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Abstract

In this thesis, optimization of the helical axis stellarator has been tried
for compatibility between high MHD beta limit and good confinement of
trapped particles for a new flexible experimental device. The helical axis
stellarator is realized with an [ = | helical coil which has been designed to
satisfly several physics requirements for fusion reactors; (1) good magnetic
surface, (2) high value of MHD stable beta, (3) good confinement of high
energy particles, (4) reduction of neoclassical transport, (5) small bootstrap
current and (6) divertor configuration. Three helical axis stellarators are pre-
sented in this thesis. One is the Helias-like configuration and the other is the
Heliac-like one. These have four magnetic field periods and both magnetic
configurations are possible in a single device by adjusting the currents in heli-
cal, poloidal and toroidal coils. The Helias concept itself has been developed
for the large stellarator device, Wendelstein 7-X (W7-X) and the Heliac for
the high beta plasma confinement such as TJ-l and H-1. The third mag-
netic configuration is the new helical axis stellarator or an optimized [ = 1
stellarator, which is based on the modulated ! = 1 helical coil and has also
four periods. These configurations are characterized by the magnetic field
spectrum with three dominant Fourier components, toroidal ripple (¢;), heli-
cal ripple (¢;,) and bumpy component (¢,). The Heliac-like configuration has
¢ ~ 0.08, ¢, ~ 0.06 and ¢, ~ —0.04 at the plasma surface at zero beta. The
highest MHD stable beta (3) ~ 7.3% is obtained among these three mag-
netic configurations; however, the reduction of neoclassical transport is weak.
Here, () denotes the volume average beta value. The Helias-like configura-
tion has ¢ ~ 0.05, ¢, ~ —0.18 and ¢, ~ —0.50 at zero beta. The toroidal
effect ¢ 1s significantly reduced compared to its geometrical inverse aspect
ratio; however, the reduction of neoclassical transport is not large due to
the enhancement of the magnetic field ripple by the large bumpy component
with the same sign as that of helical one. The critical condition to reduce the
neoclassical transport is to realize ¢;/¢; < 0 and |¢| ~ |e,]. The optimized
| = 1 stellarator has ¢, ~ 0.12, ¢, ~ 0.15 and ¢ ~ —0.15 at zero beta. This
configuration has a vacuum magnetic well in the whole plasma region due to
the large pitch modulation of the | = 1 helical coil. The obtained magnetic
configuration has almost comparable characteristics to the W7-X from the
point of views of beta limit, neoclassical transport, bootstrap current and

high energy particle confinement, although vacuum magunetic surfaces are



different from those in the W7-X.

Even if the above physics requirements are satisfied, it is probable that
the plasma confinement is governed by anomalous transport in the realistic
situations. The established way to suppress the anomalous transport is the
L. (low mode) to H (high mode) transition. One of the explanations of the
physical mechanisms for the L - I transition in tokamaks is based on the bi-
furcation of the radial electric field through the existence of a local maximum
in the plasma viscosily as a function of poloidal velocity. The same theory
is extended to stellarator configurations and applied to the present and next
generation stellarators including an optimized helical axis configuration de-
scribed in this thesis and thereby the possibility of the L - H transition in

stellarators is shown.
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1 Introduction

Recently interest in stellarators has been increased both because of their
potential advantages as eventual steady state fusion reactors and because of
the contributions that they can make to the general understanding of toroidal
plasma confinement. Significant progress has been made in stellarator theory,
experimental results, device technology and reactor concept.

For realizing an economical fusion reactor based on magnetically con-
fined plasmas, the ratio of plasma pressure to magnetic energy, (4), must
exceed 5%, where ( ) denotes a volume average. The highest beta value is
(B) ~ 2.1% in stellarators, which has been obtained in the CHS [1]. However,
this value is less than the highest one in tokamaks, (4) ~ 12.5% obtained in
the DII-D [2]. Therefore, the next generation stellarators aim at demonstrat-
ing the attractiveness of the stellarator concept with more reactor relevant
parameters. Realization of () ~ 5% is one of the important issues.

In order to determine a size of a fusion reactor, confinement time or radial
particle and energy transport is the most critical issue. Recent concern in
the stellarator research is the confinement of currentless plasmas. The ex-
perimental confinement time of currentless plasma roughly follows the LHD
(Large Helical Device) scaling [3] or the Lackner-Gottardi scaling [4]. If the
LHD scaling is applied to a reactor size device of stellarator, it is understood
that the confinement improvement of about a factor of two is necessary to
realize a reactor with a reasonable size. The LHD scaling is similar to the
gyro-reduced Bohm scaling [5] which is predicted by the anomalous transport
based on drift wave turbulence. The anomalous transport governs the plasma
confinement in toroidal geometry; however, it has not been explained rigor-
ously and it seems beyond the scope of the classical or neoclassical transport
theory. It should be noted that a more comprehensive energy confinement
scaling (International Stellarator Scaling, IS595) has been presented recently
[6] based on the international stellarator database comprising data from the
devices Heliotron E [7], CHS [8], ATF [9], Wendelstein 7-A (W7-A) [10]
and WT7-AS [11]. The parameter dependencies are similar to those of the
Lackner-Gottardi scaling.

For present stellarator devices the neoclassical transport does not govern
the plasma confinement as mentioned above; however, design of a new stel-

larator to reduce or to minimize the neoclassical transport is important. The



neoclassical transport is the collisional transport process which is modified by
particle orbits specific in the non-uniform magnetic field geometry (cf.; Sec-
tion 2.2) from those in the uniform magnetic field geometry (classical trans-
port). There are several reasons for the requirement of neoclassical transport
reduction. The first is that the neoclassical transport easily becomes com-
parable to the anomalous transport without efforts of optimization. The
second is that the reduction of the neoclassical transport is correlated with
good trapped particle confinement, and the third is that the bootstrap cur-
rent predicted by the neoclassical transport theory has been already observed
in stellarators [12].

Like the axisymmetric tokamak and reversed field pinch, stellarators are
confinement devices that rely on helical magnetic fields to keep the equilib-
rium and stability of toroidal plasma. Stellarators create these fields with cur-
rents flowing only in external conductors, allowing a wide range of magnetic
configurations and external control of the magnetic properties. Hence, stel-
larators have different coil configurations according to different optimization
principles. Recent stellarator devices are designed to test these optimization
principles.

It is possible to design a stellarator with the beta limit on the order of 5%
based on the ideal magnetohydrodynamic (MHD) theory and with almost no
confinement of trapped particles. However, this type of stellarator may not
be acceptable as a next generation device.

The satisfaction of compatibility between the high beta limit and the
good confinement of trapped particles has led to designs and constructions
of next generation large stellarators such as the LHD [13] (National Institute
for Fusion Science, Japan) and the W7-X [14] (Max-Planck Institute, Ger-
many). These devices have different coil configurations based on different
optimization principles. In the LHD which is the optimized heliotron config-
uration, [ = 2 helical coils have been designed for both an ideal MHD beta
limit on the order of 5% and no trapped particle loss within one third radins
at zero beta. Here [ is a pole number of the helical field. On the other hand,
the W7-X, which is based on a quasi-helically symmetric stellarator shown
by Niihrenberg and Zille [15], uses the carefully designed modular non-planar
coils. The magnetic configuration of the W7-X is also optimized to realize
a stable high beta equilibrium with sufficiently good confinement of ener-

getic particles. The concept of the Modular Helias-like Heliac (MHH) has

also been developed for a stellarator reactor in the United States Stellarator
Power Plant Study (SPPS) [16]. It is noted that the W7-X and the MHH
belong to the helical axis stellarator with the [ = 1 helical field dominantly.

The modular coil system in the W7-X has been designed by solving the
boundary value problem for the specified shape of the plasma boundary. It
is appropriate for the stellarator reactor when its mentenance is considered
and after the most desirable magnetic configuration is obtained from the wide
range of investigations for plasma confinement. However, there is a disadvan-
tage to lose flexibility of magnetic configuration for a given coil system, which
is required for an experimental device to study stellarator physics and to pur-
sue the most desirable magnetic configurations for plasina confinement. Thus
for investigating wide parameter range of helical axis stellarator in a single
device, it has been tried to develop a new stellarator configuration using a
pitch modulated [ = 1 helical coil, poloidal and toroidal coils. In this the-
sis, several new helical axis stellarator configurations, Helias-Heliac Hybrid
Stellarator (HHHS) [17] and an optimized [ = 1 stellarator [18], are pre-
sented, which have been obtained by theoretical guidances for compatibility
between the high beta limit and the good trapped particle confinement. The
physics requirements for the optimization are the stable high beta plasma on
the order of 5%, the good trapped particle confinement and the reduction of
neoclassical diffusion and bootstrap current. Both Helias-like and Heliac-like
configurations are possible in a HHHS by adjusting the currents in helical,
poloidal and toroidal coils. Among these two representative configurations in
a HHHS, Heliac-like configuration has (), ~ (), ~ 7.3%, but the neoclas-
sical transport is not optimized due to the broad spectrum of the magnetic
field, although the particle diffusivity is about one order magnitude smaller
than that of Helias-like configuration by controlling the bumpy component
which is large and has the same sign as the helical one, resulting in the en-
hancement of the magnetic field ripple in the region of 0 ~ 0, i.e.; in the
weak magnetic field region. Here, 0 is a poloidal angle. The more optimized
helical axis configuration is obtained by changing the sign of the pitch modu-
lation of [ = 1 helical coil and realizing the bumpy field component with the
opposite sign to the [ = 1 helical field to weaken the field ripple in the region
of @ ~ 0. In this case, the reduction of neoclassical transport is success-
ful and its plateau level of particle diffusivity is almost comparable to that

of equivalent tokamak. Capability of this magnetic configuration is similar



to the W7-X from the point of views of beta limit, neoclassical transport,
bootstrap current and high energy particle confinement, although vacuum
magnetic surfaces are somewhat different from the W7-X.

