack\ 
LI·~GO system[2~]. 1-.ach system has its own characteristics. One demerit of the­
ses systems is that I hey arc implemented by large-fledged programming languages 
while the object languages for their logics/type-theories are quite simple. There is 

1.1. 13.\C'h'GHOl SDS 3 

a big gap between the implementation languages (metalanguages) and the object 
languages. ltcucc these systems cannot reason about the systems themselves. 

R eflection Mechanism 
The reflect ion principle in logic I. is to rei ale a form\tla a.nd i Is formalized form: 

Prot'ablcJ.(" A"):::> A 

whcrc .. :1" reprcs<'nts a formalized representation (<>uch as encoding by Godel num­
b<"rs) of :1. and the predicate PrOI:ab/c..L(_) is a predicate which internalizes the 
provability of I he logic L. 

This ··principlc" is not really a tl1corem in L since it docs not hold usually. 
Adding t h<' principle to the logic /. results in a stronger logic /, 1• We can consider 
ProNtblc,,

1 
("A"), and we have the r<'flect ion principle again. Adding it to Lt results 

in a 'it ronger s~·stem /,2 , and thic; proc<•ss generates an infinite hierarchy of logical 
SYStem<;. 
. '1 he reOcct ion mechanism is usdul in developing constructive prook For in­

stance. let us consider the following statC'ment (in a usual propositional logic): 

If A is a formula, then A :J A is provnblc. 

This statement is a metaformula: namely, it is outside of the logic. Nevertheless 
we know that it is true, and we want to make usc of I he met at hcorem lo pro,·<~ 
something directly. From the \'iC'wpoint of Constructive Programming, we canuot 
use this mctathcorem to de\·clop proofs. c;ince there is no justification for using this 
metatheorem. llowever. if we havc some facility of refl<'clion, namely. if we can 
internalir.c the metal hrorem above. and we can guaranlC'e the correctness of lh<~ 
internalized met at heorem. then we often ha\'{~ a quick and direct proof. TherC' arc 
m<t.n,v ot hc'r examples of such a met at h<'orem. 

Another example is the principle of Constructive Programming in a first-orciN 
theory: 

From ~ V.r.3y.A(:r. y). 
we havC' 1- V:r.A(:r. f(:r)) for c;ome term f 

wh<>re ~ A nwans that A is provable'. This statement itself is a metathcor<'m since 
we cannot expr<·ss it as a formula in a first-order theory. Wet herrfore have lo prove it 
outside the logic, hence the correct JICSS of the principle itself cannot be mechanically 
checked by a proof-checker for the logic. llowever, if we can internalize and proV<' 
this stal<'ment. then the theorem becomes internal, and wc can mechanically check 
it. In RPT. wc can actually prove a formalized version of the principle above as 
follows: 

1-i+t ( f-i V:r .3y.A(:r.y)) :::> 3j.( h V:r.A(:r . .f(:r))) 



This expression is just a formalized principle if we ignore the indices 1 and i + 1. \\'e 
will explain Lhe meaning of this kind of expressions in the thesis. 

Note that, our approach rcAccts a mode/of the formalized world as in the example 
of Prol'abler.("A") above. In this example, the predicate Prol'oblcL("A") is defined 
so that it can reflect the provability of the formula A. The axioms and inference 
rules arc not reflected, a.nd the provability is solely reflected. On the contrar~-, Allen 
et a.l [6)'s approach reflects a whole syntax of the world at a. lower level in the sensc 
that alllhc axioms and inference rules are fa.ithfully reflected. These two approa.chcs 
arc quite dilfer<'nl. We will take the first approach, since it is more nat ural from the 
logical point of view (the reflection mechanism in logic takes this approach) . and 
moreovcr, wc can construct a. much simpler theory than thc second approach. 

Note also that: the reflection treated in this thesis is derived from logic. and 
docs not have direct connection to the computational reflection which originates 
from Smith's work[39J. \Ve hope that we can find some connection between them in 
fll t ltl'('. 

1.2 Goal of this research 

Om aim is to realize the paradigm of Conslructi,·c Programming. In order to do 
so, we n<'cd to have a suitably designed programming langua.ge as well as a suitably 
formulated constructive Jogic by which we can reason about properties of a program 
in the language. We also have to implement a Constructive Programming System 
which supports proof-development in the logic. Further we have to study how to 
ma.ke an efficient program by Construct ive Programming. since naively extracted 
programs lend to be quite inefficient. 

Firstly, we have to formalize a constructive logic which is expressive enough to 
represent various kinds of data types and algorithms, and at the same time. has 
the reflect ion mechanism. Sa.to's 'RPT is one such logic; it ha.s a. strong mechanism 
of inductive definitions as well a.s a built-in reflection mechanism. In order to use 
RPT as our underlying logic, we have to gi,·e a forma.! system which corresponds 
to 'RPT. 

Secondly, we ha.ve to give a Constructive Programming System for (the formal 
system of) 'RPT. In order for the system lo reason about its properties, the system 
must bc implemented by the object language of RPT. The system also must have 
a good user-interface so that we can a.ctua.J iy work on the system. To demonstrate 
the effectiveness and the usefulness of our system, we have to construct substantia.! 
examples of Constructive Programming. 

Thirdly. we have to give a. way to improve the efficiency of extracted programs. 
So far much research has been done on this topic[32, 23]. Since they propose a. 
uniform way of improving programs in a meta.theory, the correctness is outside of 
1 he system. It is quite valuab le if we can formalize their techniques of improvement, 
a.nd prove the correctness internally, since we can extra.ct the improvement function 

7.3. 0 L 'TLI.\'E OF Tll E 'II-TESTS .) 

from the proof of this (interna.lized) metatheorem. Although 'RPT has the reflection 
mechanism. we CClnnot use it to re-define the provability relation. \1\'e therefore have 
to cxtend the mechanism so that we can define the provability relation internally. 

F'ourthly. we have to study the programming la.ngna.ge again. The programmi11g 
language in 'RPT is a purely functional language A. A is expressive enongh to im­
plement our Constructive Programming System. However, to extend the paradigm 
of Canst rncti\'c Programming to rea.! programming worlds, we will ha ,.e to t rea.t 
irnperati,·e programming languages such as F'ORTRAN and C. Sa.to also proposed a 
new \'Crsion of A. which is a. purely functional language with the assignment a.nd the 
while slatemcnts. We have to a.na.lyze the properties of the new 1\ for Constructive 
Programming. 

1.3 Outline of the thesis 

RPT, Rc.flcclivc Proof Theo17J is a. constr11ctive logic proposed by Sato[34]. Since 
the rcfl<'ction mechanism is built-in, it is a. suitable theory for our study. 

h1 Chapter 2, we first propose a. forma.] system of RPT. As in l'vfa.rtin-Lof's 
type theory, 'RPT was given by Sato[34] a.., a semantlcal theory in orcl<'r to give 
foundation of mathematics. By a. semantical theory, we mean that every concept 
is expressed semantically, a.nd by no means a. formal system. Since the semantical 
theory is cxpressed in a.n intelligible wa.y, it is in most cases easy for mcn to dC't ermin<' 
whet her something is true in 'RPT or not. However, we need a forma.! system of 
'RPT in order to construct a comp11ter implement a.tion. Mor<'over, if we have a. 
forma.! system, then we can compare the system to other systems in a. rigid way. 

\Vc then give several theorems in the formal systcm, which shows t.he cxpressivc 
power of the reflection mechanism of RPT. Finally, we study rneta.ma.th<'mat ical 

properties of the formal system, in particular the strong normalization theorem for 
a subsystem of our formal system. As a corollary, w<' have the consistency of our 
formal system without inductive definitions. 

ln Chapter 3, we describe our Constructive Programming System based on our 
formal system. The system is implement<'d by the programming la.ngua.ge /\, which 
is at the same t ime the object language of our formal system. We give an overview of 
our Constructi,·c P rogramming System. As a substantial example of our system. we 
demonstrate a mechanized proof of the Chmch- Rosser property of our programming 
language 1\. We also present a. concrete example of Constructive Programming based 
on om system, and present a. method to eliminate redundant parts from a. na.ive 
program. 

In Chapter 4, we will study yet stronger reflection mechanism. AlthO\tgh the 
reflection mechanism in R PT is quite usefu l, we cannot re-define a modified prov­
ability relation internally. The re-defin ition of the provability relation is the key to 
eliminate redunda.nt parts of extra.cted progra.rns. To solve th is problem, we propose 
the mechanism of half-monotone inductive definitions. A half-monotone inductive 



6 CHAPTER 1. INTRODUCTION 

definition is an extension of the ordinary monotone inductive definition so that we 
can define the provability relation naturally. We give a theory, a. realizability inter­
pretation, and several applications of this mccha.nism . 

. In Chapter -5, we turn our attention to programming languages. The progra.m­
mmg langua.ge 1\ given in Chapter 2 was a purely functional one in the sense that 
there arc no side-effects. It is an interesting research problem to introduce imper­
ative features into om language. The new version of 1\ (called 1\' in this thesis) is 
an extension of 1\ in '<vhich the assignment and the while statements are introduced 
by Sato[36). We will give some conservativeness results on 1\! in Chapter 5. 

In Chapter 6, we give concluding rema.rks of the thesis. 

Chapter 2 

Formalizing Reflective Proof 
Theory 

Re..fleclivc Proof 1'heo1·y (RPT in short) is a logical system which is aimed at a basis 
for Constructive Programming in! roduced by Sa.to[34). 

As Ma.rlin-Lof's type theory[29), RPT was given as a. sema.ntical theory in order 
to give foundation of mathematics. By a. semantica.l theory, we mean that eYery con­
cept is expressed semantically, and by no means a formal system. The sema.ntical 
theory is explained so that it is easy for men to determine whether a. judgement is 
true in RPT or not. However we need a formal system of RPT in order to imple­
ment a proof-development system such as a. proof-checker and a prover. Moreover, 
if we have a formal system, we can compare the system to other systems in a rigid 
wa.y. 

ln this chapter we first give RPT, a formal system for RPT. ( In the following we 

will write RPT for the formal system, and RPT for the scmantical theory presented 
in [34).) Our formal system is constructed in such a. way that RPT is a model of 
RPT. \?l,fc then give several theorems which clemons! rate the expressive power of 
RPT. 

We also give several mctamathema.tical studies on the system RPT. Among them 
we will prove the strong normalir,a.tion property for a subsystem of RP'T'. by which 
we can deri\'e several important properties on RPT. 

2 .1 Semantical Theory RPT 

In this section, we briefly describe Sato's Re.fiectivc P1·ooj Theory (RPT, in short) 
in [34). 

RPT is a.n extension of Aczel's Frege structures [2) in the direction of Construc­
tive Programming. 

A F'rcgc structure is constructed from an arbitrary model of the A calculus. Let 
i\11 be a domain of the model. By an appropriate encoding, we can assume tha.t 

7 



8 C:fl. \PTf~R 2. FOR:\1;\UZI:VG RPT 

constants i. i\, V. ::), V, and :3 are included in ,V/. These constants correspond to th<" 
logical symbols .1./\, V, ~. V, and 3. 

Then. two subsets P and Q of ;vr (where P 2 Q) arc defined. The int uif i\'C 
m<'a.ning of P is the set of propositions (r<"prcsentcd as ).-terms). and that of Q is 
lh<" set of true propositions (rcpr<'s<"nt<>d as ).-terms). 

• ..l E P. 

• ..l ~ Q. 

• i\ab E P if and only if a E P and bE P. 

• i\ab E Q if and only if a E Q and bE Q. 

• Vab E P if and only if a E P and bE P. 

• Vab E Q if and only if either (i) a E Q and bE P, or (ii) a E P and bE Q. 

• ::)abE P i[ and only if a E P and if o E Q. then bE P. 

• ::)abE Q if and only if either (i) a E Panda~ Q. or (ii) a E P and bE Q. 

• Va E P if and only if abE P for am· term b. 

• Va E Q if and only if abE Q for any term b. 

• 3a E P if and only if abE P for any term b. 

• 3a E Q if a.nd only if abE Q for some term b. 

ff a E P. then a is called a proposition . and if a E Q, a is called a true proposition. 

Hy regarding a unary propositional function as a set, we can extend the Frege­
style set th<'ory (where set-comprehension is allowed) in Frcge structures. ;\czel 
used Frcg<' structures to analy?.e Russell's paradox[2]. 

Sato proposed RPT witlt the following extensions to Fregc structures: 

Extension of the domain 

The t~rms. in RPT arc pure ).-terms enriched with several terms such a.s pairs 
(cons m Ltsp), lf a then b else c fi and so on. Since these new terms can be 
repre~entec~ by pure ).-terms with some encoding, this extension is inessential from 
the newpom.t of the compt~tatio~a.l power. However, it is uscf1tl from the viewpoin t 
of Constructn·e Programmmg, smce terms in RPT are programs. 

2.1. SE.\1. \:VTFC.'\L THEOHY RPT 

Explicit proof 

Freg<" c.;(ructures have two basic judgements ·'a is a. proposition''. and ··a is a. tru<' 
proposition". 

RPT also has two judgements, one of which is exactly the same as the Grst on<". 
Th<" other one is of the form "pis a proof of a. proposition a", wbich is a.n extension 
oft h<" second one in that the proof of a is explicitly shown. This extension is quite 
nat ural if we take the intuilionistic dogma. where a. proposition is true if and only if 
it has a proof. 

Formally, the judgements "a is proposition" and ''pis a proof of a" ar<" repre­
S<"nlcd as Fi a and p f-i a, respectively. Here the suffix i is the level in the renective 
tower explained below. Note that the symbols I= and f- usually mean truth in model 
and provabdity in a jo1'mal system which are completely different in RPT. The 
judgement a h pin RPT corresponds to the judgement a : pin type theories. and 
.. a is a realizer of the formula p" in realizability interpretation for type-free logics. 

Reflective tower 

In a usua.l logical system, ·'if pis a proposition (formula), then p ~pis a. true propo­
sition (formula)" is a. true statement, but we cannot represent itself as a proposition 
(formula). This kind of mctapropositions (schemata) is q11ite lt scful in its expressive­
ness. Ilowcver. if we would naively introduce mcta.propositions. namely, if we would 
simply regard rnetapropositions as propositions, we would fall into Russell's paradox, 
and the whole system would be inconsistent. Jn order to avoid the inconsistency. 
RPT introduces the level for each proposition, and regards a metaproposil ion of 
Jc,·el i as a level i + 1 proposition . Therefore we ha\·e a. family of sets of propositions. 
each of which is indexed by ordinal numbers. Moreover, if i < j . the set indexed by 
i is a subset of the set indexed by j. Hence the family is an increasing sequence of 
sets of propositions. \Ve ca.llthis family a 7'eflcclive town·. By virtue of the rcnective 
tower, we can successfully construct a consistent theory in which metapropositions 
can be expressed . 

The reOective tower has a considerable benefit in Constructive Programming. Let 
us take a.n example of this benefit; For a logical system to be used for Constructive 
Programming, it must satisfy the so-ca lied term existence property as follows: 

Proposition 1 (Term Existence Property) If we can p1'0ve :l:r.A(:r). then we 
can effectively obtain a term t and a ]J1'oof of A(t). D 

In order to prove th is property for a. first-order logic such as Beeson 's 80 N [7], 
one may use techniques such a.s the realizability interpretation, normalization, and 
so on. Al l these techniques need reasoning in a metalevcl (outside of the logical 
system itseJf). On the other ha.nd, we can internally forma.lize the term exislence 
property in RPT. 



10 CHAPTER 2. FORMALIZING nPT 

Proposition 2 In nPT, we can prove the following judgement for some term a (if 
f(b) is always a proposition for any term b): 

a 1-i+t (( h 3l·.f{:r)) :> (3::.1-t f(::))) 

This judgement means tha.t from a. proof of the proposition :b·.f(~r ), we can 

(erTcctively) obtain :: with f(z) being true. 

Inductive definition 

Since recursive data. structures a.re quite important in programming pra.ctice. our 
logical system must have the mechanism of induction definitions (and corresponding 

inchtct ion principles). 
nPT has a general mechanism of inductive definitions. Inductive definition is 

1 reC~.ted in more depth in Chapter 4. 

Salo proposed nPT by extending Prege stmctures with the four extensions 

above. 
RPT resembles Fregc structures in that it is a. sema.nlical theory, and is not 

a. forma.] system. In order to implement a Constructive Programming System, we 
need to formalize nPT. A formalization of nPT is described in the next section. 

2.2 Formal System RPT 

This section presents the system RPT, which is a formalization of nPT. 

2.2.1 The target of the formalization 

The sema.ntical theory nPT was given in [34]. 
By Godel's incompleteness theorem, any forma.hza.tion of nPT is incomplete. 

lienee, our goa.l in formalizing nPT is to formalize a. large part of nPT. 
In the original Yersion of 'R.PT[34], the judgement p 1-i a 1\ b docs not necessarily 

imply that p is a pair (q 1-o pair?(p) = true for some q). However, the intended 
semantica.l theory of 'R.PT was that the proof term of a 1\ b should be a pair. (If 
p 1-i a holds, then we say pis a. pmof ter·m of the proposition a.) Hence, we put new 
conditions on RPT so that proof terms of p 1\ q, p & q, p V q, and 3p must be pairs~ 
a.nd those of p :J q and Vp must be functions. In this paper, we assume tha.t nPT 
sa.t isfics these conditions. 

Compared with RPT, we put the following restrictions to RPT. 

1. Restriction on the level of reflective tower 

In RPT, a level in the reflective tower can be an arbitrary ordinal mtmber. 
There is an example in [34] which uses the level w+l wherew is the first infinite 

2.2. FORMAL S'YS'TEM RPT 11 

ordinal number (corresponding to the set of natural numbers). Moreover, there 
are variables for levels, and they can be quantified by V or 3. For instance, 

t 1-w Vi< w.Va.((f=, a):> a:> a) 

is a true judgement if we p11t t = >..i1·ay::.::. This judgement formalizes ·'for 
each level less than w. if a is a proposition. then a:> a is a. true proposition''. 

From the viewpoint of real Constructive Programming. we do not need such a. 
high Jc,·el (w or a larger ordinal). nor level-variables. We therefore decided to 
restrict the le,·el to be integer constants. In the following. the meta variables 
i,j for le,·els represent integer constC~.nts (represented by some terms in RPT 
through appropriate encoding). 

2. Restriction on Inductive derinition 

In nPT, a. new predicate cCin be inductively defined under the condition of 
"strictly positiveness". This condition is. for every sub-proposition of the 
form II :> B in the body of the inductive definition, the predicate ,·ariable 
(being defined through this definition) does not appear in A. For example. 
X(a) V (6 = 0 :> X(c)) is strictly positi,·e, while X(a) :> b = 0 is not. 

As stated in [34], this condition is semantical, rather than syntactic. Let X 
be a. una.ry predicate variable, a.nd P be (X(:r] :> X(:r]) 1\ X[:r]. Th<"n X[:r] 
appears in the lcfthandside of :>, so P is not strictly positive. Since P is 
logically equivaJent to X(:r], which is strictly positi,·e, so is P semantically. 
Hence, we can define a. new predicate using P in nPT. 

However, this example is quite arliriciaJ and useless, since we can inductively 
define the same predicate using X(:r]. Although there might be ca.ses where 
the scm an tical strictly positiYeness can be useful, we belie,·e that the syntactic 
condition is sufficient for writing specifications for real programs. \1\'e thcr<·forc 

restrict indudiYc definitions for only syntacticly strictly positive cases. This 
reslricl ion a.llows us to remo\'e f=+ and f-+ which were used to express the 
(semantic) strictly positiveness in nPT. 

3. Introduction of propositions in the form a l 
We often need the proposition ((a term a hC~s a value'' through inferences. Since 
the computation in RPT is call-by-need, it is expressed as: 

a= nil V o =true V a= false V pair?(a ) = true V fun?( a)= true 

This proposition is a. disjunction of five atomic propositions, a.nd its proof 
term is a. long one (if it exists). On the other hand, since the proof-term can 
be computed from a (if it exists), we do not need the proof term besides a 
itself. In this sense, the proof term does not carry a.ny computational meaning. 



12 ('/1;\PTEH 2. FOH.\1. \UZ!NG RPT 

Following Bccson{i). we int roduccd a new atomic propo->ition a l which is 
logically equiva.lcnt. to the proposition above, but I he proof term of o lis sonw 
dummy constant. 

2.2.2 Terms and their reduction rules 

l'enns of H.PT arc defined as follows. 

Definition 1 (T erm) 

:r 

n1llnull?(l) 

t r ue I true?( I) 

false I false?(t ) 

{l,l) I car(l) I cdr(i) I pau?(l) 

>..~·.l ll(l) I fun?(t) 

Jil 

if I then l else t fi 

uJhr n .r 1.<:. a mdarariablr for rarwb/cc;. 0 

'l'<'rrns nil, car(l) and cdr(/) arr the same as thos<' in Lisp. \Vc denote pairs. 
>.-abstraction. application as {i.l}. >..:~·./.and 1(1). rcsp<'rlin'ly. 'I he term 111 invokcs 
a rccmsin' call. for cxampl<'. the following term is a program fort he Append function 
in Lisp. 

Jl{-\f.>...!.,\y.if null?(:t·) then y else (car(.r).f(cdr(.r))(y)} fi) 

V\'c say two tcrms ar<' of the sam<' kind if they arc d<'fincd in t hc sarnc row in lh<' 
definition abov<'. and of different kinds otherwise. For instance. nil and null?(/) 
arc oft he c;ame kind. whilc nil and true?(/) arc of diff<'r<'nt kinds. Terms null ?{l). 
t r ue?(/), f alse?( I)~ pair?(t), a.nd fun?(t) arc ca.llcd rccognizcr terms, a.nd arc used 
for recognizing the kinde; of the arguments. 

Bound \·ariablcs. free variables, and substitution arc dcfin<'d as usual. Terms 
which do not hcn·c free variables are called closed terms. The cxprcssion a.r,, ... ,r., [b1, ••• , b11) 

is lh<' r<'su lt of simultan<'OllS substitution of b1, •••• bn for :t' 1 • •••• ~·n in the term a. 
F\"(a) is the s<'l of free variables in a. 

\\'(' a )<;o usc the following abbreviations: 

ab l:l. a( b) 

a( b1 • • ••• bn) 
6 

Cl ( b, ) · · · ( bn) 

(} 6 
= nil 

2.2. FOH.\1.\L S'YS'I E.\1 RPT 

(a) 
l:l. 

(a. nll) = 
(a b) 

l:l. 
(a.(b.nil}} = 

(a b c) l:l. (a. (b. (c.n1l))) 

>.. :ry .a l:l. 
)..~· .>.y ,(I = 

>...ry::.a 
l:l. 

)..~· .>..y .>..:;.a = 
We then define canonical terms and normal terms. 

D efi nit ion 2 (Canonical term) 

c .. - n1l I t rue I false 

(t.t) 1 >..~·.t 

Definition 3 (Norm al term ) 

n .. - :r 

nil I true I fal se 

(n, n) I >..:r .n 

13 

\\'hen a normal (canonical) t<'rm b is obtained by evaluating a. then we say hi-. 
a normal (canonical) form of t lw term a. 

The e,·a lualion mechanism of RPT is essentially call-by-name. For instance. 
when we evaluate pa1r?(a). the argument a is evaluated to a canonical term. and 
not necessarily to a normal term. Hence, the canonical tNms are important in the 

<'va.lualion of RPT. 
\\'e encode the nat ural numbers as follows: 

0 ~nil 

i + 1 ~ (nil. i) 

Propositions a.nd judgements arc also terms \·ia the following encoding. 

(l = b 
6 (1 a b) = 

(I [b) 
6 {2 a b) -

f=, b 
l:l. {3 i b) -

ahb 
6 

(5 iob) = 
a l l:l. {6 a} -

a/\b 
6 (7 () b) = 

a&h 
A (8 (J b) -



14 CIIAP'JER 2. FOHMALI:%/NG RPT 

avb 
6 (9 a b) = 

(I :J b 
6 

(10 a b) = 
\Ia 

6 
{11 a) 

3a 6 
(12 a) = 

'l'h<' expression a[b] represents an atomic proposition with a bring a. user-defined 
predicate. ·r h<' meaning of other expressions will be explained later. Wc abbr<'\·iatc 
V(.>...r.b). 3().:r.b), and a :J false as \lx.b, 3:r.b, and ...,a, rcspectiv<'ly. 

W<' assum<' that /\, &:., v, :J associate to the right; for example. a :J b :J cis an 
abbr<'viation of a :J (b :J c). 

Definition 4 (Evaluation of terms) For two fe1·ms a and b, we dcfinr a - b as 
in lhr lablr bdow. 

Reduct ion Rul<' Condit ion 

#(a)- true #(a) is a recognizer term, 
a is canonical. and #(a) and 
a arc of the same kind 

#(a) -+ false #(a) is a recognizer term, 
a is canonical, and #(a) and 
a arc of different kinds 

car((a.b})- o 
cdr((a,b))-b 
(.>..:r.a)b- ax(b] 

.>..:r.().y.a ):r - .>..y.a :r ~F\I(a) 

pa - a(tw) 
if true then a else b fi - a 
if false then a else b fi-b 

C[b]- C[c] b- c 

In the last rule, C[ J is a cont<'xt in a usual sense. 
'I'h<' binary relation -+is so-called 1-stcp reduction. \\'e d<'finc two relations .~ 

and ~as til(' rcncxive, transiti,·e closme of-, and the least cquivalcnc<' relation 
which subsum<'S -+., r<'spcctively. 

'I h<' evaluation do<'s not always terminate as in the usual untyped ,\-calculus. 
\\'c define n to be (.>..:r.:r:r)(.>..:r.:r:r) as an example of non-terminating terms. 

'l h<' programming language 1\ is thus defined. 'l'he Chmch-Ross<'r Prop<'rly 
(connucncy) of/\ wac; proved in [31]. In S<'ction 3.1. we will formally prove this 
property using om syst<'m. 

'L'h<' eva lua lion in t\ is nondct crminist ic. The ca.ll-by-namC' <'valuation strategy 
is a normalizing strategy. We therefore implement<'d this c;tratcgy on a. computer. 
In the' next Chapter, '''<' uc;c the programming languag<' /\ to implement om C'on­
stmct 1\'<' Programming System. lienee. A is a target language of our reasoning in 
R P' l . and at the same tim<', our implement at ion language. 

2.2. FOJOfA L S'Y.'i'/ EM H P'J 15 

2.2.3 Judgement and inference rules 

1\ s i11 tvlartin-Lof's typ<' theory, W<' hav<' judgem<'nts as components of proofs (proof­
figures) in ltP I. 

Definition 5 (Judgement) Let a and p be IG1'ms, and i br a nafltml numbn· ((n­
torlcd by ll nn . .,). Thrn the following lu•o fonns arf judgcm(n/s of RPT: 

(I f t P 

The first judgement means I hat pis a le\'('1-1 proposition. and the second one m<'an-. 
that a is a proof of a lcvel-i proposition p. For the judgem<'nl a 1-, p, we call o as the 
proof lC'rTll of p. In I he following. W(' us<' metavariablcs o. b.c.p.q.s.l. ···for 1<-rrns. 
i:J for nat ural numb<'rs. J. J, for judg<'mcnts. f. g . . r. y.: for variabl<'s. 

Infcrcnc<' rulec; of HPT ic; writt<'n in the natural deduction style. L hey are clas­
sific'd into th<' following categories. 

1. H ules for lc\·els 

2. Rules for <'quality a11d canonical t<'fms 

3. Hulcs for propositions 

·1. H ulcs for proof terms ( l ruth) 

.). Hulce; for predicat cs 

\\'c will cl<'scribc <'a ell category in del ail. 

Rules for levels 

(/ 1- J Jl ( . . ) 
-- 1>) 
a f-, [I 

a h P F=1 P ( .) 
7>) 

ai-;J> 

!·'rom t h<' first two rules, if sorn<' jndg<'rncnt holds in a certain l<'vel, l hen it always 
holds in a higher kvd. From the last rule. if th<' judg<'mcnt a 1-, p holds. then it 
alr<'adv holds at th<' lrvcl whcr<' p becomes a proposition. In other words. whether 
a pro;osit ion p is truC' or not (has a proof or not) is determined a.t the lowest level 
where p b<'comcs a proposition. 



16 
('// 1\ PTEU 2. 1-0IUJ.\ UZJ:\G 'RPT 

Rules for equality and canonical terms 

0 f- I 
(where o ~b) 

i a= > 

, . 0 f- ( _b) (with tl1e side condition bdow) 
".1 . , ...., a -

(( f-1 b.r[d] c f-1 d = r. 

a f- 1 br[c} 
ar[d] f-, b c f-, d = (: 

O.r[~J f-, b 

af-;b=c 
Of-;a=O 

Fi O.r[d] (' f- 1 d = c 

F1 a.r[c] 

I he• side• COJ1ditio11 oft he second rule is tho! a and b i\re cononical terms of diJTercnt 
km ds. 

The· third and fourth rules (in the third row) arc cnlhlthc equal-right and the 
e·qual kft mfcrcncc rules. 

p f-, (a. b)= (c. d) 
pf- 1 a=c 

p f-1 null ?(a)= true 

pf- 1 a=nil 

p f-1 false?( a)= true 
p f-, a= false 

p f-1 (a. b) =(c. d) 
pf-;b=d 

p f-. true?( a)= true 

p f-i a= true 

pf-, pair?(a) =true 

P f-1 a= (car( a). cdr( a)) 

P~;fun?(a)=true . 
p f-, #(o) =false (with the side condition bclow) 

P f-1 fun 7 (a) =true 

pf-io! 

The• side• condition of the second last ndc 1·s t.!J"t # 
I n ( o) IS a recognizer term not of t I<' form fun?(a). 

2.2. FOH.\1. \L S)"STE.\1 RPT 

pf-, o! 
Of-ip=O 

0 
f-; 

0 
l (where a is canonical) 

pf-i#(a)l . . ) 
f- l (where #(a) IS a rccogmzc·r term 

p i (( 

p f-, car( a) l p f-, cdr( a) l 
p f- i pair?( a) = true p f-, pair?( a) = true 

p f-1 a(b) l 
ph fun?(a) =true 

p f- 1 if a then b else c fi 1 
(a. 0) f-, a= true V a= false 

pf-la,.. 

D(a) ~ 1 a= nil V a= true V o =false V pa1r?(a) =true V fun?( a)= true 

In the last rule. D(a) is defined as follows: 

D(a) t:;,. if null?(a) then (true.O) 

else if true?{ a) then c1 

else if false?{ a) then c2 

else if pair?( a) then c3 

else c,1 

fi fi fi fi 

c1 t:;,. (false. (true, 0)) 

c2 t:;,. (false. (false. (true. 0))) 

c3 t:;,. (false. (false, (false. (true. 0)))) 

C4 (false. (false. (false, (false. 0)))) 

R ules for proposit ions 

17 

l\lost propositions in RPT arc the same as formulas in the usual first-order logic: 
we• have true. false, a L a = b, p1 p, and a f-, p as atomic propositions, and 
1\, ,\:. V. :::>, V and 3 as logical connectives. The diffcrc•nt points arc two points: 



18 CHAPTER 2. FORMALIZING RPT 

• The judgements p; p and a f-; p can again be propositions at the level i + 1. 
In this case pis an arbitrary term, and is not necessarily a proposition. 

• If p is a proposition which does not have a proof-term (that is, p is a false 
proposition), then p::) q and p & q arc propositions even if q is not a proposi­
tion. 

Th0 proposition p & q is conditional conjunction. It has a similar meaning as 
the usual conjunction, but it can be a proposition for more cases than the usual one. 
In order for p 1\ q to be a proposition, p and q must be propositions. On th(' other 
hand, in order for p &.: q to be a proposition, p must be a proposition, and q must 
be a proposition if pis true. A concrete example of & is given in Section 2.1.2. 

p, true 

t=; (t=; p) (i > n 

t=; P t=; q 

t=; P 1\ q 

t=; P t=i q 

t=; P v q 

[:r f-; p] 

p, false 

t=; (p f-; q) (i > j) 

p; p Fi q ( T rt F \1 ( ) ) t=; P ::) q q 

[:r f-; p] 

Fi P p; q ( :r rJ F \1 ( ) ) t=; P & q q 

Fi P & q a f- i p 

t=i q 

p, p(a·) . . 
Fi Vp (a· IS a.n e1gen variable) 

Fi Vp 
t=; p(t) 

p, p( :r) . . 
Fi :lp (a· 1s an e1gen variable) 

t=; :lp 

Fi p(t) 

2.2. FORMAL SYSTE:\1 RPT 

af-;(F;P) ( .. ) 

t= 7 > J 
J p 

Rules for proof terms (truth) 

llere we assume i > j. 

af-;(pJp) ( .. ) 
Of-;a=O ?>J 

0 f-; true 
a 1-; true 
Of-;a=O 

a f-; false 
(( f-, p 

a f-; (a f-; p) 

19 

These rules arc called the true-intro, the true-clim. the false-clim, the prop-intro. 
the level-up, and the level-down inference rules, respectively. 

af-;pVq 

af-;p bf-;q 

(a, b) f-; pi\ q 

af-;pl\q 

car( a) f-, p 

a f-; P Fi q 

(true, a) f-; p V q 

af-;pl\q 

0 f-; pair?( a) = true 

af-;pl\q 

cdr( a) f- i q 

t=. p b f- i q 

(false, b) f-, p V q 

[P :r f-; p] [Q :~· f-; q] . . . . . . 

0 f-; pair?(a) =true 
af-;pVq bf-;r cf-;r ( . . . bl) -...:....:..--=---

0
--,-f-....:.;_r ____ ~ :~·IS an e1gen vana. e 

These rules are called the 1\-intro, the /\-elim-0. the /\-elim-1, the /\-elim-2, the V­
intro-1, the V-intro-2, the V-elim-0. and the V-elim-1 inference rules, respectively. 
In the last rule. we used the following definitions: 

p t::,. 
0 f-; car(a) =true = 

Q 
t::,. 

0 f-; car(a) =false = 

D 
t::,. 

(if car( a) then )..~·.b else >..:r.c fi)(cdr(a)) 



20 C/1. \ P'f'I~H :2. FOU.\1:\ UZISG 'RPT 

F=~ P a I-I q . . . 
\ 1- (.r 1s an c1gcn vanablc) 
, .1· .a 1 p :) q 

0 1-1 fun?(a) =true 

al- 1 p bl-iq 
(a, b) 1-, p&: q 

al-,p&q 
car(a) 1-, p 

al-1 p:)q b l-, p 

a(h) 1-i q 

0 ~, pair?(a) =true 

a 1- I P s .. ~ q 
cdr( a) 1- 1 q 

Thc•sc• rulc•s ;m• called the :)-intro. th<' ::)-elim-0. the :)-<'lirn-1, the &-intro. the 
,\: c·lirn-0, t IH· ,\:-elim-1. and the &.:-elim-2 inference rul<'s. resp<'ct i\·cly. 

a ( .r) 1- i p( .r) . . . 
---..,..--,--,----- (.r 1s an <'Jg<'n \'anabl<•) 

a 1- i \lp 

01-, fun?(a) =true 

(1 1-, 3p 

a 1-1 p( b) 

(b, o) 1-, 3p 

(I 1-, \lp 
(/ (b) 1-1 p( b) 

(( 1-, 3p 
0 1-, pair?(a) = true cdr( o) 1- i p( car( a)) 

l'hc•sc· rulc•c; arc called the V-intro, the V-clim-0. til(' V elim 1. the 3-intro. the 3-clirn-
0. the 3 clim-1 inference rules, respccti,·cly. 
Throughout these rules. eigcn variables must satisfy the usual eigcn variable condi­
tion. For instance, for the V-elim-1 rule. we must have .1· rf. I· V(p)UFV(q)UF\I(r). 
and morc'OH'r, .r must not appear in the right two subproofs except the occmrcnces 
explicit I~· shown in this rule. 