In addition to the above favorable properties for plasma confinement in an
optimized helical axis configuration, the large clearance between the helical
coil and the outermost magnetic surface, and the one between the chamber
surface and the outermost magnetic surface are advantageous for plasma
heating and diagnostics and the reduction of plasma - wall interaction in
designing a new experimental device.

One weak point of the above mentioned optimization is that the under-
standing of the anomalous transport governing the plasma confinement in the
realistic situations is not sufficient. Even if the anomalous transport is dom-
inant in the helical axis stellarator, the confinement improvement based on
the L (low mode) - H (high mode) transition will be expected under certain
conditions. The H mode is the discharge with improved energy confinement
found in tokamaks [19, 20] and recently similar discharges have been ob-
served in stellarators, for example, W7-AS [21] and CHS [22]. Since there
is a significant difference in the magnetic configuration between tokamaks
and stellarators, H mode experiments in present stellarators are important
in clarifying the physics of the L. - H transition and in developing the .- H
transition theory, if the mechanism is the same for both types of device. One
of the explanations of the physical mechanisms for the L - H transition in
tokamaks is based on the bifurcation of the radial electric field £, through
the exsistence of a local maximum in the plasma viscosity as a function of
poloidal flow velocity [23, 24, 25, 26]. The qualitative results based on this
theory are in good agreements with the experimental observations of the L -
H transition in DII-D [23] or JFT-2M [24]. 1t is noted that the radial electric
field is also effective to improve the trapped particle confinement and reduce
the neoclassical transport.

This thesis is organized as follows. First the approach for the optimiza-
tion of the helical axis stellarator will be shown in Chapter 2. In order to
clarify physics requirements for optimizing the helical axis stellarator, MHD
equilibrium and stability, collisionless particle orbits and neoclassical ripple
transport will be briefly described in Chapter 2. Analyses of collisionless
particle are required to clarify the behavior of high energy particles with

sufficiently small collision frequency which are sensitive to the magnetic and

electric field itselfl and give a good indication for the confinement of high
temperature plasma. Eventually, it is necessary to investigate the confine-
ment properties of 3.52 MeV a particles produced by D - T fusion reaction
and to assess an efficiency of a heating when the stellarator reactor is con-
sidered. Moreover, for realizing a steady state operation of a fusion reactor,
continuous exhaust of heat and ash by a divertor is inevitable. From this
point of view, behavior of magnetic field line in the outside region of the last
closed magnetic surface will be also discussed briefly. In Chapter 3, details of
characteristics of the obtained helical axis stellarators are described from the
points of view of MHD beta limit, trapped particle confinement, neoclassical
transport coefficient and bootstrap current. Physics requirements are almost
satisfied in an optimized | = 1 stellarator or the particular one of HHHS.
In Chapter 4, the L - H transition theory mentioned above is extended to
stellarator configurations including the helical axis stellarator to clarily the
characteristics of present and next generation stellarator devices from the L
- H transition point of view [27]. Concluding remarks of this thesis will be

given in Chapter 5.



2 Strategy of Configuration Optimization for

Stellarator

2.1 Principles of the Optimization

The configuration optimization is necessary for realizing an efficient and com-
pact stellarator fusion reactor. An example of the optimized stellarators is
the quasi-helically symmetric stellarator [15], which shows that the magnetic
spectrum of a stellarator can be controlled with modular coils.

The magnetic field in the confinement region can be optimized by not-
ing that geometry of the last closed magnetic surface completely determines
properties of MHD equilibrium. Thus the fixed boundary MHD equilib-
rium is solved during the optimization procedure, where the parameters of
the boundary are the optimization valuables. It is shown that the boundary
value problem is the basic ingredient of the optimization procedure employed
in the design of the W7-X [14]. For the configuration optimization, the fol-

lowing set of criteria is useful:

1. High quality of the vacuum magnetic surfaces: low order rational sur-

faces should be carefully avoided.

2. Good finite beta equilibrium properties: a small Shafranov shift and
a small variation of the rotational transform for finite beta currentless
plasmas will yield a high equilibrium beta limit. This is equivalent to
the reduction of Pfirsch-Schliiter current (PSC).

3. Good MHD stability properties: MHD stability in low shear stellara-
tors is mainly provided by a magnetic well. A vacuum magnetic well
can be created by suitably chosen indentation and triangularity of the
magnetic surfaces. Figure 2.1 shows the magnetic surface cross section
in the W7-X at (3) = 5%. It changes from bean shaped to tear-drop

to triangular in one-half period.

4. Reduced neoclassical transport in the long mean free path (imfp) (1/v)
regime, where v is a collision frequency: the existence of the quasi-
helically symmetric stellarators implies that the toroidal stellarators
without the 1/ transport regime exist. The conventional nonaxisym-
metric stellarators can be characterized by a normalized ripple trans-

3
port coefficient Dg = 1.6562 L* (L™ o 1/» is the normalized mean free

6

-]

path) with the magniiude of the equivalent ripple 6, determined by
Monte Carlo simulation of electron transport in the lmfp regime [28].
This 8, must be kept small to guarantee sufficiently good neoclassical

confinement.

Small bootstrap current in the [mfp regime: the bootstrap current
changes the rotational transform and, therefore, it is particularly dan-
gerous in low shear stellarators, in which the rotational transform has to
be carefully adjusted to avoid low order rational surface. It is possible
to reduce the bootstrap current by a proper combination of the helical,
toroidal and bumpy components [29]. Fourier spectrum of the mag-
netic field in the W7-X is shown in Fig. 2.2. It is considered that the
spectrum is significantly pure. The suitable combination of the three
components (helical, toroidal and bumpy) is essential for reducing the
bootstrap current as described later. It is noted that the reduction of
the bootstrap current has also been considered in the MHH configura-
tions [30].

Good collisionless a particle or high energetic particle confinement: for
a particle confinement in a stellarator reactor, a situation similar to
bumpy ripple induced orbit losses in tokamaks may arise. Lotz et al.
evaluated the collisionless a particle losses in the W7-X configuration
as functions of the time of flight [31]. An example of the obtained
results is shown in Fig. 2.3. Each symbol indicates the loss of one a
particle for () = 0%(e), 2.4%(x) and 4.9%(A). Deviation from the
quasi-helical symmetry for reducing the bootstrap current causes the
a particle losses similar to conventional stellarators at vacuum field.
However, the diamagnetic effect in W7-X finite beta plasmas without
the significant magnetic axis shift tends to improve the drift orbit con-
finement. which results in the reduction of e particle loss fraction in

the operating regime of beta value.

. Good modular coil feasibility: generally, strong geometrical shaping of

the plasma boundary will improve confinement and stability properties
while it requires a complicated coil system. Important issues for select-
ing the coil geometry are the minimum distance between the coils and

the plasma and the minimum radius of the curvature of the coils.



In designing an optimized stellarator, compromization between some cri-
teria is usually necessary. For example, in designing the W7-X magnetic
configuration, the necessity of the small bootstrap current requires some de-
viation from quasi-helical symmetry, resulting in an enhanced collisionless
particle orbit loss and the neoclassical ripple transport.

It is noted that the bootstrap current increases as plasma pressure or beta
value increases. However, its effects are not so significant in low beta plasmas.
The HSX device [32, 33] aims to demonstrate experimentally the confinement
performance of the quasi-helically symmetric stellarator configuration in low
beta plasmas. Figure 2.4 shows the cross sections of magnetic surfaces of the
HSX at (#) = 0.7%. It is noted that they are not so different from those
of the W7-X in the real space as shown in Fig. 2.1, however, the magnetic
spectrum in the Boozer coordinates is significantly different compared to the
W7-X case as shown in Fig. 2.5. It is clearly seen that the main spectrum is
the helical component and the others are negligible, which means the quasi-
helical symmetry. If large bootstrap current flows with the opposite direction
to that in tokamaks as is predicted by neoclassical transport theory [34], it
will be observed experimentally in the HSX.

The experimental realization of such magnetic configurations involves the
problem of finding a distribution of the external coil currents which pro-
duces a magnetic field maintaining the plasma equilibrium and satisfying the
boundary conditions at the plasma boundary B, -n =0 and B? = B;‘i + 2p,
where n is the exterior normal vector to the boundary and p is the plasma
pressure. Calculation of the magnetic field in the vacuum region (outside
the plasma) leads to a boundary value problem, which is not well posed for
an elliptic partial differential equation for the magnetic potential. Moreover,
it often happens that the singularities, which correspond to the currents,
appear too close to the plasma surface.

These difficulties may be resolved if one does have an interest in an ap-
proximate solution of the boundary value problem as shown by Merkel [35].
The external vacuum field can be represented by superposing harmonic func-
tions such as Dommaschk potentials [36] for such a solution. This solution
yields a vacuum field which is regular in the whole domain bounded by the
chosen outer surface. This vacuum field uniquely determined by the shape
of the plasma boundary can be used to find the position of the coils. The

current lines on the outer surface may be shaped in such a way that closed

current lines are discretized into a finite number of coils. Figure 2.6 shows
an example of the surface current lines without net current distribution in
the toroidal direction. The poloidally closed current lines can be easily dis-
cretized and represented by a finite number, 15 in this case, of modular coils.
Such a modular coil configuration with 15 finite size modular coils per field
period designed for the W7-X is shown in Fig. 2.7.