.. I he• rule<: for propositi?~'> dcte~mine what is/is not a proof term of a proposition. 
SnH'<'. we r<'gnrd a propos1tton wh1ch ha-. a proof t<'nn as a true proposition. it can 
be saHI that th<'sc rules determin<' what i'>/i-. not a true proposition. 
. l'hc proof-tcnns arc naturally defined ming the C'mry- Jioward isomorphism. For 
mstanc<'. t h<' proof-term of a conjuncli\'e proposition is the pair of proof-terms of 
<'ach conjunct (if exists). 

2 2. VOH.\1. \L SLS TE.\1 RPT 21 

Rules fot· predicates 

In HP 1'. pr<'dicatcs arc always defined by inducti,·c definitions. 
Lc•t P be >..f.,\.r.F. The term F must be -.trictly positin• with respect to f. 

N<nncly. for C\'cry subtcrm of the form p:) q in F. Jl must not contain f free. 

f=,F 
--'------,- (:r, .f. ll' arc <·igen \'ariable-.) 
F=~ P[a] 

b 1-i Fx.J[a. P] 
b l-1 P[a] 

b ~ 1 P[a] 

IIH'S<'s rul<·s correspond to the fold and unfold operations. 

indp(b) 1-1 V:r.(P[..r]:) p[:r]) 

This rule r<'prescnts th<' induction principle. ll <'f<' tndp is a term which is calculated 
from P. Se<' [31] for the calculation in clc>tail. 

It is sl raighl forward to extend the rules for predirates which have more than on~ 
n rgum<'n t. 

Examples of predicates 

The~t '·pis a unary propositional function" is represcnt<'d as the proposition V:r . f=~ p(.r) 
in I{PT. In order to define a prediratc for this proposition, we need to define PF as 

follows: 

e:. 
PF = >.j.>.p. V.r.f=1 p(:r) 

Sine<' PF docs not refer to fin the body above, this d<'flnition is nol really inductive. 
In this case. the induction principle becomes a trivial rule. 

A not her example is Nat. the predicate for natural numbers. 

Nat~ >.j.>.x. x = 0 V 3y. (.r = suc(y ) 1\ J(y]) 

whc'r<' suc(y) ~ (O,y). \Ve can easily inf<:>r Nat(n] is true for each (encoded) nat mal 
nurnb<'r n defined before. The proof-term of the induct ion principle for Nat is: 



22 

mdNat ~ Ar.p()...f~rq. r(.r)((car(q) . 

if car{ q) then cdr{ q) 

Cll.\PTER 2. FOR.\! \LJZI.\'G RPT 

else (cadr(q).[caddr(q) ..f(cadr(q))(cdddr(q))]] fi)) 

In this ddinition we used abbreviations in Lisp such as cadr. It is easily shown that 
the induction principle for Nat is equivalent to the usual mathematical induction. 

2 .2.4 RPT and RPT 

As"' a ted bc•fore, t h<' target model of our formalization is not really thC' original 'RPT 
in [31]. but 'RPT with a little modification arcording to thC' intended semantics of 
RPT stal<'d at t h<"' beginning of this section. \\'e ha\'e that this formalization is 
sound with rcspC'ct to the modified R PT. 

Theorem 1 (Soundness) RPT (aftcr modificat7:on) is a model of RPT. 0 

C orolla ry 1 (Consistency) UPT zs consistent. 0 

RPT is a model whose domain is the quotient set of the set of termc; modulo 
the cquivalc•nce rela.t ion ~. Since this is a model of RPT, we have the following 
corollary. 

C orollary 2 ~\'c have 0 1-1 a= b is ptovabh in RPT if and only if a~ b holds. 0 

This corollary means t ha.t th<' <'quivalcncc r<'lation = in RPT faith fully rcprescn t s 
the equi,·alence rc'lation ~ in RPT. The relation ~ is defined via the op<"'rational 
sernant ics, and is an intC'nsional one. We will introduce an extensional cqui\'aknce 
rei a I ion to I he set of terms in RPT in Section 3.4. 

2.3 Several Theorems in RPT 

In this section, we extend the thC'ory R PT. and show several theorems which shows 
the expressive power oft hC' reAcd ion mechanism of RPT. 

2.3.1 S combinator 

In a usual propositional calculus. if A. 13 and C are formulas. then the following 
formula is pro,·ablc: 

F ~{A ::> 13 ::>C)::> {A ::>B) ::> A ::> C 

2.3. SE\'ER.\1. TIIEOHE.\IS 1.\ HPT 23 

Ilowc,·er. we ccwnot formali1.c the \Vhole sentence ··jf A. 13 and (' are formulas .... " 
in a usua I logic. since it is a meta theorem. On the contrary, we can formalize and 
pro,·e the mctatheorern in RPT ac; follows: 

.r 1-0 A ::> /3 ::> (' :: 1- 0 A y f-0 A ::> 13 :: 1-o A 
P1 = :r:: 1-o f3 ::> C y:: 1-o 13 

jJ. = 2 
- Fo A ::> 13 ::> C 

:r::(y::) 1-o C 

F=o A P[ 
F=o A ::> B )..::.:r::{y::) 1-o A ::> C 
).. y:: .. r:: ( y::) 1-0 ( A ::> 13) ::> A ::> C 

S 1-o F 

II ere p; is the proof figure P1 where t hre<' open assumptions W<'re discharged by the 

::> introdHction rule, nnd S ~ )..:ry:: .. r::(y::). 

[ u 1- 1 ( Fo A ) ] 

F=oA 

[ w 1- 1 ( l=o C)] 

F=oC 
~ p2 

S 1-0 F 

[t' 1-, (l=o JJ)] 
l=o JJ 

)..A BC.)..uvu•.O h VII .V 13.\/C.T 

where /'is (l=o 1) ::> (Fo /3 ) ::> {l=o C') ::> (.5' 1-o /'). 
The proof Pa is o formolized ,·ersion oft he m<•t athcorem. 

2.3.2 Set and Russell's paradox 

In RPT. we ccm introduce a set as a unary propositional function, and then we ca11 
develop a cons! rue! i ve set theory. 

Let p be a term such that, for any term a, p{a) is a lcw•l-1 proposition. I hen t' 
generates t he levcl-i set {:r I p(:r) is true} by comprehension. 

In HPT. this fact can be inl<'rnally formalized again. L<'l Set, and E, be th<• 

following: 

Set,[p] ~ V.r.{l=i p(:r)) 

a E, p ~ Seti[P] &.: p( a) 



2·1 Cll \ PTEH 2. FOR.\L\L/%1.\G 'RPT 

The proposition Set1 [p) means that p is the levcl-i set: and a E. p mc•ans that p is 
a set and a is a member of p. 

Note that we llSc•d ,\:. rather than 1\ in the· definition of a E. p. If\\'<' would haw• 
defined (t ( 1 p to be Set;[p) 1\ p(o). then a E. pis not n<'cessarily be a proposition. 

As an example of s<'ls1 the s<'l of natural numbers. NatSet ic; defined as follows: 

NatSet ~ .h.Nat(.T) 

\\'<'can prO\'<' that Set0 [NatSet) holds and for any natural number n. 11 Eo NatSet 
holds. 

HHssell's paradox in the nai\'e sd theory is that, if we can define the setH as 

I? ~ {.rl.r rf. :r}, tlwn we have inconsistency. The modern set theory, namely. ZF 
s<'l th<'ory ;n·oids this paradox by excluding I he set comprehension rul<': then we 
cannot dc·flue 1l as a 'WI in ZF set theory. In H P l, on the other hand. we can dcfin<' 
H (IS a s<'l; we• can still a\'oid inconsistency sine<' om sets arc indexed by lc\'<'ls. 

T heo rem 2 
.J!Idgrmrnl.'>. 

where 

0 

Let H be .~\f. •U Eo f). '/he 11 wt: ran prorc the following four 

Aw.a(car(w)) 1-- 1 •(fl Eo R) 

().u.O. ).w.a(car(w))} 1-- 2 R E 1 R 

~ 
a = Au.().t·.cdr(t•)r)(u. (At·.cdr(t·}c)} 

R is ltussell's set WI itt en in the form of a propositional function. The meaning 
of Theorem 2 is that. U is not a "ct at IC'\'el-0, but it is a '>et at Ievel-l or higher. \ \ 'c 
I hereforc cannot subs! it utc R for .fin •{f Eo f). and we cannot go furthc•r. Ilene<', 
we can c\\'oid Russell's paradox. 

R em a r k 1 f'hc term a is a closed proof-lt:1'm in R PT which cannot b( normali::ul. 
In of h ( r words, lh e JJ mofs (proof- I c rms or eq uivalcnt Ly p1·oof-fi gures) in U PT m·f not 
nrccs.sarily nonnali::ablr. This powt u•il/ be di.scus.srd in the nr.rl Chap/(1'. 

2.3. SL\'I·.BAL 'J'Jll·.OHE.\15 1\' RPT 2.3 

2 .3.3 Use of reflective tower -1 

One of the major characteric;tic points of 'RPT is that wc can internally exprc•ss 
rnetatlwon•ms by using the rcnective tower. In this subsection, we give S('\<.'ral 
c:xampl<•s of the usc• of the reflect i \'(' I ower. 

The Disjunction Proper!~ and the '[crrn Exic:tcnce PropC'rty (7) are important 
properties for constructive logical syo:;tcmc;. \s stated in S<'<lion 2.1. thc•s(' propc•rties 
for a first-order logic arc• prO\'C'tl by mctnlheoretic arguments. Por RP 1'. we can prove 
the internally formCilized ,·crsion of t hes<' propc•rt ics. 

In the• following we• Clbbre,·iCitc the proposition 3.r. (.r 1-. p) as 1-. p if .r fj. F'\l(p). 

Theorem 3 The disjunction property "if pV q is ]J1'0t'(tblc., then p or q is pi'Ocab/r .. 
is fonno/i::ul and pmt•ul in UP'!'. Namely, we carl prot•c the following judgcmc.nt 

a f- i+t Vp."i/q. (l=i p) :> (f=i q) ::::> (I-. pV q) ::::> ( 1--i p) V (I-. q) 

for some lfrm a. 

P roof. Define a as 
).pq.ry::.if cadr(.:) then (true, (0. cddr(::)}} 

els e (false,(O,cddr(::)}} fi. 
Then we can pro\'c the theorem easily. 0 

Theorem 4 The tu·m c.rislcnr( Jn·opeTiy .. ,f 3:r.p ts pro!'ablc, then IV( can cffcr­
livcly Jiud a tam I and the proof of pr[t) ,. is fonnali::cd and JH'ovrd in H PT. :\'a me ly, 
IN can JH'OI'f the following jud,qrmrnl 

a 1-,+ 1 Vf.(PF[f) :> ( 1--i 3:r.f(:r)) ::::> (3::. f-i f(::))) 

forsomf t(rm a . 

In the formulation of this theorem. we used the predicate PF[f] to have f( .r) as 
a proposition. 
Proof. Define a a.s ).jpq.(cadr(q):(cddr(q),cddr(q))}. Then we can prov<' the· 
theon·rn easily. 0 

2.3.4 U se of reflective tower-2 

\Ve take another example of th<' usc of the reflective tower. 
The realizability interpretation is a quite useful technique of program extraction 

for a wide range of logical systems such as the first-order intuitionistic logic[7). Ld 
a r P mean the term a is a realizer of the formula. P. Then a r P is semantically 
similar to the judgement a 1--i P in RPT . 

Harrop formulas arc defined CIS below in the first-order logic: 



26 CIJ..1 PTER 2. FORAL\LIZING RPT 

Definition 6 (Harrop formula in the first-order logic) 

II .. - true I false It = I I II A !! 

P :J I I I V.r .// 

whcrr P I'> rm m·b1trary formula. 0 

If /; i<; a llarrop formula, we ha,·e the following well-known result. 

Theorem 5 (I n the first-order logic) Let 11 be a Jlarrop fonnula. and FV( If ) ~ 
{.r} holds. Then wr haN; H :J (l(:r) r 11) fo1· some to·m I. 0 

We• can internally formalize ihis thcor<'rn in RPT. In thC' following, we say pis a 
llarrop propositiona.l function if, for any lNrn a, p(a) is a fl arrop proposition. 

D efinition 7 (H arrop propositional function) 

HPF, 
t:. 

A/.Ap. p = A~t. true 

V p = A:r. false 

V 3y.3.:. (p = ()..:r. y(.r) = .:(.r))) 

V 3q.3r. (p =(.h. q(:r) A r(l·)) 1\ f[q] A /[r]) 

V 3q.3r. (p = ()..:r. q(:r) :J r(.r)) A V:r. (p, q(:r)) A /[r]) 

V 3q. (p = AT. Vy. q( (:r. y)) A f[q]) 

Theorem 6 W£ can prot•e the following for some to·m a. 

a l-i+2 Vp.(HPF,(p) :J V:r.(p,+ 1 p(:r))) 

Theorem 7 W( can Jn·ove the following for some trnn a. 

al-,+2 Vp.(HPF,(p) :J 3f.VT.(p(T) :J (/(:r) 1-,+1 p(:r)))) 

1 lwsc two t h<'orems are pro\'<'d by the in d net ion on t h<' pr<'dicatc HPF,. The 
In It <'r t h<'orcrn is a formalized version of Theorem 5. 

Th<'or<'ms 6 and 7 still hold if we add clauses ..\:r. a(:r).., and AT. a(T) & b(l·) in 
th<' dennition of HPF,. 

2.4 Strong Normalizability of RPT 

In I his S<'Ct ion we study several metarnathematical properties of the forma I sYstem 
HPT and its subsystem RPTo. RPTo is essC'ntially RPT without inductiYe defini-
1 ions, so it can be said as the logical core of RPT. 

2. 1. S'J HO.\'G .\'OR.\1. \LIZ, \BILITY OF HPT 

2.4.1 Strong Normalizability and Weak Normalizability 

.\rnong many properties. the strong normalization (SN) property. e\'<'ry sequence of 
normalir.ation is finite. is one of the most interesting onC'. llcre. "normalization" 
rrl<'cms normalization of proof-terms or that of proof-figures. A normalization step 
of proof-l<'rms is the same notion as reduction of term<;. ,\ normalization step of 
proof-figures in a natural deduction style logic is to eliminate a redundant part in 
proof figure's. For example. 

n <I> 
al-,1\ bl-,13 . 
(a, b} 1-i J\ 1\ 13 1\-lnt.ro 
~~--~--- A-ellm 
car( (a, b} ) 1-, J\ 

This proof-figur<' is normalized to the following proof-figure. 

II 
a 1-, A 

\\it h I his proc<'ss. the one--step r<'duct ion of proof-terms is associated: 

car( (a. b)) ~ a 

Thcrdorc, normalizal ion of proof-figures and thHt of proof-tNms are closely con­
n<·ctcd. In most type theories, these two not ions are idmt ical. In RPT, th<' two 
notions are not identical. \\'e will come' back to this point later. 

The normalization process is not dctcnninist ic; we' ci'ln normalize any redundant 
part in a proof-figure. or a.ny rcdcx in a proof-term. l'hC' SN property is that any 
norrni'lliza.t ion process termina.tcs. On the ol h<'r ha.ncl. the \ V N ( w<'ak normalization) 
property is that, for any proof-figure (or proof-l<'rrn). thcr<' <'Xists a terminating 
nonn<1lizal ion process. Obviously. the SN propNty ~-iubsum<'s I he \VN property. 

'Ill<' SN prop<'rty holds for many logical systems <1nd type th<'orics, and is con­
si<l<-r<'d as one of I he most important proof-t hc•oret ic properti<'s. 

2.4.2 Strong Normalizability of RPT 

As c.;hown in Theorem 2. eYen the W<'ak norrnalizat ion prop<'rty fails for RPT. 
I h<' r<'ason of this failure is similar to that m ~lartin-J.of's type theory: W<' 

c<1n d<'dnc<' anything from the falsity, therefore. assuming j_ (the falsity). we can 
const rud any proof figures which may nol terminate. 

S\'<'nsson obserYed that, if the normalir.alion process is restricted so that the in­
side of ..\-terms (of proof-terms) may not be rcduc<'d, then the SN property holds[41]. 
\\"e will rest riel the reduction in the same mann<'r as 'ih<' did. 



28 C'HAPTEH 2. FOil.\ / \L//./\G RPT 

2.4.3 Correspondence between Proof-figures and Proof­
terms 

In most typC' theories, a proof-figure and a proof term 1-to-1 correspond to each 
ot hC'r. In this case. normalization of proof-figures and that of proof-terms arc Ill<' 
same prorC'ss. 

In t he• case of lt P'L they are related, b111 do not haw· 1-to 1 correspondcliC<' 
for the' reason-; explained below .. \ s we will describe in the following, 1~1<' strong 
nonnalizability for the proof-tcrmc.; docs not hold while \\'e can still proYc the strong 
normlllizahi lily for the proof-figures in a wbsysl<'m of RPT. In order to obtain 
proof-t hcord ir proper! iC's such as comistcncy. it is sufficient to have the strong 
normalizability for the proof-figures. llowever. we will recowr the 1 to 1 con<'­
spondcnc<· of tlw proof tc·rrns and the proof-figures by introducing some auxili<ny 
function S) mbol-; and modifying seYeral inference rules of RPT. By recovering this 
correspondence, the strong normalizability of the proof-t<•rmc; and that of the proof 
figures are e•quivalenl. We will henceforth prove the strong norrnalizabi lity of the 
proof-tNms of It P I only. llowe\·C'r. our proof can be rcadil) applicable tot he strong 
normalizahility of the proof-figm<'s of the original RP [ (witho11t introducing new 
function '>ymbols <md modifying inference rulec;). 

In this subsection.\\'(' shall analyze the three reason-; why the 1-to-1 correspon­
dence WiiS lost in RPT, and show how to recover it. 

Th<' first reason is the existence of lh<' fo llowiug <'((llal lc•fl rule•: 

ar[d]f-,b cf-,d=e 

ax[c] ~ i b 

By I his rule. '''<' can replace a proof-term to an equal term. It follows that . e\'<'Tl 
if o.r[d] is o.;t rongly norma lizing. the resu lt ing proof-term o.r[t] ic; not guaranteed so. 
ll<'ncc. this rule is one source which d<'slroys the correspondence. IlowC'ver. th<' 
application of the cqua.l-left ru le can be postponed as in the following lemma.. 

Lemma 1 Gil'Cn a proof-fi!JU1'C u•hich consists of an application of the eq1wl-lrJt rule 
followul by an applicallon of .some ntlr, then we ran ll'an.sform if to a p1·oof-fi.rJli1Y 
which tonc;ist.s of applications of lhr /a lto· l'ule and the rqual-lc:jlrule. Namely, Wf 
ran cuhangc /h( orrin· of the application of info·rnce I'Ulrs. 

T his lemma is <'asi ly proved by t he case-a nalysis. By this lemma. it ic; mellningfu l 
to consider a system which lacks the equal-left rule. If we can prove SN of c;uch a 
system, then W<' immediately ha,·e \\'N of the sysl<'m with the equal-left ru le. 

The second reason is t hal , the level-up and Je,·cl-down inferenc<'s do not int rodHC<' 
any function symbols c;o that tiH' succe.,si,·e application of the level-up and level­
down inferences is a rede•x in a proof-figur<'. but not a rC'd<'x in a proof-tr.rm. 

a f-J p . . 
af-,(al-

1
p) (t>J) 

2. 4. S'l HO.\G .\OU \I \U/.. \ /Jfl.J'f) OF H P'l 29 

,\ ..,0 ] 11 t ion of 1 his problem is to introduce a function symbol for each infc:rcnn• rule 
and a rorrC'sponding reduct ion rule: 

of-Jp ( ') 
I>J 

up(a) 1-, (a f- p) 

af-,(bf-1 p) ( ' .) 
I>J 

down( o) f- 1 (l 

The corr<'spon ding red \1( t ion rule' is down( up( a)) --+ a. 
'I he 1 hird re•aso11 is that some qua11t ifier rulcc; in I roducc terms in the right hand 

:-.idc of the prO\<~bility -;ign into the lefthand wlc. For instance·. recall that n is the 
term ( ,\.t· .. r.r)(-\.r .. r.r). and conwkr tlw following proof: 

O~on=n 
(n. 0) f-o 3:r .. r = .r 

Since' n does not h a vc a norma I form. WC' do not ha vc I he· weak normalization· 
11 owe'\'e'r. a red ex in t he· term n do not corrcc; pond to a red ex in I h<' proof-figure (I here 
is no reclex in the proof-figure abo,·e), we do not ha\'<' to considC'r lhc normalizHtion 
pron•so.; inside· the term n. \\'e will introduce a new fund ion symbol freeze to make 
such'' IC'rm fn•cze. that is . not reduced in a normalization step. 

If we modify RPT a.s above, the lost 1-to-1 correspondenc<' of proof-terms and 
proof-figure'> j.., rccover<'<L E\·en if we do not have t he• 1-t o-1 correspondence' of the 
two. w<' can JHO\'e the strong normalir.ation theorem of the proof-figur<'S. HoweYer. 
by re•co\·c•ring 1 he correspondence. our proof becomes much simpler than oHwrwisc. 

2.4.4 Formalizing RPTo 

\\'e present H PT0 as a Yariant of RPT. The motivation of I his modification was 

described in the last subsection . 
\\'c first add thr<'e terms into those of RP'J'. 

Defi nit ion 8 (New Term) 

l ::= up( l) I down( l) I freeze( l) 

Definition 9 (Neutral Term) J\ lrrm a 1.<; called nf ttlraltf 1/ is of lhr form car ( b), 
cdr(b). b(c), 01· down( b), and is not no1·mal. 

Not<' that
1 

a neutral t<'rm cannot be norma.! unlike the usual definition. This rnodi­
~cal ion is crucial in om proof of t he' SN properly. 

Defini t ion 10 (New Reduction Rules) Sew rcd11clion 1'1/[u; in llPTo a1·r. th(; 
following two n tles: 

down( up( a)) --+ a 

freeze( a) --+ a 



:30 CJL\PTER 2. FOH.\!ALIZING RPT 

Not<• thal, lhc relations-+,-·, and~ in this Section are those extended by these 
rules. 

Theorem 1 'J'hf nf w calculus <>atisfics the Church-Hossa propC1'fy. 

D efinition 11 (Restricted Reduction) a-++ b if b is obtained by a sutuencc of 
rcdutltons of the tc.rm a whe1·c no redc.r 1n >.x.t no1' freeze(t) 1s 1·educcd. 

Nole that -++ is not Chmch-Rosser, since 

(>.:r.>.y.:r)(car((O,O}))-++ >.y.car((O:O)). 

and 
(..\.r.>.y.:r)(car{(O.O}))-++ (..\:r . ..\y.:r)(O) -H ..\y.O. 

lite infercnr<' rul<'s of HPT0 are those of RPT with the the inductive definitions 
deld<'d, the following rule• added, and the le,·el-up. the le\'rl-down~ th<' '1-elim-1. and 
1 he J-int ro rul<·s modified. 

p 1- t up( a) = up( b) 

pha=b 

I h<' modiflcat io11 of I he fom rules arc as follows: 

ai-Jp ( .. ) 
1 > ] 

up(a) 1-i (al-1 p) 

al-i'lp 
o(freeze(t)) 1-i p{l) 

a 1- 1 p( t) 

(freeze( I), a) 1- i 3p 

Th<· modification for thes<' four rules are mainly introducing the function symbols 
up, down. and freeze. 

l'he "Y"lem I~P'I 0 is RPT0 without the left-equal rule. 
In thc following, we shall prove the strong normalizabi lity for RPT0. and thcn 

obtain som<' proof-theoretic results for RPT0 and RPTO. 

2.4.5 Reducibility and its properties 

This subs<•ction pres<'nts the main theorem of this section, from which we have the 
SN property for RPT0. 

'I he technique is based on Tail-Girard's method of computability predicates [19). 
Ilowrver, we arc· unable to directly apply the technique to RPT0, since we cannot 
usc the induction on the logical complexity of propositions. Instca.d, we will us<' the 
induction on the• met a ness level and the complexity of propositions. 

2.1. S'/ HO:\G :\'0/U!ALIZABIUTY OF RPT 31 

Definition 12 (Reducibility Set) For an i-th ln•cl proposition A, we define a 
rc.duc1b1hty sri Rcdi(A) as a set of closed to·ms. This definition IS by mducf1on on 

the proof of Ft (A) 

• t1 is true. 

Hedi(A) is defined, and is ({fltalto S where Sis the set of closed terms whu·h 

:;tt·ongly normali::l to 0. 

• /\ is false. 

He d1 ( /\) is lhfinrd. and is equal to {}. 

• /\ 18 b =c. 

Hu/i(;\) 1.s definul. and IS equal to S if b ~ c, and IS equal to {} othe1'W/Se. 

• A t8 131\ C, 
He d

1
( /\) is defined if and only if both lhd 1(13) and Rult( C) arc defined. a E 

Ru/
1
(/\) holds if and only if thc1'C e.nst c and d .Sltcfl that a~ (c,d), and 

car(a) E Hu/,(B) and cdr(a) E Rtdi(C). 

• A IS 13 v c. 
Hu/,(/\) is defined if and only if both /lcdi(/3) and Red~( C) m·e defined. 

o E Huli( t1) holds 1j and only if thc1·c e.ri8f c and d .s11ch that a ~ (c, d). 
and either car(a) ~true and cdr(o) E Hc..di(/3). or car{a) ~false and 

cdr(a) E Hcd,(C). 

• A is 13 J C. 
/lu/

1
( 1) is defined if and only if Rcd1( 13) t5 defined, and uthe I' llult(/3) t . ., 

nnpty, 01· Ruli( C) is defined. 

a E Hu/
1
(A) holds if and only 1f lhC1'( r.risf y and d such that a~ >.y.d, a ,.., 

.c;trongly nonnali::ing. and fol' all bE Hc..d,(I3). a(b) E Hcdi(C) holds. 

• A is 13 & ('. 

Hu/,(/\) is defined if and only if Ru/1(8) is defined, and cithc1· Rult(/3) is 
empty. o1· Hcd

1
((') is defined. 

a E Ru/
1
(/\) holds if and only if the1'C c.rist c and d such that a~ (c. d). and 

car(a) E Rcd,(B) and cdr(a) E R.cdt(C) 

e /\ IS 'f/3. 

Hcd
1
(A) is dcfin(d if and only if for every clostd /rrm b, /lcd~(B(b)) is defined. 

a E Hcdi(!\) holds if and only if there c.rist y and d such that a~ ..\y.d, and 
for· el'(I'Y closed to·m b, a(freeze(b)) E Rc.dt(B(b)). 



('//A fJ'I'fH 2. IDH .\1:\L//;/.\'G RPT 

• A i.-. 3/J. 

l?ui,(A) is d£jinul if and only tf for r:1·u·y rlosul /C1'm h. l?ul,( /J(b)) IS defined. 

a E Nul,( A) holr/.-. 1] and only tf IIH n. f .. ri.-;1 c and d ,..,ur.h I hal a :::::: (c. d). and 
cdr(a) E l?ul (13(car(a))). 

• ·l ;_, I=) JJ. 

l?ui,(A) 1.<. drjinul if and only if J < i. 
Uui,(A) is rqual to S' 1/ Ru/1 (13) ,.., dcfinul, and{} olhrncisr. 

• \ I<; h ~ .I IJ. 

Nu/ 1 ( A) i.<; defined 1f and only if j < i. 
'' C /iu/,(1\) holds if and only if Hu/1 ( 13) is drfinul, down(a) E 1?(;.(1)13). and 
flu,., r.ri.<;(s a lr 1'111 c such that b:::::: c, and c E: /?u/1 ( /J). 

• if A:::::: IJ and Hui1(B) has brrn dcfinrd. thrrt Hu/1(/\) i.'i rqual to Rcd1(B). 

1'111., ji 11 ,.,fl ul t hr. de fin il10n of lluli( A). 

This i11ducti\'C' definition i.,; wcll-ddln<'d. sine<' lh<' set of t<'fms A for which Hcd
1
(A) 

Ita" h<'<'ll defined is monotone at each level i. 
\\ <' lh<•tt d<·fine the CR properties as in the standard rrwt hod. 

Defi nition 13 (The CR properties) (CH 1) if ft E Uu/1(A) then a is strongly 
no 1·m a It~ 111 q. 

(CU.J) t/ a E Ucdl(A), and a -H 1 a', /h(n a' E: Hu/1(A). 
(CIU) tf a ts nrutral. closr;d, and for nrry a' surh that a -~-+ 1 a'. a' E /hd

1
(/\), 

thrn (/ C Uui,(A). 

ll<'r<', a Ht a' is the one-step reduction for -H. We rd<'r t hes<• properties as (CR). 

Lemma 2 For each natumlmtmbe1·i and a proposition A, the sci Rcd1(A) satisfies 
//u (' f? JH'O ])( l'f i C.<;. 

Proof. 
'lit<• l<•rnma is pro,·cd by the double induction: namely. tit<: induction on the level, 

Clllcl llu· indllct ion on the definition of the set n( d,( !\ ). 
\\'<'assume that the lemma has bC<'n proved for <'ach Jc,·d j < i. 
In t lw following. we do not men lion the "w<'ll-typcd" requirements in the defini­

tion of Uul,. I· or_ example. a E Red,( B 1\ C) must be in t h<' form of (c. d) for som<' 
c CIJI(l d. In provmg (CR2) and (CR3). it is automatically guaranteed bv virtue of 
the modified definition of neutrality. ~ 

• A is true, 

') rivial. 

2.1 c., 1 HO.\'G .\'OR.\1. \LIZ. \B/U'IY OF HPT :n 

• A j.;; false. 

Tltt'rc• is no a E Red1 (A). so CR tri,·ially holds. 

• A i"' h = c.. 

If h:::::: c. t h<'n a E Rcd,(A) means a ic.; strongly normalizing to 0. so CR holds. 

Otherwise. /?u/1(11) i.:; empt~·. so CH holds. 

• 1t" 131\C, 

l. Suppos<' o E Hcdt(/31\C). \\'<' ha\'<' car( a) E l?u/,(/3), and by the induction 
hypoth<'sis. car(a) is strongly normali;..:ing. so is a. 

2. Suppos<' a E Red,(B 1\ C), and o ·~-+ 1 a'. Siuce car(a) E Red1(B) and 
car(a) -H 1 car(a'). car(a') E Ru/,(13). Similarly. cdr{a') E Rcd,(C). and 
then a' E Uu/i( 13 1\ C). 

:J. Suppo<:>c a is neutral. and f01 <'V<'f)' a' such that a-H 1 a'. a' E Rc.d1(8 1\ C). 
Since a i<> neutral. every 1-step-reduct of car(o) is of the form car(a') where 
o H 1 o'. Since car( a') E Ru/,{ 13), we hav<' car( a) E Uul,( 13) by the induction 
hypot hcsis. Similarly we han' cdr( b) E Hu/,( C) and I hen a E Red,( B 1\ C). 

• A is /3VC. 

1. Suppos<'a E Rc.d,{BVC). \\'cha\'<'cdr(o) ( Hu/1(/l).orcdr(a) E Ru11(C). 
13y the induct ion hypothesis, cdr( a) is strongly normalizing in either case. so 
IS (I. 

2. Suppose a E Ru/1(8 V C). and a ++ 1 a'. Assume car(a) :::::: true. Sine<' 
cdr(a) C Ruli(B) and cdr(a) -H 1 cdr{a'), we have cdr(a') E Rcdi(H). \\'e 
also ha\'<' car( a'):::::: true, so we have a' C /lu/,(13 V C). Similarly for the cas<' 
of car( a) :::::: true. 

:3. Suppose a is neutral. and for every a' such that a -H 1 a', a' E Rcdi( 13 V C). 
Fix such an a'. Then, either car{ a') :::::: true a.nd cdr( a') E Rt.d1 ( 13). or 
car(a') :::::: false and cdr(a') E Hu/,((). t\ssmnc the former is the ca<>c. 
Sine<' a is n{'utral. every 1-<>tcp-rcduct of cdr(a) is of the form cdr(a') where 
o ~-+ 1 a'. Since cdr(a') E Rcd,(/3). we hav<' cdr{a) E /led,( B) by the induction 
hypothesis. \\'c also have car{a):::::: true. so a E l?c:d1{13 V C). 

Similarly for the latter case. 

• A is B :::>C. 

1. Trivial. 

2. Suppose a E Red,(B :::>C). and a -H1 a'. For every bE Rcd,(B). a(b) E 
Hui1(C) holds. By the induction hypothesis, a'(b) E Rc.d,(C) holds for all 
such b. Also a' is clearly strongly normali:;,ing, so a' C Rcd,(/3 :::>C). 



34 CHAPTER 2. FORAtfALIZING RPT 

3. Suppose a is neutral, and for every a' such that a -H1 a', we have a' E 
Rcd,(13 :J C). Fix such an a'. Since a' is strongly normalizing, so is a. 
For every b E Red,(B), we have a'(b) E Red,(C). Since a is neutral a(b) 
reduces to a. term of the form a'( b) or a(b') where b -H 1 b'. By the induction 
hypothesis. b is strongly normalizing, so we e\'t'nlHa.lly get a'(IJ') E Rcdi(C) 
by the induction on the length of the normalizing sequence of b. Finally, we 
hav<' a E Rcdi( B :J C). 

• A is !3 & C, 

Similar to the case of 1\. 

• A is \:113. 

1. Suppose a E Red,(\:IB). Then, we have a(freeze(O)) E Red,(B(O)), hence 
a(freeze(O)) is strongly normalizing, so is a. 

2. Su ppos<' a E Redi('V 13 ), and a-H 1 a'. Since a( freeze( b)) -H 1 a'( freeze( b)). 
a'(freeze(b)) E Red,(B(b)) for every closed term b. So a' E RedtCVB). 

3. Suppose a is neutral, and for ev<'ry a' such tha.t a -H 1 a', we ha\'<' a' E 
Rcd,(\:IB). So, a'(freeze(b)) E Redi( B(b)) for any closed term b. Since a is 
neHtral, a(freeze(b)) reduces to the form a'(freeze(b)), so a(freeze(b)) E 
flcd;(B(b)). Hence, we have a E Redi(\:18). 

• A is 38, 

1. Suppose a E Redi(313). We ha.ve cdr(a) E Redi(B(car(a))), and by the 
induct ion hypot hcsis, cdr( a) is strongly normalizing, so is a. 

2. St~ppose a E Redi(3B), <tnd a -H 1 a'. Since cdr( a) -H1 cdr(a'), cdr(a') E 
Rcdi(/3(car(a))). Sowehavccdr(a') E Redi(B(car(a'))), hencea' E Redi(3B). 

3. Suppose a is neutral, and for every a' such that a -H1 a', we ha \'C a' E 
Hcdi(3B). Since a is neutral, every 1-step-rcduct of cdr(a ) is of the form 
cdr(a') where a -H 1 a'. Since cdr(a') E Red,(B(car(a'))) , we have cdr(a) E 
Rcdi(B(car(a))). Then we have a E Redi(3B). 

• A is I=; B, 

Similarly lo the case of a = b. 

• A is b 1-J 13, 

1. Suppose a E Redi(b 1-; B). Then, down(a) E Redj(B), so by the induction 
hypothesis, a is strongly normalizing. 

2. Suppose a E Rc.di(b 1-J B), and a -H1 a'. Then down( a) E Red (B), and bv 
the induction hypothesis, down(a') E Red1 (B). Hence, a' E RedJb 1-

1 
!3). ~ 

3. Suppose a is neutral, and for every a' such that a -HL a', a' E Redi(b 1-j B). 
Then, down(a') E Red3 (B). Since a is neutral, every 1-step-reduct of down(a) 

2..1. STHONG NOH.HALIZABILITY OF RPT 35 

is of lhc form down(a'), a.nd by the induction hypothesis. down(a) E Red1 (B). 
Hence. we ha.ve a E Red,(b 1-1 B). 

• if A ~ B and Red;( B) 

Since we have the Church-Rosser Theorem for~, this case is trivial. 

This compl<>tes the proof. 0 

\\'c defin<' Trans(J) for a judgement .] as follows: 

• Trans(l=i a) is ··Rcdi(a) is defined", and 

• Trons(a 1-, b) is '~Redi(b) is defined and a E Redi(b)". 

The following theorem is the main theorem of this chapter. 

Theorem 2 If we have a p1·oof of the judgement J with assumptions 11• • • ·, ln w 
HP10. then, wc have that Trans(J10), · · ·, TTans(lnO) imply 1'rans(JO) whe1·e 0 is 
any g1'01md substitution. 

In this theorem, a. ground substitution is a substitution where substituted terms arc 
closed terms only. 

Proof. 
This theorem is proved by the induction on tbc lcngt h of the proof. 
For a strongly norma.lizing term a, we will usc the notation len(a) which repre­

sents the ma.ximum of length of reduction sequences starling from a. 
The induction proceeds by the case analysis of lh<' last inference rule. In the fol ­

lowing, we omit the trivial cases and list non-trivia.! cases only. In general, inference 
rules for levels. equality a.nd canonical terms, a.nd propositions arc easily handle~. 
since they do not contain proof-terms. Moreover, most <'limina.tion inference rules 
(such a.s the /\-elim-1 rule) arc straightforward, since the definition of Redi(A) is in 
the form of the climina.t ion style. 

Case (prop-intro). 
Since Rcd1 (p) is defined, and 0 E S, we have the conclusion. 
Case (level-up). 
By the reduction down(up(a )) ~a, we have the conclusion. 
Case ( l<'vcl-down ). 
This nde is essentially a.n elimination rule, so it is straightforward. 
Case (1\-intro). 
Suppose a E Redi(p), and bE Redi(q) for closed terms a,b,p.q a.nd an ordinal 

number i which is less than o. 
Consider the term car( (a, b)). a and bare strongly normalizing. By the induction 

on len( a)+ len( b), we ha\·e (a, b) E Redi(P 1\ q). 



:36 CJJAP'fEH 2. FOH:\l!\LJ:I.J:VG RPT 

(Basis) a and b arc normal. Then the only 1-step reduction of car((a.b)) is a, 
which is in Rcd,(p). 

(Step) car((a. b)) 1-step red11ces to car((a'. b)). car((a. b')). or a. As for the ~rst 
two cases, since a' E Red,(p) and b' E Red,(q) hold. we have I he conciHsion using 
the induction hypothesis. As for the third case. we have a E Rcdi(p). Thcr<.'fore, in 
any case. the results of 1-step rcd11ction arc all in Rcd,(p). so is car( (a, b)). 

Similarly, we can prove cdr((a.b)) E Redi(q). and hence. (o.b) E Redi(p/\ q). 
Ca<>e (V-intro-1 ). 
S11pposc o E Hul,(p) and Rcd,(q) is defined. Then. we ha.\'(' Red1(pVq) is de~ned. 
ThC' term cdr((true,a)) 1-slcp reduces to cdr((true,a')) or a. For the ~rst 

case, we ccn1 use induction hypothC'sic; to pron' cdr((true.a')) E Rcdi(P) since a is 
strongly normalizing. Fort he latter case, WC' already have a E Rc.di(p). lienee we 
hcH'<' cdr((true,a)) E Red,(p) and get the conclusion. 

Case (V-i11t ro-2). 
Similarly to the Case V-intro-1. 
Case (V-elim). 

Suppose aO E Red,(pO V qO). Suppose further. if 0 E R.edi(car(a¢) = true) 
and :roE Hcd,(p¢), then b¢> E Red,(r¢). and if 0 E Rc.di(car(au•) =false) and 
. rt;' C Rcdi(qt,•), then c?j.• E lledi(n:.•) for any ground¢ and '!/.•. 

From the first assumption . we have either car(aO) ~ true and cdr(aO) E 
Rcd,(pO). or car(aO) ~ false and cdr(aO) E Redi(qO). Suppose we havC' the 
first case. llsing the second assumption with ¢> being 0 with :~· := cdr(aO), we get 
b.r[cdr(a)JO E Rcd,(rO) with any ground 0. 

We wi ll pro,·e (i.f car(a) then >.:~·.b else >.:~·.c)(cdr(a))O' E Rcdi(rO') for anv 
ground 0' by the indnction on /en(car(a)O') + len(cdr(a)O'). " 

(Ba<>c) car(a)O' mnst be true, so the whole term is reduced to (>.:~·.6)(cdr(a)) 17 • 
and lhC'n b.t'[cdr(a)]O'. Then, by the fact above, this is in Redi(rO'). 

(Step) The whole term can be reduced at rcdexes car(a)O', the if term, or 
cdr(a)O'. In the first and the third cases. we can usc the induction hypothesis. [r1 

the second case, the term becomes ( .. h.b)(cdr(a))O'. We can prove this term is in 
RGdi(ru) by the induction on len(cdr(a)17 ). 

Similarly for the other case. 
This ftnishcs the Case V-elim. 
Ca.sc (:>-intro). 

Suppose Redi(P) is defined, and for. any ground substitution 0, if :rOE Redi(pO), 
~~en aO E Rcdr(qO). Under. the restnctcd reduction, we have (>.:r.a)O is norma.l. 
I hen, a.ll w~ have to pro\'~ 1s t~a.t, for any bE Red,(pO), we have ((>.x .a)O)(b) E 
J(cdi(qO). \\ e ca.n pro,·c th1s by mduction of lc.n(aO) + /en(b). 

Case (&-in tro ). 
Similar to the case of/\. 
Case (V-intro). 
Suppose aO E Redi(pO) for any ground 0. 

2.1. ·"'THOSG SOH.\L\Ll/..\BTU1T OF RPT 37 

We will show (.A.r.a)(freeze(b))<? E Rcd,(( .. h.p)bO) for any ground¢. 'Lhc key 
case is ax[freeze(b)]<t>. By taking 0 as q> with:~·:= freeze(b), we have lh(' result. 

Case (:3-intro). Suppose aO E Rtdi(P.r[iJO) for any ground 0. 
\\'c will show cdr((freeze(t).a))o E Rcd,((>.:~·.p)car((freeze(l).a))o) for any 

ground o by the induction on lc.n(a). Note that Rcdi((>.:r.p)car((freeze(t).a))o) 
ic; equal to Rcdi(p.t[t])¢. 

The t('nn cdr( (freeze( l ), a) )6 can be reel need to either aq> or cdr( (freeze( l ), a') )o 
where ao -H1 o' o. ln the first case. we have the result by setting 0 in the a<>sump-
1 iou be o. In t h(' second case, we also have the conclusion by nsing the induction 
hypothesis. 

This finishes the proof. 0 

2 .4 .6 Properties of RPT0 
Theorem 3 If a f-, b is proved in RPTQ witho1li assumptions, a is sf1·ongly nor­
malizing in the sense of -H, 07' equivalently, a pmof figure of a f-i b is strongly 
normah:::ing. 

Pro of . 
From the last theorem, we have aO E Rcdi( bO) for any ground substitution 0. 

lienee aO is strongly normalizing (in the sense of-H) for any such 0. It follows tha.t 
a is strongly norma.li:ting. 0 

Theorem 4 RPT(j is consistent. 

P roof. 
By the theorem above, if we had a. proof of a f- 1 false, then Red,(false) would 

have a.n clement, but it contradicts to the definition of Red,(false). 

C or olla ry 3 (Su bformula p roper ty) if a 1-i b is proved in RPT0 without as­
sumptions, all the propositions in. its proof figw·e a1Y; sub-propositions of b. 

Our de~nition of Redi contains "well-typed" statements so that we have the 
follow ing resu lt. 

T heorem 5 The ptoof terms a1·e ''well-typed" in the following sense; 
1. if a 1- i b 1\ c, a f- i b & c, or a f- i :36 is proved in RP10 witho1tf assttmptions, 

then a is a pair, namely, is equal to a fe1'm of the fo1·m (b, c). 
2. if a f-, bv c, then a is a ]Jai1·, and its car-part is eq1tal to either t rue or false. 
3. if a f-i b :> c, or a f- i V:r.b is proved in RP10 withottl ass1tmptions, then a is 

a function, namely, is eq1tal to a le1·m of the form >.y .c. 

C orolla ry 4 (Disjunction Property ) If a f-, b V c is p1·ovcd in RPTQ without 
assumptions, then we have eithe1' cdr( a) f- i b 01· cdr( a) f-, c in R P1Q. 



38 CIIA PTER 2. FOJOIA U%1.\"G RPT 

Proof. 

F'rom 1 he main 1 hcorem. we have a ( Red,( h V c). T3y lh<' definition of Red., a 
i'> reduced to t IH' form of (d, c). and that d "'true, or d"' false. Since dis also 
strongly normalizing. we can reduced as far as possible. and will gd true or false. 
In the first case, W<' can make a proof of (~,b. and in the second case, c. 1-, c. 

2.4. 7 P roperties o f RPT0 and R P T 

By L<•mma 1. a JHoof in RPT0 can be: c•quivalcntly transformed into a proof which 
contains the' <'quai-IC'ft rule at the last inf<'r<'nce only. li enee. we have! th<' following 
I h<'Orems. 

Theorem 6 'f'llf proof lrnns in R P '/0 is weakly no7'ma/i:;ing. 

Theorem 7 U P'/0 is con<>isff.nf. The subfomwla proptrfy and /}1( disjunrlion prop­
rl'ly hold fo1 UV/0. 

As we• sl<ll<'d be.fot<', RPT0 is not exact!~· e•quivalent to RP 'l without inductive 
de'finition. But the structure of proof llgmes of H.PT is the same as that of RPT0 , 

and we can prove the SN theorem for 1 h<• proof-figure of RPT without inductive 
definitions and the <'qual-left rules in the same manner as R PT0. 

Theo rem 8 R P'f' ll'lthoul /he inductn:c dcjimlwn is consistent. The subformu/a 
properly and lhr rh::;junclion properly hold for RPT without the mducllrr; dr;finition. 

R emark 2 In 01'(1( 1' to obtain Jn·oof-lhcorctic 7'Cstdts abottf the full R PT, namely, 
HPT wtlh arbil1·a1·y inductive definitions, we have to c.rtwd our 7Ysults to include 
inductiN rhfinitwn.<>. It is Oll7' ftt/l/1'( wo1·A·. 

2.5 Conclusion 

In thi., chapter. we ha\'e presented RP I, a formal sy'>tem of Sato'-, 'RPT. By putting 
three reasonable conditions, RPT docs correspond to RPT. 

' I her<' ha,·c h('<'TI studied other constmctivc logics: Martin-Lof's type theory 
/TTn [29]. !·Herman's l'o [18), Ha.yashi and Nakano's PX [21], Sa.lo 1s SST[3.5], and 
Coquand and ll n<'l 's Calculus of Construd ions (CoC)[ll]. fTTn and CoC have type 
lhcori<'s whik To, f>X. and SST arc untyped theories. Since RPT is based on un­
typ<'d A-C'alculus, W(' ('an dcfinc arbitrary partial rccmsi\'e functions in RPT. rv1orf'­
O\'Cf. RP'l giv<'" an interpretation of logical connecti\'es under the Currv- Howard 
isomorphi.,m. so it has a feature of lypc theories. Therefore, wa may say~ RPT has 
features of both type and untyped t hcorics. 

2.5. CO\('/ C S/0 \' 39 

The reOcction nwchanism of HP l' is quite useful as was demonstrated by many 
examples in I hi'i Chapter. In parlicular. we formalized and proved many metal hc­
orems such as Term l·,xistence Property and Disjunction PropC'Tiy. We al-,o formal 
ized a met at heor<'m about Harrop formulas in the first-order logic, \vhich is useful 

in program r<'flne'mcnt techniques. 
\\'('also studied proof-theoretic propertie'i of RP1 without inductive d<>finitions. 

To do so '''<' pre'S<'nled a formal sy"tcrn RP1 0 and RP 1 0. E\'ery proof-figmc of 
RPT 0 i" transformed into a proof-figure of RP L0 and an application of the equal­
left rule. Tlw calculus of RPT0 i'i so de~'iign<'d that the rcdexe~o; in the proof term 

one-to-one cone's pond to the rcdexes in the proof-figure. 
\\'e clcfln<'d a modified "reducibility candidate" property. and proved Rul,(p) 

satisfies it. From this theorem, we got SC'\'C'fal fundamental proof theoretic properties 
for RPT0 . includi11g the strong nonnali;,alion properly in a rcslrictcd calculus. the 
consist<'ncy. <tnd I he subformula properly. \\'e pro\·ed the similar properties for 

RP'I 0 . too. The same technique can !)('applied to RPT its<'lf. hence these rc->ulls 
indicale that om formalization is a reasonable one. \\'e haw' uot pro\'<'d proof­
theoretic prop<'rt ics for the full ItP'I' system (with induct ivc d<'flnitions). It is our 

future work. 



('1/;\JJ'f'EU 2. FOH.\TALIZI.\'G RPT 

Chapter 3 

Constructive Programming 
System based on RPT 

3. 1 Introduction 

In this chapter, we describe our Constructi,·e Programming System for the formal 
system ltP 'I . 

,\ Construct ivc Programming System is a comput<'f soft ware which provides 
supports for men to dcYelop a program (proof) in th<• paradigm of ConstructiYc 
Programming. l h<'rc are two rea'5om why we need a Constructive Programming 
System. 

l'hc first one is to ensure the corrcctn<'ss. In order to do Constructive Program­
ming. W<' n<'<'d to give a correct proof of a spccificat ion formula. If the proof contains 
<'rrors, then th<' correctness of the ext ractcd program is not guara ntced. Therefore 
we nr<•d n mechanical proof-checker which checks radt inferrnce step. 

The second one is that a proof of n. renlist ic spccificntion tends to be quite large. 
t\lon•ov<'r it often contains many similar pnrts. Therefore it would be quite helpful 
for a computer software to provide some sllpports to men in dc,·eloping a large proof. 

\\'e h;we designed and implemcnl<'d a Cons! rllclive Programming System which 
supports proof-de,·clopmcnt in RPT. Our system also contains a certain Je,·el of 
automatic proof generation. 

\\'<·will describe an O\'en·iew of the Constructive Programming System. Wc also 
gi,·e a proof of Church-Rosser theorem for thr term<; in RP 'I. and finally gi,·e an 
example of Con'5tructi,·e Programming. 

3 .2 Overview of the System 

I he t a rgrt logical system of our implement at ion is RP' I . It follows that our tar­
g<'l (object) programming language is A. We also chosr A as the implementation 
langllagc of our system, so the two languages arc identical in our case. 

41 



42 CJI.\PTER 3. CO.\STR l"C'J'JVE PROGH:\.\1.\1 1.\G Sl "S'I'E;\1 

Sinn• Edinburgh LCF[20) was implcment<'d on top of i\[L. almost all the proof 
dcv<•loprrumt syslems have been implemented by much stronger (much more expres­
-;ivc) programming languages than the obj<'ct language which the <;ystem can reason 
a houl. In Ill<' ca~e of LC F: .l\ IL is much st rongcr I ha 11 t h<' object Ia nguage PPlambda. 
If W<' would want to pro,·e some proper! ies of nw system itsc·lf. we would need to 
d<·sign <Ill c\'<'n st rongcr logical system. Even worse. t hi" process docs not terminate. 

On the other ham!. the object and implementation languages of our sy<;tem arc 
idt •rll rca I. W<• can I hen•forc express proper! ies of om sysl<!m i tsc·l f inside H P'l . and 
then prov<' them using our system. 

Om irnplc•IJwlltation language is slightly <'xl<'ndcd from the original /\: we in­
troduced tlw patl<'rn-malching mechanism, assignment statements. and the error­
handling lll<'< hani'im. llowcver the pattern-matching mechanism is just a 'iyntax­
sug<H. <llld Celli b<' nlways eliminated from the program. I he main role• of the assign­
TII<'III st alt'mcut i-; to keep the history of alr<'ady provC'd results1 t hcrcfore dcreferenc<· 
of a \'aria hie· (to which thf' vahf(' of a past proof was assigned) cnn be eliminated b.) 
tlw snhst it ut iou of the \'ariablc by the past proof. Finally. the error-handling mech­
anism is not im·ok<•d if the proof-checker succec•ds (namely om proof jc; correctly 
forrnulat<•d). lienee, if we succes-;fully pro,·e some• theorem using our syc;tcm. then it 
CCIII be• regardc·d CIS an output of a system which i'i implemented by a pure language 
of A. 

Each l<'rrn iu the object language must have a repres<•ntation in the implemen­
tation language. In our case every term in A mmt have a representation in A itself. 
Til<' r<'Pr<'se•rdat ion must be a normal term, so the representation function cannot 
I><' the ide•nt ify. We usc the quote mechanism for the representation function. The 
(111eta)function quote one-lo-onc-maps c,·ery term in A to pair-terms. The pa.ir­
l<:rrns ar<' t <'l'ms constructed by n1l and (_, _) only. Unlike the quote mechanism in 
Li!ip, t h<' r<'sttll of the computation of quote( a) in 1\ is quote( a) itself. 

For irnprovi11g the readability. our system uses the Ja.panesc characler-sct for 
di~playing logical connectives. However, we cannot input those characters without a 
.Japan<'se input mc•thod. Hence, the input by a 11se•r and the output from the system 
differ. \\<• list this difference in Table :3.1. 

.\:-; "l10wn in tiH' table abo,·c. if we input the j11dgcment s f, /, then the proof­
IC'rm . ., is nol di-;playC'd. hence the output of our S\'Stcm looks like ordinan· first­
order logic. This is useful since we usually do not ~arc the structure of the- proof­
te•rm of I h<' current theorem. In particular. we do not want to explicitlv name 
'"' assumption variable when we assum<' som<' proposJtioll. Instead, the-svstem 
g<'ll<'r<\tcs an appropriate name for the assumption, and itc; name is not sho~ .. ·n in 
Hw display. llowever. the proof-term does cxic;t inside the system. We can show it 
<'xplicit ly by giving a command to the syst<'m (the "proof" command). 

:J.2. 0\ LH\ /E\\' OF TllE SISTE.\1 43 

RPT Input to the system Output 
from the 
system 

j_ false ..L 

T true T 
o=b (eql o b) (1 = b 
p[a] (pred p a) p[a) 
,1/\ l3 (and A !3) 11 1\ /3 
,'\&:.B (cand A 13) ,'\ & 13 
AV13 (or A B) AV/1 

A~H (1mp A 13) /1:)/J 

Vx./1 (all (lambda (.r) A)) V .r./1 

::Jx.A (ex (lambda (.r) A)) 3 .r.A 
-

Fi P I= P I= P 
(/ 1-, p 1- p 1- p 

-

Table 3.1: Logical Connect i\·es in Input and Out put 

3.2 .1 Interaction with the system 

Om systC'm i'i an interactive proof generator. not a proof-checker (which check" a 
proof aftc•r inputing a complete proof). nor an automatic prover (which generates a 
proof from a formula automatically). The• dir<'ction of our inferc·nce is forward. \\'e 

const nrct a proof from leaves to the root. 
Commands at the toplcvel of the system arC' t hose• correspo11ding lo lh<' infere11ce 

rulc•c; of B PT as well as commands which shows t he• hiddc•n information (the curre•Jit 
lc•vc• l and t IH' current proof-term). 

RPT : 100> true- intro 
Result: 100: 1- T 
RPT:101> proof 
proof-term is 0 
RPT: 101> 

In this c'xarnpl('. RPT: 100> is a prompt of our system. I h<' rnrmb<'r 100 is the hic;tory 
number. the number of proofc; -;o far generated since the; sy<>l<'rn started. In reply 
to this prompt. the name of an inference rul<'. true- intro. was input by a user. 
t h<'ll the sy<;t em returned 0 1-0 true. 'I he expression Result: 100: is the header of 
this reply and the actual content is 1- T only. which is the righthand side of the 
sequent 0 I 0 true. The proof-term 0 and the I<'\'CI 0 ar<' not shown. To display 
the• proof-term. the user inputs the command proof. and then got the result. Note 
that. thi" command did not increase the history mrmb<'r, since no new proof has 
bC'en gcn<'rated. 



C:/11\ PTER 3. CO.\'STR UC:T/\ 'E PHOGJV\.\1.\1 !.VG S) "S"f'E.\1 

Commands which correspond to inference rules of RPT usui'lly take' SC'vcral ar­
guments, and return the righthand side of the inferred sequent if succf'cds. The 
a.rgumcnts specify the subproofs of this application. i'nd other necessary information 
so that the system can uniquely identify the form of the inference. If the comma.nd 
do<'s not su ccced. n a.mely1 the application of the in fC'rencc rnlc is not appropriate, 
then it docs not return anything and raises an error. 

For most argnmenls, dda.ult values arc supplied by the system if no arguments 
are pro,·idcd by the user. For instance, the following input means that, to apply the 
/\-inlroch1ction rule to the subproofs numbered TO (two steps before this applica.tion) 
and 71 (one step before this application). 

RPT:72> (and-intro -2 -1) 

Siucc· t hcse arc the default va lues of this rule, we can simply input as follows: 

RPT:72> and-intro 

If the system ca,nnot supply default valued, it displays another prompt. For instance, 
the following example shows that the system is wa.iting for the user to input a term. 
since the prop-eql rule (showing that a = b is a proposition) is applicable to a.nv 
term, and the system docs not know which term should be used at this point. -

RPT:74> prop-eql 
term? 

. Om system does_ ~ot merely provide interactive proof-checker /proof-generator; 
1l a lso supports fac1hty of computation 1 and program extraction. Moreover, we 
extC'~cled the system RPT' with some derived rules. Por examp\e

1 
the 3-climina.tion 

:u~C' m the style of the usual first-order logic is not primitive, but a derived rule. Since 
1l ~s a uscfu.l rule~ we included it as a. primitive command. Another example is the 
/\-mlr~d:1ctwn _rule for _more than 2 propositions. We can introduce a conjunctive 
propos1t10n wh1ch cons1sts of more than 2 conjuncts a.t a time. Similar derived 
r\Jics arc availa.blc for the elimination, and for other logical connectives such as v. 
Smcc I hese rules a.re not primitive inference rules in RPT "net a e t 4 d . . . · , ,. r no gua.ran~cc 

by any ng1_d way, w_c 1_rnplementcd these rules as combina.tion of primitive inference 
rules. Obvwusly th1s 1mplemcnta.t_ion is inefficient. since it always expands the ru)c

1 

and checks the expanded form wh1le the validity of the derived rules a e 1 • rl' h' . . . · r C eaT. IS 
~01Cnht 1s a.n 1mportant motivation of introducing more powerful reflection mechanism 
m aptcr 4. 

A concrete example of our system will be given later. 

:12. 0\"EH\'JE\\' OF TilE S) 'STE.\1 ·1.5 

3.2.2 Automatic Proof Generation 

.\It l1o11gh our system docs not aim to generate proofs i'Utornaticly. scvera I simple 
automatic proving procedmes ha\'e been built-in our system. 

• Proving some t('rm is a proposition 

!\characteristic point of RPT is that, the' proposition hood is not defined solely. 
but it depends on the truthhood. For instance. a :) 0 is a proposition if a is a 
f<'lse proposition. Hence. we need a proof for proposition hood. 

IIO\\'Cvcr, we can define a. large class of terms where the propositionhoocl docs 
not depend on the truthhood, hence is dcciclablf'. Namely. for terms a ::J b 
and a & b, if both subtcrms a and b arc propositions 1 so arc the whole terms. 
Our system contains this decision algorithm. Thcrcforc1 in most cases. the 
propositionhood is a.ntomatically proved. 

• Computa.l ion 

Given a representation {quote1d form) of a term a. the system can compute 
it a.t any l imc. This computation is achieved by the formalized interpret cr 
and does not depend on the interpreter of 1\ itself. Hence, we can arbitrarily 
change the computation stra.tcgy by giving some message to the system. 

• Simplification of propositions 

Om simplifier operates on propositions, and transforms them to logica.lly 
equivalen t ones. It consists of normal simplification and E-simplification. 

Normal simplification is to transform a proposition to a. simpler form. For 
instancc1 true 1\ A can be simplified to A1 and car{ (A, B)) to A. 

We then describe E-simpliftca.tion. 

V·/c call a. proposition of the form 3:r 11 · · · , 3:rn .(A 1 V· · ·V Am) a.n E-proposition. 
Suppose some Ai is an equality proposition a = b. For instance, the followiug 
1s an E-proposition: 

t:::. 
c1 = 3:r.3y.3z.(u = (:r, y) 1\ y = (0, z) 1\ P[z]) 

Let p be a proposition, and e be an E-proposition. Suppose a 1-i p and b 1-1 e 
have already been proved. rr the following procedure succeeds with a new 
proposition r 1 then we obtain a. proof of a 1-i r by E-simplification. 

1. Rename all the bound variables in e so that they do not cra.sh with free 
variables in p and e. 

2. LetS be the set of cqua.Jities in (the atomic formulas of) e. Let 0 be the 
most general unifier of S. 

3. Apply the normal simplifier to pO. Let r be the resulting proposition. 



46 

3.3 

CHAPTER 3. CONSTRUCTIVE PROGRAMMING SYSTEM 

1. If no bound variable in e appears in r, then the procedure succeeds wiU1 
r. Otherwise. it fails. 

As a concrete cxa.mple of the E-simplifica.tion, Let e1 be as above, and P1 be 
pau?(u) =true 1\ fun?(cdr(u)) =true V f'2· 

We assume that p2 docs not contain u free. The most general unifier of the 
sel of equa.Jitics in c 1 1s 

01 ~ {11 := (:r.(O.=)),y := (0,=}} 

Thf'n p10 i'-i pau?((:r. (0,=))) = true/\fun?(cdr((:r. (0. =)))) = trueVp2. and 
thetl it simplifies to p2. Since. p2 docs not contain variables :r.y and:::, the 
result of E-simplification of p1 is P2· 

E-sirnplificat ion docs not do much work. lloweYcr, E-propositions arc of­
ten cotJI aincd in inc.luctivcly defined prcdica.tes, so we can makc usc of E­
simplification at the proof of induction steps. In particular. we used it ext<'n­
siv~ly in proving the Church-Rosser theorem of A. 

Mechanized Proof of the Church-Rosser The-
or em 

The Church-Rosser Property is one of the most fundamental properties for term 
rewriting systems and functional programming languages. Let D be a sel and R be 
a. binary relation on D. Let =n be an equivalence relation induced by R. Then R is 
Chmch-Rosscr if, for any terms a, b, c E D such that a =n band a =n c hold . there 
<'xist s a term dE D such that bRd and cRd hold. 

This propcrt y guarantees tha.t the result of any computation from a term a is 
tmiquc. The uniqueness of computation is significant for term rewriting systems and 
functional languages to have a meaningfu l semantics. 

i\ simila.r properly is the fo llowing Diamond property. 

D efini t ion 14 (Diamond Property) Let D be a set and R be a binary relation 
on D. 

Then R has the diamond prope7'1y if jo1' any io'ms a, b, c E D s1tch that aRb and 
a He hold, fhC1·c e.rists a tCJ·m dE D S7tch that bRd and cRd hold. 0 

If ll satisfies the Diamond property, then it satisfies the Church-Rosser property. 
lienee, we will con cent rate on the diamond property in the following. 

There arc several works in which mechanica.l proofs of the Church-Rosser prop­
erty ha.ve bccn given. For example, Shankar[38] proved the Church-Rosser property 
for the pure A calculus using the famous f3oyer-Moorc theorem prover[9] . 

The dilT<'rence of his work and ours is Lha.t, we prove the Church-Rosser prop­
erty fo r our programming language A itself, and we usc the novel technique due to 
Takahashi. 

.'3.3. T!l E CJJ U?Cll-HOS'SER Til EORJ~:\1 17 

3.3.1 Proof M ethod 

Ther<' ha,·e b<'en proposed ma.ny techniques to prove the Church-Rosser property. 
,\rnong them. 'lakahashi's mcthod[tl2) is one of the best one as far as we know. II<'r 
method ic; quite simple. yet applicable for a wide range of reduct ion systems. Sato[34] 
us<'d it lo prO\'C l h<' C'hurch- RossC'r property of .\. J'hC' method is summ<'rizcd as 
follows: 

1. D<'fill<' a parallel reduction ~of terms as an extension of the original reduct ion. 

Pan~llcl r<'duction is such a reduction that reduces an a.rbilrary number of 
reckxC's al the sam<' time. Since it docs not specify the number a.nd the po­
sitions of rcdcxcs, l his red11ction is non-d0lcrministic. It is called .. parallel". 
since il can reduce mor<' than one redcxcs at a time. For instancc. if we 
pa.ndlcl-rcduccs the term (A :r.:r:r )(car( (y. =)) ). then the r<'sult is one of this 
term itsclf. (car( (y. =)))(car( (y. =) )) . (A.r. :l':l')y. or yy. 

Thc parallel r0cluct ion must contain the original reduction . and must be con­
tain<'d in th<' rdlcxi,·c-tra.nsitivc closure of the original reduction. 

2. For carh term o, define the ·'most r<'duc<'d" t0rm a*. 

Intuitively. th<' .. most reduced" term is such a term that. all the redexes in a 

arc reduced simultaneously. For instancc1 

((A:r .. r:r)(car((y . .::))))* = yy 

3. Pro\'C 1 he following prop<'rl ics on ~ and *. 

• (/~(l 

• a ~ c and b ~ d imply ax[b] ~ c.r[d] 

• o ~ b implies b ~a* 

Then we have that ~ sa.tisGcs the Diamond property. 

1. Show lha.t, if a relation has the Dia.mond property, so docs its reOexi,·c and 
transitive closure. 

\Vc ha,·e mechanized Sato's proof in our system as fo llows: 

1. Dcftnc l he representation of the terms of A as pairs. 

All th€' terms in A are already represented as pairs by the quote mecha.nism. 
But we must a.ga in represent the terms of A in order to trea.t their properties. 

The quote mechanism is again used for th is representation. Based on this 
representation, we define predicates for (representation of ) terms, pa.ra.llel 
rcductions, and so on. 



18 CIIAPTER 3. CO.\S'JRUCTIVE JJHOUHA.\1.\1/.\"G <;)')J 1-:.\l 

2. Pron· that the parallel reduction has the Diamond prop<'rly. 

3. Pron· I hat the rc:flcxi\'e-transiti\'C' closme• of -• has tlw Diamond properly. 

0})\iouc.;Jy. the rcflexi\'c-transiti\'c closmc of -~ coincide·~ the• original r<'duction 
_, · . tlwrc.forc. this finishes the proof of the Cllllrrh-RossC'r property of-+-. 

The rnccht~niz<'d proof that -+ has I he Diamond prope•rty is by induction on th<' 
st n1ct me of I he t <'rrn. Since 1\ hac; \'arious kinds of t <'fltl cons I rue lion, this induct ion 
rH•e•de•d many cases as t h<' induction steps. llowe'\'C'f. rnt~ny of t h<'m arc similarly 
proved, nnd thC' <'ssC'ntial complexity was not so high. \\'e• us<'d the E-sirnplificatim1 
procedure• to pro\'(' <'ach case of lh<' induction ste•ps. 

In t II<' following. we will describe lh<' last pa rt oft h(• proof. 

Theorem 8 We can prove the following for sonH tcnn a: 
ol 1 VS'.VA.(Unary(S) :> Binary(/\):> Pers1s(/\.S) :> 

whr 1'1 

Unary(S) 6 

t::,. 
B1nary(t1) 

Trans(/\) 
6 

1::::. 
Pers1s( A. S) = 

D1amond( A, S) 
1::::. 

0 

Diamond( A. S) :> Diamond(Trans( A). S)) 

V.r.p0 S[:r] 

V:r.Vy.l=o 1\[:r. y] 

,\f.)..;r .>.y.(;r = y V 3.:./\(:t·, ::] 1\ ![ .:. y]) 

>..1·,y.(A[:r.y] :> S[:r] :> S [y]) 

V:t· .(S[:r] :> Vy.\I::.(A[;r, y] 1\ 1\(:r, .:] :> 3u.(J\[y, u] 1\ A[::, u]))) 

h1 this t_~lC'orcm, the unary predicate S represents t hC' (quote 'd) term hood, and 
Pers1s(/\, .'->) means that the binary relation A respects the tcrmhood S. This 
tll<'or~·r.n mC'ans that. if a binary relation A has th<' Diamond property. then its 
t rnus1ln·c· closme Trans( A) also has the Diamond propert v. 

' I hC'orc·rn 8 holds for any binary relation. henc<' we can ;pply it to relations other 
than -•. 'I his kind of generality is on<' of the characteristic p~ints of RPT. 

The proof of I hcorem 8 has been mechanically checked b,· our wstem. [t took 
approximately 170 steps. \\'e list a sketch of the mechanized ~roof j~ Appendix. 

3.4 Program Synthesis 

In t hi<· s<•ct ion, we describe a complete example of Corl "tr11 c~ 1· , c p · · . , . . , , . . , · . · . ., ~ · rogrammmg usmg 
Olll S) st< ITl. rhc S) nthesrzed program IS append of lists. 

:J. 1. P/HJ(;H \\/ 5)'.\ fl/ESIS 19 

3.4.1 The specification of append and its proof 

Tlw ..:pecifical ion of the append program is writ l<•n ac.; th<' following proposillon in 
HPT: 

V.r.(L1st[:r] :> Vy.(List[y] :> 3.:.Append[.r.y . .:])) 

ll<'r<' t \\'O predicates L1st and Append arc defined as follows: 

List 
1::::. 
- >.j.>..r.(;r = nil V 3.T1 .3.r2 .. r = (.r 1 . . r2} 1\ ![.r2]) 

Append 
1::::. >.f.>..r.>.y.>.::. :r =nil 1\ y - ::. 

V 3:r1.3:r2.(:r = (;rl,.r2} 1\ Jzdf[.1·2·Y,.: l] 1\:: = (:r,,.:,))) 

\\'c• pro\'('d t h(' specification formula abO\'C' using our system. It took about 80 
sl<'ps including the definitions of List and Append, and se\'Nal naming operation of 
irtl<'rrn('dialc theorems. 

L<'l T1 PP be the proof-term of th<' specification above. Its precic:;c form is as 
follows: 

ft{)..fxq. 
(~r.lf car(r) then 

>.yl . [y true 0 . 0] 
else 

>.yl. 
[[cadr(r) . car(cddddr(r)yl)] 
false 
cadr(r) 
caddr(r) 
0 
car(cddddr(r)yl) 
cdr(cddddr(r)yl) 

. 0] 
fl) 

[car(q) . 

] 
) 

if car(q) then cdr(q) 
else 

fi 

[cadr(q) 
caddr(q) 
cadddr(q) 
f(caddr(q))(cddddr(q))] 



.50 CHAPTER 3 C0.\8IRL CTI\ E PROGHi\1\/Ml\G!)) SI E.\1 

' I he: term 'J~PP requires four arguments: 

• List .r, 

• a proof q that :r is a li<;(. 

• Li .. ;t y. and 

• a proof /that .11 is a lisl. 

Th<• r<'lmn valu<' of 'f~PP is a proof of 3.:.Append~.r.y . .:). Th<'fdorc. the result of 
append'ing two lists .1· andy is car('fzPP'r(r,,~,(.r))y(r/,stL!J))) wlwrc rl18t(:r) is a proof 
tit at .r is a I is t • 

3.4.2 hnprovement of extracted programs 

The progr<mt T 1pp is guaranteC'd to lw rorn•ct with resp<'ct to I II<' :->p<'cificat ion: 
ho\\'('\"<'1' it is by TJO m<•ans satisfactory. since il is inefficient. aTJd it requires <'X­
tt a argunH'llls other than .r and y. W<• will discuss th<' first problem in the TIC'Xt 
subs<'cl ion. II <'I'<' W<' disnt<;S the s('cond problem. 