In this thesis, the object is to realize a helical axis stellarator configuration
satisfying the above criteria based on an | = 1 helical coil with additional
poloidal and toroidal coils. This coil system is different from modular coil
system and has an advantage to change the coil current ratio among three
types of coil. Characteristics of the obtained helical axis configurations will be
described in Chapter 3 from the points of view of MHD beta limit, properties
of trapped particle confinement and neoclassical transport.

The rest of this chapter is devoted to describe the plasma physics for
optimizing the helical axis stellarator and numerical methods for quantitative
analyses of several physics properties such as MHD equilibrium and stability,

collisionless particle orbit confinement and neoclassical transport.

9



2.2 Collisionless Particle Orbit Confinement and Neo-

classical Transport

ln tokamaks, the breaking of the axisymmetric property due to the bumpy
field by discretized toroidal coils has a significant influence on the o particle
confinement, resulting not only in the degraded efficiency of fuel plasma
heating by a particles but also in the localization of heat load on the first wall.
On the other hand, in stellarators, it seems to be inevitable to have significant
o particle losses because of its proper three dimensionality. Recently, it is
shown that there are some configurations to confine a particles sufficiently.
The HSX device [32, 33], which is now under construction at the University of
Wisconsin-Madison [37], has a quasi-helical symmetry and sufficiently good
« particle confinement property is predicted at least for low beta plasmas.
In the W7-X, a particle losses decrease as beta is increased [31] as discussed
in Section 2.1. Since high energy particles such as 3.52 MeV a particles
produced by D-T fusion reactions have extremely low collisionality, they
can be treated as collisionless particles. They essentially move due to the
magnetic field, therefore, their orbit properties greatly depend on the field
structure itsell. The investigation of such high energy particle orbits is one
of the basic subjects for the optimization of the stellarator magnetic field
configuration.

When the Coulomb collisions are taken into account in quiet stationary
plasmas, the particle behaviors become to be governed by diffusion processes,

which is simply expressed by
D ~ vA?, (2.1)

where D is the collisional diffusion coefficient, v is the collision frequency
and A is the characteristic step width especially estimated in radial direc-
tion. For the configuration optimization, the neoclassical diffusion property
is compared in several magnetic configurations, especially in the low colli-
sional regime, where the trapped particle orbits are clearly seen. In this
thesis the neoclassical diffusion process is considered appropriate only in the
plasmas, in which MHD equilibrium and stability are guaranteed.

Drifts of plasma particles across magnetic surfaces are induced by vari-
ations of the magnetic field strength along the magnetic field lines. ldeal
confinement of particle orbits could be achieved in a configuration where the

magnetic field strength is a function of magnetic surface, which is so called an

10

‘omnigenous” or ‘isodynamic’ configuration [38]. However, Bernardin et al.
[39] showed that toroidal isodynamical equilibria can possibly exist only in
limits in which the magnetic field strength on the magnetic axis vanishes or
the magnetic surfaces become open. Since neither of these limits are practical
for plasma confinement, toroidal isodynamic equilibria may not be realized.

Figures 2.8 show the variation of the magnetic field strength along the
magnetic field line for (a) axisymmetric tokamak, (b) conventional stellarator

and (c¢) quasi-helically symmetric stellarator and they can be expressed by

B = Bg|l — ¢cosb], (2.2)
B = B[l — ¢ cos0 — ¢, cos(l0 — M()] , (2.3)
B = B[l — ¢ cos(l60— M()] , (2.4)

respectively, where ¢, denotes the modulation of the magnetic field strength
by the toroidicity and ¢, by the helical component with [ and M, where [
is a pole number and M is a number of the field period. In the axisym-
metric tokamak the banana particle reflects at the same poloidal position
because there is no variation of the magnetic field strength in the toroidal
direction as shown by Eq. (2.2). Therefore, the step width A in Eq.(2.1)

J 4 . - -
& . where p; is the Larmor radius, resulting
/Gy

in the diffusion coefficient derived by Galeev and Sagdeev [10]. Contrary to

is banana orbit width A, ~

this simple variation of the magnetic field strength in axisymmetric tokamak,
conventional stellarator has two kinds of modulation from the toroidicity and
the helical component as expressed by Eq. (2.3). In this case, the magnetic
field strength depends on both poloidal and toroidal angles. Therefore, the
reflection point changes in poloidal direction as the trapped banana particle
moves in toroidal direction with repeating the bounce motion. In this case,

the step width is determined by the toroidal drift motion of the helically
7

trapped particle, A; ~ —=~_, where v.;; is the effective collision frequency
V,

eff

Vess = Vei€n and Vi is the toroidal drift velocity. The diffusion cocflicient
in this regime is inverse proportional to vz, which is so called 1/v ripple
diffusion. This dependence of the diffusivity on the collision frequency means
that the neoclassical diffusivity has a tendency to become larger as the col-
lision frequency decreases, for example, due to the increase of the plasma
temperature. This is a serious problem for the stellarator concept. There-
fore, the reduction or disappearance of 1/v ripple transport is an important

issue in optimizing the stellarator configurations. One example for resolving

11



this problem is the quasi-helically symmetric stellarator [15] such as the HSX
132] in which the magnetic field strength can be approximated by Eq. (2.4).
In the quasi-helically symmetric configuration, the toroidal ripple is greatly
reduced. These simple models of the variation of the magnetic field strength
along the magnetic field line are useful for understanding physics to reduce
the 1 /v ripple transport sufficiently and to realize a tokamak like neoclassical
transport property in the low collisional regime.

Studies of collisionless particle orbits in stellarator configurations have
often been pursued with the guiding center equations. This approach re-
lies on the adiabatic invariants to average over bounce motion for particles
trapped in the local magnetic ripple well. In the derivation it is assumed
that the rotational transform per field period +/M is small and that there
is only one magnetic ripple well per period. Although there are multiple
ripple wells in the realistic situations, it is not feasible to extend the bounce
averaging procedure to include multiple ripple wells. It is also necessary to
treat accurately the transitions between various trapping states. Collisionless
trapping/detrapping occurs here [41, 42].

Description of the particle drifts is the most appropriate with the guid-
ing center drift equations in the Boozer coordinates (v,0g,¢g) [43]. The
magnetic field can be described as B = Vy in the covariant form for the
vacuum field case; however, B = Vy + AV for the finite beta case, where
\ is a scalar potential of the magnetic field and 27 is the toroidal flux. The
guiding center drift equations for the finite beta case are [44]

e T ﬁ(@. i 339)
y\d¢s 00"/ :
o, E(éfﬁ-kcg?—)—“m r(ﬂrg —e)’
v\ 0dgp Y m ¥
. l/ 0B o® e2B* (pd +1
9B = —:( 96 +c3_'/-’) c( ),
¥ B ,
; d[oB ' oB '
b = 3o (=) = 5 (ot +1)]

where 271(1)) is the toroidal current within a magnetic surface, 2mrg(1)) is

(2.5)

m

the poloidal current outside a magnetic surface, ®(¢>) is the radial electro-
static potential, p. = muvy/eB, and Op (¢5) is the poloidal (toroidal) angle in
the Boozer coordinates, respectively. The prime denotes the derivative with
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respect to . The functions § and 4 are defined by

0
J

eEpPBlm+

[

elg(pl’ + 1) — I(peg’ — )],

where p is the magnetic moment. Since currentless equilibria are assumed
throughout in this thesis, I = 0 is standard in these equations. Moreover,
g' = 0 for the vacuum filed case, where the field is curl-free. In these equa-
tions, the strength of the magnetic field is the only necessary data from the
MHD equilibrium besides surface quantities.

The neoclassical transport theory for stellarators has been intensively

studied for a simple magnetic field model:
B = By|l — €, cos 0 — ¢, cos(l0 — ma)] ,

where Bj is the magnetic field strength on the magnetic axis, ¢ and ¢,
are the toroidal and helical ripples, respectively, and [ (m) is the poloidal
(toroidal) mode number. However, the magnetic field of stellarators usually
have more than one helical component, especially in finite beta cases. In
the low collisionality regime, where the effective collision frequency v, sy of
the helically trapped particles is less than their bounce frequency w;, the
collisionless particle orbits, and thus the neoclassical ripple transport are
affected significantly by the multiple helicity effect. Shaing and Hokin showed
that for a class of stellarator equilibria with only one toroidal mode number,
the magnetic field model can be reduced to a simple form [45]. Consequently,
the particle orbits and transport processes in such a system can be treated
analytically provided m /¢ > L.

The magnetic configurations described in this thesis satisfy this condition
because m = 4, 0.7 S ¢ S 1.8 and [ = 1. In order to find the approach to
reduce the neoclassical ripple transport, the analytical expression is applied
to obtain the appropriate magnetic field structure. This is a generalization of
previous work so called o-optimization by Mynick [46] to include a broader
range of realistic magnetic configurations.

In Ref. [45] the magnetic field strength B is approximately expressed by

B/By =1 — ¢ cosll — ¢gcosll — Z "™ cos(nd + 1) . (2.6)

n=-—na

where ¢ are the amplitudes of the corresponding harmonics and 7 = 10 —

m¢. It is noted that ¢ describes the usual helical modulation ¢;. In order
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to calculate the second adiabatic invariant J which may describe the trapped
particle orbit. Eq. (2.6) assumes a single toroidal mode number m. Without
loss of generality, n = 0,n = 41 and +2 terms are only kept in Eq. (2.6).