Theorem 9 1/11 folloii.Jing holds for som1 lrnn a: 

a l-1 (List[:r)::) rti~t(.r) 1-o Llst[:r]) 

tl'hcrr r1" 1 is drjinr.d as follows: 
~ 

l'fut = /1(,\.f..\.r. 
if null?{ r) then (true. 0} 

else [false.[car(r).[cdr(.r).(OJ(cdr(:r))}JJ] fi) 0 

Thi<. t hcor<'tn rlc1ims that a proof of list hood of :r is obtained by a compu I at ion using 
.r. ' l'hC'f<'for<:: w<: do not need rti.,1( :r) bcsickc.; :r. 

Similar t hcor<'rns hold for other practically useful data typ<'s such ac; nat mal 
numbC'rs. lists. and lrC'es. 

3.4.3 Eliminating Redundancy by Program Transforma­
tion 

Our next goal here is to <'iiminatc redundant parts from I he naively extra.ctcd pro­
gram 'I~PP' \V<• a chi<'\'<' it by I ransforrning the program preserving the· correctness. 

The inl<'nsional cqui\'alence relation ~ given in Chapter 2 is too fine for this 
purpo<;c. \\'<• need a more coarc;c, extensional equivalence relation. 

In a call-by \Hill<' calculus. the values (results of computation) arc normal terms. 
Then, we can dc•finc an extensional equality as follows: Let F and G be unary 
functions. 'l'h<'y arc cxten<>ionally equal if. for any normal terms nand m~ F(n) --t" 

:3.1. PHOGU. \.\1 !->) \'T/f£518 -51 

m if and only if (;(n) __. · m. F and(; arc not ncce'>'>arily intcusionally equal. If P 
and (; ar<' c:xlcttsionally equal. we may replace F by(; in any context. 

1 he extensional equality of ,\ is defined similarly ao; this cxtenc;ional equality. 
JlowC'\'Cl. our d<•finit ion is more complex than I hi'>, c;inc<' t h<' computation of .\ is 
call-by nanw tatll('r than call-by-,ahH~. and the \'aht<''> arc canonical terms raUI<'r 
than norrna I l<'nns. For inst a nee. let I I><' the following I erm: 

(tt(,\_{.,\n.(ll . .f( .... uc(n ))} ))0 

when• ... uc(11) r<'Jm's<'tth the surc<'s.,or of 11. The term I rcpr<'S<'rtls an inflnite lio.;t 
of natural tmmhcrs. Both tcnno.; nand I <m' not terminating. so they arc equal 
b,· the aho\'<' cxi<'IISIOnal cqualit.y. llow<'\'<'r. I ll<'y do not TI<'C<'ss;trily ha\'C I he sant<' 
n;eaning. l·'or exampk. if w<~ s1thstitui<' on<' of them for .r in pair?(;r). then llH' 
results arc different. It follows I hill we need i'l more sophisticated definition of I h<' 
C'XI cnsiona I <'<JIIillit y. 

liN<'. W<' will int roducc a new C'quality .-v by regarding ,\ as a lazy computation 
sysl<'rn in the "<'nS<' of (2.5]. 

Definition 15 (Prcorder in lazy computation system) l.r I H lu a binm·y n­
fallon on rlosul 11 nn.o;. /'hen a binary rclalton f(R] is d<finul "·" follou•s: 

.s 'f[U] I ~ 
(s ~· nH ::) I -~·nil) 
1\ ( .... _ ,.true ::) t -+~true) 
1\ ( .... -; • false :J t -;·false) 
1\ \1 . ., 1 ..... 2. (.-, -+ ~ (s 1.s2} ::) 31 1 ./~. (I-+- (lt.l2} 1\ ( .... t HIt} 1\ ( . .,2 H /2))) 

1\ \fa.(_ ... _, • • \.r.a :J 3b. (1 - +- ,\y.b 1\ \fu. (a.,(u] ll hy 1u]))) 
td1u·r .... 1 • .-., 2 .1 1./2 .u mngc o!·cr rlowd lrrm-.. and a.b mug' ONI"Itl'l/l.'i

1
. 

Jl !JI'(OJ"d(l·::; Oil rlosrd lam .... l.'i lh£ larg(.<;/ fi.rpoinl of n = '/'[ U]. 0 

In the' a.bo\'<' d<'finition of T[H]. <'\'<'!'.\'occurrence of Jl is strictly positi\'c, so th<· 
<'quality I? = I' H] has the larg<•st fixpoint. 

\\ ·<' nm ext <'nd the prcorder ::; to op<'TI krrns: Ld F\' (/' )U F \ (G) be { .r 1. · · · .. r u}. 
Then I' < G if. for ;:m,· closed terms r/1. · · ·. dn. F.r[dj ::; Gr(ln. 

;\c; an example of~- for any term/. w<: have 0 ~ l. \\'('also have I::; (0. (.r,y)}. 

Defini tion 16 (Extensional equality in lazy computation system) Two 1r nns 
F and(; arc c .rlr nswnally cqual1f F < G and(; ~ F. It 1 w1·ilr F .-v G zf they m·1 
c.rlrnsionally f(fllal. 0 

Theorem 10 11'c hal'r the following: 
1. ::; i.s rr.fh.m·r and lmnsitirc. 
:2. a ~ h nn p/11 !i a < h. 
3. "' is an UJuh•ahrlrc relation. 0 

1 In this definilion, the logical connectives 1\ and \1 are not formal on~s in n PT. 



.12 ('//APTER .1. CO \YJR l'CTI\ 'E PRQ(;UA .\IM 1.\ (; <, YS'l E.\ I 

The proof of 1 he ~sl clause makes us<' of I he fact that ~ is tlw lcngc•st rlxpoinL 
Following the t<•rminology of [2.)]. 1\ is operator extensional. II<'TH'<'. "' is a 

congntC'TH'<' r<'lation. natnC'Iy."' comrmtl<•s with lhC' construction of l<'rrn~. 1\IoreO\'<'r. 
/\ sal isflcs s<'''<'ral conditions stated itl [2-1] such as I h<' dct<'rminist ic condition. h<'tiC<' 
"' coincides with t h<· ohser\'ational <'qui\'al<'n<"c2

• 

In 1 he followir1g. we will give trans format ion rules which arc corn•ct with r<'spccl 
to lh<· exl<'nsiollal <'quality"'· 

Theorem 11 !.rl.r.y.:.u.l·.w lu t·ariabfl.,. and a.h br term:-;, /.d fun b< onr of 
car. cdr. null?. true?. false?. pa1r?. orfun7 . Thrn wr. ho1•r 

fun( if .r then y else: fi)"' if .r then fun(y) else fun(:) fi. 

0 

Proof. . 

(if .r then y else:; fi)(w) 
"'1f .!'then y(w) else :(tP) fl. 

1f (1f .!'then y else : f1) then u else r fl 
"' if 1 then (if y then 11 else t' fl) 

else ( 1f :; then 11 else,. fl) fl. and 
1f .1' then a else h f1 

"' 1f .r then a.r[true] else br[false} fi 

\\'e will prove t h<' <ase for car of liH' ~rst equation only. 
Ld 0 b<· a substitution which substitutes closed krms for .1· .y. :. 

6 
I.= car(lf .r then y else.:: f1 )0 

6 
J/ = (1 f .r then car{y) else car(:) fl)O 
\\'c ~rst show/,< M. If L do<'s not ha,·c a canonical form, thcn /. < :H tri\'ially 

holds. ll <'nC<' W<' asstml<' L has 11 canonical form. 11y thc reduct ion rules of A, wc 
hii\'C eilhn (i) .rO -> "'true and for some t<'rms a, b, yO --t"' (a, b), or (ii) .rO--t"' false 
all(] for sorrw lnms a, b, :0 ---+"' (o. b). In <'ith<'r case, we have /J ---+"'a and i\tf --t"' a, 
hence \\'<' ha ,.<' I. < \I . 

\\'<' can show .H < L similarh-. 0 

The l<'rms in both sides of equal ions in Theorem 11 arc not equal in the sens<' 
of::::::. ll<'nc<'. /• ' "' (; docs not imply F:::::: G. 

\\'c then d<'~TI(' strict terms. lntuitivc•ly. a strict term c with rcspc•ct to f is that 
n<'cds lh<' ,·aluc· of .fin itc; computation. 

Definition 17 (Strict Term) 1-'o1' a t•m·iablc .f , a sh·irt fc1'm c is dcfinrd as fol­
lolN>: 

c ::= f 
2Two_t!'rms o and bar~ ohserv_ationally !'quivalent if. for any context C( ), C(a) and C(b) reduce 

to canon1cal forms of the same kmd , or they do not reduce to canonical forms. 

:J. J. PHOGUA \1 S) .\"THESIS 

where I 1.<; a lcnn. 0 

null ?(c) I true?( c) I false?( c) 

pau7 (r) I fun?(c) 

car( c) I cdr( c) 

c(i) 

if c then l else t f1 

53 

Theorem 12 Suppose the fol/owmg hold for a term F, mutually distinct t'ariab/u; 
.f:.r~.··· .. r~~·tfnnsc,a.bf {1 <i<n,l ~j<~·}: 

FV( F)= {.f} 
FF(a) = 0 
F \ 1 (lf. ) ~ { .r 1 • 00 

• : :l' n } 

!T(c) ~ {f. .r 1• 00 

•• :l'n} 
c i.<; .strict with respect to f 
CJ[f• j rv a{c;r[/~j, · · ·. C.r[bkj. :f} 

Then the following holds. 

whac G is defined as follows: 

G ~ ft{>..g.>..i.a(g(l~ ) .... , g(bi.·). i)) 

0 

Theorem 12 plays a central role wh<'n we elimina.te r<'<lundancy m recurSJ\'C 
functions which uses ft. For instance, 1<'1 F b<' th<' following term: 

A:l'.if null?{:r) then (b. c) 
else [p(car{f(prcd(:r)))). q(f(prcd(:r)))] fl 

where prul(.r) is the pr<>decessor of .r, and F\'(p) = {:r}. L<'t F' be tt(>..f.F). 
then apply F' to a natural numb<'f n. During the iteration of r<'cursive calls, the 
intermedial<' \'alucs a.rc always of the form of a pair. Th<' pair F'(n) uses only 
the first component of the pair F'(prcd(n)), Therefore, if W<' want to ha.ve the first 
component of the pair, namely, car(F'(n)). then we do not h<1vc to compute the 
second component. FormaiJy speaking, let 11 be the following: 

>...r.if null ?(:r) then b 
else p(g(prcd(:l'))) fi 



CIIAPTER .1. CO.\S/ HUC'f'IFE PHOGUA .\1.\1/s\'G S YS'l E;\1 

lnluili\'<'ly. w<' C'ilTI n•plac<' car(/1(>..j.P).r) by 11(,\g.l/).r. \\'C' do not hfl\'<! 

car(lt(>...f.P).r) ~ lt(>..g.fl)x 

however, \\'(' h a \'C! 

car(JI(Aj.F').r) "'ll(>..g./1)~· 

h<'nre I his r<'plar<'TJI<'TII is justifi<'d with r<'spect to "'· 
This example• is CHI in;;tance of Tll<'or<'m 12 where c. F and (; an• car(.f.r ). F and 

11 ( ,\g .II). A I so we· u•wd Theorem 11 in I he I r<ITi sforma t ion of 

,·1[FJ"' if null?(.1·) then h else t'(car(.f(pru/(~· ) ))) f1 

Theorem 13 l'ot· 1/tuft/(d/y disf111rf t•rn·iub/u; f.y,.r 1 ... • .. rm. l'n"·" F.(:. o.lf;.c·1 

( 1 < 1 < 111. I ' j :::; 1.·). if lhr Jollowmg hofd~.;: 

F = .\ ,r .• \y . a(.f(l~. c1 ). • • • • .f(lf·. c(· ) . . r) 

(; = 11 (,\_{.F) 
F\l(a )= f/J 
F\'(ITn c {.,·,. · · · .. rm} 
F \' ( f'1 ) C { .r 1 ... • .. r m • Y } 

I h r t1 we h a t•r 
r.·(.r, y) "'Jl(>..9.>..:r.u(g(l;i L .... g(h1). i))(.rl 

0 

This t hrorern Tll<'ans that: if some \'ariablc'i are not used during the iteration 
of rccursin• calls. then the \'ariable (y in the abo\'e theorem) ran be eliminated. 
Intuitively it is ol)\·ious. and it is prO\'Cd similarly as Theorem 12. 

I m p r oving efficiency of t h e append progr a m 

Let F h<' the body of I' in 'J~PP' and c be car(.f:r( T'ti 3t( ~·) )y/). Then. by using '1 hcorem 
11. the term c,[F] nm be simplified, ;,nd then we have the following by Theorem 
12: 

car('/~rr .r( rlut( :r) )y/) 
"'lt(>.g.>..r.y.l. 1f null?(.r) then y 

else (car(~·),g(cdr(~·). y. /)) fi) 

In t lw right hand side of the above' equal ion, lh<' variable I is not \lscd. lienee by 
ThC'orcm 13, W<' ha\'c: 

car('/~pr·r( rlut( ~·) )y/) 
"'11(>.g.>..r. y. if null ?(.r) then y 

else (car(.1·).g(cdr(x).y)) fi) 

"[he last dcfinit ion is the same as the uc;ual hand-written program of append. 

.'1.5. CO\('/ I C., JON ,!).) 

Discussion 

I he optimization kchniquc gi\'<'n in this st•clion is built in for om Constructi\'<' 
Programming System. In fact. we cm1 obtain the final append program from the 
term car( l',,, .r(r,,,l(.r))yl) complete{\' autonlHI.ically. \\'c• can th<'l'<'forc. obt<~in cHI 
<'ffici<'nt and < orr<'cl program. 

IloW<'\'<'r. I h<' corr<'d ness of I he tcchuiqu<' in t hio.; sect ion relic:; upon sen~ral 

mclathcorcrns such <h TLcorcm 12. If\\'<' want to be complc•tc•ly formal. then \\'<' 

han· to forma liz<' I ht• c·xtensional c·qualit y "'·which is defin<'d as tlw largest fixpoint. 
It is ldt for fullllt' work. 

In g<'tH'r<d. it is quite difficult to optimize' itiC'fficicnt programs automatically. 
llo\\'C'\'('1. our nwt hod Ci'IJI CO\'Cr Ill<' c as<'s considcr<'d in [•1•1]. cHid we• belie\'<' that it 
is a.pplicabk to a wid<' range of progra111s. 

3 .5 Conclusion 

lr1 this chapl<'r. we JHC'"<'ntcd a Con-;trurti,·c· Programming ~w-;tc :m ba-;<'d on HP'I. 
and showed a formal proof of t ~~~ C'hurch-Hoo.;scr proper!) in H P'l. \\ c• alo.;o pn•­
o;;enlcd cl <'Oli<'J<'t<• example of C'onstrucli\'C' Programming as w<'ll as cHI optirnizatiotl 
technique· of H Jlai,·c·ly extracted program. 

There' ha\'C' b<'<'ll proposed se\'<'l'al <·ornputcr soft wares which support proof d<·· 
\'C'Iopment in constntcli\'e logic: Nuprl systc·rn [10] for !\!arlin L<'>f\ t~·pe theory. PX 
system(2tJ for Fdc•rnt<~n's 70. C'oq s~·stc•m [ H] for an extension of C'oC'. and oth<•ro.;. 

Compar<'d with I hcse existi11g systc•ms. t h<' characteristic point.., of om sy~t<·m 
<1rc ( 1) t he• sysl<'rn is implcmcnt<'d by I h<' objC'ct language A -;o t hilt \\{'can reason 
about tlw propc•rtic•s of th<' syst<'m its<•lf. and (2) the tmd<'rlying logic I{PT has tlw 
built -in rc•Oc·< t ion mechanism. hence W<' can inl<'rnally express nwt apropert ies in om 
s\·stem. \\<' ha\'<' dc•monstrat<'d t h<• ll'iC' oft II<' n•Oection tlH'chanisrn in our S\':;l<'nl. 
~ - ~ 

lkccntly il hcu·; IH'cn widely recogllizc·d tili'lt thC' reOC'ction nwchanism is quite Hsdul 
in both t heoric•s and practiccs[6]. 

\\'e plan to pro\'<' larger exarnpl<•s using our system so that we can extract mon• 
realistic programs. In ordC'r lo do so. \\'<'will han~ to imprcn·c• our system al two 
points: (1) introducing backward-r<'asoning. <md pro\'iding various kinds of tact icc;. 
and (2) improving 1 he user-int<'fface including graphical user intc•rfCice. 

Appendix The mechanized proof of Theorem 8 

In this appc•ndix, a summa.ry of a proof of ThC'orem 8 is gi\'cn. 
:\ line beginning with a semicolon (:)is a comment line, which was attached by 

hand. Ot h<'r lines arc input by a user or output by the system. 

Result : 1 : 1- V x. ( I= S [x] ) 
; Assume this proposition 



.56 Cll.\ PTEH .3. COSSTH l ("JIVE PHOGH A.\f.\1/SG S) STE.\1 

Result: 3: 1- V x. V y. (I= A [x, y]) 
; Assume this proposit~on 

Result: 5: 1- V x. V y . (A [x , y] ::J S (x] ::J S [y]) 
; Assume this propos~tion 

Result:14: 1- V x. (S[x] ::J V z. V y. (A[x,y] 1\ A[x,z] ::J 

3 u. (A [y, u] 1\ A [z, u]))) 
; Assume th1s propos1tion 

RPT:21> (defindpred TransA (x y) it X) 
pred-name: TransA 
pred-body: x=y V 3 z. (A[x,z] 1\ TransA[z ,y]) 
OK 
; Define the pred~cate TransA 

RPT:26> (name Bas1cPropl (all-~ntro it w)) 

Result: 26: 1- V w. TransA [w, w] 
; Name the proof of this propos~t1on as Bas1cPropl 

RPT:35> (name Bas1cProp2 (all-intra (all-intra ~t y) x)) 
Result:35: 1- V x. Vy.(A[x,y] ::J TransA[x,y]) 
; Prove x->y ::J x->*y 

RPT:69> (defpred Prop! (x y) it) 
pred-name: Prop! 
pred-body: S [x] ::J V z . (A [x, z] ::J 3 u. (TransA [y, u] 1\ Trans A [z , u])) 
OK 
; Name the proof of this proposition as Prop! 

RPT:80> (name IH (assume (prop-and (prop-pred A (x z)) 
(prop-pred Prop! (z y))) a3) ) 
Result: 80: 1- A [x, z] 1\ Prop! [z, y] 
; Induct1on Hypothesis in the proof of Prop! 

RPT:117> (name Proof-of- Prop!) 
Result:117: 1- V x. V y. (TransA[x,y] ::J Propl[x,y]) 

RPT:123> (defpred Prop2 (x y) it) 
pred-name: Prop2 
pred-body: S [x] ::J V z. (TransA [x , z] ::J =3 u. (TransA [y , u] 1\ TransA [z, u])) 
OK 

:J.5. ('().\ CLl S/0.\" 

; Define the above pred~cate Prop2 

RPT:133> (name IH2 (assume (prop-and (prop-pred A (x z)) 
(prop-pred Prop2 (z y))) a13)) 
Result:133: 1- A[x,z] 1\ Prop2[z,y] 
; Induction Hypothesis in the proof of Prop2 

RPT:175> (name Proof-of-Prop2) 
Result : 175: 1- V x. V y. (TransA [x, y] ::J Prop2 [x, y] ) 
; the Diamond property 

:)I 



58 CIIA PTER .3. CO \S'/ Hl"CT/VB PHOGRA.\1.\11 \G S LSTJ~M 

Chapter 4 

Half-monotone Inductive 
Definitions 

Thi" chapter studies an <'Xlcnsion ofinducti\'C defiHitiorJs in the co11text of cl type-fr<'<' 
theory. It is a kind of simultaneOll"> iHducti,·e definition of two predinlles wher<' tl1<' 
dcrl n ing formulas are monotone with rc•spcct to I he fl rsl predica k, but not mono! on<' 
with respect lot lw second predicate>. \\'{'call this induct i\'e definition half-monotone 
in analog~· of A ll<'ll · s t Nm half-poslf ll'f:. 

\\'c· can regard this definition as a \'ariant of monotone inducti\'(~ definitions by 
introdllCing a refined ord<'f bctw<'<'n tuples of pr<'dicates. \\'e gi\'(' a general th<•ory 
for hnlf-monotone itl(lucliYc definitions in a type-free first-order logic We then gi\'C' 
a realizability inl<'rprelation to om theory. and prove its soundness by cxtendi11g 
I atsut a's technique. 

Th<· mechanism of half-monotone inductive deflnilionc; is show11 lo be useful 
in interpreting man.\· theories. including the Logical ' I heory of Constructions. and 
i\l<n·tin Lof's 'lype l'heory. \\'c can also formalize• the provability relation .:a tenn 
p is a proof of a proposition P" nat mally. As an a.pplicat ion of this formalization. 
S('\'Nal techniques of program/proof improvement can be formalized in our t h<'ory. 
and we can make usc of I his fact to de\'clop programs in the paradigm of Consl ruct i\'<' 
Programming. :\ characteristic point of our approach is I hat W<' can <'xlracl an 
optimization program since our theory enjoys the program extraction theorem. 

4.1 Introduction 

An important problem in construcli\'<' programming is that cxtract<'d programs 
ofl<'n contains redundant parts. Namely, a naive extraction usually produces an 
inefficient program. 1\luch research has been clone on this topic; Subsd Typcs(l 0, 30}, 
Separnt ion of Spec nnd Prop typcs[32], and SU IT (Singleton, Union and Intersection 
Typcs)[23] in lyp<' theories, and Diamond suit (double ncgation)[21], and Extend<'d 
projcction[43] in type-free theories. I'hese techniques introduce new types (in type 
theories) or new realizability interpretation-; (in type-free theori<•s) by which we 

59 



60 C'/1.\P'l ER 1. !l.\DF-.\10.\0'1 (),\[- 1.\/Jl CliVI· JJEFI\'JTJOSS 

can clirninal<: rc•dundaut parts in programs. In ol her words. each of I he'ie -;y-;tems 
gives a fixc•d. uniform way of program improvement. In order to introduce a n~w 
technique: for improvement, they must re-define the whole sy~tcm and rc-pro,·e 1ts 
consistency (in type theories), or re-define the realizability intcrprclalion and rc­
pro\'C' its ~;oundness (in type-free theories). These tasks belong to meta-theories. 
and go beyond the original theory. 

Om t~im is to formalize various program impro\'crncnl techniqucs in a single 
fnllll<'work. Narrwlv. we want to haw• a mechanism to define and reason about 
the relation ··cl terr~ a is a program (proof) of a type (proposition) ,f'. Since this 
is a rnc•tathc·orc·tic notion, our theory should includc a <'<'rlain kind of rdlection. 
If such a tll<'ory is formulated, we can add a new optimization lC'chnique to the 
sysl<:111 by rc·-dcfining the relation, and prove, for instance, equivalence of the old 
and nc•w dc•finitions. l\llorcover, if the mC'IalhC'ory is also constructive in nature. 
we can c•xtr<~ct a11 optimization program from thc proof in the mctathcory. The 
rdlcrt io11 n1C'rha11ism is quite useful in proof/program de\'eloprnent, as pointed out 
by ,\lien ct al[n]. 

IIO\\'('\'c•r. the: nat ural definition of these relations leads us outside t hc realm of 
po.'Jtlll'f inductive definitions as shown below. \\'c call a pair of I he following two 
rc•la t ions a promlnlily relatiOn. 

1\ is a proposition (writtcn as Prop( 1)) 
a is a proof of A (written as Proves(a. ,1)) 

In l\lart in- Lof's type theory(29]. these relations correspond to 1 h<' judgements A Sel 
and a C A. In a usual first-order logic, they correspond to a mctamathematica.l 
st a l<'m<•nl .. !\ is a formula" and a formula "a rca lizes A''. If we formulate Prop( :t') 
a11d Proves( .r, y) naturally, they look like: 

Prop(y) ~ 

3u.3l'. Prop(u) 1\ y = (u:)v) 1\ \/e. (Proves(c.u)::::) Prop(v)) 

Proves(.r.y) ~ 

3u.3r. Prop( u) 1\ y = ( u:)p) 

1\ Vt. (Proves((., u)::::) Proves(:~·( c), t•)) 

wh<'rc :) r<'presents a conc;lant corresponding to logical implication. and ~ repre­
s<'nts logicill equivalence. In order to regard the<;e clauses as an imtancc of simul­
taneous inducti\'c' definitions for two predicates, the right hand side of~ 'lhould 
he monotone llowe,·er. in the abo\'c formulation , an occurr<'ncc of Proves( e. u) 

appears in the· kft side of::::). which meam that it is a. negative occurrence. This 

1.1. IN'I'H 0[) l CTJO.\ 61 

kind of induct ivc cldlnitions does not fall in <Ht ordinary schc•me of po..;itit·c inductive 
tkfinit ions. 

Sc•\'<'ral rcs<'archers ha\'e attacked thi<i problem in diffcr<'Til contexts. 
B<•c•..:on :IJ u~;c·d two kinds of lcchniqtH•s: the first on<' ust's the ordinal number~ 

in cJa.;sical sC'I theory. The oth<'r one "irnultan<'<>Hsly d<•finc•s a pair of the pr<'d­
icalc•s Proves and its negation Proves by a monotone inductive definition. and 
th<'ll -.Proves(.r,y) "--+Proves is proved using tlu• law of c·xcluded middle. Both 
l('chni<ptc!S rC'ly on clas'-'ical logic. 

.\< zc'I:2J proposed 1-'rcge struct mes. Frcge st rue! ures hen'<' two basic notions. ·'a 
lcrnt rt is a proposition'' and '·a term a is a tntc• proposition". In order to construct 
!·'reg<' structur<'s in sct theory, he cncountc·red similar diffindty. ,\ sa solut ion, he 
introduced (1 new order between a pair of pr<'dical<'s. With r<•sped to this order. 
the p<m of dc•fining fornmla.s oft he two not ions above becom<'s monotone. t h<'rdore 
the lc•ast fixpoint cxists. Although hi); nwtatheory was clas'iicaL he 'ilated that 
the construction might be considcr<'d COJlstructi,·c. llayashi and Nakano[21] uscd 
a -;irnilar order to con<;truct models for their I hcory P.\. Our method i'> similar to 
t hc•ir works in that we regard our inducti\'C' dcfinit ions as monotone by changing the 
d<'finit ion of the order. \\'hat is new in our thC'ory j.., that we give a general form 
of such a st vic of inducti,·e definitions, and that W<' do cvcryt hing in a construct in· 
framework in the sense that our theory has a sound rcalizahilily interpretation. 
and <•njoys the program extraction theorem. In this chapter. we will intcrpret a 
formalized \'ersion of Frege struct mes (the Logical r heory of Construct ions[3]) in 
om 1 h<•ory . 

. \Jien [·l. .')] ga\'e a type-free interpretation for f\lartin Lof's type theory. II<' en­
cmml<'rcd a similar situation as oms, and called the nc'C'<'S'lary scheme of inductive 
dcfinit ions half-positive. By using an induct ivc• dc•finit ion for higher ordcr predi­
cates, he was able to usc ordinary (strictly posit iv<•) induct ivc definitions to interpret 
t-.1 art in- LM's type thcory. II is arguments can be u ndc•rst ood by classica.l set theorists 
i\S w<·ll as cons! ructivists who acc<'pl monolmH' induc1 ive dc·flnit ions. A !though his 
motivation was different from ours, wc sha ll compare his work and oms in Section 
6. Smit h(t!O] formalized Allen's inlerprctation in a Martin-Lof's type theory plus 
r<·curs i \'<' I y pcs. 

l)ybjer[l-5. 16) prc>c;enled a general formulation of a r<•cmc;ive-induction mech­
anisrn c;o that the universe hierarchy become's definable in 1\lartin-Lof-style type 
th<•ory. l'hc• motivation of our th<'ory is similar to his approach. and we shall also 
compare his work and ours in Section 6. 

In this chapter we present a gen<'ral mechanism of inductive• definitions by which 
one can d<'fi ne the provability relation and c;imilar not ionc; naturally. The mechanism 
is based on a form of a monotone inductive dcfinit ion with a refined order betw<'en 
pr<'dicatcs. \\'c call this mechanism half-monotone induct ivc definitions. \\'e define 
a realizability interpretation to our theory, and prove its soundness by followi~g 
Tat.:mt a's work[,t6]. We shall demonstrate how various conc<'pts can be defined m 
om theory: in particular, we show that the Logical Theory of Constructions and 



()2 Gl/A P'/'EH 1. IIA !.F-.\10.\ 0 I 0!\'E ISIJ£iC'J'l\'E J)J~f 1.\ll'/0 \..., 

!\lent in-Lof's type' t hcory can be int<'rprdcd. W<' also show that \\'<'can irnpro:·c· t h<• 
dficic•rtcy of progntnts by defining a r<'fincd pro\'ability relation. Om tlH.'ory <'TIJOYS a 
!';OHIICI n·olizahility interpretation, .;o that we hi\\'<' the program <'xtrociJOn theon·m. 
By 1 his tlworem. \\'<'can extract programs from proof, of fonnalizc•d met ath<"on•m<;. 

'I his cltitpkl is organiz<"d ,,s follows. Sc•cl io11 1.2 gi\'<'-; om basie I h<"or.' BT. 
S<·c·t ion •1.:3 i11t rod11rcs om indltrl ivc• definition nwchanisrm. IIMID ami HMIDo 
into UT. and gi\'(•s its rnodc•l. Sc·c·lion ·1.1 pn•sertls a r<>ali;.abThly irl1erprclat~mt. 
,,nd pro\'<'" SOTITI<htc•ss for a rc•strictc•d \'crsion BT+ II:VliDo Section 1.5 fonnahz<'~ 
prov;tbility n·latio·" ·u om theory. \\'c• also •dtow tltat progriiTll imJ>rO\·eme~t i-. 
p\lssihl<· in UT f II \1ID0 . SC'ctiort I.G intcrpn•t .. I he Logical Theory of Constr tel on:­

dTHI bridl\' rrH:lll lOll'- 1 he interpret ;tl ion of 1\lart in L(if"c; type th<'<>ry in BTtHMIDo. 
Sc·c·t ion 6 .comp;m•s om work with Allen's and lhbj<·r's works. and gi,·<·s concludir1g 
n•Jtlit rk!;. 

4.2 The basic theory 

\\ c· ddiH<' om basic I hcory BT in this 'i<'rl ion. 
BT i<; ell I ill I 1111 ion ist ic first -ordc·r t hcory for cornpu tat ion. ,\I I hough om fin a I goal 

i-; to fm malizc• Fn·gc· st ruct ures[2]. HcOcct i\'<' Proof Theory~31] and similar th<"oric•s. 
W<' shall gin· our lwsic results in I IH· framework of ordinary fir<• I -order logic. sine<' it 
i'i l'asicr to mtd<"rst a11d. 

Tlw definition of tc•rms in our language is a slight modification of Sato'si11}. 
Tnllls arc <'SSC'TII ially type-free ,\ l<'rrns with n and ;3 con\'<'rsions. We adopt t lw 
call-by-name s<•mant ics. but the mal <'rial of thic; chapter can easily be applied tot ltc 
call-by-,·alue semantics. 

We assum<' tltat th<'re is a countably infinite set of variabl<'s and a finite set of 
co11stants. and that nil. true. and false arc constants. \\'e also assume that a 
unary function symbol c? is uniqtwly associated with each constant c. 

Definition 18 (Term) 

.. - .r 

c I c?(i) 

(t1, l2) I car(t) I cdr(/) I pair?(/) 

A~t.i l1t(l2) I fun?(t) 

1f f1 then i2 else /~ fi 

whf rr. :r i.o.; a ra1·tablt and c is a constant. 

Terms (l1, /2). car(/). and cdr(l) correspond to cons, car, and cdr in Lisp. We• 
us<' the standard nbbr<'\'iation for lists: (i 1) for (l1. nil), and (t 1 t2) for (l 1, (t 2 • n1l)) 
aud so on. 't erms ,\.r./. l(t) and (lf 11 then t 2 else t3 fi ) arc as uc;ual. Terms of 
the form of c. (t1 .l2). or >.x .t arc called canonical. For a canonical term t, the termc; 

1.2. TIIJ.: 13 \ '->/( TIJEOHY 63 

c?(t).pair?{l) and fun?(l) ar<' equal to true if they arc in either form of c?(c). 
pa1r?(( ..... u)) or fun?(A.r., ... ), C\Tid <'qual to false olh<"rwi-;<'. \\'c assume a utll-b,·­
llamc <''a lua I im1 trl<'chclJllsrn: for <'Xamplc. car( (n1l./)) j-; cqua I to n1l regard lc•ss ~f 
l . . \ term of I he form ar[l) denote-; the r<'"ult of sub-;titution Cl" usual. 

\\'<' t h<"n define fornmlas <n1d ab<>tract c.;, \\ <' assume. for <'<~ch natural 1111Tllbcr 
11. there is a countably infinite set of pr<'dical<' ,·ariablcs with aritv n. Pr<'clicat<' 
,·ariables ar<" ll'oed for induct iw: d<'finition. Since the~· arc not quantified by V or 3. 
BT is a first onkr th<"or~·. 

Definition 19 (Formula and n-ary Abstract) 

I , .. - ..L lll=/21'1 
~"1 1\ 1'2 I FvF .. I I • F1 :) 1·2 
V.r.F 1 3.r.F 

A"(t1. ···.In) 
Ao .. - F 
/\ n .- xn 

,\.r.An-1 

p.\'n.An 

(for utrh 11 > 0) 

whu·c .r. I and \' 11 
aH 11/flo l'fii'Utb/o; for a l'fll'labh. a lr:nn. and ar1 n-ary pudi('(l/f 

/'(fl'i (( blc. 

t\ formula of the form ..L. I 1 = /2 • or I ! is called alomu·. a l means that I IH' 
term a has a canonical form. Th<' formula /\"(1 1, .. ·,/n) rcpr<'S<'nl.s the applicolion 
of n l<'rms / 1,· • • ,ln to an abstract A". The superscript n for predicate \'<niabks 
and abstracts is often omit ted. \\'c some! irne" call an abstract <t pr·rdir.atr. \\'c write 
a list of n distinct \'ariables .r1• · • · •. rn a.; x. and a list of n l<'rms I 1, ···.I as t . 

Similarly. the formula ;\(/ 1•• ··.In) is abbr<'\'iatcd as A(t) . ..,A and A .--. lJ arc 
abbre\']ations for A :).land(/\:) /3) 1\ (JJ:) /\).respectively. The formula J\x JJ] 
r<'prcscnts th<· formula A with lJ substituted for X. We often omit tlw subsnipt X 
if it is appar<'nl from the conkxt. It is also wrill<'n as /\{X:- /J}. 

In the following. we will usc mcla-\'ariablcs .r. y, .::. w for \'ariables. s./, 11 for 
l<'rms. A. 13. F.(; for formulos and abstracts. and X. Y for pr<•<hcalc \'ariCihlcs. The 
precedence of connecti\'e<; i<; in the order/\, V. :).V.3 (the forrncr is strongc•r). \\c• 
also assume:) is right a.ssoc1ativc. namely A:) 13 :::>('means A:) (B:) C). 

The formal system of BT is given in the nCI,Iura.l deduction sty l<'. We have• th<' 
following t l11'<'<' classes of axioms and inference rules: 

• Axioms and Rules for terms 



6tl ClfAPT£R 1. IIALF-:\fONOTO.VE 1.\"0UCTJ\E DEFISI'f!ONS 

• Rules for equality 

• l111les for logical connectives 

These a.xioms and rules arc quite standard for first-order intuitionistic logic. and 
t hc•reforc omitted. We do not adopt a. logic of partial terms. so quantifiers range 
over a.rbit rary terms, not necessarily canonical nor normal terms. 

If a formula F is proved from <1 set of form11las A1• • ·· : An in a t hcory T. we will 
write it as A1, ···,An 1-T F. 

4.3 Inductive Definitions 

In this sect ion, we present an extended mechanism of sim11ltancous inductive deft­
nil io11, which plays a centra.! role in our theory. 

i\s we <'xplained in Section 4.1. we need a simultaneous definition of two predi­
cates Prop and Proves. The definition should al low negative occurrences of predi­
cate va.ria.blcs in the ternpla.te1, which means the template may sometimes be non­
monotonic. This kind of definitions is not legal in com·entional formal theories for 
positive inductive dcflnitions. 

llowcver, the intuitive meaning of the pair (Prop. Proves} has some kind of 
rnonotonicity; Prop(AAB) is defined by using Prop(A) and Prop(B), which arc a.l­
rea.dy dcflncd. Prop( A:) B) is defined by using Prop( A). Prop( B), and Proves(:1· . A). 

Sine<' the set of those r satisfying Pr oves(r, A) is defined at the time of defining 
Prop( A) and will never be changed after defined, we may consider that Prop(A::)B) 
is dcflncd by using already defined concepts only. 

To formalize this idea., we define a refined order ~R on a. pa.ir of unary and binary 
predicates (P, Q} as follows: 

~ 
(Po,Qo} 5:n (PI,Qt} = 'V:r. (Po(:r) :> P1(:r)) 1\ 'Vx,y . (Q0(:r,y) :> Q1(:r,y)) 

1\ v~r. (P0 (:r) :> Vy.(Q0(x,y) foot Q 1(x,y))) 
It is <'ssentia.l to have two predicates which have a.n overlapping a.rgumcnl. The 

second predicate Qt can be la.rgcr tha.n Q0 only outside of the domain of P0 . which 
rn<'a.ns lhctt those y satisfying Q(:r . y) is determined a.t the time P(:1·) becomes true. 
With respect to $n, the naive definition of (Pr op, Proves} becomes monotone, and 
we ca.n regard it as a legal inductive definition. We call a monotone inductive 
definition wrt 5:n a half-monotone inductive definition following A llcn 's term half­
positivc[5]. 

Aczel[2] used a similar order 5:A in his semantical framework. For two sets S 
and T with T C S, the order ~A is defined as follows: 

(S'o. To} ~A (St. T1} ~Soc S1 1\ 'V:r E .50 . (:1· E T0 foot :r E Tt) 

It is easily seen that ~A is a special case of ~n: For a. pair of sets (S'i, Ti}, we define 
~ ~ 

?;(:1·) = .'!' E Si and Q;(:1·, y) = :1· E T; 1\ y = 0. Then (S'0 ,1Q} ~A (S1 , T1} are 
1 We call the defining formula in an inductive definition a template. 

.J.."J. 1:\'DUCTI\ 'E DEFJNITIONS 6.5 

cq11ivalenl to (Po.Qo} 5:n (P1,Q 1} pro,·idcd that 1: C S, (fori= 0. 1) holds. lienee. 
our orckr can be regarded as a generalization of Aczel's. 

[n this section. we first review Tatsuta 's theory and realiza.bility interpret at ion 
for ordinary monotone inductive definition in a context of a type-free first-order 
l heory. \.\'e then introduce a half-monotone inductive deflnil ion and canst r11ct a 
model of the extended theory. A realizability interpretation nnd its soundness proof 
will be gi,·en iu the next section. 

4 .3 .1 Monot one inductive d efinition 

Tatsuta [46] introduced into Beeson's EON(7] a mechanism of monotone inducti\'<' 
ckflnitions. Then he defined a q-rcalizability interpretation. and proved its soundness 
for a restricted ,·crsion. Vl/e first reformuli'ltc his results using our theory B T instead 
of EON. 

D efinition 20 (Natural order between a bstracts) Let P0 , P1 be n-ary abstracts. 
and x be a list of n distinct variables. Then we define 

This relation is an order mod1do logical equivalence, na.mely we identify two predi­
cates which arc logically equivalent. The s11bscript N indicates this order is Cl nat uri'll 
one. 

D efinition 21 (Monotonicity wrt. $ 1v) J,et A be an n-ary obsf7·art, whir·h pos­
.c;ibly contains an n-ary predicate vm'iablc X. Then we define 

M ONO(A;X) 

where X0 and .\'1 arc fresh n-a1·y predicate variables. 

VVeoften omit X in M O NO (A;X). Wcsa.y A is monotone in X if MON O (A: .\') 
holds. 

The mechanism of monotone ind11ctivc. definitions (MID, in short) is that.. for 
any A si'l.tisfying MO N O(A;X), we ha,·e the least solution of Vx.(A(x) foot X(x)). 
We denote this solution as fl.'>;. A. Since there wa<; a. technical difficulty in at ta.ching 
rea.lizcrs to the full MID in a first-order theory, Ta.lsuta formula.ted an additional 
condition ca.llcd MONO-Q l a.ncl allowed MID only when MON O-Q (A: X) is sa.t ­
isfi<'d. Roughly speaking, MON O-Q (A; X) is the condition 1 hat the rel<~t ion ~-c 
realizes A(x)" is monotone in the rela.tion "e realizes .\" (x)". Since M ON O ( A; X) 
docs not subsume MON O-Q(A; X), this is a. proper restriction. 

The rules for MID0 , a. restricted version of MID, arc a.s follows . 

MO N O(A) MON O-Q (A) ( ) 
/' fl-eq 

Vx . Ax[ttX.A](x ) H (ft.\ .A)(x) 



66 CI/APTEU 1. IIALF-.\fOSOTOSI~· h\"Dl"C:'/'1\'E /JEF/S/T/0.\'8 

MONO(A) MONO-Q(A) 
,,x.A S.v C 

Ax [ G'] ~ .v C ( . I) 
ji-Jn( 

wll<'rc' {' i-; itTI nrbitrary /l·nry abstrncl. The first rule· 'ilatcs that JIX.A is a ~olutiott 
ofVx. A\X) • • X(x). Tltt' second rule stales that pX.A is a least o.;olutiott . Tnh tla 
g<l\·c· it rca liz a bi lit y i 11 t c•rpr<'l at iort oft lw 1 h('Ol'.)' with MID0 in tit(' t he·ory wit It MID. 
i'l rt d provc·d i 1 s !'01111 d nc•ss. 

MID •llld l\..UDo cart lw c•xkuded to a simult <nwous induct ivc· ddlnitio11 straight ­
forwardly. 
Remarks 

M IDo is <lit c•x1c•n.,;iou of posit i\'c induct i\'<' ckfinit ions ( wltnc all the occurrcnn·s 
of.\ Ill 1 ntusl lw in synlc1t 1 1< ,Illy positive positions). sine<' <'H'ry posit iv1' ;\ .... atis­
lle•s 1\tlONO( A) aud MONO-Q( .1 ). \lmc·o,·c·r. 1 h(' c•xlc•nsimt is propc•r a-; sho\\'11 by 
Tat sui a\ <'Xilrnpk. I'\'. L 1\ (X :J .\ ). which is not posit in'. but 1 rivially 'iati..,fic•s 
1\101\10 <H d MOI\iO-Q conditions. llowe\'<•r.ltc has shown11o subst<mtial c•xampl<' 
which cktnollslratc•s Ill<' di!Tc·rcncc bctwe·en posili\'C· cHid monotone inductive defini­
tioll'i. ' I hc·rc.for<. prcHtiealuseofhis results wasTJol known. In the• following. we will 
c•xtc•nd his MI D (MIDo) to obtain HMID (IIMID0 • rcsplccti,·ely). Our dC'flnitio11 
of Ill<' n•alizabilit~ intcrpr<'lation io.; ec;scnliall) due to latc;uta\. \\'hat is new is that 
om t h('ory with IlMID0 hils TWill)' usc•s in defining notions such as the pro,·abilit ,. 
r('l<lt ion. · 

I atsuta also ga\·c· a n•alizability interpretation to full MID in a second-order 
I heory. This inlcrpr<'lat ion is quite str<lightforward, since one can direct I\' dcfin<' 
the lc•ast solution of Vx. 1\(x) • I X(x) as V\. (Vy.A(y) :J X(y)) :J x(x) in a 
scco11d-ordc·r theory. lie cdso discussed the di!Tcrencc of thcs(' two interpretations. 
!le•re•l ~vc do not get into the long-standing debate bdween first-order thcori('s pl11" 

mduct1on pnnciples (intuitionistic mu-< alculus) versus second-order thcoric:s with 
I he abov(' c•ncodmg of the least flxpoint. \Vc just quote Tatsuta 's remark t haL a 
~ealizc~r of MID in a first-order throry has a loop c;tructurc (a recursive call) inside• 
tl. wf11lc• one m a sc•cond-order t h('ory (via the a bovc encoding) does not ha\'<' a loop 
st ntclmc. Sc·c· [t16] for dc•tails. 

4.3.2 R efined order 

lien• we dellnc the refined order disntsse•d at th(' beginning oft his sc•ction. and will 
usc• it in inchtclive definitions. 

Definition 22 (Refined order 2
) Let (?.0 Q0 ) and (P Q } be · 1 1· 1 . · t. t · pal1·s o pru 1ra r s 

Wllh anfn., n and n + m f'he.n u•c df:fint (P. Q } < (P Q } . 11 
O· o _n 1, 1 a.s 1c conJuncflOn 

of thr follou•mg lftru formulas. 

2T his relation i::, also an order modulo logrrnl rqmrnlenrr.. 

1.3. 1.\'D{T(''fl\ 'E DEF/.V/'f/0\.'> 67 

1. Vx. P0(x) :J J1 (x 

2. Vx. y Q0 (x. y) :J Q. (x. y) 

.1. Vx.y. J10 (x) ') Q.(x,y) :J Qo(x.y) 

tt•hr H x (y } an .... ((f!tenrr s of n (m) di .... tinrt t•uriablr .~. 

The flr~t two condition::, arc• the same as the condition..; forth< natural on1<'r 
< \'· Tlte diffc'r('Jtc<' arise•s in I he ll tird one. This condition log('! her wit It the s('cotlcl 
;-onclit ion says. for any x o.;alisfying P0 (x). thc• prc>dicat('<; QLJ(x. y) a11d Q, {x. Y l <1r<' 

equivalent In other words. Q 1 is large•r lhnn Q0 only outside of the domni11 (dellnc·d 
by f1

0
). \\'c· rail I his ordc•r a r<'fin('d order or <Ut R-ord<'f. in short \\<'say 1 hell tlw 

second precheat<' Q, d<>T><'nd" on the fir:,t predicate P,. 
\\<'can c:xtcnd the /{-order tot he ease of rnor<' than 2 predicates. for inst a nee. (j, 

depends on P,. and /?;depends on Q;. To formalize a g('nerill scheme. \H' inlrod~H <· 

a not ion of n dependency function. For a nil I mal number n. n dcp<·ndcncy funrll<>tl 
df is <t finil<' function fr~rn {1. ·· · .n} to the s<:t of natmal11umbcr". which satis!lc•., 
o' < d.f(i) < /. \\c say 11 is the dC'grcc of(~{. 

D efinition 23 (R efined order in general case) I' f d.f lu a dr pnulr rtr·y fu nc­
tion of df,(jl'ff 11. For (t(I(J scqurnccs of pndttalc.~ (P1

, · • •• P"} and (Cjl: · · · · (j"} 
wfloo.,r an{Hs COI'I'UiJJOTid II'C <ifj/Tic (P1 ·· . p n) 5:n(n,1fl (QI ..... Qn} ({ ,'> ; 

(fJH('l. V} <;n (Q-If(•l,Q') holrf . .., for rarh i (I '5 i =5 11) 

whr ,., P0 aud Q0 au Ax .L . 

If rf{(i) -: 0. the condition becomes fl' 5:N Q'. Not<' lhnt. I he• orders 5:,\ a11cl <11 
can 1><'. writtc•n as <S:n(IA/.v) and 5:m 2,dfr11 whc·re df,'\( 1) = 0. dfn(l) 0. (~fu(2) - I . 

Example 
Let <(f be• a dependency function of dcgr<'<' 1 with df(l) = df(2~ =.O.r({(:l) =I 

and df( •l) = 3. Then the order (Po. Qo. HfJ . l'lo} <S:n(·l,df) (P,: Ot · Ht · ·"t} lS 

p
0 

<y p
1 

1\ Q
0 
<\ Q1 1\ (P0 . U0 } 5:n (1)1• Ht} 1\ (Uo. So} 5: n (H •. -"'t}· 

V\'e call this orde1 Hi-order. 

4.3.3 Half-monotone inductive definition 

\\<'first extend the language of our th<·ory. Let A, and .\, b<· an 11,-a?' abslr<~ct 
and an n,-arv predicate ,·ariabk for 1 < 1 5: n. Then. 11Xi.(A,. · · ·:,!\.": .\; •· · · · .' Xn} 
· · b t . ·t ·1 t v . . . \' bound bv this 11 op<•rator. I h1s form wtll be 1s an n,-ar~· as rnc WI 11 .'\.,, ,. n • . 

used for representing t he 7-th componen t of n least flxpomt. . 
1 he definition of monotonicity docc; not change. but we present 1t here for com-

plct ('ness. 



68 CIJAP'l EH 1. 1/.1\LF-.\IO:\'OTO:VE f:\DL'CTJ\'E OEFINJTJO:\'.S' 

Definition 24 (Monotonicity wrt. ~n) Let (A. B) be a pair ofn-aty and n_+m­
w·y abstmrts, each of which possibly contains n-ary and n+m-ary prccltcalf t•anablcs 
X and Y. Then we define 

HMONO(A, 13: X, Y) ~ 
(Xo. }o) <n (XI. Y,) :> 

(A.;,y[X0• ) 0], Bxy[.\0, Vo]} ~R (Axy[XJ. }',], Bx.Y[XI. )'d) 

\\'c orten omit X and )' in HMONO(A. B; X. V). We ma.y similarly clc~nc the 
liMO NO condition for the CaS(' or the gen<'Tali;.wd order ~R(n.df)· 

LC'! us abbre,·iate as follows: 

Jlx ~ ftX.(A. B: X . Y} 

My ~ 1' }'.(A. 13; X. l ') 

I' eq ~ Vx. (:\llx (x) (--+ 11[Mx, My](x)) 1\ \lxy. {i\h(x,y) ~ B[Mx . 1\r/y](x. y)) 

Th<'n the infcrc11ce rules for a ha.lf-monoton<' inducti,·c definition arc as follows: 

HMON O(A. B) ( ) 
11-eq-0 

11-eq 

HMONO(A, B) (A[F, G], B[F'. G]} ~n (F, G) ( . ) 
p - lnd- 0 

(Mx, i\tly} ~n (F, G) 

wll<'rc P and G arc arbitrary n-«ry and n +m-ary predicates. 
1\ c; llSua.l. the ~rst rule states (Mx, i\!fy} is a solution or an equ«.tion. and the 

s<'concl nllc states the pair (Mx. My} is the least solution with respect to the order 
~n. 

Similarly. we c<Hl de~ne the p-eq-0 and 11-ind-O r11les with respect to an arbitrary 
order ~R(n,dfl · 

Th<' union of ft-eq-0 and 11-ind-O for an arbitrary order ~n(n.df) is called HMID . 
Since t h<' order ~R(n,df) is a.n extension of ~N, HMID is an extension of MID. 

4.3.4 Restricted version of half-monotone inductive defi­
nition 

,\ s in MID. we need additional conditions for gi\'ing a sound reali2a.bility intcrpre­
t<ltion. The ~rst condition HMON O-Q is« corresponding condition to MON O-Q 
in MID0 . The s<'cond one is that, we can usc the p-ind rule only when the abstract 
G is the least fixpoin t My. and the order is ~n {of degree 2 ). Under t hcse conditions, 
the rules become: 

HMONO(A. R) HMONO-Q(A. B) 
ft-eq (1' -eq-1) 

1.3. 1:\f)l'CT/\.E IJEFI:VITIOSS 

HMONO-Q(A. B) 
HMONO(A. B) 

In the lat l<'r rule, we write two conditions horizontally for n typographic reason. 

69 

Tlw pr<"'cise form of HMONO-Q(A,B) is described in Section 1.4: here we just 
remark that HMONO-Q(A . B) b<'comes MONO-Q(A) whf'n 13 is identically true. 

llnckr the conditions HMO NO and HMONO-Q. the first rule states that 
(.\lx, .Hy} is a solution. <md the second one stai<'s that it is the least one. Since 
1'-ind-1 rest riels the use of induct ion principle only for the first predicat c ( F in the 
a bo\·e definition), we cannot in fer the minima lit)' of ;\fy. 

Let liS consider thnt the first predicate ."vfx defines a. domain, and the second 
predicate ;\![}' dC'fi11es a. property on that domain. Then we need an induct ion for 
:\tlx. but not for !Hy. We ha\'e no interest in the behavior of My(x,y) when· .\{y{x) 
docs not hold, since such an xis 011lside of the domain. Jn Sections t1.5 and 1.6. we 
shn.ll show the above formulation is sufficient for most purposes. 

The ft-ind-1 rule subsumes the following more con"enient forrn: 

HMONO(A. B) HMONO-Q(A, R) A[F, My] ~N F F ~N Mx 

Mx ~N F 

The union of the p-eq-1 and Jl-ind-1 rules (for ~n order) is called HMIDo. Note 
that HMID0 is an extension of MID0 . 

Remark 
Not c that, for our purposes, a positive inductive definition is worthless since W<' 

Cilnnot hn,·e a mea.ningful syntactic condition which subsumes the third condition 
in the definition of ~R: 

This contrasts to the corresponding situation in type theory by Dybjer[l6]. In his 
theory, the condition for the inductive definition is given by a purely syntactic way. 
V•/e shall compare his theory «nd ours in the conclusion. 

4.3.5 A model of HMID 

Let us explain how to construct a. model of BT+ HMID . 
We begin with an arbitrary model of BT; there is a domain D, and all the terms 

«re interpreted as clements of D. An n-ary predicate is interpreted as a subset of 
Dn. Let P(S) be the powerset or S. Given a degree n, a dependency function df 
and a. sequence of arities m 1 , . .. , mn, we define an order ~n.df on Dom as follows, 
where Dom is P(Dm 1 ) X··· X P(Dm"). 



iO ( '//, \ P'J'EU 1. /fA l.Jo'-;\10.\"0TO.VE lXDl 'C'Tl\ "E /JEFJ.\"/'f/0.\"~ 

Definition 25 (Order Cn,dj) FarSI~ u m•, atld '/~ ~ om, {I ::. i ~ 11} , 1/'l chjlrH 

( ...,. c ) C ( '/ ' '/ ' } 1j. rol ' crJr·/1 ,· 11'1'111 1 _< i _< n , thr COTIJ.IINC' {ion of the '- I · " · "~ 11 _ n rlf I · · .. · n J' 

following ronrli17on .'i hold. 

ll'lll n TIS ~ { (s , t} I s C ,..,· 1\ (s. t) ( '/'} 

Tlw ordn C ,, ,r/1 jnst con<•sponds to til<' !i(11. r~{)-ord<'r. \\<'may sonl<'tinH'S omit 
t lu• Sttb-;cript ill C ,1,./f · 

Dcfinitiou 26 {1\'lonotonc Operator) A ,, CJIII TIU of funcl/011' I·~: /Jolll ~ 'P( o m, ) 
(for I < i < 11 ) j., monolont if and only tf, for all S 1 • '/ ~ ~ /)m• , 

Lemma 3 'f'IH follou•lli!J holds: 

1. ~ IS on orrlr I' 011 /Jom. 

•) '/'he hast rlunr nl uisls in Dom. Morrot•r.r, rr·u'y rhrrrlrd sub.sfl of Dom has 

a frost U]JJH I' bound (lub) wrt ~-

.l. Then u·i.,r., a lc o.,f fi.rpoml for wth monotone opcmlor wrl !;. 

Proof. Tit<' llrst clatts<' of the l<'nHmt is straightforward. l'he sC'cond clau<;c 
rn<·Hns thnt /)om with Cis a complete partial order (cpo). which implies the third 
clause (in classicHI sd t hcory). 

,\s for t h<' s(•rond claus<': let ~ b<' a dir<'ct<'d o;d in Dom. Let / 1 b<' 
U{ X (XJ. ···. X ,) C ~} W<' will pro\'<' that (L1•• • •• Ln) is the lub of~-

~u ppo-;c• i I 1s not an upp<'T bound of ~- l'hc'TI I here exists ( S 1, · · • • c;·n) E ~ 'UCh 
that (S'•· · · ·. S ) ~ ( ' · •· · · ·. Ln) docs not hold. l~rom the dellnit ion of [,i· we ha\'C 
tIt at /.,IS',f/(tl 1s propctl~ larger than 8,1.)'1/(i) for some 1. l hen W<' hav<' that there 
cxi'i!<i (!\.· ··, f'n) (~such that 'f~l{s} is properly larger than S'd{s} for some i 
<trtd som<' s ( .')d/(tl· llut this contradicts to the dir<'ctedn<'s'i of .6, sine<• W<' do not 
hnn' an upper bound of (S., · · ·. Sn) and ('/'1, · · ·, 7~). The minimality is apparent 
from the dC'finition. 

\\'c can alo;o pro,·c· I hat (0. · · ·, 0} is t h<' least clement in Dom. 
In contrary to the set inclusion order. a least upper bound for an arbitrarv subset 

wrt Cn(n.dfl docs not always exist. since the union of two sets may ha,·e t~o many 

1..'3. 1.\'IJfl( ''/'/\ 'E f)EFIXIT/(>.\S 71 

<'1<-nwnt .... lu particular. the' wltol<' domain (Om1 . .. • • J) mn) is uot alway<; gn•atcr 
than an orhit rory clcnwnt in Dom. 

\\'<'Celli int<-rpn·l a monolotw OJ><'rator in BT+IIl\110 h_,. a moTtotort<' opcrator 
in lit<' mode·l. From tltc l<·mma. \\'e' ca11 ittle·rprd each indncti,·<·ly dC'fincd predicak 
as ct l< 'ilSt fixpoillt of llt<' COIT<'"P<>rtding oJH'rator. It is casy to "<'C t II<' rul<'s 11 -cq-O 
and 11 -ind-O <Ill' sat isfl<'d. As a e·oll·W<pwnn•. Wl' ha\'<' tIt<' followiug t he•or<'m. 

Theorem 14 (Consistency) 
1. H'r r·" u r·o n.,f ru d " m odd of B T H l i\HD from rw y 111 or!, I of B T . 
) BT j-lli\HD (thr nfon . BT t-IIMID0 ) ; ... ron.si .... trnl . 

Our mod<•l Co!lst ruction is bas<'d 011 chtssical set t lt<'<H,\' to c·nsun: the cxist<'llC'<' 
of 11 lc•;Jst llxpoint for <'ach monotone• OJH'rator. lknc<' it de><'s rtot difTcr so 11111clt 
from :\cze•l's[2] and llayaslti cllld Nakano's[2l]. The ailll of this sc•ction i-. just to 
show lh<' con<;istc•rtcy of our tli<'OI)' in it..; gcH<'ral form Ou1 claim that our tl~t•ory 
is con..;t met i\'c' ill nat nrc i.; not due• to t hi~ model const ntct ion. but due to tlw 
realizability inlt'q>rctation de•firwcl in th<' next section. 

4.3.6 Example of HMID 

Nat ural Numbers 
Nat. the pr<'dicatc for nat ural numiH'rs. 1s d<'finc·d as follows. Let A h<' t h<' 

following l<'mpla t e: 

-X.r .. r = 0 V .3y. (y = suc(.r) 1\ .\(y)) 

whcr<• sue( r) is <'Ttc·odcd by (0 .. r). I h<•n. Nat can lw ddin<'d as ,,x.,t Since A is 
po<;iti\'C' in.\. HMONO and IIMONO-Q conditions an• autoltlatically satislic•d. 
The USll<tl induct ion principle follows from 11-ind- I. 

Prime Numbers 
·r h<' n<'xt <'XCimpl<' is a predicat<· for prime numbers. 
1\ t first t bought. it is defined by: 

Prime(n) +-~ Nat(n) 1\ 1 < 11 1\ \/m. (1 < m < 11 :::>..., Div(m.n)) 

whcr<' D1v(n1.n) means :.m di\'id<'s n''. 
At th<· ll<'Xl stage, we want to rrplace it by Ut<' following one: 

Pnme(n) ~ Nat(n) 1\ 1 < n 1\ \/m < n.(Pnme(tn) :::>..., D1v(m,n)) 

Since the latter coni a ins a negat i\'(~ occurrence of Prime. it is not directly acceptable 

by con\'cnt ion a I theories. 
~ On t h<• coni rary. we will show that we can define it by IIMID as follows. 



('1/AP'/ FH 1. 11.\/,F-.\f0.\0'1 O.V/:' J\f)l'CTI\F /JEf.'/:\11 10.\S 

.A 6. ,\n. 11 = 0 V 3111. n = suc(m) 1\ \'(111) 

IJ 6. .An . .\'(H) 1\ I < n 

1\ Vm < 11. (X(m) 1\ ()'(m) :::>-. Div(m.n))) 

l11 1 his c·xamplc·. 1 he argurrwnt 11 i<; the O\"Niapping rtrgurncnt for 1\ and IJ. \\"c• 
assmrw lwrc that <and D1v arc dc•G!Ic'd in a standard wa\'. The 'ic'cond on<' /J(n) is 
intc·!ldc·d to rn<'illl I bat n is a prime number. 

Til<" clc•Glling forrnultl for ,\ i<> I he c.;ame as one for Nat. <>o one may I It ink it 
is IITIII<'n·ssary. l lowc\"cr, t hi-, is the trick to usc the IIMID rrwchani<;rn. In this 
dc•Gnit io11, 1(n) dctcrrnines a domain. and IJ(n) determines a prime nurnbc•r in the 
dorna111 I he· domain gradually incrcw.;cs by repeated application of, 1. \\"<• ha,·e to 
usc cl<-pc•ndcncy 011 the argument 11 between two predicates in order to gl~<nantce 
I he rnouotonicity with r<'<;pc•ct to the refined order . 

For these 1 and 13. the• HMON O(A./J) and HM ON O-Q(,L 8) conditiom 
hold <~s shown bc·low. li enee•. we have the least fixpoint ( \fx . . \/1·) for the equation 
(/\(.1"). /3(.1")) () (.\'(:1'), )'(.1")). \\'c dc•flnc Prime as A/y. Using the ind11ction rule, 
.\1>;(.1") (-) Nat(.l") is easily proved, and we get 

Pnme(n) H Nat(11) 1\ 1 < n 1\ Vm < n.(Pnme(m) :::>-. Div(m.11)) 

as a dc•<;ir<'d re<;ult. 

Verification of t he HMO N O(!\, IJ) condi t ion 
Suppose that (X0 , }0) <n (X1, )'1) holds. Since the defining fo rmula. for !\ con­

tains only a posit in· octurrence of X. it is ea<;ily seen Ax[Xo] ~v Ax[Xt]. From the 
assumption. we ha"c V.:. (.\'0 (.:) :::> (}0(.:) +--+ t'1 (.:))). Hence Bxy[X0 • }0] i'> cqui\'a­
lcnt to JJ,_y[.\'0 , )'J], and W<' ha,·c 13xy(X0 • Y0] <1\· Bx,l'[X1. }'I]. \\'e also he-we. for 
an arbitrary 111 such that Xo(m) holds, Bxy[Xo. V0](m) +--+ 13x,Y[X1• ) '1]{m). i'lnd W<' 
han• t I1C' conclusion. 

Ill<' \"crification of the IIMONO-Q(A. H) condition is postponed until Section 
•1.4 .:3. 

4.4 Realizability interpretation and its sound­
ness for BT+HMID0 

In this sect ion, W<' define a realizability inlerprc•t at ion for DT+ HMIDo in BT + HMID , 
and prm·e its soundness. \\"e use so called q-rcalizability intcrpr<'lation[i] imtead 
of r-rc•<~lizabi lit y. I he following int Npreta.t ion i-, cssent ially the same as 'I atsu ta ·., 
one except that we usc total term logic instead of partial term logic, and that the 
induct i,·r defini t ion is extended to the R-ordcr. 

1.1. IU..'.\LIZ.\13/LI'IT 1\'rERPRI·:T\TIO.\· 13 

4 .4.1 R ealizability Interpreta t ion 

\\"e ass111rw that, with <'ach predicate variable• X of arity 11. a predicate \'ariable x· 
of arit~ n t- l is uuiqucly associated. x- will be used for r<'presmt ing the abst 1 act 
\xc ( q .\ (x). 

Given a term c and a formula!\ in BT+ IIMID0• til<' q -reAlizability c· q A is 
a fornndn which is defined by induction on the structur<' of .1 as follows: 

6 
1. ( q ,1 = c :. nil/\ A where !\ is atomic. 

6 
2. c q ?.(t) = /.(t) 1\ .!.•(t. c) when• Z is a predicate variable. 

6 
3. c q A 1\ IJ = (car ( ( ) q !\) 1\ (cdr( c) q 13) 

6. 
•I. l q A V lJ (car( c)) lA (car(<) = true :::> (cdr( () q A)) 

1\ (car(e) =/:true:::> (cdr(c) q H)) 

6. 
.). c. q 1 :::> lJ = Vr. A 1\ (r q /\) :::> (c(r) q 13) 

6. 
6. c q V:r.A V.,·.(e(:r) q /\) 

6 
1. ( q 3.r.A (cdr ((.) q /\.r[car(()])AAr[car(c)] 

6. 
8. c q (A:r .A)(t) = c q A.r[l] 

6 
9. G q (/tX.(.Ax./\, .Axy./J}( t )) = 

(pX·.(>.x .A . .Axr.(r q A), ..\xy .B . .Axys.(s q /J); X, x ·, V, v · ) )(t, <) 

10. c q (/t )'.(.Ax./\, .Axy./J)(t, u )) ~ 
(/d ' •.(>.x. /\ , .Ax r.(r q A), ..\xy.B, .Axys.(s q /3 ); X , x·. V, v·) )( t , u, c) 

,\ JI but clauses 2. 9. and 10 arc quite 'itandard. Let us rxplain thc•sc thre<' 
dc•Gnitions following Tatsuta. 

Claus<' 2 is for a predicalr variable which will be usrd through inductive defini­
tion. Clau.,cs 9 and 10 r<'prc•scnt the realizability of indu<ti,·ely defined predicates. 
The rcalizn bility interpretation for induct ivcly dcfin<'d predicates I' X.!\ ic; defined so 
that thr rcaliz<'r of (/tX.A)(I) and that of Ax[pX.A](l) ar<' t lw same. SoW<' want to 
define c q (/t.\' .!\)(1) as c. q Ay[JtX.Aj(l). However, by cxpnnding ( q Ax[J' \'.Aj(l). 
we shall rncount<'r c q (p.\'.1\)(s). which we arc• cl<•fining now. By dc•fining .\ · (t. G) 
as c q .\' (l), w<' hnv<' nnothcr inductiv<' definition X*(l. e) ( ~ (c q 1\(l)), which may 
contain x· recursively. (This is a valid definition by the IIMONO-Q condition. 
which ensmcs the monotonicity in this form.) l his is the intuition of the clnuscs 9 
and 10. 
Remark 



('II A P'J'EH 1. JJA LF-,\/0.\0 JOSE u .. ;f)UCTI\ 'f.." DEll\ 1110:\ ~ 

W<· dcflu<'d tlw clau!o)t'S 9 all(! 10 for the H-ord<'r only. and Hot for tlw gt·neral 
U(n, df)-ord<•r, since 1)111 H'nlizability interpretation j..; for D'f+Hl\1l~o. awl not 
for t}w full tiH'on· DT l ll ~llD. \\'<• think our n•alizability inl<'rprdatwn may I)(' 
<'Xk(l(kd to tlw ~<·Ttnal <'itS<' in Ill<' s<aJru· patt<'m ac:; tires<' clau.:cs. but we• ha\'<' not 
d01w I lw dl'1 nil-; ~iTin' tlrt• tll('orv BT+ll1VllD0 jc:; suffici<•rrt for om needs. 

If tlw formula ( c q A) i'i pr~\'(·d, w<' c:;ay "t Itt• f(fT n1 a A is pro\'ably walizcd by 
tlw 11-nrr 1 ... r\ow W<' ('iiJJ rl<'llnc tlw condition lll\10NO-Q. 

Definition 27 (lll\10NO-Q) Tin ('{)Tiffilion IIMONO-Q( \x.A. \xy IJ) is rhj/nul 
as lht quadrll]ilt of flbslmrls (,\x.A, ..\xr.(r q A) . ..\xy 13. \x) '· ( ' q 13 .: 'monolonr 

11'1'/. H•t-onlr 1'. 

\\'c writ<' Jt.\.(.\x. 1\. ,\x. y./3) and 1/\'.(.\x. J1., ,\x. y.JJ) as /.o ClJI(I 1.,. iaJr<l 
ft.\.(). lt.\".(j. 1d'.Q. <111d ,,v·.Q a" \/0. \I,.\/~ ciTlcl .\/3 wll<'n' 0 i"> 
(.\x.A. .\xr.(r q A). ,\xy./J .. \xy .... (.-; q /J)) 

Lemma 4 t\ ........ 111/llll.lJ IIH UMONO and HMONO-Q conrfilions holrl, u•r hat·r 
!hal I 0 (x) • • M 0 (x) and /. t(x.y) +' \/2(x.y) 

Pr·oof. \\'1' <'asily Iran• (/.0 .1. 1} $n {M0 •• \/2). \\e shall prove the opposite• di­
n·ct ion W<· lr<l n· (1,0 , \/1 . I 1• \/ 1} <' n 1 ( \/o. \/1• \/2. ;\/3). t\ pplying t hcsc• el<'mcnl !' 

to (,\x.,1 . • \xr.(r q A) . ..\xy./3 . ..\xy.~.(.~ q /3 )), we• hrl\'C 

(1.0 ,\xr.(r q A )0. /. 1. \xy -. . ., q /3)0) ~n-1 (J/o. J\1,. M2 . .\/;1) 

wl1<•re 0 is { \ :- L0 • x·. \/1, ) ' := /. 1• v~ := .\/:1}. By the d<'~nition of <nr and 
(!.0 , / , 1) <n (M0 •• \t/2}. we can repln('<' the right -hand-side by (1,0 , M 1 , L 1• M:1). and 
g<'l 

(1.0. \xr.(r q A)O. L, . ..\xyc,.(c, q /3)0) ~nr {Lo. J/,./.2. JJ3) 

Taking tins formula as an a'isttrnpltoTJ of the 11·ind-l rule (b<">ides the IIMONO 
and HMONO-Q corrdit ions), we obi a in (lvlo, i'v/ 1, JVI2 .J\II3) <n-1 (Lo. M,, /.". M:J) by 
ft·illd-1. l l11s fonnuln implie<; (J/o. \/2 ) 'Sn (Lo. Lr ). 

4.4.2 Soundness of Realizability Interpretation 

\\ <' will pro\'<' the followmg soundness t hC'orem. 

Theorem 15 (Soundness of q-realizability for BT+ HMID0 ) 

l.r111r .... .111. r be formulas. if 

holds. /hen II'( havt 

fo1· <>omc hnn r. 

1.1. UI·:.\J.l%t\HIUT)" /.\'TEHPHETA'/'/0\ (.) 

Sinn• tlr<' only <'"'<'ntial diffcr<'rrn• IH'tW<'<'II Tatsuta·~ tll<'on· and our tlr<'ol'\" i<> 
IH\1IDo. \\'('only lrn\'e to co11.:icl<'r HMID0 to pro,·c· thi-. t lwor;·m. ~ 

Lemma 5 SujJ}JO .~t /hal II" fol/r)ll'irtg rondilions hold for A and /J. 

HMO~O(A. /3) 

Ill'v101\. 0-Q( tl. 13) 

'fllf rt. thr JH fj·l l'lllr io; rroli::rrl. 