Using the mathematical formula
cos(+nld 4 1) = cosnll cosn + sinnfsiny |
Eq. (2.6) can be simplified to
B/By = 1—¢cosl— t,;((:sm

D
- V g3 =+ D g( e —————— sin
VC? + TR
where (' = e 4 [t + =] cos 0 + [(—.“’21 + =] cos 20 and D = [ —
e sin 0+ [P — V] 5in 20. If a phase angle x is defined as
C 9 D
—_— Sl —,
Vet T oy

a simple model for a stellarator with multiple helical components is given as

) (2.7)

COs \ =

B/By=1—¢r —¢ycos(n+x), (2.8)

where ep = ¢, cos0 + ¢ cosl0 and ¢y = VC? 4 D2 It is noted that the
magnetic field model given by Eq. (2.8) can be reduced to a model proposed
by Mynick by setting ¢! = (=1 and +? = (=2 = 0. Then

B/By =1~ ¢cosl — (1 — o cosl)cosy,

where o is a parameter related to the position of the magnetic ripple local-
1zation.
With the model magnetic field given by Eq. (2.8), the second adiabatic

invariant J for the helically trapped particles can be obtained as
J = (16Ry/m)(uBoey [m,)' 2 E(k) — (1 = k*)K (k)] , (2.9)

where R, is the major radius, g is the magnetic moment, m, is the mass of
the relevant particle and K and E are complete elliptic integrals of the first

and second kind with the pitch angle parameter
k2 = [W — uBy(1 + e — €g)]/2uBocys

where W is a particle energy. For the helically trapped particles, 0 < k* < 1
is satisfied. To obtain Eq.(2.9), m/¢ > [ is assumed and this assumption
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implies that the field line is maiuly directed in the toroidal direction within
one helical period due to a small rotational transform per field period.

Then the bounce averaged drift velocity for the helically trapped particle

are
T 1By [d(” (Zf' l) . (')t-y]
T m,S) L dr orl’

(2.10)

ﬂ;?() dey (2! 1) = di]
mpﬂ 00 \ K a0 |’

where € is the gyrofrequency. The bounce averaged drift kinetic equation as-

rr

sociated with the above drift equations leads to the expression of the particle

flux in 1/v regime,

? v (2.11)

. 3f2 deq der (}CH , (){") ]}
x{./o dhex [("(W) — 265y gg T 08 (ao

where fps is a Maxwellian and G(1 = 1,2,3) are the numerical coeflicients
given by
Gy =16/9, G, =16/15, Gz = 0.684.
In the case of magnetic configuration considered in this thesis, the main
modulations of the magnetic field arise from the toroidal field (¢,), the helical
field (¢ = ¢;,) and the bumpy field (¢!=") = ¢) and can be expressed as

B/ By =1 — ¢ cosl — ¢, cos(0 — 40) — ¢, cosdd ,

where the toroidal mode number is assumed four for helical axis configu-
rations considered in Chapter 3. Applying the above theory to this model

magnetic field, ez and ¢ become

er = €ceosl,

: (2.12)
en = \J€t + 2enepc080 + ¢,

respectively. The product of ¢, and ¢, appears in the expression of ¢y, which

implies that the particle flux is affected by the sign of ¢,¢, as discussed in

Chapter 3.

Hirshman et al. developed the DKES (Drift Kinetic Equation Solver)
code to solve the drift equation for stellarator configurations [47]. In this
code, the drift kinetic equation is numerically solved in the phase space,
where the perturbed distribution function is expanded with Legendre poly-

nomials for the pitch angle in the velocity space and with Fourier modes in
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the poloidal and toroidal coordinates on a given magnetic surface. With re-
spect to the Coulomb collision operator, only the pitch angle scattering term
is retained or the energy diffusion term is neglected for simplification. The
application of the DKES code is, therefore, valid in the Imfp regime, namely
the banana regime where the trapping/detrapping process governs the neo-
classical transport. In the DKES code, three components of the transport
matrix [48], corresponding to diffusivity, viscosity and bootstrap current, are
calculated as functions of the two independent parameters — the mean free
path at a fixed particle energy, (v/v)~', and the radial electric field dev-
ided by the particle velocity, £, /v, where v is the collision frequency, v is
the monoenergetic particle velocity and F, is the radial electric field. The
upper and lower bounded values of the three components of the transport
matrix are obtained by a variational principle and the other components of
the transport matrix may be derived from these three values. The outline of
this code and some applications are mentioned in Appendix A.

The WT7-AS team has made comprehensive comparisons between exper-
imentally observed thermal diffusivities and those calculated by the DKES
code [19]. In ATF experiments, controllability of the bootstrap current with
the quadrupole magnetic field has been clearly demonstrated, and experi-
mental results are in good agreement with DKES calculations [50].

It is noted that numerical simulations with a Monte Carlo technique are
also useful for the neoclassical transport in stellarators as shown by various
authors [28, 51, 52].
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2.3 MHD Equilibrium and Stability

Stellarator plasmas are required to treat as three dimensional (3D) config-
urations because there is no geometrical symmetry. However, for heliotron
devices, MHD equilibria were analyzed based on the simplification of its 3D
configuration to two dimensional one by an averaging. Stellarator expansion
[54, 55] and averaging method are such examples and these two methods are
essentially equivalent, which lead to a Grad-Shafranov type MHD equilibrium
equation [56]. These approaches come from that stellarators are envisioned
Lo operate with a large aspect ratio and are based on the assumption that the
nonaxisymmetric part of the magnetic field is small and periodic length in the
toroidal direction is much shorter than the major radius of the system. The
stellarator expansion, after the averaging over the magnetic ripples in the low-
est order, gives an axisymmetric Grad-Shafranov type equilibrium equation.
Here, the expansion parameter is & ~ By, /By ~ ¢z ~ f3%, where By = |By| is
the external helical field and ¢ is an inverse aspect ratio. Since they have only
minor mathematical differences from the Grad-Shafranov equation for an ax-
isymmetric tokamak, it is useful to modify the PEST equilibrium code [57],
which is used to study tokamak equilibria, to solve the stellarator equilibria.
The modified code is called STEP code [55].

On the other hand, according to the development of supercomputers,
analyses of 3D configurations have become possible, and the pioneer work was
done by Garabedian et.al. [58]. They developed the 3D MHD equilibrium
code BETA based on the finite element method to obtain the minimum state
of variational principle. The BETA code requires the large memory size and
has a strong dependence of the numerical solution on mesh sizes. Therefore,
it is required to extrapolate the numerical solutions with finite mesh sizes to
a zero mesh size solution. For supplementing this disadvantage, Hirshman
et al. have introduced the moment (spectral) method, which had been used
in the inverse spectral equilibrium solver for tokamaks, to the approach of
BETA code. This code is called VMEC (Variational Moment Equilibrium
Code) [59]. When the spectral method based on Fourier expansion in the
angle variables is introduced, the convergence problem is much improved in
the VMEC. It is noted that the poloidal angle variable is chosen such as to
minimize the number of Fourier modes. The VMEC is now commonly used
to calculate MHD equilibria for the stellarators and the description of the

magnetic configuration for VMEC computations becomes standard for the
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stellarator database activity [6]. The VMEC has been used to investigate
MHD equilibrium properties of the helical axis stellarator configuration in
this thesis. The outline of this code is given in Appendix B.

It should be noted that the existence of nested magnetic surfaces has not
been proved for toroidal stellarator MHD equilibrium, and its proof seems to
be negative according to the KAM theorem [60]. However, since the existence
of the equilibrium in the straight stellarator configuration is guaranteed by
the helical symmetry, the existence of nested magnetic surfaces is often as-
sumed if the toroidal effect is sufficiently small. In other words, it is accepted
in practice that the equilibrium exists when magnetic islands and stochastic
behavior of magnetic field line are negligible in the calculation of the vacuum
magnetic field by field line tracing calculation. In particular, the most com-
monly used 3D MHD equilibrium codes such as BETA and VMEC employ
algorithms which assume the existence of the nested magnetic surfaces.

The more complicated problem is the behavior of magnetic islands in finite
beta plasmas. Recently, 3D equilibrium codes, which do not a priori require
the existence of nested magnetic surfaces, HINT [61] and PIES [62] codes
have been developed. These codes are based on quite different numerical
algorithms. For example, the parallel motion of plasma is solved separately
from the perpendicular motion. which ensures that pressure is constant along
magnetic field lines in the Eulerian grid in the HINT code and an iteration
scheme of MHD equilibrium equations is employed in the magnetic coordi-
nates in the PIES code [63]. With the HIN'T' code, fragility of the magnetic
surfaces at finite beta plasmas and possible methods to keep good surfaces in
large shear | = 2 equilibria were investigated in detail [61]. The HINT code
has also been applied to study the finite beta effect on an isolated magnetic
island chain in a low shear Helias equilibria. Sizes and phases of the partic-
ular island chain at ¢+ = 5/6 were studied for their dependencies on external
vacuum field parameters, which led to the discovery of the sell-healing phe-
nomenon. When the X point of vacuum magnetic island is overlapped by the
O point of pressure-driven magnetic island, the island width becomes quite
thin over an appreciable range of beta values [61]. Application of the PIES
code to Helias equilibria has also begun [64] and resulted in a demonstration
of the existence of nested magnetic surfaces by suppressing the island chain
at ¢« = 5/6.

With regard to MHD stability in currentless stellarator plasmas, the ideal

pressure driven instabilities are crutial for evaluating the critical beta value.
The currentless equilibrium means that the toroidal current averaged over
each magnetic surface is zero, although the local current density is non-zero.
The interchange mode has the property that the Mercier criterion gives a
good indication of the stability beta limit [65, 66].

For obtained MHD equilibria, 3D Mercier stability criterion [67] is eval-

nated for local interchange modes,

Dy=Ds+ Dw+ Dy + D 20,

where
B = (w?’w’)in)' 8
o - o] ] 5
e # f]gdﬂd(——z,h — (W, jf“'" B)d0dCY  (2.13)
T -ﬁ% f f gdBJCJ—JI-;—]]
- gl Joac TR (] fooacss)

Here, 7 and tp are the toroidal and poloidal magnetic flux functions, g is
the Jacobian, p is the scalar plasma pressure, I is the toroidal current within
a magnetic surface, and g** = |Vs|? is the corresponding metric element. The
radius like variable s is given by the toroidal flux normalized at the plasma
edge, and the primes indicate derivatives with respect 1o s. This form for the
Mercier criterion is the same as the one given in Ref. [58]. In this stability
criterion, Ds gives the stabilizing contribution of the magnetic shear, Dy is
the contribution of the magnetic well or hill, Dy gives the contribution of net
plasma current, and D¢ the contribution of the local geodesic curvature. In
configurations with a magentic well, the term Dy is positive and stabilizing.
The term Dg is always negative and, therefore, destabilizing. As the pressure
is increased, the Dy term becomes more positive; however, the Dg term
becomes more negative. Thus, the Mercier stability criterion Dy = 0 is
usually a fine balance of these two terms. In Ref. [68], dependence of the Dyy
value on the Dy term is investigated for TJ-1l Heliac [69] in detail by using
the VMEC by changing the vacuum magnetic well depth for fixed values of

rotational transform.
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For currentless plasmas, DDy = 0 is always valid. The three helical axis
stellarator configurations discussed in this thesis have low shear in the vac-
uum. Thus, for very low beta plasmas, the magnetic well formation is nec-
essary Lo satisfy the Mercier stability. This concept to stabilize interchange
modes with magnetic well is the same as in Helias and Heliac configurations,
in which the magnetic shear is generally very low for a wide range of beta
values,

The investigation of MHD stability has been restricted only to ideal
Mercier stability as the first insight. For the Mercier stable case, more de-
tailed investigations of, for example, resistive interchange modes and balloon-
ing modes, are required to determine the stability beta limit more precisely
70].

It should be noted that the parallel current calculated directly from the
components of the magnetic field in the VMEC (‘direct method’) is used in
the above Mercier criterion. However, there have been arguments that the
Mercier criterion should be evaluated with the parallel current obtained by
solving a magnetic differential equation derived from the local equilibrium

equation (‘indirect method’ [71, 72]), Eq. (19) in Ref. [72],

(jl.izB)m‘n v (-t!",. Ij 1,!1{,11) (m:::;, i :‘:;J})(V/E)mn . (2.14)

When nested magnetic surfaces are assumed, a singular parallel current may

appear in the vicinity of a rational surface satisfying my, — nipp = 0 to
satisfy the local MHD equilibrium [73]. In reality, the magnetic island will
appear and the pressure profile will be flattened. Then the singular parallel
current on the rational surface may disappear, even if its width is sufficiently
small. This means that the resonant parallel current given by Eq. (2.14) may
not be realized in an actual plasma, although the pressure profile becomes
complicated.

The equilibrium obtained by the VMEC may be interpreted as the one
after the singular parallel current is smeared out by magnetic islands with
the width comparable to a mesh size. From the view point of the smear-
ing of singularity, the parallel current calculated with the ‘direct method’
seems natural. The Mercier criterion using the ‘direct method’ has been ap-
plied to configurations with strong magnetic shear such as Heliotron I [74]
or LHD, and have shown that Mercier parameter, normalized such that the

shear term becomes 1/4, predicts the behavior of low-n ideal interchange
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modes. Therefore, the Mercier criterion considered is reliable at least for an
equilibrium with a finite magnetic shear. I'rom the numerical point of view,
Eq. (2.14) has an advantage, since the radial derivative, which sometimes de-
grades numerical accuracy, is not necessary. However, it has a disadvantage
that the number of magnetic surfaces, where the resonant parallel current
flows increases for an equilibrium whose magnetic shear is finite. According
to several comparisons of the Mercier criterion between ‘direct” and ‘indi-
rect’” methods have shown that the difference between them is fairly small
for the regions apart from the low order rational surfaces in the magnetic
sheared configurations [75]. Therefore, the ‘direct method’ is considered to

be plausible in this thesis.
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2.4 Divertor

Concerning the particle and energy exhaust for steady state operation of
stellarator fusion reactors, there is the concept of a natural divertor [13, 76].
All coils in the LHD are superconducting and, therefore, a steady state (~
1 day) operation will be possible provided that impurity concentration is
kept small. For this purpose, a divertor configuration is required to control
the impurity level. Also, the divertor will be important in enhancing the
core energy confinement like the H mode. Tokamak experiments have shown
that an effective divertor requires a divertor configuration that the plasma
in the divertor region plugs neutrals recycled at the divertor plate through
ionization, which minimizes the neutral flux into the main plasma. This is
particulary important in-realizing a high density, cold divertor plasma and
for access to the H mode regime [77]. Edge recycling control by the divertor
seems to be the key factor to trigger and maintain the H mode phase in
tokamaks and stellarators as expected from L - H transition theory explained
in Chapter 4. The LHD energy confinement scaling [3] predicts that a factor
of 2-3 improvement will be needed to have a stellarator fusion reactor with
a reasonable size (major radius < 20 m). Thus, an enhancement of the
energy confinement is one of the major experimental subjects in the LHD
project.,

The field line structure has also been investigated in the design activity
of the W7-X [14]. It is governed by the formation of five helical edges at
the plasma boundary as a consequence of the optimization procedure [78].
These helical edges are given by the lines connecting positions of the strongest
poloidal curvature on the plasma boundary; the edges run from the lower end
of the bean shaped cross section via the tip of the triangular cross section
to the upper end of the bean shaped cross section one period apart. The
field line diversion (in the stochastic region outside the last closed magnetic
surface) occurs close to these edges so that regions at a distance of about
1/5 plasma radius away are envisaged as an open divertor. A critical issue
for controlling the divertor region is the modification of the magnetic field
structure by finite plasma pressure, as pointed out in Ref. [14]. Therefore,
divertor plates or neutralizer plates must be designed to cover finite beta
equilibrium configurations. In this thesis, the magnetic field line structure is

studied only for vacuum helical axis configurations.

) = 5%.

a
Plasma radius is normalized as approximately unity [14].

‘ross sections of magnetic surfaces of the W7-X at (;
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Fig. 2.2: Fourier spectrum of the magnetic field strength {B,,,.}
in the Boozer coordinates for the W7-X [14], where m (n)

denotes a poloidal (toroidal) mode number.
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Fig. 2.3: Collisionless a particle losses in the W7-X magnetic configuration

as a function of time of flight. Particles are launched from aspect
ratio 40. The dashed line shows the fraction of trapped particles.
Each symbol indicates the loss of one a particle for (3) = 0%(e),
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Fig. 2.6: Surface current lines of Helias vacuum magnetic field in the

geometrical toroidal (¢) and poloidal (#) plane [35].

R e, L7
SR
0¥ @70 b oS
7% 0 a9
s
/.: b5 J 1Y

'.ﬁgg{.‘?

Fig. 2.7: Modular coils for the W7-X based on the surface current lines
in Fig. 2.6. Number of coils per period is 15 and the aspect ratio

of coil configuration is 6.5 [35].



3 Helical Axis Stellarator Configurations Based
: on the [ = 1 Helical Coil

e

-

= v 3.1 Introduction
84]

For an optimized stellarator configuration, the following conditions are pri-

- 0 TC marily necessary:
1. sufficiently high beta MHD equilibrium and stability limit,
2. sufficiently small neoclassical plasma losses for a good confinement,

3. sufficiently small bootstrap current for keeping good magnetic surfaces

(l)) 2 ! in finite beta plasmas,
=
g 4. sufficiently good confinement of high energy particles,
@ 5. good technical feasibility of the coil system and sufficiently large space
i 7 0 7T between the coils and the plasma.

Here, the object is to realize a helical axis configuration with above prop-
erties based on an [ = 1 helical coil with additional toroidal and poloidal
coils for flexible experiments. It is well known that the helical magnetic axis

configuration can be produced by an [ = | helical coil [79] and there are

((') e [ several experimental devices with helical magnetic axis. In Heliac devices
= I [80], the toroidal coils are placed along a helical line surrounding a central
E \ ring and bean shaped magnetic surfaces are produced with both the toroidal
o | coils and the central ring.
-7 0 T The main criteria for the first optimization are as follows:

(a) quality of vacuum magnetic surfaces,
(b) realization of the simple field spectrum in the Boozer coordinates,

(¢) the magnetic well in the whole plasma region in the vacuum con-
Fig. 2.8: Variation of the magnetic field strength along the field line for figuration.
(a) axisymmetric tokamak, (b) conventional stellarator and
(¢) quasi-helically symmetric stellarator, respectively. Here, the criterion (a) means to avoid low order resonant surfaces and to make
the width of the magnetic island narrow, which are significant for good MHD

equilibrium. Criterion (b) is relevant for good particle orbit confinement and
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reduction of neoclassical transport and (¢) is inevitable for MHD stability in
the weak shear configuration.

It has been tried to suppress the toroidal component of the magnetic
spectrum in the Boozer coordinates, as pursued in the optimization procedure
of the W7-X magnetic configuration. In Section 3.2, relations between the
characteristics of the magnetic field spectrum and the | = 1 helical coil
system are explained. The investigation of the [ = 1 helical coil system has
led to a new helical axis stellarator called Helias-Heliac Hybrid Stellarator
(HHHS) [17]. Both Helias-like and Heliac-like configurations are possible by
adjusting the coil currents. For the Heliac-like configuration, the volume
average stability beta limit is greater than 7.3% and neoclassical transport
15 reduced to some extent due to the reduction of the magnetic field ripple
by controlling the bumpy field component.