Proof. By tht• iTJchrct i01r 011 the ab-.t rach A a11<l /J. W<' ran pro\'<' tlrat t lw "iHIH' 

kn11 is il rca lizn of both sidt•s oft h<' JH'<J · I rul<-. 

Lemma 6 '/'he. /l-lrtrf-1 rulr '·' uali::ul. 

Proof. ">upposc I hat t lr<' following co11dit ions hold for A <nrd 13. 

HMONO( 1. /3) 

111 q HMOI\.0( 1. /3) 

IIMONO-Q( L /3) 

\\<'also <lSStiTIH' t h<' following for an IJ-Cny ab">t ract F. 

( \ 11-'. \/y). /J[F. \/}·)) ~n (F. \/}') 

rt q (/\[F. i\ly], H[F, My)) 'Sn (!·'. :\ly} 

lh Jt -lnd-1. llr<' first OIH' implies .\/x ~s F. which in tunr impli<'s M .\· ."Ss 
A[/ . .\/}·]· 

Tlr<' s<'cond Oil<' implies 

Vxr.(11J•' .. Hy]/\ (r q A[ F. My]):::> (car(a)xr q F(x))) ( 1.1 ) 

S111C<' W<' ass\IIJH' HMON 0-Q. the quadruple (-\x.A . ..\xr.r q 1. \xy. IJ. ,\xy ...... q /3) 
has a l<'ctst ~xpoint. We know that Ul<' ~rst and t lw t lrird elenwnts oft lr<' lc•ast 11x­
point ar<' .\lx and \/y by Lc•mma 4. \\c· nbbrc•\'ialc• the s<'rond and til<' fomllr 
<'l<'nwrrl<i il"' I.\' and l.y. 

O tJT goal is to show t h<' following formula: 

Vxr. Mx(x) 1\ Lx (x. r) :::> (.fxr q F (x ))) 

for an approprial<' term f. 
Let // b<' ..\xr.(l,.dx.r) 1\ (:\lx (x ) :::> (.fxr q F(x)))). Applying th<' quadruple 

( Mx, II, :\I y. Ly) to the It -ind-O rule (in t he• case of Htl order) with a lit tic calcul a­
tion. it ))('come-;: 



76 ('1/ AP'I hH 1. II.\ LF-.\10.\'0TO.\'L I \f) I (' 11\'E IJEFJ \/T/0.\.S 

.Axr.(r q .1:x .. Hl·])O :Ss II 
Lx ::; v II 

wlwr<' I) is { \': = Mx. \'.:=II}. Then all we h;l\'e to pro\'<' is 

Vx. r. (r q A:x. Jly])O :::> 1/(x. r) 

for 1111 itppropriat<' t<·nn f. '1 hie; is equi\'al<'tlt to conjunct ion oft he following formu­

Jc,s: 

Vx. r. (r q /\[X. My]}O :::> /,y(x.r) 

Vx, r. (r q /\[X, J\fy])O :::> Mx(x) :::> (fxr q F(x)) 

( 1.2) 

( tJ. 3) 

lh IIMONO-Q condition, we have the simple monotonicily for (r q t1[X. V]) in 
.\ •. lfenn', we· Cilll replan• II by f,x in 0. and we obloin I he goal ( 1.2). 

In t li<' following. we will prO\'<' the goc1l ( 1.:-l). \\'(' fix x and r. and asSllmc 

(r q .1' .\' .. \/)•])0. 
B\ <·xpandmg m q HMO NO( A, 13). and putting 

Xo 
6 

.\fx 

y- e:. 
II -

0 

\'I 
e:. F -

\'" 6 
.Xx r.(.\Jx(x) 1\ Lx(x. r) 1\ (r q F(x))) . I 

}' 6 
.\l[y (i=O:l) = I 

}' " e:. L,, (i=O,l) = I 

W<' g<'t .\1/ \'(x) 1\ Lx(x,r) :::> (t q A)¢ where 

6 ~ {.\' :- /•', .\'" := ,\xr. (Mx( x ) /\ Lx(x,r) 1\ (r q F(x))), )' := My. v· := Ly} 

6 
f = (car(m((f. (;\xys.s,;\xyrs.s}}))xr 

B~· t h<' c.;impl<' monotonicily in X0. we may r~plan·~ o by 

u· ~ {X := F. x· := .Axr.( r q F(x) ). )' := Jfy. )' . := Ll'} 

1\o!<' I hat (/ q \ )vis cquiYalenl to(/ q A:F . .\/y]). 1-rorn (•1.1) and this formula. 
we· han• .\/ dx)/\ /. dx. r) :::> car(a)xl q f'(x). \\'<' alrcnd) have {2). so we can delete 
I,\ (x. r) from this formula. By the fixpoint theorem. W<' can take f ac; a fixpoint 
of the· equation fxr = car(a)xl. Then we ha,·e .\f(x) :::> {fxr q F(x)) which ic; the 
conclusion oft h<' goal ( 1.3). 

By t h<'s<• lemma c.;, we ha\'e lhe c;oundncss t h<'orern. \\'<' also have the following 
co roll« ri<'s. 

1.1. HL.\Ul \/JJUT) ' 1.\'TERPUET\T/0\ II 

Corollary 1 (Disjunction Property and Term-Existence Property) 1. Ols­
.JUnclion Proputy holds m BT+ HMID0 ; ntmHiy. from a proof of thl fonnula A V 13 . 
u•r ca11 rh ridr which of A or B hold .... 

2. 'J'rnn C.ristcnC£ Property holds in BT t- H M ID0 • namdy. from a pr·oof of t/11 
fonnula 3.r. t1(.1·). tvr r.an F.ffccticdy find a tr nn I ... uch that A{l) holds. 

Corollary 2 (Program Extraction Theorem) J·i·om a proof of the formula 
V.r.]y. , \ (.r.y) 111 BT+ HMIDo. wr can rffrctn·rly find a trnn f and the proof of 
V.r. A(.r. f( .r)) 111 BT+ HMID . 

13y Program l·:xt raction Theorem, we can derive programs in om theory BT+ HMID. 
in t h<' style of constructive programming. 

4.4.3 Verification of the HMONO-Q condition 

In this o.;ub'i<'clion. we \'erify the HMONO-Q condition forth<' prime number ex~ 
ample in Sc·cl ion 1.3.6. 

L<'l 1 and 13 be the c;ame a<; in the prim<' numb<'r <'Xnmple. 
Suppos<' (Xo. X 0. }'Q . Y0·} :Sn., (X1• X~. ) '1, }'n. Then. our goal ic; to prow~ the 

following formula: 
(A. ;\nr.(r q A(n)).l3. ,\n.s.(s q JJ(n ))}00 

$n.1 (A . .Anr.( r q /\( n) ). IJ. ;\ns.( .~ q 13( n) )}01 

whc·rc Or ic; {X := xj. x- := x;. }' := } I' ) ' • :- ) ~- }. 

Since• .\' appears positively in A, it ic; cac.;ily c.;<•cn that t\00 <,...,. !\01 and 
.Anr.(r q A(ll))00 <s .Anr.(r q /\(n))0 1 hold. We also have (A. !3}00 ~R (A. H}01 , 

which is the HMO NO condition. 
The remaining goa l is to prov<' the following: 

(B.;\ns.(s q B(n)))Oo <n (13,;\lls.("' q H(n))}Ot 
This is conjHnction oft hrec formula s, but h<'f<' we shal l prov<' t h<' following one on ly. 

.Ans.(s q D(n))Oo <N .An.-;.(.s q /J(n))01 
The formula ( s q 13( n)) is expa.nd<'d to th<' following: 

.\'(n) 1\ x· (n, car{s)) 1\ (cadr(t.) q (1 < .'1')) 
1\ Vm. r. ((m < n) 1\ (r q m < n) :::> 

.\'(m) 1\ x·(m.car(cddr(.s)mr)) 
1\ Vu.( t '{m)/\ y·(m.u) :::> (cdr(cddr(.~)mr)u q -.D1v(m,n)))). Sine<' 

the only occurr<'nce of y· appears in th<' c;ubformula t'(m) 1\ ) ' • (m.u) and ) 0(.:-) 
irnpli<'c; Vu. }'

0
·(.:.u) +--+ }~·(.:.u). we ha,·<' ;\ns.(s q /3{n))Oo :::;v ;\ns.(s q /3(n))02 

wh<'r<' 02 is {.\' := X0 .X· := X0, }' := }'0 • y· := }'n. We also have Xo(.: ) implicc; 
}0(.:) f-+ ) '.(.:) . so we have .Ans.(s q B(n))02 <Ss .Ans.(s q B(n))03 where 03 is 
{ .\' := Xo. x· := Xo . y := VI'}'* := vn. I h<· occurrences of X and x· arc 
positive. and we finally have .Ans.(s q B(n))03 <v .An.s.(.s q 13(n))OI· Combining 
lh<'S<' r<'sults. we get .Ans.(s q B(n))Oo </\' .Xn,c,.(s q H(n))01. which is the conclusion. 

Remark 



78 CJJ:\ PTEH 1. If.\ LF-.\/0.\0TO.\£ J\Ol iCTI\ E fJE11 \II JOSS 

This proof did not usc the components of A and B in detail; it only mentioned 
the occurrences of.\' and Y. That the IIMONO(A, /3) and H MONO-Q(A. B) 
condit10ns hold come from the following facts: 

• .\' appears posit ivcly in A and /] 

• }' may appear negatively in 13, but the only negative occurrence of}' has n 
pre< <·ding ocntrrc·nce of X. 

'l'h<• sc•c<md fact can be made more prc·cisc: lf e\·cry occmrence of V io.; m a c;ub­
formula of tlw form of X(.r)/\ (V(:r,y) .:::>···)where :r is theo,·erlapping argument. 
t ltc•Jl we• say }" has a prc•c<•ding occmTence of X. (In the above example. \\'(' did 
11ot have m1 c·xtra argmrwnt y in )'. but it is easily S<'<'n that the proof will not be 
affect<'d by c•xistcncc of st1ch an argument.) \\'e can sec thec;e two facts arc keys to 
pro\'(' t IIC' two conditions. and whenever these two facts hold, we have the HMO NO 
and HMONO-Q cone! it ions. 

On<' may think the vnification of the HMONO-Q condition i~ too romplex 
and lwrl<'<' om induct ion H){'chanism is hmcl to usc. IJ o.,.vever, all the cxarnplcs we 
have consid<·rcd fall in this uniform pat tern, and we believe its \'erification is not '>O 

probl<'mat ic. 

4.5 Provability Relations and its Refinement 

In this s<'rt ion, we define a basic \'ersion of provability relation and its variant<> using 
HMID0 ttl<'chanism. 

4 .5.1 Defining a Provability Relation 

We shall sirnult ancol!Siy define· a una.ry predicate Prop and a binary predicate• Proves 
which fm ma lizcs the following two concepts. 

Prop(p) represents ··pis a proposition" 
Proves(a,p) represents '·a is a proof of p" 

In ordinary predicat<' logic. the first concept is defined by itself. and docs not 
depend on the second one. However, we arc mainly interested in systems like Frege 
struct urc"i. ~lartin-L6f'~ l'ypc Theory. or Sa to 's 'R.PT(R<'nect i\'c Proof Thcory(34]). 
One of the characteristic points of thes<' theories is that the abo\'e two concepts 
cssent ially re-fers to each other, so we cannot define the first concept independently. 

\t\1<' will hcnccfortl1 assume that all logical connecti\'es arc encoded by appropriate 
terms uc;ing corresponding constants, for inc;tance, aAb is (cA a b) whcr<' cA is a 
constant uniquely associated with /\. 

1.5. PHO\ \IHU'J')' HEL.\T/0\S \SD JJC., HEF/.VE.\fl~.\ I 

~ 
A = .\.r. .r = ..L 

V 3a.3b. 1 = a~b 
V3a .. r-.\(a) 

v 3 y. 3::. .r =- ( y A.:) 1\ X ( y) A X (::) 

v 3 y. 3.:. .r =- ( y v::) 1\ X ( y) 1\ .\' (::) 

V 3y.3:: . . r = (yj.:) 1\ \ (y) 1\ V!t•.(}'(u'.,t/) .:::> \(::)) 

V 3y. r = CV.'J) 1\ Va .. \ (y(a)) 

V 3y . . r = (.~y) 1\ Va . .\'(y(a)) 

~ B = ,\ r.r. .\' (.r) 1\ 

(3a.3b .. r = (a~b) 1\ a= b 1\ r =nil 

V 3a. r = \(a) 1\ Nat(u) 1\ r =nil 

v 3 y. 3.:: . 3 a . 3 b. .r = ( y A :.. ) A ,. =- (a . b) A ) ' ( a , y ) A ) ' ( b . .:: ) 

V 3y.3.::.3o.3b . . r = (yV::) 1\ r =(a. h) 1\ a~ 

1\ (a = true :::) }" (b. y)) 1\ ( o ::j:. true .:::> } · (b . .::) ) 

V 3y.3.:: .. r = {.1Jj.:) 1\ X(y) 1\ fun?(r) =true 

1\ V11•.()'(w.y) :J ) (r(w) . .:)) 

V 3y .. 'l' = Vy 1\ Va. Y(r(a),y(a)) 

V 3y.3a.3b .. 1 = 3y 1\ r =(a. b) 1\ } (a .. IJ(b))) 

79 

II ere. Nat is t be predicate~ defined before•. Quantified formulas such as v.,·.p(.r) 
and 3:r.p(.r) an• r<'prcscntcd by V(,\.r.p) and 3(,\r.p). respectin:ly. W<• can add other 
kinds of propositions such as (a l). \\'e did not do so simply lwcamc we want to 
show the ess<'nl ial fcnt urc oft he• rnc·chanic;m. 

Both t<'mplaks contain negat i\'C' occmrc!lccs of ) ·. BT+ IIMID0 allows such 
occurrences pro,·id<'d HMONO( 1.13: X.)') aud HMONO-Q( 1./J: X.}') ar<· sat­
isfied. Note that. in the abO\'C formulation. we bravely changc•d the order of I he 
overlapping argmncnl .r and I h<• non-overlapping argument r in )'. Strictly sp<'<lk­
ing. :r must come flr~t. but it c·m1 be adjusted easily. 

Lemma 7 /·01·/hc abol'c A and 13. HMONO(A. IJ: .\. V) HMONO-Q(A. 13: X. Y) 
hold. 

This lemma is pro,·ed in just the same as the case for Prime• Numbers. The only 
ucgat i vc occmrcncc of )' in A is i 11 I h<' su bformula of the form X ( y) 1\ V w .( Y (II'. !J) .:::> 
···).so Ax [X 0 • ) 0] is equi\'a.lent to Ax[Xo. )'t] providcd that (Xo. )'o) ~R (.\'1. )',). 
From thic; obsen·ation. we have Ax [X0 . }'0 ] ~.v AxrX,. Vt]. Similarly, we ha\'e other 
cascs and reach the conclusion. 



80 C 1/:\P'f'EH 1. J/ALF-,\/0\0 I 0.\E 1.\Dl '(''J'/\E DEFI.VI'IIQYC, 

From this lemma~ we can safely define (Prop. Proves) b~· the HMIDo mccha­

msrn. 

Definition 28 

Prop 
6. 1' X. (,1, !3; X,)' ) -

Proves 
6. fi)'. ( 1./3:X.)) 

True 
6. ,\ .r. 3r. Proves(r . . r ) = 

Th<· pai1 (Prop. Proves) is a pro,·ability relation. 
We can infer that Prop is the least Gxpoint of /\, while• \\'<' cannot inf<'l' Proves 

is that of /3. by th<· n•sttidion for the I' ind-1 rule. If\\'<' would omit th<• first 
conju11ct \(.r) in the d<•Gnition of 13. tit<· following (i11tuiti\'cly true) fact would not 
be provable· 111 BT+ IIMID0 • 

V.r. (True( .1') :::> Prop(:~·)) 

IIO\\'('\'<•r. \\'<' ll<'<'d induct ion only for Prop in practic<'. so 11-ind-1 is suffici<·nt for all 
our needs. 

4.5.2 Re-defining the Provability Relation 

It is W<'ll known that ll <nrop formulas do not carry computational m~aning. I l<'nc<'. 
w<' may <~!tach as a proof-term a dummy constant nil to Harrop formulas. This 
optimization tcchniquc is quite useful as is shown in ( nd. [21 ]). llcr<' w<' dc·Gne a 
rd1nc:d rc•lat ion and pron• equival<'nce of the original one and this ,·ersion. 

6 /1 - ..\.r. .r = l. 

V 3a.3b .. 1· = (a~b) 
v 3y.3.:: .. 1· = (yA.::) 1\ X (y) 1\ .\( .::) 

V 3y.3.::. :~· = (yj.::) 1\ Prop(y) 1\ X(.::) 

V 3y. ;r = ('~y)) 1\ Va.X(y(a)) 

This is a usual posili\'e iuducti\'e definition. so HMO NO( II:.\) and HMONO-Q(//: X ) 
arc• <l<·<~rly satisfied. Let Harrop be lt.\.11. 

\\ '<' ca11 pro\'e the following important properties of Ilarrop formulas. 

Theorem 16 
1. Harrop( .r) :::> Prop( .r) 
2. 3f.V.r.( Harrop(J' ) :::> True(:~·):::> Proves(/.:~·)) 

1.5. PHO\'.\IJJJ. ITY RELA'f'IO.\<, \.\D Jlc., HE/ 1\K\!E.\ 1 ~1 

'I hc·se arc proved by the ind11ct ion on Harrop. 
\\'c then d<'ftne the following 11cw template 131• 

6 
13, = ,\r.r. H(.r, r) V Harrop(.r) 1\ True(.r) 1\ r =nil 

Using (A. IJ, ), we define a u~w pro,·abilily relation. 

Definition 29 

Prop 1 
6 

pX.(A.IJ1: X.}') = 
Proves 1 

6. 
p)'.(/\. 13,: .\, V) -

True 1 
6. 

..\:~·.3r.Proves 1 ( r. :r) = 

The pair (A. 13t) alc;o satisG<•s IIMONO llnd HMONO-Q. so we can mllkc 11'><' 
of Jl-cq-1 and Jl - ind· 1. 

. \\'c haTe the following theorem. which shows cqui\'alcncc of I wo pro\'ability rcla­
t lOllS. 

Theorem 17 11 ( hat·c that 

and 

V:r. Prop(:r) ~ Prop1 (.r ), 

V.r. (Prop(:~·):::> 3.f.Vr. (Proves(r, .!') :::> Proves 1 {.f(r) .. r)) 
1\ 3g.Vr. (Proves 1(r .. 1·) :::> Proves(g(r) ,.r))) 

Proof. (Sketch) Let IH( .r) (standing for ind11clion hypoth<•sis) be the following 
formula: 

Prop(:~·) 1\ Prop 1 ( .1·) 
1\ Jf.Vr.(Proves(r,.r) :::> Proves 1{f{r),:r)) 
1\ 3g.Vr.(Proves 1 (r.:~·) :::> Proves(g{r),:~·)) 

\\'e can prO\'(' V:r.Prop(:r) :::> IH(.r) and V:~·.Prop 1 {;r) :::> IH(.r ) by lite induction on 
Prop and Prop 1• Using Th<'or<•m 16. we can always create a < andidate proof for a 
ll arrop formula. hence we can calculate g from the proof of Harrop(:~·). 

We can improve the code furt.h<'r; for instaucc, we ca.n optimill<' a. program cor 
responding to a disj11nctive formula if it is decidabl<'. Por example-, let us sec the 
following formula. 

..\:r. (:~· = 01\ A(:r)) V 3y.::.(:r = (y . .::) 1\ B(.T)) 

Suppose A and Rare llarrop propositions. This formula contains disjunction 
and the existential quantifier, so it is not Harrop by dcfinition. IlowC'vcr, its proof 
carries no morc information than :r . We can, therefore. add this kind of propositions 
to Harrop propositions, and succ<'ssfully reduce the program (proof). 



82 Cll. \ P'JER ·1. J/ALF-.\10:\'0TO.\E /i\OCC'fl\'1~ DEFJ.\'/TJO.VS' 

1\.lon•ovcr, we can proceed to opt imitation of arbitrary self realizing formulas
3

. 

If we know a formula is self-realizing (which is a scmantic notion. on the contrary 
to ll arrop formula. which is a .syntactir. notion in ordinary logic.). then a realizer for 
this formula is redundant and we can eliminate it. This kind of optimization secmc; 
to ha\'C' practical usc·. yet we ha,·c not studied thic:; topic in detail. 

In const ructivc programming. we often encounter inefficient programs. Ac; is 
shown in the previous subsections. we can define several kinds of (Prop. Proves) 
in t lw t h<·on BT+H MID0 . and can pro,·e <'quivalence oft hem. ' I his correc:;ponds 
to re d<·fining a n<'W realizability interpretation. and proving its soundness. so the 
n·sults of optimization may be the same. l lowever, the point h<'re IS that we can 
pro\'<' nwta tll('orcrns such as equivalence of two definitions withm the thc•ory. Note 
that, we riln furl l1<·r extract an oplimizo.tion program from the meta-theorems by 
the program extract ion theorem. which follows from the realizability iHterprctation. 
This point is one of major good points in our theory. For example: 

Corol lary 3 In lhr Jn·ct•ious thwron, we ran tfftcln•cly find funrtions f and g from 
lhr pmof. 

This is cHI imrncdio tc consequence of the prc\'ious theorem together with lhc 
progra 1t1 <'XI ract ion I heorem. 

l~xt ract ing programs from proofs as well as meta-proofs seems a quite promising 
pa1adigm in constructi,·e programming. In this chapter. we just presented foun­
dation of a candida!<' theory. realizability intcrprelotion. and its relation to other 
I h<'ori<·s. llowc\'C'r, we may be able to do rcj/ccl1rr. construcln·c programming in 
fut m<' bos<'d on the technique presented in this chapter. 

4.6 Interpretation of Other Theories 

In this srction, we show how other theories ca.n be interpreted by the HMID0 

rrwchanism. \\'e first interpret the Logica.l Theory of Constructions, and then we 
bri<'ny nwnt io11 how to interpret Martin- Lof's type theory. 

4.6.1 The Logical Theory of Constructions 

Ill<' Logical l'heory of C'omtructions (LTC)[3] is a special logic which has Aczel's 
hcg<' c;t rue\ mcs as its origin. and is used to interpret Mort in- Lof's Type Theory 
ITT. \\'<• may say LTC is a formalized verc;ion of (a generalization of) Frcge slruc­
t \1 r<'S. 

LTC 1s clclually a family of theories. LTCo. LTC1. · · ·. LTCw. LTC0 is the basic 
Ot<'ory. ond LTC,+, is a reflected \'Crsion of LTC 1 • LTCw is the union of each finite 
lcvc•l of r<'Acction. 

3 A self realtz111g fornJUla is a formula A(x), for wh1ch there exists a term f, the formula 
VJ·. f(x) q 11 holds. 

1.6. 1\''JEHPRET.\TJO.\ OF OTJ/l~H TI/EOHl/~S 83 

T<'rms of LTC i-. ec;scntially combinatory krmc; with primitive function symbols 
for nat ural numbers. lambda terms. and others. Some oft hem such as 0. Succ. >.. (_. -). 
In/. lnr arc canonical. There are non-canonical function symbols corresponding to 
t h<'s<' canonical symbolc;. There are constant" which internally rcprec:;ent logicol con­
nect in•..; such ao;; A. j and so on. Atomic formulas arc .La= b. a""-'+ b. a:::;. b. For 
a typographic reason. we usc a different symbol :::;. from the original papcr[3]. In 
LTC, for 1 > 1. we hove l wo more atomic formulas /'(a) and PJ (a) (for j $ 7 ). 

\\'<' briefly summarize intuiti"e rneoning of atomic formulas. The formula a = b 
nwan'i o and b arc definition ally equal. I he <·,·aluat ion mechonism is call-by-name. 
a11d it is capt med by ""-'+. The formulo a ""-'+ b means that a term a evaluates to o 
canonical form b. Since this relation""-'+ c\·aluates a l<'rm into a cononical form only (a 
canonical term is a term whose outermost function s~·rnbol. and it possibly contains 
rc·dcx<'s). we haw· another relation:::;. which represents '·full rvah1ation''. Two atomic 
formulas are important for reOection: "a term a is a proposition" (denoted as P,(a)) 
and "a l<'rrn r1 is a true proposition"(denotcd as T(a)). Since rcAcction is repeated 
at finil<'ly mony times . P,(a) has a suffix i which represents the Jc,·el of reflection. 
Bc•sidcs them. I here are ordinary first-order logical connect i,·cs as well as quant ificrs 
for ftmclions V1 and :P. The predicate for natmal numbers .Vai(a) can be defined 
as 3n. (a ::::;. n). 

The logic of LTC0 is on ordinary intuit ionistic predicate calculus with equality. 
Extending LTC0 by reflection. W<' get LTC1. l he rules (called reflection rules) 

for P1(o) and /'(a) arc as follows. I'hec;c rules gi\'(' connection of internal logic (a in 
T(a)) to external logic (logic of LTC0 ). 

<l>' c 

where <I>~ and We arc defined by th<' following tabl<•. 

c <I> I 
c We 

(a:::b) '/' (o -b) 
(a~b) 7' (a ""-'+ b) 
(a=*b) 7' (a :::;. b) 

.l '/' .l 
(a i\b) P1 (a) 1\ PJ( b) /'(a)I\T(b) 

(a\! b) PI ( (J) 1\ P, (b) J'(a)VT(b) 
(a:)b) P1(a) 1\ (T(a) :::> P1(b)) T(a) :::> T(b) 

(V(p)) V.1'. PI (p( :l')) V;r.'l'(p(.r)) 

(3(p)) V:r. P1 (p(:r)) 3.r.J'(p(.r)) 

(V'(p)) V1 f. P, ( p(.f)) V1 f.T(p(f)) 

(3'(p)) V1 f.PJ(p(f)) 3 1 f.T(p(f)) 

N<'xl, we give rules for LTC, for i > 1. In I he following, <l>~ and W~ is in a row 
of I he· abo,·c table or the following new table. 



81 ('J/1\PTEH 1. II \LF-,\10.\0/0\/·_ 1\lJl ('/ /VE /)fF/;\TI 10.\S 

<J>i 
c <I>' c 

T(c) t-+ \fir 

c 

P1 ( o ) ( tt' i I h j < i ) 
<I>' r We 
'1' P, (a) 

LTC, (fori ;:::: 0) is tlH• I hcory defined as abov<'. \\'<• t hercfor<' h<H'~ an incr<'asing 
hl<'rilrchy of lh<'ories LTC0 . LTC1,···. ,\sa limit. w~ ha\'<' LTC..,. the union of 
LTC, for 1 2:: 0. Note that we haY<' no induct ion rules. 

4 .6.2 Interpreting LTC by BT+HMIDo 

,\ft<•r d<'fining til<' pro\'ability relation in th<' pr<•,·iou'i section. it is now straightfor­
wctrd to 111tnpn·t LTC0 by BT+HMIDo. 

\ ;uiabl<'s 111 LTC0 is uniqudy translated into variabl<'s in BT+HMID0 . ,\ll the 
l<'rms 111 LTC0 is inject in·ly interpreted as some terms in BT+HMID0 • !·or the 
sak<' of sirnplicily. we ilssumc that terms like P,(a) and 'i '(a) ar<' already contained 
in tlw language of LTC0 (with no rules about rcO<'clion). 

To inl<-rprel the notion of terms. two predicates Term and Func arc inductiYely 
d<·fill{'d: Term(o) m<'cHIS a is an interpretation of a term. and Func(a) means a is an 
inl<•rpr<'lalion of a function. Two more pr<'dicatcs arc inductin• dc~ncd: Eval a11d 
FullEval. Tll<'y are used to int<'rprct "'--+ and ::::}. \\<• do not gi,·c their detailed 
d<•finil ions here•. 

I'.\'<'Q formula in LTC0 is translated into a term in BT+IIMID0 pn•scn·ing the 
'>tructm<' and th<' <;c·t of fr<'e variables. For example. 3y. :r- Succ(y) is translated 
into j(,\y. (.r,;,.Sl'CC(y))) where S11cc(_) is translated into Sl'CC(_). 

\\'(• TIOW defi II<' I WO ( cmp]a(<'S. 

6 
A0 = ,\:r. .r = l_ 

V 3a.3b. :r = (a=b) 

V 3a.3b. :t· = (a~b) 

V 3a.3b. :r = (a=*b) 

v 3y.3.:. :~· = (yA.:) A X(y) A.\'(.:) 

v 3y.3.:. :r = (yv.:)" X(y)" .\'(.:) 

v 3y.3.:. :r = (y:).:) A X(y) A (} '(y) :J \'(.:)) 

V 3y .. r = ('iy) 1\ Va.(Term(a) :J .\'(y(a))) 

V :3y. :~· = (3y) 1\ Va.(Terrn(a) :J X(y(o))) 

V 3y. :t· = ('i1y) 1\ Vf.(Func(.f) :> .\'(y(.f))) 

V 3y. :r = (::i 1y) 1\ Vj.(Func{.f) :J .\'(y{.f))) 

1.6. I\ I I~'HPHET·\TTO.\ OF Of//EH TI//;QU/1·.'-1' 

A 
Ho = ,\.r. X (:r) 1\ 

(3a.3b .. !" = (a=b ) 1\ (a= b) 

V 3a.3b. J' = (t,--:._.b) 1\ Eval(a. b) 

V 3a.3b .. l" = (a~b) 1\ FullEval(a. b) 

V 3y.3.: .. r = (yA: ) 1\ }' (y) 1\ }'(~) 

V 3y.3.: .. r = (yV.:) 1\} (y) v} (.:) 

v 3y.3.:. :r = (y:).:) A X(y) A (V(y) :J } ' (.:)) 

V 3y .. r = ("'V'y) 1\ Va.(Term(a) :> }'(y(a))) 

V 3y. :r = (3y) 1\ Ja.(Term(a) 1\ V(y(o))) 

V 3y .. 1· = ('J1y) 1\ V.f.(Func(.f) :> }'(y(.f))) 

V 3y .. r = (3 1y) 1\ 3/.(Func(.f) 1\ l'(y(.f))) 

85 

\\e lake· the least fixpoint as f1.\'.(A 0 .130 : \', }' ) and flt'.(A0 . 8 0 : X. V). and <all 
I hem Prop0 and Trueo. \\'c omit lh<' \'erifical io11 of liMO NO and H MONO-Q 
nmdit ions c.;incc it i'i almost the same as before. 

Theorem 18 (Soundness of Translat ion) /,d F b( a formula m LTC0 . '/'h(.n . 
Prop0 ( !'') ts p1·orablr in BT+ H MID0 • and 1f F /.<; ]J1'0I'ftblr in LTC0 • fllfn True0 ( F') 
1s prOI'(tMr in BT + H MID0 whO'r P' 1s /h( lran."latwn of F. 

Each rule in LTC0 is easily justified. Since• LTC0 docs not have' any induction 
rulc•s. the restriction of the p-ind-1 rul<' is not a problem. 

\\'e then go to I h_c level 1. \\'(' assurrl<'d that the language of LTC0 alr<'ady 
contain<•d terms like P,(a), so the languag<'s of LTC, ar<' th<' same, and we continue 
to us<' I h<' sam<' definition of Ter m and so on. 

'v\'<• define the templates A1 and /31 as fol lows: 

A, A 
,\:r . A0 (:t·) = 

V 3a. Term( a) 1\ r = P, (a) 

V 3a. Term( a) 1\ :r = 'i'(a) 

B, 6 
,\:~·. Bo( :t·) -

V 3a. Term( a) 1\ :r = P1 (a) 1\ Prop0 (a) 

V 3a. Term( a) 1\ .1' = T( a) 1\ Trueo( a) 

\\'c• define Prop1 ~ pX.(A1 • B 1: X, t') and Trueo ~ ftY.(A,, B,: X. Y). Again. W<' 
omit I he verification of HMONO and HMONO-Q conditione;. 

By r<'peating this kind of construction, W<' have thC' translation of LTC, for each 
i > 0, and LTCw. 



86 C£1/\PTER 1. JIALF-MONOTONE INDUCTIVE DEFINITIONS 

Theorem 19 (Soundness of Translation) Let F be a formula in LTCi fori ~ 
0. Then, Prop

1
(F'') ts p1·ovable in BT+HMID0 , and ifF' is provable in LTCi, then 

Truei(F') is provable in BT+HMID0 who·c F' is the i-th levellmnslation of F. 

4.6.3 Reformulating HMIDo on LTCo 

ReOecl ion in logic is internalization of a mcta.theory of the logic itself. ln this respect. 
om t hcory is not really reOcctive, since our meta.thcory is BT+ H M IDo, while om 
t argC't logic is LTC-like logic (where an implicational formula a :::> b may sometimes 

be n formula ('\'(~n if b is not a formula) up to now. 
In order to have Uw same kind of logic a.s intcrna.l and external ones. we may 

adopt LTC0 as our met a-theory~ namely we may consider something like LTCo + 
HMID . It S<'<'JnS quite straightforward to move the HMID mechanism onto LTCo 
Th<' resulting theory LTC 0 + HMID0 would subsume LTCt (i ~ 0) since we ca.n 
irllcrna.lly define each P1 and T by half-monotone inductive definitions. 

This approach (i ndicated by P. Dybjer) seems quite interesting. In fa.ct, we plan 
to mo\·C' our results toM. Sa.to's ReOccti\'c Proof Theory, which is closely related to 

LTC. This work in detail is for fulme work. 

4.6.4 Interpretation of Martin-Lof's type theory 

We can also interpret Martin- Lof's type theory ITT in our theory. 

Since ITT can be interpreted by LTC[3], we ca.n indirectly interpret ITT in 
om t hcory by using LTC a.s an intermedia.te theory. However, we can give a direct 
i11lerprct a.tion of ITT in our theory. The technique is just the same as in the 
pr<'vioHs section for LTC; we first define how a.ll the terms in ITT is translated. 
We thC'n define a predicate which means the set of (tra.nsla.ted) terms by induction. 
Next, we define predicates which mean "A is a type", and "a is a. member of a. type 
A" sitmdt.a.ncous ly. llcrc, we have ncga.tivc occurrences of the predica.te \'iHiablc 
corresponding to ·a is a member of a type A" when we interpret~ and TI types, but 
it. is I rcalC'd just the same as in the definition of A1 a.nd B1 for LTC. F'ina.lly, we 
can i11terprcl Cl first universe in the same way as A2 and 82 for LTC. We c<ln repeat 
this construction a.L finitely ma.ny times to interpret ITTi for each i ~ 0. 

\'v'e also ha\·e this interpretation is sound; namely if a. judgement J is provable 
in ITTi, we can pro\'c its translation in BT+ HMID0 . 

ll erc, we omit the details for the lack of space. 

4. 7 Conclusion 

V·/e have studied a general form of ha.lf-monotonc inductive definition in the con­
text of a type-free first-order theory. It is a.n extension of monotone, simultaneous 
inductive definition, and is indispensable for defining prova.bility relation within a 

4. 7. COACL USJO.V 87 

theory, rather than a built-in relation. A characteristic point of this form is to allow 
a ncgal ivc occurrence of a predicate \·aria.blc which is being defined. 

We changed the order between (tuples of) predicates so that such a. kind of 
induct i\'C definition is still monotone. The order is a. slight modification of one 
proposed by Aczel[2), Hayashi and Nakano[21]. What is new in this chapter is to 
give a general theory of such styles of inductive definitions, and also give a sound 
rca.lizability intcrprcta.tion to show our theory is really constructi\·e. We ha\'C shown 
that the Logical Theory of Conslructions(3] can be interpreted in our theory quite 
naturally. \\'c have also shown that provability rcla.tions which arc useful for program 
improYcmcnt arc definable in our theory. Our formulation of HMID0 is sufficient 
for this purpose. As a.n applica.tion, we can prove equivalence of l\.vo definitions 
of provability relations~ and can extract optimization programs by virtue of the 
program extraction theorem. 