However, the neoclassical transport is not optimized due to the enhance-
ment of magnetic field ripple in the outside of a torus or the large bumpy field
component with the same sign as the [ = 1 helical one, although the toroidal
component in the magnetic field is reduced significantly in the Helias-like
configuration. Therefore, the other stellarator configuration has been inves-
tigated with the pitch modulation of an I = 1 helical coil different from that
in HHHS to realize the bumpy component having the opposite sign to the
[ = 1 helical one to weaken the magnetic field ripple, which results in the re-
duction of neoclassical transport. The obtained magnetic field configuration
is almost comparable to the W7-X from the point of views of beta limit, neo-
classical diffusivity, bootstrap current and high energy particle confinement,
although vacuum magnetic surfaces look different from the W7-X in the real
space.

The coil configuration and the vacuum magnetic surfaces are described
in Section 3.2. Characteristics of MHD equilibrium and Mercier stability are
explained in Section 3.3, and the collisionless particle orbit confinement and
neoclassical transport properties are described in Section 3.4, where collision-
less particle orbits, their modifications due to finite beta and radial electric
field effects are investigated. It is also shown that the bumpy field compo-
nent is essential for the reduction of neoclassical diffusivity and the control
of bootstrap current. Concerning particle and energy exhaust for the long
pulse or steady state operation as will be pursued in the next generation

experimental devices, divertor configuration will be an important ingredient.

Therefore, magnetic field line structure outside the nested magnetic surfaces
is studied in Section 3.5. A brief summary for the optimized helical axis

configurations will be given in Section 3.6.
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3.2 Relations Between the [ =1 Coil System and the

Vacuum Magnetic Surfaces

The major radius of the [ = 1 helical coil wound on a axisymmetric torus
R0, 18 assumed 2.3 m, which is comparable to that of the Heliotron E [7].
This value is chosen for reference of a medium size experimental device. The

winding law of the filament helical coil is as follows:

M
g = =0+ Td)—n sinﬂquﬁ, (3.1)

where 0 (¢) is the geometrical poloidal (toroidal) angle, respectively, and o
is the pitch modulation parameter. When « is positive and becomes fairly
large, the helical coil winds rapidly in the poloidal direction at outside of a
torus. This pitch modulation plays an important role to control the magnetic
field spectrum and /or to form the vacuum magnetic well as explained below.

In addition to the [ = 1 helical coil, at least one pair of vertical field
(or poloidal field) coils and toroidal coils are necessary to produce nested
magnetic surfaces. The vertical field coils are placed at 3.5 m of radius and
1.2 m of height, symmetrically up and down the equatorial plain. Their
positions are also the same as those in the Heliotron E.

The axisymmetric toroidal field component is characterized by the pa-
rameler

q= Bm(o)/BM(D) )

where B)4(0) is the average toroidal field produced at B = 2.2 m by the
helical coils and By;(0) by the toroidal coils.

The first aim is to suppress the toroidal field component in the magnetic
spectrum and to realize a similar magnetic field configuration to that of the
W7-X. The toroidal field component denoted by ¢, can be reduced by setting
« positive as shown in Table 3.1, where examples with the field period of M =
6 are given. Here the average position of the magnetic axis (R,,) is adjusted
at 2.2 m to compare several magnetic configurations systematically. It i1s seen
that the geometrical inverse aspect ratio for the outermost magentic surface
and the value of ¢, at the plasma edge ¢/(a) obtained from the magnetic field
spectrum in the Boozer coordinates are almost the same for the case of @ = 0
(no pitch modulation). On the other hand, in the case of @ = 0.7, ¢(a) 1s
reduced to about 1/6 of the geometrical inverse aspect ratio, although the

average plasma minor radius becomes small.
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These results are favorable to realize the magnetic configuration with a
suppressed toroidal field component. However, as listed in Table 3.1, larger
« makes the magnetic hill higher, which is the unfavorable direction to the
MHD stability. Therefore, the next aim is the formation of the vacuum
magnetic well or the reduction of the vacuum magnetic hill by changing
other coil parameters for the fixed a = 0.7.

The following coil parameters are changed to control the magnetic hill:

(a) the number of the field period (M),
(b) the minor radius of the helical coil (a,),

(¢) the axisymmetric toroidal field strength ()

for the fixed (R,.) = 2.2 m.

Figures 3.1 show the variation of vacuum magnetic hill height as a func-
tion of average radius when the above parameters are changed. These figures
suggest that smaller M, a, and ~ are compatible with lowering the magnetic
hill height. However, smaller M, a. and 4 make the excursion of the magnetic
axis A larger. Here A is defined by the radial distance between the outer-
most position of the magnetic axis and the innermost one. The variation of
A is shown in Fig. 3.2.

Figure 3.3 shows the coil system generating both the Helias-like and
Heliac-like configurations schematically (HHHS with | = | and M = 4).
The outer [ = 1 helical coil has been included to form the magnetic well at
the vacuum, although the coil current is relatively small compared to that of
the inner one [81]. In Fig. 3.3, the finite coils are shown to clarify shape and
structure of the helical coils, although filamentary coils are used to calculate
the magnetic field.

For the toroidal field, four toroidal coils are placed per field period with
the same interval in the toroidal direction as shown in Fig. 3.3, where they
are shown only for one field period for simplicity. The toroidal coil currents

are distributed as
Itp = Iy(1 + Cycosd¢ + Cgcos 8¢) (3.2)

for controlling the bumpy field component actively to reduce the neoclassical
transport and to control the bootstrap current especially in the lmfp regime.
For the case of a > 0, both the Helias-like and Heliac-like configurations

are possible by controlling parameters v,y and Cs. Some coil parameters
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are summarized in Table 3.2 in the case of the average magnetic field of 1 T on
the magnetic axis for both (a) Helias-like and (b) Heliac-like configurations.
Migures 3.4 show the cross section ol vacuum magnetic surface for both (a)
Helias-like and (b) Heliac-like configurations at ¢ = 0, (1/4)(2x/M) and
(1/2)(27 /M) obtained by the field line tracing code. The magnetic surfaces
change from the bean shaped to tear-drop shaped to triangular in one half
of a field period as shown in Fig. 3.4(a). This behavior is similar to Helias
configuration for the W7-X. On the other hand, in Fig. 3.4(b), the bean
shaped magnetic surfaces rotate in the toroidal direction, which looks like
the Heliac configuration such as the TJ-Il and the H-1 [82]. It is noted that
the excursion of the magnetic axis for both configurations is fairly large,
especially in Helias-like configuration. The distance between the outermost
position of the axis (at the ¢ = 0 cross section) and the innermost position
(at the ¢ = (1/2)(2x/M) cross section) is about 1.3 m, which is about half
of the major radius of this device. Therefore, the inner [ = 1 helical coil may
be considered as the central ring in the coil system of Heliac, although the
large pitch modulation of the [ = 1 helical coil with M = 4 makes a square
shape from the bird’s-eye view as shown in Fig. 3.3.

It is possible to suppress the toroidal field component ¢, with positive pitch
modulation a; however, the bumpy field component ¢; has a tendency to have
the same sign as the helical field component ¢, resulting in an enhancement
of the magnetic field ripple along the magnetic field line. This is unfavorable
to reduce the neoclassical transport and, therefore, it has been tried to make
the sign of ¢, opposite to that of ¢,.

The bumpy field component can be controlled by changing the pitch mod-
ulation parameter a as shown in Table 3.3, where the ratio of the bumpy field
component to the helical one at minor radius of 0.12 m, ¢,/¢,, is listed for
different a. Here the average position of the magnetic axis (R,,) is adjusted
at 2.3 m with the other coil parameters fixed. The negative value of ¢,/¢),
corresponds to that the bumpy component has the opposite sign to the heli-
cal one. Although this ratio is still positive, it seems that the negative pitch
modulation has a tendency to make the sign of ¢, opposite to that of ¢, where
€5, 1s negative. It should be noted that in addition to «a, the parameters Cy
and Cy in Eq. (3.2) are also utilized to realize ¢;/¢; < 0.

The vacuum magnetic hill height at average radius of 0.12 m is also listed

in Table 3.3. It is suggested that the negative pitch modulation has a ten-
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dency to form the vacuum magnetic well. This is because the magnetic field
lines have a tendency to advance mainly in the toroidal direction and, there-
fore, stay longer inner side of a torus or in the region of the strong magnetic
field due to the pitch modulation of the helical coil. For the a < 0 case, the
outer helical coil, which is introduced to make the vacuum magnetic well for
positive pitch modulation case such as HHHS (cf., Fig. 3.3), is not necessary.
Thus the coil system becomes much simpler than that of HHHS and gives a
wider space for the heating and diagnostics. This is a significant advantage
of this coil system for designing a new experimental device.

From these properties of magnetic surface, if is expected to obtain a he
lical axis configuration with a reduced neoclassical ripple transport and a
good Mercier stability simultaneously based on the | = 1 helical coil hav-
ing the negative pitch modulation. This configuration will be called as the
“optimized” helical axis configuration in this thesis. The coil parameters for
the optimized helical axis configuration are summarized in Table 3.4 and the
schematic view of the coil system is shown in I'ig. 3.5.

The cross section of the vacuum magnetic surfaces are shown in Fig. 3.6
at ¢ =0, (1/4)(2r/M) and (1/2)(2r/M). The cross section changes from
the triangular to tear-drop and to bean shaped in one half of a field period,
which has a similarity to magnetic surfaces of the W7-X or the Helias-like
configuration in HHHS. However, the bean shaped magnetic surface is located
in the inner region of a torus with respect to the position of the I = 1 helical
coil in contrast to the W7-X, where it is located in the outer region of a torus.

In Fig. 3.6, contours of magnetic field strength are also shown, and the
center of the concentric circles corresponds to the position of filamentary | = |
helical coil. It is seen that the space between the outermost magnetic surface
and the helical coil is rather wide and this is desirable for the reduction of
impulities from the plasma facing components.

Finally, it should be mentioned that, for example, the finite size | = |
helical coil with cross section of 10 em x 10 em does not affect the vacuum
magnetic characteristics significantly.

In the following of this chapter, the three magnetic configurations men-
tioned above are discussed. They are characterized as follows from the point

of view of the magnetic field spectrum as shown later:
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Helias-like:

Heliac-like:

Optimized:

significantly reduced ¢,

and large ¢, with the same sign as ¢.

¢, almost comparable to the geometrical inverse aspect
ratio and several small helical magnetic field components,
¢, almost comparable to the geometrical inverse aspect

ratio and large ¢, with the opposite sign to ¢,.

3.3 Currentless MHD Equilibria and Mercier Stabil-
ity

The 3D MHD equilibrium code VMEC [57] has been applied to calculate

currentless equilibria and Mercier criterion. The pressure profile is assumed

as
P = Fy(1 —v7)

for the Helias-like and Heliac-like configurations and
P = Pyl ~ 43)?

for the optimized helical axis configuration, where ¢'; is a normalized toroidal
flux function.

It is noted that the average minor radius of the last closed magnetic
surface of the vacuum configuration is about 0.25 m in Fig. 3.6, which gives
an aspect ratio less than 9. However, as seen from Fig. 3.6, the peripheral
magnetic surfaces are distorted by the (m,n) = (5,4) magnetic islands at
¢ = 0.8 and these highly shaped magnetic surfaces are difficult to be treated
in the VMEC with limited number of Fourier modes for representing the
outermost magnetic surface. Therefore, the average minor radius is assumed
to be about 0.20 m for the input data for the VMEC. It may be interpreted
that a pressureless plasma exists in the region between 0.20 m and 0.25 m.
However, the fixed boundary condition at 0.20 m is assumed in the VMEC
for simplicity. As a future study, a free boundary equilibrium calculation of
the considered helical axis stellarators is needed to check the assumption of a
fixed boundary. For the currentless equilibria of the LHD, it is confirmed that
the difference between the free boundary and the fixed boundary is small, if
the plasma column position is fixed by the vertical field control [83].

Figures 3.7 show the rotational transform profiles for (a) Helias-like, (b)
Heliac-like and (c¢) optimized helical axis configurations. The rotational
transform is high at around 1.8 and the profile almost does not change as the
beta value is increased for the Helias-like configuration. On the other hand,
in the Heliac-like and optimized helical axis configurations, the rotational
transform is medium at around 0.7 with weak shear at the vacuum and the
profile changes significantly as the beta is increased. This implies that PSC
is not reduced compared to the standard stellarator or the toroidal compo-

nent in the magnetic spectrum is not reduced from the geometrical inverse
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aspect ratio as shown later. This characteristic is totally different from that
of the W7-X, in which PSC is significantly reduced to yield high (3),, limit
by suppressing the toroidal component in the magnetic spectrum.

The PSC' causes the magnetic axis shift or Shafranov shift which depends
on beta value as shown in Figs. 3.8 for (a) Helias-like, (b) Heliac-like and (¢)
optimized helical axis configurations. It is extremely small for the Helias-
like configuration as shown in Fig. 3.8(a). This means that the significantly
reduced PSC' is realized due to negligibly small toroidal component in the
magnetic spectrum. By assuming that the equilibrium beta limit (3),, cor-
responds to the magnetic axis shift or Shafranov shift equal to the half of
minor radius, ()., ~ 7.3% is obtained for the Heliac-like configuration and
() eq ~ 4.5% for the optimized helical axis configuration, which are satisfac-
tory for an aim of obtaining (3)., ~ 5%. Also, the finite magnetic axis shift
contributes to the magnetic well in finite beta plasmas, which is favorable to
the stabilization of pressure-driven modes.

When an MHD equilibrium is obtained numerically, it is useful to evaluate
Mercier criterion [84] for localized interchange instabilities which is shown as
Dy > 0 for stability. The value of Dy is negative for the Helias-like configu-
ration even in the low beta equilibrium, which means that this configuration
is unstable to Mercier modes. The main stabilizing term in the low shear
configuration like the Helias-like configuration is the magnetic well term.
Therefore, the Helias-like configuration requires a deeper vacuum magnetic
well for stabilizing the Mercier modes. On the other hand, the Heliac-like
configuration is stable to Mercier modes up to at least (3)., ~ 7.3% as seen
from Iig. 3.9. For less broad pressure profile such as P = Py(1 — 3)* and
P = Po(l — )2, (B)eq ~ (B)st ~ 4.6% and 2.3% are obtained for this con-
figuration, respectively. This behavior that the broader pressure profile gives
the higher beta limit is different from the Mercier stability for the TJ-1I [68].

The optimized helical axis configuration is stable to Mericer modes up to
(3)ey due to the formation of the vacuum magnetic well (~ 0.2%) and an
enhancement of the magnetic well due to the Shafranov shift. Thus (3),, ~
(3)eq 2 4.5% is obtained in this configuration.

These beta limit for the Heliac-like and optimized helical axis configura-
tions are close to that of the W7-X, although a little broader pressure profile

is favorable here and only the ideal Mercier criterion is considered.

10

3.4 Collisionless Particle Orbit and Neoclassical Trans-
port

Collisionless particle orbit has been studied by using the guiding center drift
equations in the Boozer coordinates for both the vacuum and finite beta
plasmas. Since the coordinate system used in the VMEC is not the Boozer
coordinates, the coordinate transforination of the magnetic field strength to
the Boozer coordinates is necessary particularly for finite beta plasmas.

The magnitude of the magnetic field is expressed as

B = Z Bn(r) cos(mbp — nly) ,

where 0 ((g) is the poloidal (toroidal) angle in the Boozer coordinates and r
denotes an average radius. The Fourier spectra of the magnetic field strength
in the Boozer coordinates are shown in Figs. 3.10 for both (a) Helias-like and
(b) Heliac-like vacuum configurations and Figs. 3.11 for (a) vacuum and (b)
(B) ~ 4.5% for the optimized helical axis configuration. Here it is noted
that By line denotes the difference of By, between at r and the magnetic
axis, Boo(r) — Beo(0). All other components are normalized with By(0).
The significant feature in the Helias-like configuration is the extremely small
toroidicity Byo and the large bumpy component By, with the same sign as the
helical component Byy. On the other hand, in the Heliac-like configuration,
the reduction of Byg is rather weak, although the By, is reduced substantially.

In the optimized helical axis configuration, the large bumpy component
Byy has the opposite sign to helical component y,, and this structure is
similar to that of the W7-X [14] except that By, is not reduced from the
geometrical inverse aspect ratio. This relation of By and By makes the
magnetic field ripple localized inside of a torus ie., in the strong magnetic
field region with # ~ 7, which improves the trapped particle confinement.
It is noted again that the By line, which represents the difference Byo(r) -
Buo(0), has a tendency to have a large gradient toward the plasma edge in the
finite beta case as seen in Fig. 3.11(b). This behavior reflects the diamagnetic
effect and it is the main effect of the finite beta in the optimized helical axis
configuration. The broadening of the spectrum which is often considered in
conventional stellarators [45] is not seen.

For studying collisionless particle orbits, 1500 protons with a kinetic en-

ergy of 1 keV are followed under the assumptions that the average magnetic
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ficld strength of 1 T on the magnetic axis and p;/R ~ 2 x 107, Here p;
is the proton Larmor radius and R is the major radius. It is noted that
pi R~ 2% 107 corresponds to 53 keV proton in the W7-X with the average
magnetic field strength of 5 T. They were initially launched from the mag-
netic surface located at 7/a = 0.5 with a uniform distribution in the pitch
angle of the velocity space (15 points), in the poloidal (10 points) and in
the toroidal (10 points) angles. The particle orbits were followed for 2 ms (a
particle with only parallel velocity or v, = 0 initially makes about 60 circuits
of the torus) or until they cross the plasma boundary. It is better to follow
them for the order of one second in order to study the particle confinement
corresponding to a particles definitively. For studying the direct loss, the
orbit following for 2 ms is an allowable choice, which also saves computa-
tional time. Since the radial electric field £, is effective in confining trapped
particles in heliotron/torsatrons [85], the E. is included in the orbit following
calculation. A parabolic profile of the electric potential ® is assumed to give
Er,

® = Py(1 —¥r), (3.3)

where by is a normalized toroidal flux function. The particle loss rates for
several conditions for the three types of helical axis configuration are sum-
marized in Table 3.5. It is clarified that the radial electric field is necessary
to obtain the good particle confinement for low beta plasmas; however, the
particle confinement may be improved without radial electric field for finite
beta plasmas. These results are similar to the particle confinement property
of Helias for the W7-X [31].

[n obtaining the loss rates shown in Table 3.5, particles are assumed to be
lost when they cross the plasma boundary. In reality, there is a possibility
that some particles reenter the plasma without striking the plasma facing
components [86]. Therefore, it is probable that the loss rates listed in Table
3.5 are overestimated.

The reason for the large loss fraction in Helias-like configuration at the
vacuum may be understood by a simple analytic model. From Fig. 3.10(a),
the magnetic field strength in the Helias-like configuration is simply approx-
imated by

B = Bo[l — €, cos4¢ — ¢, cos(0 — 4¢)] ,
where By = By(0). and ¢, = Byy/By and ¢, = By4/By are bumpy and

dominant helical field components, respectively. Then the banana center

42

drift equations are expressed approximately as

e = cosfl .