Allhough there arc many related works. we bricOy compare our work with two 
of them, which, we think. arc most closely connected. 
Comparison with Allen's Work 

Allcn [4, .5] interpreted Ma.rtin-Lofls type theory with universes in a type-free 
framework. 1 le induct ivcly defined a binary predicate r which lakes a term T and e1 

binary predicate¢. lnt uitivcly, r(T, ¢) means ::y is a type, and ¢is a.n eqni\·a.knce 
relation on the type T" (therefore a partial equiva.lcncc relation on the whole do­
mRin). Por some fixed r, the mcmbC'rship relation o E A in T\fartin-Lors typC' thC'ory 
will ?c interpreted by r(A,¢) /\ dl(it,il) for some¢> where A and o arc interpreted 
by !1 and a. Having this interpretation in mind, T is inductively defincd. Thiii 
inductive definition does not contain any negative occurrence of predicate \·ariablcs 
being dcfined, hence is monotone in the usual sense. !\lien constructed a. model of 
lVla.rtin-Lof's type theory using this inductive definition. Since d> is a. predicntc ov<'I' 
individuals (terms), r is a second-order predicate. hence the whole theory becomes 
impredicat i\'e. Smith[40] formalized Allen's interpretation in CTTR , Mart in- Lof's 
type theory with recursive types. 

Allen's technique is superior to om theory in that he did not need a.ny extra 
condition other than monotonicity while we need HMONO-Q condition. As a 
result, his theory might be more elegant if the only purpose is the intcrprct <~I ion of 
Fvla.rtin-Lof's type theory. llowe\·er, we believe that, our prcdicativc theory has its 

own right because of the following reasons. 
(1) In order to formalize somC'lhing. we always look for as weak a t hC'ory as 

possible. Since a. first-order theory with a least fixpoint operator (mu-ca.lrulus) is 
strictly wca.ker than the second order calculus[31], our first-order theory with half­
monotone inductive dPfinitions is s trictly weaker than A lien and Smith's highN ord('r 
framework. Our theory is therefore preferable in this respect. 

(2) We believe that the form of our inductive definition is more nat. ural and easier 

to understa.nd tha.n theirs. 
In our theory, Proves{ a, A) is directly defined by a half-monotone inductive 

definition, while in Allen's interpretation, o E A is defined as ''r(A, ¢)/\¢(a, u) for 



88 CIJAP'J'EH 1. JJALF-.\/ONOTO:\E l!\'DCCTf\''E fJEFIJ\'/TfO:\'S 

some ¢" when• r is defined by a monotone inducti\'e d<'finition (for a higher order 

prcdica tc). 

Compa r ison with D y bjer 's Work 
Dybj<'r[l-5. 16] had a mofi\'alion which is similar to ours. lie extended his 

renHsi\'<'-indllction mechanism[l7] so thal l he unin'rse hierarchy becomes defin­
abk in 1\ lartin-Lof-style type theory. As he m<'ntioncd, it can also incorporate the 
definition of (Prop, Proves}. In some respects. his method is mor<' flexi b lc l han 
oms. since lw allows arbitrary rccursi,·c flmction for describing the second prcdical<' 
(.r in Proves(:r.y)) whilC' W<' stick to make all definitions inducli,·<'. and also he 
required no extra conditions like HMON O - Q (syntactic conditions arc necessary). 
I lis mct hod wos possible because. in Ma.rtin- Lof-styl<' type lhC'ories . a clausc in ('nch 
lntrodlldion Buk always introduces a constructor svmbol. so that the domain co1dd . . 
TH'\'<'r be o\·crlappcd through the process of inductive generation. We arc working in 
a t~·r)(•-frec t hcory, and the inducti\'e defin ition mechanism is applicable to a wider 
rm1ge. 1\s a result, W<' ha.,·e to confine ourselves to inductive definitions, ratl1er than 
indtlclivc-recmsi\'e definitions. Bcc;ides this poinL the differences bet ween his work 
a11d ours ore that (1) his theory is based on type theory while our base theory is 
ur1lyp<'d. (2) lie nllows only strictly-posit i,·c occurrences for the first predici'ltc \'ari­
i'lbk in his induct i''<' definition, while we al low more general one (monotone inducti\'(' 
definit iou with IIMON O -Q condition). 

Dybjer[16] also gave a model for his theory. It is <m interesting h1turc problem 

to study t h0 r0lationship of his model construction and our method. 

Con cluding R em arks 
This work has been done in connection to Sa.to's RPT /1\ work[3t1]. RPT ( Re­

flective P roof Theory) is a. type- free constructive t heory, b1ll its spirit is \'Cry close 

to r-.·Iarlin-Lof's type theory and F'regc structures. It has two judgements Prop(p) 
nnd Prove s( a. p) '1• lf we introduce an HMID-I ikc mechanism into RPT. we would 
be a blc to define (Pr op , Proves} in RPT. ami can ('X tend the theory of program 
impro\·('rnent in RPT. We p lan to amil.lgamil.te our induction mechanism into RPT 
smooth ly. 

1The original system had an infinite hierarchy of Prop; and Proresi where i ranges over ordinals, 
but we omit the subscripts here. 

Chapter 5 

Conservativeness of A! over 
-\a--calculus 

A! is a unique functional programming langua.ge which has the facility of the encap­
sulated assignment: without losing referential transparency [3'1]. The let-construct 
in A I can be considered as an em·ironment, which has a close relationship lo the 
substitution in the calculus for explicit substitution AO"-ca.lculus in [1]. 

This chapter discusses the relationship between these two calculi. \Ve first define 
a slightly modified version of 1\! which adopts de Bruijn's index notation. \\'c 
then define an injective map from AO"-caiClrlus to A! . and show that the Oct a­

reduction and the O"-reductions in AO"-calculus correspond lo the ,6-reduct ion and 

let -reductions in 1\!, respectively. Pina.lly, we prove that, a.s equality theories, 1\! 
is consen•ative over AO"-ca.lcu lus. 

5.1 Introduction 

A I is a. unique functional programming language which has the facility of I he rn­

caps7tlatcd assignment, without losing 1'efC1'cnlial transparency [3t1]. \Ne can assign 
a. value to a variable in a. simila.r way as imperative programming languages . f3y 
this faci lity, 1\ 1 programs can be quite efficient compilrcd with programs written in 
ordinary functional programming languages. In spite of the existence of a.ssignmcnl 1 

A ! docs not lose ma.thcma.lica.lly good fea.t urcs. NCl.mely, it has a clear semantics, 

and it is rcferentia.l ly transparent in the sense that the equality is preserved through 

substi t ution . (See [34] fo r details.) We believe that A! is a good starting point of 
treating assignment in a mathematically well-founded manner. 

In A!, the let-construct plays a fundamcnta.l role. The evaluation of the l et­
construct (let ((:r a )) b) can be naturally consider('d as eva luating b und(•r the 

environment T =a. This concept of environment is closely related to substitl1tion in 
AO"-calcu lus[l]. AO"-calculus is an extension of ..\-calculus where substitution has its 
o'vvn syntax. and explicit ly described. AO"-calculus is mathema1 ically well founded . 

since il is conserYative over .X-calculus . 

89 



90 CHAPTER 5. CO.VSEHV.\TJ\'E.\ES.'i OF,\ 1 

This chapte•r disc\lsscs the relationship between A 1 and .Xu-calculus. First. we 
define a. slightly modified ,·ersion of A!. The version we present in this ~ha.ptcr adopts 
de Bruijn 's index notation. and has a slightly extend<'d let-rcduct1~n_s c~mpared 
with the• original definition given by Sa.to(36]. Next, we define an ITIJ<'cll\'C map 
<f> from .Xu-cakHius to A 1. Then. we show that the Bela-reduction and the a-­
reduct ions in .Xu-calculus correspond to the J-reduction and let-reductions in A!. 
Finally. we prove that. as equality theories, A! is conscrl'aln·r over .Xu-calculus. 
Nam<·h·. we have that s =tin .Xu-calculus if and only if <f> (.<;) = <f>(l) in A!. 

Itt ilw following. we usc meta.varia.bles l, s, u for .Xu-tcrm'5. 0, o. \for .Xu-substitutions, 
a, b.(' for A' terms, 11, m for natural numbers. 

5.2 _\a--calculus with de Bruijn index 

\\'<' quol<' the• untyped .Xu-calculus in de Bruijn 's index notation from [1]. \\'e assume 
that rc•adc•rs are familiar with de l3ruijn's notation and .Xu-calculus. See also [1] and 
111]. 

Definition 30 (Term I and Substitution 0) 

l .. -

0 

1 ltu 1 .xt I t [OJ 

1d I T I t · o I o o <:> 

In de Bruijn 's notation, all the bound variables disappear if they arc just after 
.X. or ot h<'rwise replaced by indices 1, 2, · · ·. The indices represents the number 
of .X-bindc·rs lwt ween the occurrence of the bound variable and the ..\-binder which 
ad ually binds I his occurrence. For example, the term ..\:r . ..\y.:ry will be represented 
by .X(..\(21 )) in this notation. T'he term 1 represents the first index. An index larger 
than 1 is reprc·sc•tll.cd by combination of 1 and l· The terms lu and ..\t arc as usual 
c•xcc•pt that there appears no bound variable after..\. The term t[O] is the term t 
to which the subst itution 0 is applied. 

l·:ach subc;tit ution inluili\'ely represents a simultaneous substitution for indices. 
The substitution 1d is the identity substitution. The substitution Tis the "shift" 
operator, which substitutes n + 1 for each index n. Th<' subst itulion l · 0 is "cons'' 
of a term land a <;ubstitution 0. which intuiti\'ely rcpre<;cnts the substitution {1 := 

1,2 := ·''1.3 := S2, .. ·}where 0 means {1 := S1.2 := S2 ... ·} rina.liy, 0 0 <Pis the 
compoc;ition of two c;ubstitutions. 

Definition 31 (Context C) 

c .. - () I Ct ltC I ..\C I c [0] I t [0] 

e .. - 0 I c · o I t · e 1 e o o 1 o o e 

5.2. .Au-CALCULUS \\'JTlJ DE BH L'/.J.\' 1.\ J)E.\ 91 

,\ coni ext C ha'5 just one hole (). To emphasize it, we sometimes use the notation 
C( ). \\'<'may replace the hole with a t<'rm l or a substitution 0 in a context C( ), 
which is denoted as C(i) or C(O). 

Definition 32 (1-step reduction -+) 

Etta (..\/).-. ~ /[s ·ld] 

Var I!) 1 [id] ~ 1 

\larC'ons 1 [/ · 0] ~ I 

App (ls)[OJ ~ (I[O])(s[OJ) 

Ab"' (..\1) [0] ~ ).. (I [ 1 · ( Oo l) ] ) 

Clos I [0] [<;>] ~ I [0 o ¢] 

IdL id 0 0 ) 0 

Shift! d To 1d ~ T 
ShiftCons To(t·O) -+ 0 

.\:lap (I . 0) 0 \ tl[\]·(Oo\) 

Ass (Oo<;>)o\ ~oo(oo\) 

Rul<•c; other than Bc.ta arc called u rules or a--reductions. Heduction relations 
for th<' Bela-rule and the u-nties arc writ ten as~ n and ~11 • /3d a-reduction corn:­
sponds to th<' usual J-reduction in ..\-calculus. but it do<''i not actually pcrfom t h<' 
c;ubstitul ion. ft merely adds a new substitul ion,.,· id to I he term l. This substitution 
will be later resolved by a--reductions. 

D efinition 33 (Reduction -H) The 1'(/alion r. is lhr /ca,<,/1·rlation satisfying lhr 
following conditions: 

1. -H is rc.f7c.rivc and fnmsilirc. 

2. ) ,., implies C(t) -H C(s). 

3. 0 -+ <;> implies D [0] -H D [o]. 

The equality= is the equival<-ncc r<'lation indHced by -H. 

Theorem 20 (Abadi et al) The u-rcducl10n rs ron.f7ucnl and terminating. TIH 
.Au-calculus is conjhtenf. 

The a--normal form of a .Xu-term t is the normal form of l under the u-reduction'5, 
and is written as u(t). 



92 CIIAPTEH 5. C'Oi'iSEH\1\Tl\'E.'d~SS OF 1\! 

5.3 A! an d pl et-calculus 

5.3 .1 A Functional Programming Language A! 

1\1 is o type-free functional programming language which hac.; lh~ f~cility of t.hc 
rnr-apst~fatul assignment. \Vc can assign a value to a. va.riablc in a. smnlar way \\'llh 
imperatiYc languages. ln spite of the existence of assignment. ,\! docs not lose 

mathematically good featmes. Namely, it ha.s a clear semantics by ~h~Hch-Hoc.;ser 
I heorem. and it is referentially transpar<'nl in the sense that the equahty ts preserved 
through !-iltbstitlllion. In this chapt<'r. we reinforce this viewpoint by the fact I hat 
1\! is a consen·at ivc extension of AO"-calculus. The terms in AO"-ca.lculus ca.n be 
natmalh· translated into/\!, however. it is not cle<lr that the equality is preserved 
through. tl1is lr<lnsla.t ion. si11ce the introduction of assignment to 1\ 1 for~es us to .fix 
<'valu<llion order to some cxl<'nt while AO"-c<llculus allows strong rcdllctwns. whtch 
ma.y reduce subterms inside .X in on arbitrary context. Therefore, conscrvati,·encss 

of 1\! over AO"-calculus is an interesting problem. 

5 .3.2 Modificat ion to A ! 

l'his subs<·ctio11 explains th<' two different points betwc<'n the original \'<'rsion of A 1 

alld the modified version used in this paper. 
The first difTerencc is that we usc de Bruijn's index notalion in Lhc modified 

,·ersion. while variable names were used in the origin<tl version. In the new \'ersion. 

a \'arinble is represented <ts a. nntma.l number (an index). 
The other modificntion is explained below. Consider the following equation 

(taken from [34]): 

(let ((x t)) (apply a b)) 
= (apply (let ( (x t)) a) (let ( (x l)) b)) 

In this example, l. a, a.nd b represent some terms in A!. In a natural translation 
from AO"-calcu lus. this equation is expected to hold in any context. If l docs not 
h<tYe assignable varia.bles, the equation (without any context) holds. 1-lowe,·er, this 

equation docs not hold in an nrbitrary context. Consider the following equation 
(which is incorrect in the original 1\! ): 

(lambda (y) ( l et ((x y)) (apply a b))) 

= (lambda (y) (apply (let ((x y)) a) (let ((x y)) b))) 

In the original 1\!, we have no way to evaluate the subterm 
(let ( (x y)) (apply a b)), since y is not closed. From the Church- Rosser Prop­
erty of the originnl A!, we ca.n show lh<ll the equa.lion above does not hold. which 

mcnns the original ,·crsion is not conscn·atiYe over AO"-calculus under a. natural trans­
lation. It follows tha.t the original A 1 is not conservative over the pure .>.-cnlculus; 

5.3. A I .\.\D PLET-CALCULUS 93 

two equal .>.-terms .>.y.(>..:r.:r.r)y and .Xy.yy arc translated into two,\ '-terms which 
arc not cquaJl. 

This example motivates our modification. We allow reductions of a term 
(let ((x l) a). not only in the case that lis closed (and a is Cl.rbitra.ry). b11t also 
in the c<lse t h<lt I and o are read-only. t\ r<'ad-only term is <t term which docs not 
hn,·e side-efTect. Note that a rc<td-only term a m<ty coni a in assignment e,·cn if o 
has assignment. In this case. e\'cry ,·ariablc in the assignment must be bound by 
let-construct or lambda-construct in o. By extending let-reduction in this way. we 
can reduce. for exarnpl<>. the term like: 

(lambda (y) (let ( (x y)) (apply a b))) 

--+ (lambda (y) (apply a.r[Y] b.r[yj)) 

where or[Y] means the usual substitution if a and b arc read-only. We can show 
that the resulting calculus still satisfies the Church-Rosser Property. and has the 
referential lranspar<'ncy. We simply call this modified version A ' , and usc the tNm 
the "origin<ll" ,·ersion if we mention 1\' in [31]. 

5 .3 .3 D efinition of A ! 

The scl of N-terms is defined for each nntura.l number N as follows: 

Definit ion 34 (Term oN o f A!) 

aN ::= n if n 2 1 

(set ' naN) if n ~ N 

(let ((aN)) a,v+I ) 

(while a,,.,, aN aN) 

(if CLN ON aN) 

nil 

(null? aN) 

(pair a ;v aN) 

(pair? a,v) 

(car aN) 

(cdr aN) 

(lambda 0 a1) 

( fun? aN) 

(apply aN aN) 

(mu aN) 

'Jt follows t hal Theorem 4.6 in {34] also needs the modifical ion to l he definition of A!. 



94 CIIAPTER 5. CONSERVATIVENESS OF A! 

Intuitively, an N -term aN is a term whose assignable Yariables are less than or 
equal to N. \Vc sometimes call an N-term simply as a term. The term (set! n 
aN) represents assignment for the variable n to the value aN. In order to keep 
referential transparency, we restrict the a-"signa.ble variables to be bound by a let­
construct or a lambda-construct. Term constructs such as while, if, nil, pair, 
car, cdr. lambda, and apply have usual meaning. Terms such as (null? a) are 
predicates which decide whether a is nil or not, and return true or false. The 
term (mu a) is the p-opcra.tor which invokes a. recursive call. A term which is 
constructcd from variables, lambda-constrnct, apply-construct, and let-construct 
is called <1 p111'C term. The terms nil, (pair ON bN), and (lambda 0 a 1v) arc 
ca.llc>d const ruclor terms, and the terms (null? CIN), (pair? aN), and (fun? 
aN) ar<' called recognizer terms. We also say that nil and (null? a,...·) arc of the 
sa.mc kind. Likewise, (pair aN bN) and (pair? a:v), arc of the same kind, and 
(lambda () aN) and (fun? aN) are of the sa.me kind. Other combinations of 
pairs of these terms arc of different kinds. 

The reduction rules of A! arc listed in the Appendix of this chapter. The con­
Oucncy of the original A 1 was proved in [34]: and the conOucncy of this modified 
\'Crsion is proved similarly. The equality in A! is the lca-"t equin1lcnce relation which 
contains ~. Instead of explaining the reductions rules in detail, we gi\'e a simple 
(~xarnplc here. Readers arc encouraged to read [34] for thorough understanding of 
the original A ! . 

Example 1 (Reduction in A!) Lett be the following term. 

(lambda () 
(apply 

(apply 
(lambda () (lambda () (pair 1 (pair 2 3)))) 
1) 

nil)) 

If W< 7tsc the notation with vm'iable names, t is written as follows: 

(lambda (x) 
(apply 

(apply 
(lambda (y) (lambda (z) (pair z (pair y x)))) 
x) 

nil)) 

The following sequence is a 1·cduction sequence starting fmm t. 

t ~ (by Rule 12) 
(lambda () 

5.3. A! A:\'D PLET-CALCULUS 

(apply 
(let ((1)) 

(lambda 0 (pair 1 (pair 2 3)))) 
nil)) 

~ (by Rule 17) 
(lambda () 

(apply 
(let ( ( 1)) 

(lambda 0 (pair 1 (pair 3 3)))) 
nil)) 

~ (by Rule 16) 
(lambda () 

(apply 
(lambda () (pair 1 (pair 2 2))) 
nil)) 

~ (by Rule 12) 
(lambda () 

(let ((nil)) 
(pair 1 (pair 2 2)))) 

~ (by Rule 17) 
(lambda () 

(let ((nil)) 
(pair nil (pair 2 2)))) 

~ (by Rule 16) 
(lambda () (pair nil (pair 1 1))) 

9.5 

ln this chapter, we arc mainly concerned with the fragment of A! consisting of 
pure terms. which arc sufficient for the translation from AO'-calculus. The frngrnent. 
is called the JHO'e-fragmenl. The pure-fragment is closed under reduction. 

ln the translation given later, we will need an intcrmcdintc calculus, which w<' 
tempora.rily call plet-calculus (parallel-let calculus). 

Definition 35 (Term o of plet-calculus) 

a .. - n if n 2 1 

(let ( Ca1) Ca2) · · · (ok)) b) 

(lambda () a) 

(apply a b) 

Si nee plet-ca.lculus is solely used for the translation, we do not define reduction 
rules for iL 



96 CIIAP'JTR 5. CO.V.'iEH\TfJVE:\ES.'i OF A 1 

5.4 Translation of AO"-calculus into the pure-fragment 

5.4.1 Translation of AO"-calculus into plet-calculus 

This subsection presents a translation from AO"-terrns to pl et-tcrms. \ \"e begin with 

a n auxiliary clcflnit ion. 

Definition 36 (D egree b(a)) For rach plet-fcrm a. its degree. 8(a) is a nofuml 
n uiTibu· drfin((f a!> follows: 

8( n) 
[:, 

if II ;::: 1 = n 

6( (let ((a 1 ) •• • (ak)) b)) 
[:, 

nw:r( c5( a!) . · · · . 8( ok) . 8( b) - k) = 
8( (lambda 0 o ) ) 

[:, 
ma:r(l. c5(a) - 1) -

b((apply a b) ) 
[:, 

ma.r(c5(a) . 8(b)) -

!J IIuili,·e l.'·· c5(o) is the maximum index of free Yariablcs in a. If a docs not ha,·e 
frc<' ,·ariablc·s, c5(a) is defined to be 1 rnlhc>r thn.n 0. 

Definit ion 37 (Trans lat ion tf ) Fo1· each At7-lcnn I. a plet-tcnn o is drfinrd as 
fo llou•s: 

1t 
[:, 

1 = 
( l s) t 

[:, 
(apply lt s t) -

(Al) t 
[:, 

(lambda 0 t t) -

( l [0] ) t 
[:, (let o<6(tl)) tt ) = 

T~l(' tra ns lat ion for su bst it ution _(n) is defined as follows. 

Definition 38 (Translation o<'1l ) For a substitution 0 in At7-calcu lus and u nal­
rmd num bu n (n ;::: 1 ), O(n) is a list of singleton -lists of plet-tcrms dtfincd as 
follows: 

id(n) t:, ( ( 1) (2) · · · ( n )) 

j{n) t:, ((2) (3) · · · (n+ 1)) 

(a · O)(n) t:, ((a t ) ( b,) Cb2) · · · Cb1J ( k + 2)) 

i f o<nl i.e; ((b,) (62) ... (bk)) 

(Oo¢){n) t:, (((let ¢)m) a1 )) · ··((let </>{m) Clk ))) 

i fO (n) is ((a ,) Ca2 ) ··· (a k)) 

and m is mwr(c5(a 1 ) ... · , c5(ak}) . 

5. I. THA.\SL. \T/0.\ OF At7-C ALC ULUS 97 

Proposit ion 3 The translation - t is injective . 

Proof. First note that, for each substitution 0 nnd natural nmnbcr n . the' length 
(as n list) of o<nl is cqunl to or more than n. It follows that the length of (a. O)<"l is 
more thnn n + 1, so (a· O)(n) cannot be identical to id(n) nor r<nl. MorC'O\'Cr. its las( 
elcm('nt is a nnt.ura l number k + 2. and d iffcrs 2 from the last element of (0 o o)<'1l. 
I fence. t h(' images of _ (n) for four clnsscs of subst itutions do not oYcrlap . Using this 
fact. W(' Ci"1n prove tha.t. 1t and o<n) (for each n) arc injcct ive by the simultnncous 
induct ion on the complexity of the term I and the s11bst itu tion 0. 0 

5.4.2 Translation from plet-calculus to A! 

First we define a+ for each plet-lerrn a. Intuit ively, a+ is t he term a with each free 
\'ari a.ble sh ifted (ndded by one), for exa.rnpk , 

(apply 3 (lambda () (apply 1 2))) + 

is (apply 4 (lambda 0 (apply 1 3))). To define a+, we need to define nn aux­
iliary function o~. which adds one for ea.ch free variable in a whose value is mor<' 
th nn m . 

Definition 39 (a~ ) 

n+ 
[:, 

i f n <.5: m m n 

+ 6 
n+ l i f n > m nm = 

(let ((a,) ... ( ak )) b) + 6 
(let (( (a t) ~ ) · · · ( (ak)~ )) b) = m 

(lambda () a)+ 
[:, 

(lambda () a~+t) = m 

(apply a b) ~ 
6 

(apply a~ b~ ) -

V•./e s imply write a6 as a+. 

Definition 40 (Translation * from plet-ca.lcul11s to A ! ) 

~ 
[:, 

n n 

(let () b)* 
6 

(let (b*) 1) -

(let ( (a 1 ) ( ak-t) (ak)) b). 
[:, 

(let ((ak)) c) ... -
if c i s (let ( (a 1 + ) . .. ( ak_ ,+ )) b)* 

(lambda 0 a)· 
6 

(lambda 0 a*) -

(apply a b)• 
[:, 

(apply a· b*) = 

2This is the reason why we a.tlached the (meaningless) term k + 2 in the defini tion. 



98 CIIAPTER 5. CONSERVATIVENESS OF A! 

In the following, we sometimes regard plet-terms as pure terms in A! (through the 
translation * ). 

The tra.nslation <I> from AO"-calculus to the pure-fragment is defined as fo llows. 

D efinition 41 (Translation <I> from .Xu-calculuii to A!) 

Theorem 21 _ w is injective. Hence <I> is injective. 

Proof. Clear. 

Remark 3 Jf a non-injective map we1·e allowed as the lran.slalion <I>, J>a1'1 of 0111· 

rrsulls {lhr {t1·st pa1'1 of Theorem 22} would become tn:vial a.s .shown below. 
lrt AO"-calculus, the set of O"-normal forms can be regarded as the set of p1t1'e .X­

tc1'ms, so the map <7(_) can be regarded as the translation f1·om Au-terms to p1t1·e 
.X-tenns. We. have that, s = t holds if and only if O"(s) = <7(l) holds. A I is also 
conso·uative ova pure .X-calcuhts 3 . Namely, the1·c is a map \1! from p1t7'e A-terms 
to A! -term.<; such that a = b holds if and only if IJ!(a) = IJ!(b) holds. Let <I> be the 
r·omposition of u and \1!; then we have that s = t holds in AO"-calculus if and only if 
<I>(s) = <P(l) holds in A 1. 0 

5.4.3 Properties of the translation <I> 

Here, we prove that the transla.tion <l> preserves the equality. First we state an 
extension of Lemma. 1.2 in [31]. 

Lemma 8 Let a and b be pure N-ter·ms for some naluml mtmber N. 
Then, the te1·m (let ((a)) b) 1·ed1tces to b{ 1 :=a, 2 := 1, 3 := 2, · · ·, k := k-1} 

using let-ntlc.s only, whe1·e k is 8(b). 

llerc { 1 := a, 2 := 1, 3 := 2, · · ·, k := k - 1} denotes the simultaneous substi­
tution. Note tha.t a and b are not necessarily 0-terms. As was stated in Section 
. 5.3.2, this lemma does not hold for the original A!, since we cannot reduce the term 
(let ((a)) b) if a is not closed. On the contrary, the version we present in this 
chapter satisfies this lemma, since all pure N-tcrms a.re read-only, which enables us 
to reduce the term (let ((a)) b). 

Similarly, we have the following lemma. 

Lemma 9 Let a, ... ak· and b be ]J111'e N-le1m.s, and k be 8(b). !fn ~ k, then 
(let ((a,) .. · Can)) b) redltccs to b{1 := a 1,2 := a 2 , ... ,k := ak} using let­
rules only. 

3
Th is claim does not hold for the original A!, but it does hold for the modified version presented 

in this chapter. 

5. t TRA:\:S'L.'\ TIO.Y OF A<7-CALCULUS 99 

Note that. \Ve regard plet-terms as A !-terms through the translation ( r in 
Lemma 9. 

These lcmma.c; arc proved by the induction on b. 

Proposition 4 Fo1· each lerm-redltcfion rule l ~ s in AO"-calculus, <l>(t) = <l>(s) 
holds in A!. Fo1· each Sltbstitution-7'eduction ntle 0 ~ ¢ and a fe1·m s in .Xu-calculus, 
<I>(s [0]) = <I>(.s [¢]) holds in A 1. 

Proof. This proposition is proved by the case-analysis. 

(Beta) The left hand side (LHS, in short) of Bela is translated into 

which 8-reduces Lo 

By Lemma 8, this is equal to tt{1 := st,2 := 1.3 := 2,· ··}. 

The right ha.nd side (RIIS, in short) of Beta is translated into 

(let ((st) (1) · · · (n -1)) tt) 

Calculation of indexes shows thai this is equa.l to lt { 1 := st, 2 := 1, 3 := 2, · · ·}. 

(VariD) LHS is translated into (let ((1)) 1) which reduces to 1. R II S is trans­
lated into 1. 

(VarCons) LIIS is translated inlo (let ((tt) · · ·) 1) which reduces to tt. RHS 

is tra.nsla.ted into tt. 

(App) Suppose 0(6((tsl'll is ((a,) .. · (ak)) . 

LJIS is translated into (let ((a 1) Ca2) · · · (ak)) (apply tt .stp. 

RlfS is tra.nslated into 

(apply 
(let ((a 1) Ca2) 
(let ( Ca1) Co2) 

where I and m are 8(tt) a.nd c5(st). 

(a1)) tt) 
Cam)) st)) 

By Lemma 9, (let ( (a 1 ) · · · (ak)) tt) is equal to 



100 CH.J\PTER 5. CO:VSEJ?\:\TJ\.ENESS" OF/\! 

and simi larly for st. lienee. by Lemma. 8, LIIS a.nd JUTS reduc<' to 

(apply tt {1: =a,.···. I: =ad 
S t { 1 :=a 11 • • • 1 m :=am}) 

(Abs) SuppoS(' 0(6((.\tl'll is ((a 1) ••· (a~..)). 

LIIS is t ranslatcd into (let ( (a 1) • • • (a~;)) (lambda 0 tt)). This reduces 
to 

(lambda () 
l t { 2: =a 1 { 1 : =2 , 2: =3, · · ·}, 

k + 1 :=ad 1: =2, 2: =3, · · ·}}). 

lUIS is tra.nslaLcd into 

(lambda () 

(let ((1) 

((let ((2) (3) ... ) a,)) 

((let ((2) (3) ... ) a~,.))) 

t t)) 

The latter term reduces to Lhe former by Lemma 9. 

(Clos) Suppose o<6<t'll is ((a1 ) ••• (a1)), a.nd </>(n) is ((61) ··· (bk)) where n is 
ma:r(a 1 , • • ·, a1 ). 

LJ IS is translated into 

(let ((61 ) • •• (6~.-)) 

(let ((a 1) • • • (a1)) tt)) 

RIIS is transla.ted into 

(let ( ((let ( (61) 

LIIS a.nd RI!S reduce to 

5.1. THA.VSLATIO:V OF .Xo--CALCULUS 1 01 

I: =cq { 1 : =61• · · ·, k: =b~,.}} . 

(IdL) Let n be 6( s ). Suppose o<nl is ( (b1 ) 

into 
(bk)). Th<'n. s[idoO] is translal<'d 

(let ( ((let ( (b1 ) 

Since k 2: n, this reduces to (let ((61 ) ••• (6n)) st) Then this term is 
identical to (s [0] )t by Lemma 9. 

(Shiftid) Let n be 6(s). The terms[ j o id] is translated into 

(let ( ((let (( 1) 
((let ((1) 

(n + 1)) 2)) 
(n+1))3)) 

((let ( (1) 
st) 

(n + 1)) n + 1))) 

This reduces to (let ((2) ·· · (n + 1)) st) which is identical to (s[ T ])t. 

(ShiftCon s) Let n be 8(s). Suppose o<n+tl is ((61) • • • (6k)). 
Then, s [ j o (t · 0)] is lra.nsla.ted into 

(let (((let ( (tt) Cb1) 
((let ((tt) (61) 

((let ( (tt) (b1 ) 

st) 

(6k) (k + 2)) 2)) 

(bk) (k + 2)) 3)) 

(6k) (k + 2)) n + 1))) 

\Ve a.lso ha.ve k 2: n + 1, and the term above reduces to 

which is equal to (s[OJ)t . 

(Map) Letnbe6(s). SupposeO(nlis ((a,)··· (ak)),a.nd-x(mlis ((b,) ··· C61)) 

where m is ma:r(6(t),8(at), · · ·, 8(ak), k + 2). 

Then, s [(t · 0) o xJ is translated into 



102 CIIAPTER 5. CONSER\1ATIVENESS OF A 1 

(let ( ((let ( Cbt) 
((let ( (b,) 

((let ((b1 ) 

((let ( Cbt) 
st) 

s [l [ ·x] · ( 0 o ~)] is translated into 

(let (((let ((b,) 
((let ((b1 ) 

((let ( (b1) 

(k + 2)) 

Cbt)) tt)) 

Cbt)) a,)) 

Cbt)) ak)) 
( bt)) k + 2) ) ) 

(bo)) tt)) 
(bq)) a 1)) 

where cS(t) is p, ~(p) is ( (b1 ) · • • (b0 )), ma:r(c5(a1 ), • • ·, cS(ak)) is r, and ~(r) is 
((b,) ... (bq)). 

We have that p ~ o ~ l, r ~ q ~ I, and n ~ k, therefore, by Lemma 9, both 
of these terms arc equal to 

.') t { 1 : =t t { 1 : =bt, . .. , p: =bp}, 

2 :=a 1 { 1 : =b1 , · · ·, r : =br}, 

(A ss) Let n be cS(s). Suppose O(n) is ((a1) ·•• (ak)), <f>(o) is ((b1) • •• (b1)), and 
\ (p) is ( (c1) • • • Cern)) for a.ppropriate o and p. 

Then, s [(0 o ¢) o \] is translated into 

(let (((let ( Cct) .. · Ccm)) 
(let C<bt) .. · (bt)) at)) 

((let ((cl) · · · (em)) 
(let CCbt) ... Cbt)) ak))) 

s [0 o ( 4> o \: )J is translated into 

5.5. TR:\.i\'SLATJO;Y OF TilE PURE-FHAGME.YT J:YTO .Xa-CALCULUS 103 

(let (((let (((let ((e1 ) 

((let ((e1 ) 

at)) 

((let ((e1) 

ak))) 

I3oth of these terms reduce to 

.s t { 1 :=a 1 { 1 : =bt { 1 : =e1, · · ·, m :=em}, · · ·, l: =bt { 1: =e,, · · ·, m :=em}}, 

1: =ak { 1: =bt { 1 : =e1, · · ·, m: =em},· · ·. l: =bt{ 1: =e1, · · ·, m: =em}} 

Note that, we have used only let-rules for proving the cases for a-ntics. Note 
also tha.t, the 1-step Beta reduction can be simulated by the 1-st.ep ,8-reduction with 
some let-rules. 0 

Prop osition 5 Let t and B be .Xa-lcrms. If t = B, then <l>(t) = <l>(s) in A!. 

P r oof. \Ve first prove that, the resul t of Proposition 4 can be extended to an 
arbitrary context. Namely, for a. context C( ), if l ~ s, then <l>(C(t)) = <l>(C(s)) 
where t and s arc terms or substitutions. These arc straightforward if the used 
reduction rule is a. a-rule. Jlowever, in the case of Beta-rulc, there occurs a subtle 
point; for example, ( {A2)3)[ j] is translated into 

(let ((2) (3) (4)) (apply (lambda () 2) 3)). 

On the other ha.nd, the result of applying Beta rul(• to it is 1 [ j] which is translal<-d 
into (let ( (2)) 1). We ca.n use Lemma. 9 lo overcome this difficulty, and can prove 
the equa.lity of <I>( C ( t)) and <I> ( C ( s)). 

Finally, we can extend the result for 1-step reductions to the gcnNa.l case, and 

get the desired proposition. O 

By checking the proofs, we know 1 hat, if l = s is shown by a-rules on ly, then 
<l>(t) = <l>(s) is shown by let-rules only. 

5.5 Translation of the pure-fragment into .Ao--calculus 

We now define the reverse translation, namely the t ran slat ion from the pure-fragment 

of A! to .X.a-calculus. 



101 CIIAPTEH 5 ( '0 .\ 'SEH\1ATIVESESS OF ,\! 

Definition 42 (Translation \11) 

\ll (n ) 
e:. 1 [ irl ] 

til ( (let ((a)) h) ) 
e:. \II ( b )[\II ( (/ ) . id] = 

tJJ ( (larnbda ()a) ) 
e:. 

,\\II( a) = 

\II( (apply a b) ) 
e:. \ll (a )\ll(b) 

ll 

!11 th<: fi1 st claus<•.1[ T"] isn-tinwsapplicatiouofsuh-;titution. that is.1 [ i ] ·· [ T ]. 

Proposition 6 I l't hot•t lht follou•ing: 
J. \jJ IS 111.Jf t/11'(. 

~ I rl (( Olld h {){ }Jim \-/(11!1S in A I. If (J =b. (/1( 11 \V(a) = w(b) holds. 

P1·oof. \\'<' first prove· the theorem for til<' cas<' of a - ; h. It is prov<·d by I he 
induct iot1 011 t h<' d<•ri,·at ion of a __.. b. \\·e 01dy ha\'<' to r<msickr Hulcs 1. 3. 5. 7. 12. 
16. 17. ancl1!). 

(Rules 1, 3, 5, 7) ' l' ll<'s<' cases arc prow•d ca<>ily. 

(Rule12) S11pposeais(apply (lambda() c) d).bbe(let ((d')) c'). 
c 'c' and d-+ d'. I h<'ll. \II{ a) is (,\\ll(c))\ll(d). a11d \II( b) is \ll(c')[w(d') · 1d]. 
Bv lh<' mduction hypothesis and the fhla nil<' in )..a calculus. these t<'rms arc 
<'qua I. 

(Rule 16) Suppos<• o is (let ((c)) d), 1 rf. F\l(d). d - t <,and b is c-. We 
hav<· W(a) i'i \ll(d)[\ll(c) · id]. We can show that. all the' occurrc•nccs of 1 
in W(d) arC' follow<•d by OTIC' or more j's, hence W(d)[W(c) · id] is equal to 
W(d){2 :- 1. 3 := 2. ···}.which is again equal to W(d ). \\'<· h<wc 1 rt FV(c). 
and, IIH•r<•for<'. d- -4 c-. Dy the induction hypothC''iiS \ll(d-) = w(c). tlC'nce 
\II( a) W( b). 

(Rule 17) ~upp<>s<' a is (let ((c)) d). p(d.p) = 1. c - ) c'. d-+ d'. and c.= 
d~[c'+J. b is (let ((c')) c). Th<'n. W(a) i'i \ll(d)[\ll(c) ·ld]. which is <'qual to 
W(d')[\ll(c') · id]. by the induction hypothesi". By the induction on the' term 
w(d'). w<' han· that the a-normal forms of thi'i tc•rm and the term \II(< )[\ll(c') · 
1d] arc id<•ntical. lienee we ha\'<' that W(a) and \ll(b) arc: a-equal. 

(Rule 19) I his ca~e is pro\'cd in a similar way as Hul<: 17. 

\\'c can cxl<'nd I he result above to the equality a= b. 0 

5.6. .\1 \ /.Y Tl/EORE.\1 10.5 

5.6 Main Theorem 

This s<·c·tion prc.,cnt" the main thcon·rn of l hi'i chapter. 

Proposition 7 For· wch /\u-tam l, \ll (<l>(t)) = l holds. Morwl'r.r, the r.qualily i .. 
... hou•n by the let-ruhs only. 

Proof. This proposition i'i pro\'ed by the induct ion on the term t. 0 

Theorem 22 Lell and s be )..a-terms. 71Hn, t .s holds if and only if<l>(i) = <!>(.<;) 
holds. 

Morrot•n·, if I is shown to be <qual /o s 1/SW!J a-rules only, <l>(t) and <l>(s) an 
shotmt lo fu rqualusing let-rules only. If l is shoti'TI to b< equal to s by .several limes 
applirolions of lhr Hcta-1'1tle, <l>(t) and <l>(s) arc shown fo be <qual by the same limo; 
applications of the /3-ndc, and some applirations of let-rulrs. 

Proof. 1 he first part follows from Propoc;ilions 5, 6 and 7. The second part 
follows from the remarks for these propositions. 0 

Remark 4 Theorem 22 shows thai the pt11'<-fmgmcnl of A I and )..u-calculus han 
a r/o.c;r J'clallonship; as equality thcorLcs. A I (the l'crsion presented in this chapter) 
1s c·onw TTalit·c ot·cr )..a-calculus. 

1/otN 1·n·. lL'C can see several diffacnrcs bdu•cen !hun. Firstly. the ,·eductiOn 
1'ttlrs do no/ dircrtly correspond, namely, l H ,c; w )..a-calculus docs no/ necessarily 
1mply <l>(t) -+ <f>(s) in t\!. Secondly, substitutions arc objccls in )..a-calculus, and 
can be directly treated, while its corresponding c.rp1·cssion 
(let ((a)) ( }) is not a term in A!. '!1ti8 1'eflrcls thai, in A! we only consider /he 
cnl'ii'Dnmcnf wilh some term, and nrvo· /1'Ca/ one as an independent object. Oru 
of the dcsig11 goals of A! is to treat assignmr..nt in a malhcmatically well founchd 
11Htnnc1·, which means we want lo !.:rep the 1'ffC1'cntial/mnsparcncy in our sense, and 
lhrnfore, we do not separate terms and cm'i1·omncnts. 

As in )..u-ca.lculus, we have a complclr normal-onlf1· slralrgy fo1· the 1·cdurlions 
in A!, which we plan to implement on a romp1t1n·. 0 

5 . 7 Conclusion 

\\'C' ha\'e shown the rigid relationship betw<'en '·explicit substit ulion'' ()..u-calculus) 
and our functional language A!. We first presented a modified \'ersion of A! so that 
we mav reduce let-terms under the '·read-only" condition. We used de flruijn ·., 
index ~otation in this presentation. \\'r then gave a translation from )..u-calculus 
into the pure-fragment of A!, and a reverse one. We prO\'C'd that, through these 
translations. u-nties correspond to let-rules. !3da-rule corr<'sponds to 8-1ule. and 
fina.llv A! is conservative O\'er )..u-calculus. We also prC's<'nted a brief sketch of trans­
latior~ for calculi with variable names. Togcthc•r with th<' Church-Rosser property 



106 CIIAPTER 5. CONSERVATIVENESS OF A! 

and the referential transparency presented in [31], our result establishes that A! is 

a well-founded programming language with assignment. 
J\s a future work, we should extend RPT so that reasoning about A !-programs 

can be formalized in RPT, and then extend our Constructi,·e Programming System 
to include such reasoning. By doing these things, we can synthesize 1\! -programs 
(with the assignment and the while statements) by the way of Constructive Pro­

gra.rnmmg. 

Appendix: The Definition of A! in de Bruijn's 
notation 

The Appendix gives several definitions including the reduction rules of 1\! m de 

Oruijn 's index notation. 
J\ position is a finite sequence of positive integers, with t: being the empty se-

tJUence. For instance, 121 is a position. 
Each subterm in a term is specified by a. position in a usual way. We use the 

notation tjp for the subterrn of a term tat the position p. For instance, 

(apply (apply a b) c) /22 is a, and 
(apply (apply a b) c) / cis (apply (apply a b) c) . 

For a term a and a position p, v( a, p) intuitively means the number of surrounding 
bind<'rs (let or lambda) a.t the position p, and is defined as follows. 

Definition 43 

v((let ((b)) c),211q) 
D. 

v(b,q) -

v( (let ((b)) c), 3q) 
D. 

v( c, q) + 1 

v((lambda () b),3q) 
D. 

v(b,q)+l -
v((f b1 .. • bm),iq) D. 

v(bi_1,q) where f is not let nor lambda, 

v(a,p) 
D. 

0 otherwise 

Suppose a/ p is a varia.ble i. This occnrrence of a variable is called bo1m d if 
i <.:;; v(a,p), a.nd f1'ee otherwise. 

Next, we define a natural number p(a, p) for a term a a.nd a position p. In a. term 
a, there may be several occurrences of a. variable, and each may take a different value. 
We, therefore, sometimes need to know the absolute value of a variable-occurrence 
if we look a.t this occurrence from outside of a. The number p(a, p) is defined to be 
i- v(a, p) where ajp is a free occurrence of a variable in a, and i is the variable. 
Otherwise, p(a, p) is undefined. 

FV(a) is the set of p(a, p) where p ranges over all the free occur rences of va.riables 
tn (l, 

5. 7. CONCLUSION 107 

Let 11s take an example. Let a be (let ( (2)) (pair 1 2)). Then v( a, 211) is 
0, the occurrence at 211 of a is free, and p(a, 211) is 2. v(a, 32) is 1, the occurrence 
at 32 of a is bound, and p(a,32) is undefined. v(a,33) is 1. the occurrence at 33 of 
a is free, and p(a,33) is 1. 

For a term a, two terms a+ and a- arc the term a with each free \'a.riable added 
by one, and Sllbtracted by one, respect ivcly. F'or instance, 

a+ IS (let ( (3)) (pair 1 3)) 
a IS (let ((1)) (pair 1 1)) 

A precise definition of a+ is given by Definition 39. 
An JV-term a is called N-closedif FV(a)n{l, · · ·, N} = 0. The set CN repr<'sents 

the set of JV-closed terms. An N-term a is called N-rcrul-only if, for any subtcrm 
in the form (set! n b), n is bound in a. RN represents the set of N-read-only 
terms. 

Definit ion 44 (Substitution) Let a and d be terms, and p be a position. We will 
define a tc7'm ap[d] as follows: 

• If p is c, ap[d] is d. 

• Otherwise, 

- if a is (lambda 0 b), 

then ap[d] is (lambda 0 bq[d+j) if p is 3q, and is undefined othrnvise. 

1jais(let ((b)) c), 

then ap[d] is (let ((bq[dj)) c) ifp is 211q. aP[dJ is (let ((b)) c,[d+]) 
if p is 3q. ap[d] is tmdefined olhenvisc. 

- if a is (j b1 · · · bn) where .f is not let nor lambda, 

aP[d] is (j b1 • 00 biq[(n 00 

• bm) ifp is jq, 2 <.:;; j <.:;; m + 1, and i is j -1. 

- otherwise 

ap[d] is tmdcfined. 

SubstitlJtion for multiple occurrences ap1 , ... ,Pk[b] is defined to be ap1 [b] if k = 1, 

a.ncl (ap 1 [b])p2 , ... ,p,. [b] if k > 1. 
\Ve next denne the set EN( a) for ench N-term a in 1\!. Jntuiti\'cly, if p E 

EN(a), the subterm ajp should be e\·aluatcd a.t the next step by the let-reduction. 
Note however that we fix the evaluation order only for one occurrence of the let-

' l 

construct. If other rules are applicable, or there are other let-constructs which 
do not interfere with this let-construct, we may evaluate other subterms tha.n one 
specified by ~N(a). F'or a position p a.nd a setS, pSis the set {pq I q E S}. 



108 CHAPTER 5. COSSER\: \ T/\"E.\ES.'i OF 1\! 

Definition 45 if a E eN. thr;n ~N(a) is 0. Othr.nvise. 

~1\l(n) 
t:;,. 

{c} 
if a E eN. 

~N( (let ((a)) b)) t:;,. 211~N(a) U 3~:V+t(b) 
{ 

3~N+t(b) 
if a E ll:V and bE Rv+t. 
otherwise. 211~N(a) 

~ N ( ( set ! n a ) ) 
t:;,. { {c} i.faEeN, 

3~N(a) otherwise. 
t:;,. 

~v( (lambda () a)) 
t:;,. 

;.;.v( (while a b c)) 
t:;,. 

~N((if abc)) 

~N( (apply a b)) 

~N((pair a b)) 

{c} 

2~N( a) 

if a E e:V, 
if a E R,v and bE RN , 

otherwise,. 

if a E e,\·, 
if a E llN and b E nN 1 

otherwise. 
t:;,. 

~N((f a)) 2EN(b) where .f is a term construct not listed above 

Note I hal, for a pmc, open term a, EN(a) is not empty. 
The 1-step reduction relation ~ in de Bruijn notation is defined as follows: 

Definition 46 1. If n is a variable {an inde.r), th en n ~N n. 

2. If a ~N d and s is on e of fun? , null? , pair? , car, cdr, and mu, then 
(s a) ~N (s d) 

3. If o ~N d and b ~N e and sis one of pair, apply, th en 
(s a b) ~N (s d e ) 

4. If a ~N d, b ~N c and c ~N f and s is if or while , then 
(s a b c) ~ N (s d e j) 

5. !f o ~ , d, th en (lambda () a) ~N (lambda () d) 

6. if a ~N d, th en (set' n a) ~N (set! n d) 

7. If a ~N d and b ~N+t c, then (let ((a)) b) ~N (let ((d)) e) 

8. If a E RN, (s a) is a recognizer term of some kind, and a is a constructor term 
of th e same kind, then (s a) ~N true. 

9. if a ERN, (s a) is a 1'Ccogni::er te1·m of some kind, and a is a constructo1· term 
of a different kind, then (s a) ~N false. 

5. 7. CO.\"C'L US/0.'-i' 

10. If a E t(v. bE R:v. and a ~s d, then (car (pair a b)) ~ v d. 

11. If a E R~v. bE Rv. and b ~N c. then (cdr (pair a b)) ~N c. 

12. If (lambda () a) E RN, bE H,v, a ~N+t d and b ~:V c, then 
(apply (lambda 0 a) b) ~N (let ((c-)) d) 

13. !f a ERN and a ~N d, then (mu a) ~:v (apply d (mud)). 

14. If b ~~v c then (if true b c) ~ N c. 

15. if c ~ v .f then (if false b c) ~ N f. 

16. If a E ll,v, 1 (j FV(b), bE eN+t• and b ~N+t e, then 
(let ((a)) b)~Nc-

109 

17. If a ~N d, p E :SN+t(b), p(b,p) = 1, b ~N+t e, and either (i} a E CJV. or {ii) 
a E RN and bE RN+t, th en (let ((a)) b) ~N (let ((d)) ev[d+]) 

18. Ifp E ~N+t(b), bjp=. (set! n .f), b~N+t e, efp= (set' n g), 
p(b,p2) = 1, and eithe1· (i) a E eN, or (ii) a E RN and b E RN+t • th en 
(let ((a)) b) ~N (let ((g- )) ep[g]) 

19. if a ~N d, p E ~N+t(b), bjp = (lambda 0 j) , v(b,p) = m, b ~N+t e, 
F\1(!) n {m + 3, · .. , m + 2 + JV} = 0, v(e,p) = n, ejp =. (lambda () g), 
positions p1 , • • ·, Pk are all the jl'ee Oet111'1'Cnces in g .<>rtfisfying p(g, p,) = n t 2, 
and eith e7' (i) a E eN, 01' (ii) a E RN and b E RN+I ' th en 

n+2 
~ 

(let ((a)) b) ~N (let ((d)) cp[(lambda ()gp
1

, ... ,vJd+ .. · +pp. 

20. If b ~N c and c ~N .f, then 
(while true b c) ~ N (let ((:r e)) (while f e j)). 

21. (while false b c) ~N nil. 

We often omit the subscript N in ~N· We call the rule 12 /3-rule, and the rules 
16, 17, 18 and 19 let-rules. As in .Acr-calculus, /3-rule just adds a new environment 
to a. term, and docs not perform substitution. Later, let-rules will resolve this 
environment a.nd perform the substitution. In let-rules, we ma.y evalua.le a subterm 
at a. position in the set E(a). Rules 17 and 19 do substitution for occurrences of 
the variable bound by this let. Rule 18 is the execution of assignment . Rule 16 
eliminates let environment if there a.re no occurrences of the variable bound by this 

let. 
Note that let-rules arc extended from the original 1\! by the rea.son sl <:ttcd in 

Section 5.3.2. 



110 CHAPTER 5. CONSERVATIVENESS OF I\! 

Chapter 6 

Conclusion 

Summary of the t hesis 

We have studied the paradigm of Constructive Programming based on Sa to's Rc­
n<·ct ive Proof Theory ('RPT), and also studied extensions of our framework. 'RPT 
is a type-free first-order theory for Constructive Programming. 'RPT extended 
Aczers Fregc structures in three directions: explicit proof-terms, the built-in renee­
lion mechanism. and the inductive definition mechanism. These three extensions 
arc quite important in developing the paradigm of Const ructivc Programming. 

In Chapter 2. we proposed a formal system RP I for the semantica.l theory 'RPT. 
Our formal system captures essential features of 'RPT. We showed that many 
substantial theorems can be internally proved in H.PT. In particular. we showed 
that the disjunction properly and the lc'rm-cxistence property arc expressed and 
proved in RPT. Since these properties arc mctathcorcms in other theories such as 
nrst -order logic, these results showed the cxpr<'ssiveness of the rcnection mechanism 
in RPT. 

We also studied meta.mathematical properties of RPT. For logical systems, the 
strong normalization properly is one of t h<' most important properties. \Ve showed 
that th<:> weak normalization properly docs not hold for a naive formu la! ion of RPT. 
'"'e analyzed this failure, and proposed a.n appropriate restriction for the reduction 
rei at ion for the proof-terms. We proved the strong normalization theorem for a 
subsystem of RPT, namely, RPT without induct ivc definitions and the equal-left 
ru le. We then proved that the weak normali;r,alion property holds for R PT without 
inductive definitions. As a. corollary, we obtained the consistency of each system. 

In Chapter 3, we described an m·en·iew of our implement at ion of the Con '51 ructive 
Programming System based on RPT. Our system provides supports for men to 
deV<'lop proofs in RPT: it checks the corr<:>ctness of the proof. and also it pro,·es 
several kinds of theorems automatically. ~ l orcover, om '5ystem extracts programs 
from proofs automatically. impro\'es efficiency of the programs for many cases. and 
provides the execution environment of programs. On<:> of the characteristic points of 
our system is that it is implemented by the programming language A, which is at 
the same t ime the object language of H PT. 

111 



112 C'fl1\ PTEH 6. ('0.\ C'Ll'SJO.\' 

\\'c presentc•d a. nwchanizcd proof of the Chmch-Hoso.;cr propc1ty of om ccdculus 
A. \Ve also presc:nl<'d a concrete example of Construct i\'c Programming taki11g I he 
append program as an example. we first dc\'cloped a proof of a gi\'c'n specification 
formula using the system. and tll('n the system automatically extracted a program 
f rorn I he proof. and t ransformcd it to a more cfficic•n t <>ll<'. \ \'c• de~crilH'd I he t hcory 
which justifies I he program tranc;formation. 

In C'haplc·r I. we· studied a strongN rcOcction rnC'c:hanisrn than I~PT. We pro­
posc•d I he mechanism of half-monotone inductiYc dcfinit ions. which can he us<'d to 
H:-ddinc: I he provability relation internally. We gave a I lwory and a rC'ali;ability 
inl<'rpr<'l at ion. As an applica.t ion of this mechanism, W<' showc•d that a refin<'nwnt of 
JHO\'ahility relat im1 cm1 be• defin<'d, and that we can formally stat<' the r<'lat iomhip 
bet wc•c•n an original and a refined prontbility relntions. f\Jor<'O\'cr, we can <'XI ract an 
optimization program from this relationship. 

In C'hcq>l<'r .'), we• studied properties of om prograrmning languag(' A!. In order 
to extend our n·sults to more rcnlistic programs, our language must hav<' tlw as­
signnl<'nl cllld the whlle statements as in imprrative progrflrmning !C~nguages. Sa to 
designed \I as an extension of A by thrse stfllcrncnts. /\! has a close relationship 
to the ,\a calculus of the explicit substitution by Abndi ct al. \\'c studi<'d some 
cons<•n·ati\'<'ness results on \I O\'er the .Xu-calculus and the pm<' >.-calculus. 

Future Work 
Fot flllme work. we have lhc following d ircc.lions: 
l he first one is to extend RPT so that it can directly r<'ason <lbout the program­

ming langt1agc ,\ '· 'I hen we can extract correct progr<lms with I he assignment and 
the whlle sl atC'rnents by our system. 

'I he second on<' is to amalgflmate the mechanism of half-monotone' inducti\'C 
dcfinit ions to I~ PT. \\'e alrefldy interpreted the Logical Th<'ory of Constructions, a 
forrnali;wd theory for Frege structures using our mechanism, therdore it should be 
possib!C' to cons! rucl the t hcory RPT with the half-monotone drfinitions smoothly. 

'l'h<' third one is to ('X!end our Constructive Programming System so thflt these 
<'XI <'nsions for H PT arc rcOccted. 

A !so W<' should work on improvement of the proof-system itself. For the sysl ern 
to be morr powrrful, we should exploit automatic proof gencrfltion for R PT, and 
th<' user interface' of the system. 

Bibliography 

[I] l\'1. ,\ badi. L. Cardelli, P.-L. C'urien, Clnd J.-.J. Levy, "Explicit Substitutions", 
17th 11 nn ual A CM Symposium on P1·inriph .c; of P1'0[J1'amming Language.'>, pp. 
:11 16, 1990. 

[2} P. :\czel, "Frcge Structures and I he Not ions of Proposition, Truth and Set" 1 

'/'h( 1\'lrcnc Symposium (Bnrwise, J .. cl fll. eds.). North-Holland. pp. 31 .59, 
1980. 

[3] P. Aczel. D. Carlisle. and N. t\fendler ... '1 wo fram<•works of theories and their 
implementation in Isabelle", Logical Fmmcworks (G. Iluct and G. Plotkin eck). 
Cambridge University Press, pp. 3-39. 1991. 

[·I] S. Allen. "t\ non-type-theoretic drfinition of t\lartin-Lof\ types". Proc. !2nd 
11 nnual Symposium on Logtc in Computer Sncncc. IEEE Comput<'r Society 
Press, pp. 215-221, 1987. 

(5] S. Allen. "A non-type-theoretic semantics for typr-theorctic language", Ph. IJ. 
Thesis, Cornell University, 1987. 

[6] S. i\ll<'n, R. L. Constable, D. llowc, and W. /\it krn, "Th<' Semantics of Rrnccl<'d 
Proof" , Proc. 5th A nmtal Symposium on Logic in Computer Sricnre, IEEE 
Computer Society Press, pp. 95-105, 1991. 

[7] t\·1. Breson, Foundations of Con.structi1•c Mathnnalirs, Springer-Verlag, 198.5. 

[8] E. Bishop, Foundations of Construrl7vc Analysis, f\lcGraw- Jlill, 1967. 

[9] R. S. Boyer and J. S. f\Ioore, A Computational Logic. Academic Press. 1979. 

[1 OJ R. L. Constable, eta!.. lmplemcntmg Jfathcmaflcs with the N1tprl Proof Dcl'Cl­
opmcnt System. Prentice-HalL 1986. 

[11] T. Coquand and G. Huet, :'The Calculus of Construct ions", lnformation and 
C'omp1tlation, Vol. 76, pp. 95 120, 1988. 

[12] P.- L. Curien. (.Categorical Combinators", lnfonnal1on and Contro/ 69 , pp. 188-

25tJ, 1986. 

113 



lH BIBLfOGRAPlTY 

[13] N. G. de Bruijn, "Lambda-calculus Notation with Nameless Dummies, a Tool 
for Automatic Formu la Manipulation", Tndag. Mat., 34, pp. 381-392, 1972. 

[14] 

[15] 

G. Dowck, A. Felty, H. Herbelin, G. Jl uet, C. Pa.ulin-rvfohring, and B. \Verner, 
"The Coq Proof Assistant User's Guide, Version 5.8," Project Formcl, INRIA­

Rocqucncourt, 1993. 

P. Dybjer, uUniverses and a General Notion of Simultaneous Inductive­
Recursive Definition in Type Theory", Proc. of the 1992 Workshop on Types 
for· Pr·oofs an.d Pr·ogmms (B. Nordstrom ct al eds.), Baa.stad, 1992. 

[16} P. Oybjer, "A General Notion of Simultaneous Inductive-Recursive Definition 
in Type Theory'', Draft, 1993. 

[17} P. Oybjer, "Inductive Families". For·mal Aspects of Computing, Vol 6, pp. 440-

465, 1994. 

[18] S. Feferman, "Constructive Theories of Functions and Classes", Logic Collo­
(/1tiwn '78 (Boffa, M., ct al. eds.), North-Holland, pp. 1.59- 224, 1979. 

[19] J.-Y. Girard, Y. Lafont, and P. Taylor, Proofs and Types, Cambridge, 1989. 

[20} 1\tl. J. Gordon, R. Milner, and C. P. Vhdsworth, Edinb1trgh LCF, Lecture Notes 
in Computer Science 78, 1979. 

[21 J S. IIa.yashi and 11 . Nakano, PX : a comp1dafionallog1·c, MIT Press, 1988. 

[22] S. Hayashi and S. Kobayashi, Foundations of Constntctive Programming (in 
Japa.nese, 1\'ouseitel.:i Pm·oguramingu no Kiso) Yusei-sha, 1991. 

[23] S. llaya.shi, "Singleton, Union and Intersection Types for Program Exlra.clion", 
Information and Comp1dation Vol. 109, Nums l and 2, pp. 174-210, 1994. 

[2t1] W. A. Howard, "The Formulae-as-types Notion of Constructions", in To !f. 
B. Cu1'1'y: Essays on Combinatory Logic, Lambda Calc1tl11s and Formalism, 
Academic Press, pp. 4 79-490. 1980. 

[2.5] D. J. llowe, «Equality in Lazy Computation Systems", Proc. 4th Anm1a.l Sym­
posium on Logic in Computer Science, IEEE Computer Society Press, pp. 198 
203, 1989. 

[26] Y. Kameya.ma and M. Sato, "ReOectivc Proof Theory a.nd its P roof System" 
(in .Japanese), Computer Software, JSSST, Vol. 12, No. 2, pp. 32-51, 199.5. 

[27] Y. Kameya.ma., "A Type-Free Theory of Half-Monotone Inductive Definitions'', 
International Journal of Foundations of Computer Science, Vol. 6, No. 3, pp. 
203-234. 1995. 

B!DLTOGRAPHY 115 

[28] Z. Luo and R. Pollack, "LEGO Proof Development System: User's t-.fanual", 
LFCS Technical Report ECS-LFCS-92-211, Edinburgh University, 1992. 

[29] P. Martin-Lof, lntuitionistic Type Theory, J3ibliopolis, 1984. 

[30] B. Nordstrom, K. Petersson and J. Smith, Progmmming in Martin-Lof's type 
the01·y, Oxford, 1990. 

[31] D. Park, ''Finiteness is Mu-ineffable", Theoretical Computer Science, Vol 3, pp. 
173-181, 1976. 

[32] C. Paulin-Mohring, ':Extracting Fw's programs from proofs in the calculus of 
construction", Proc. 16th Annual ACi\4 Symposi11m in Pr·inciples of Ptogmm­
ming Languages, pp. 89-104, 1989. 

[33) l\:1. Sato and Y. Kameyama, "Constructive Programming in SST", P roc. the 
Japanese-Czechoslovak Seminar on Theoretical Foundations of Knowledge In­
formation Processing, Prague, pp. 23- 30, 1989. 

[31] M. Sato, "Adding Proof Objects and Inductive Definition l\.Iechanisms lo Frege 
Structures", Proc. International Conference on Theoretical Aspects of Com­
puter Software, Lecture Notes in Computer Science 526 (T. Ito and A. l\'leyer 
eds.), Springer, pp. 53 87, 1991. 

[35] NL Salo and T. Sakurai, Fo1mdation of 1'heor-y of Progmms ( Pw·o_q1tram7t-no­
l\.isor·i1'0n, in .Japanese), Iwanami-Sholcn, 1991. 

[36] M. Sa.to, "A Purely Functional Langua.ge with Encapsulated J\ssignm<'nt ''. 
Proc. International Symposium TACS '94 . Lecture Notes in Computer Scienc<' 
789 (M. llagiya and J. C. Mitchell eels.), pp. 179-202, 1991. 

[37) M. Sato and Y. I<ameya.ma, "Conservativeness of A over ..\a--ca.lculus", Logic, 
Language and Computation, Ledur<' Notes in Comp11ter Science 792 (N. D. 
Jones, M. Hagiya, and 1\1. Sa.to eds.), pp. 73-94, 1994. 

[38) N. Shankar, ('A Mechanical Proof of the Church-Ross<'r Theorem", .Journal of 
Association for Computing Machinery, Vol. 35, No. 3 , pp. 475 522, 1988. 

[39] B.C. Smith, uReflection and Semantics in Lisp", P1·or. 11th A n.ml(l/ A CM Sym­
posium on Pr·inciples of P1·ogmmming Lang1wges, pp. 23-35, 198-1. 

[40] S. Smith, " Reflective Semantics of Conslrucli,·e Type Theory (Preliminary Re­
port)", Lecture Notes in Computer Science 613, Springer, pp. 33-4.5. 1991. 

[41] C. s,·ensson . "A Normalization P roof for Martin-Lof's Type Theory". P h D. 
Dissertation, Dept. of Computer Science, University of Gotcborg, 1990. 



116 JJJJJLIOGHA PllY 

(•12] t\1. l'akahac;hi. ··Parall<'l H<'ductions in .>.-Calculu..;" . .Journal of SymfJOiir Com­

putatzon. \ ol. 7. pp. 11:3 123. 1989. 

(•13] Y. l'akayama
1 

·· l ~xlended Projection: a ~<'\\' Technique to Extract Effici<'nt 
Programs from Con~l rucl i\'c Proofs". Pmc. Confl r£ TIN on Functional fJrogram­
mmq I rmquar1rs and romputcr Arrhitccturr ACI\1 Press. 1939. 

(·11] Y. l'akayama, ··Extcnd<'d Projection i\lcthod for Proof Complier" (in .Japan<'c;e) 
C'ornputc·r Soflwarc, .JSSST, Vol. 7. No. •1. pp. 19-3~. 1990. 

[t.)] f\1. Tatsuta, .. Program Synthesis Uc:;ing Realizability", Thro1dir-al Computer 
Stir tH·c, Vol. 90, pp. 309-353, 1991. 

(16] t\'1. Tatimta, ·Two l~ealizability Interpretations of i\IOTlOIOn<' Ind11cti\'(' Ddlni­
t i<ms", lntn·national ./o1t1·nal of Foundations of Compufrr Science, Vol. .5, No. 
I , pp. 1 21, 199!J. 

[·17] i\. S. Troelstra and D. \'an Dalen. Conslrudittism 1n Mathrmal1cs. \'ol. 1. 2. 
1988. 

List of Publications by the 
Author 

Major Publications 

1. M. Sa to and Y. Kameya.ma. ... Construrti,·e Programming in SST". Procccd­
ings of the Ja.panese-Czcchoslo\'ak S<'minar on Theoretical Foundations of 
)(now ledge Information Processing. Prague, pp. 23 30. 1989. 

2. I\ f. Sa.to and Y. Ka.meya.ma ... Conser\'ati\'eness of A O\'er ..Xu-calculus". Logic. 
Language and Computation, Lecture Notes in Computer Science 792, (N. D. 
Jon<'s. M. Ilagiya. and f\L Sato eels.) pp. 73-9tl, 1991. 

3. A. Yamanaka., Y. Ka.mcyama, and 1\l. Sa to ... Jmpl<'rnenlat ion of a Purely Func­
tional Language A with Encapsulated J\ssignrn<'nl" (in Japanese). P roceedings 
of Workshop on Functional Programming JSSST'91, Lecture Notcs/Sofl ware 
Science Series 10, (M. Takeichi ed.), 1\indni- l(agaku-sha, pp. 201-216, 1991. 

tl . Y. Kameyama. and rv1. Sato, "ReOcctive Proof Theory and its Proof System" 
(in .Japanese), Computer Softwar<', JSSST, Vo l. 12, No. 2, pp. 32-.51, 199.5. 

5. Y. Kameyama, "A Type-Free Theory of ll alf-Monoton<' Inductive Definitions", 
In ternational Journal of Foundations of Compul<'r Sci<'ncc, Vol. 6, No. 3, pp. 
203-23tl, 1995. 

Oral Presentations 

1. Y. Kameyama ... Axiomatic System for Concurr<'nt Logig Programming Lnn­
guagec:;". LIS-Japan Workshop of Logic on Programc;: Hawaii, 1987. 

2. 1\l. Sa to and Y. Ka.meya.ma, "Constructive Programming based on SST/ A", 
(in Japanese) IPSJ SIG on Foundation of Software, 31 -6(1 10), 1989. 

3. Y. Kameyama, "Formalizing Metamathematical 'I h<'orems based on Construc­
tive Logic 1<.PT" (in Japanese), Proc<'edings of Annual Convention of IPSJ, 
Vol. 1, pp. 4 7-48, 1991. 

117 



11 s /JI/JUOGH. \ P£1)' 

·1. Y. 1\~nw\·~rna: "Proof System of 'RPT' (in .Japanc•sc•). :\mmal SL.\CS \\'ark­
shop. ~<·ndai. 1991 . 

. ). 'r. l\ameyama. "Traffic ,\nalysis of .L\ 1:\ net work" (in .Japan<·sc•). Proceedings 
of S) mposium on Inter-connect i\'ity of ,\cadcrnic \<'I works in .Japan. pp. 19-
2~. t\li'ITC'h 1992. 

6. 'r. l\ameyama. "'l'ohoku-IN ET: Current Status and Future Problem" (in .Japanese). 
Procec•dings of \\orkshop on Regional Networks. Computc•r Center, llni\'crsity 
of I okyo, 1992. 

7. Y. Karneyarna, "A New Assignment t\fdhod of IP ,\dcln•sscs" (in .Japanes<'), 
Proe<•c·dings of !P Meeting '92, Fujisa.wa, pp.32-3,1, 1992. 

8. Y. l<anwyama, ··Constructive Programming System based on l ~eflectiw Proof 
'I twory" (in .hlpanesc), Functional Logic Programming Symposimn: Tsukuba, 
I ~)9:1. 

9. Y. 1\anwyama. " lnducti\'e Definition with 1\egati,·c Occmrcnccs and its ,\p­
plication": Annual SL\CS \\'orkshop. Nara: 1993. 

10. Y. I<arrwyama. "Program Optimization using an Extension of Simultancous­
lndu<l ivc• Dc•llnition". Punctional and Logic Programming Symposium. Su­
sono . .July. 1991. 

11. Y. I<amcyama, ··Optimization of Extracted Programs in Constructi,·e Pro­
gramming" (in .Japanese), 11th Conference Proceedings of JSSST, f}1-1, pp. 
177-180,19911. 

12. Y. I< ameya.rna, J\f. Tatsuta, and J\L Sato, "On Strong Normalir.ability of 
Catch/Throw C:a.lculi'' (in Japanese), JSSST Special Interest Gro11p on Pro­
gmrnrn ing Theory, l<cihanna.-Pia.za., 1995. 

13. Y. l<nmeya.ma, and M. Sato, <<The Strong Norma.lir.ability of an lnluilionistic 
Nat un1l Deduction System with the Catch and the Throw Rules", Workshop 
on C'onst ructivc Programming, Kyoto University. 1996. 

Other Publications 

1. Y. l<ameyama and ~1. ll irabaru. ··Academic lnter-uni\'Crsity Net work: J ,\IN". 
(in .Japanese) Operations Research, \'ol. 37. No. 12, pp .. 599-602. 1992. 

IPSJ: Information Processing Society. Japan 
.JSSST: .Japan Soci<'ly for Software Science and Technology 
SLACS \\'orkshop: \\'orkshop on Symbolic Logic and Computer Science 


	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067