7 o rsinf.

under the conditions that |e;| > [¢4], and ¢, and ¢, have the same sign [45].
This set of equations has the same (r,0) dependence as that for the usual
toroidal drift of the guiding center. Therefore, it is said that the reduction
of toroidal component in the magnetic spectrum is not effective to improve
the trapped particle orbits when the bumpy field component is large and has
the same sign as the dominant helical field component.

It should be noted that the loss rate in the vacuum case for the optimized
helical axis configuration without radial electric field £, becomes smaller than
that of the Helias-like configuration by realizing the bumpy field component
with the opposite sign to the helical one to make the variation of the magnetic
field strength along a field line flat - bottomed like o - optimization [46].

The physical mechanism for the results listed in Table 3.5 is understood
from orbit modifications due to finite beta and radial electric field effects in
the optimized helical axis configuration as an example.

Figures 3.12 show the contours of the magnetic field strength |B| on the
outermost magnetic surface for one field period (left) and the variation of the
magnetic field strength along the magnetic field line on that surface (right)
for (a) vacuum and (b) () ~ 4.5% cases. There is a large modulation of
the envelop in the vacuum case, although the minimum point of |B|, which
determines the deeply trapped particle orbit, is almost aligned by the control
of the bumpy field component. However, the modulation amplitude of the
envelop decreases in the () ~ 4.5% case, mainly due to the decrease of both
the toroidal and helical field components compared to the bumpy component
and the realization of “quasi-bumpy symmetry” as shown in Fig. 3.11(h).
This variation of the magnetic field strength along a field line is similar
to that of axisymmetric tokamak (Fig. 2.8(a)) or quasi-helically symmetric
stellarator (Fig. 2.8(c)). Therefore, it is expected that the trapped particle
orbit confinement is improved for finite beta plasmas.

Figures 3.13 show typical orbit of (a) untrapped, (b) trapped and (c)
transition particle in the vacuum field. The pitch angles, 5 = cos™'(vy/v),
are 0, m/2 and 177 /24, respectively. Here, “E,.., [keV]” denotes the parallel
energy measured in keV taking into account the relative direction of the

particle velocity to the magnetic field and “phi” and “theta” denote ¢ and Oy
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in the Boozer coordinates, respectively. The circle on (7, z) plane corresponds
to the outermost magnetic surface in the Boozer coordinates. The transition
pariicle experiences both trapping and detrapping states during the particle
motion.

The particle classification in the velocity space is also shown for the vac-
uum field case. Figures 3.14 show the classification of particles which start
from (a) Opy = 0 and (b) 0y = 7. The notation () denotes the untrapped
particle, A the trapped particle and x the loss particle. 1t is obvious that
the loss cone has a tendency to become wider as the particle starting points
become located nearer to the outermost magnetic surface. This is due to the
increase of the trapped particle fraction mainly because By increases radially.
This tendency is the same as that typically seen in conventional stellarators.
It should be noted that the particles starting from (0po, ¢50) = (7,0) do not
cross the outermost magnetic surface within the orbit following time of 2
ms, and trapped particle fraction is extremely small compared to other cases
even for r/a = 0.8. Therefore, this region seems appropriate for the neutral
beam injection (NBI), although it is located inner side of a torus.

It is well known that the radial electric field is effective to improve particle
orbit confinement in stellarators due to E x B poloidal drift [85]. Typical
drift orbits of the trapped particle with p;/R ~ 2 x 10~ in the presence
of the electrostatic potential, Eq. (3.3), are shown in Figs. 3.15 for several
gy values. It is noted that the positive ®; value means the outward radial
electric field. In the absence of the radial electric field (&4 = 0), the trapped
particle drifts vertically and leaves the confinement region (this particle is the
same one as in Fig. 3.13(b)). However, the electric potential of either sign
whose value is relatively small compared to the kinetic energy of particles
gives sufficient poloidal rotation by the E x B drift faster than the VB drift,
and the trapped particle moves around the magnetic axis without loss.

In order to see clearly the influence of finite beta effects on the trapped
particle orbits, orbits of deeply trapped particles with p,/R ~ 6 x 10~* are
shown in Iigs. 3.16 for several beta values. This value of p;/ R corresponds to
the proton with kinetic energy of 0.1 keV in the case of average magnetic field
strength of 1 T on the magnetic axis. They cross the outermost magnetic
surface in a few ms for (a) (3) = 0% and (b) () = 1.4%; however, it takes
about 80 ms to cross it for (¢) (8) = 2.9% and (d) (8) = 4.5%. It is noted
that the By line denotes the difference, Byo(r) — Bpo(0), in Fig. 3.11 and it
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has a larger gradient in finite beta case than in vacuum case, which reflects
the diamagnetic effect. Contours of miny,|B| have a tendency to be closed
due to the diamagnetic effect and thus the deeply trapped particles may be
confined for a longer time in finite beta plasmas, where ming,, | B| denotes the
minimum of | B| averaged over ¢p coordinate in the Boozer coordinates. It is
noted that the deeply trapped particles with 1 keV may cross the outermost
magnetic surface in a {ime shorter than about 80 ms for 0.1 keV in the
case of the average magnetic field strength of 1 T on the magnetic axis or
pi/ B ~ 6 x 1071 In order to realize a compact stellarator reactor with a
reasonable magnetic field, more optimization for high energy trapped particle
confinement should be pursued with a careful control of the bumpy field.

In order to study transport properties, the DKES code [47] has been used
to evaluate neoclassical transport coefficients. particle diffusion and boot-
strap coefficients. They can be evaluated as functions of inverse mean free
path at a fixed particle velocity, v/v, where v is the collision frequency and
v is the particle velocity. Figure 3.17 shows particle diffusivity ) calculated
at the magnetic surface corresponding to the half radius as a function of v,
where D denotes diffusivity normalized with the plateau value of diffusivity
of each equivalent tokamak and v, is the effective collision frequency obtained
by multiplying the connection length ¢R or R/¢ with v/v, where ¢ is a safety
factor. Here the equivalent tokamak has the same aspect ratio, the same
rotational transform and the same average magnetic field strength as each
helical axis configuration considered here. For comparison, the results for
the W7-X [14] and the TJ-1I [87] are also shown. In the Helias-like configura-
tion, the bumpy component By has the same sign as the helical component
B4 as shown in Fig. 3.10(a), which enhances the magnetic field ripple in the
weak magnetic field region or in the outer region of a torus. Therefore the
diffusivity becomes larger than the plateau value of its equivalent tokamak.

On the other hand, diffusivity of the Heliac-like configuration is reduced
to some extent by the bumpy field control, especially by the parameter Cy,
and is almost comparable to the TJ-II results. However, the neoclassical dif-
fusivity is still larger than the W7-X in which the plateaun level is almost
the same or less than that of its equivalent tokamak. Further suppression of
the neoclassical diffusivity has been tried in the optimized helical axis con-
figuration by controlling the bumpy field component based on the analytical

results for 1/v ripple transport described in Chapter 2.



The particle flux in the low collisional regime, Eq. (2.11), includes the
product of ¢, and ¢ in the expression of ¢y, which implies that the 1/v
particle flux is affected by the relative sign of ¢, and ¢. To confirm this,
the contours given by the integral in the bracket of Eq. (2.11) which depends
only on the geometrical parameters are shown in Fig. 3.18. The horizontal
axis denotes ¢,/¢, and the vertical one ¢,/¢,. The origin (0.0) corresponds to
the configuration with ¢ = ¢, = 0, i.e., quasi-helically symmetric stellarator
such as the HSX. Around the origin, the particle lux I' has a minimum
value. The normalized contour values are 4,2, 1, 1, 2,4, 6, 8, 10 successively
on the line from the point (¢,/€y,€/€x) = (0.0, —2.0) to the point (1.0,1.0).
For reference, the W7-X case is also plotted by a symbol e in the same
figure. The main characteristics of the magnetic field structure of the W7-X
is the reduction of the toroidicity (¢;/€; ~ 0.5) and the bumpy component
with almost the same magnitude and with the opposite sign to the helical
one (¢/¢;, ~ —1.2). This combination makes the 1/v particle flux small,
although there are two other field components (i.e., ¢ and ¢,) breaking the
helical symmetry. It is clearly seen that not only the reduction of ¢ but also
¢y with the opposite sign 1o ¢, is effective to reduce the neoclassical ripple
transport especially at |¢,/€,| ~ | case. Thus it has been tried to obtain ¢,
with the opposite sign to ¢, for the optimized helical axis configuration.

It should be noted that Fig. 3.18 is applicable only for magnetic con-
figurations with / = 1 helical component dominantly and, therefore, | = 2
stellarators such as the LHD and the Heliotron E can not be considered with
this figure. That is because the side bands of the main helical component
with (m.,n) = (2, M) are not toroidicity with (m.n) = (1,0) and the bumpy
component (m.n) = (0, M) in [ = 2 stellarators.

Figure 3.19 shows diffusivity D calculated by the DKES code at the mag-
netic surface corresponding to the half radius as a function of an effective
collision frequency v., where the radial electric field is assumed to be neg-
ligibly small. Here the results for Heliac-like configuration is also shown
again for reference. It is noted that I denotes diffusivity normalized by the
plateau value of its equivalent tokamak. It is seen that the plateau diffusion
is almost comparable to that of its equivalent tokamak. When the bumpy
component By, is disregarded artificially in the DKES code (cf., “Byy = 07
line) to see the role of By, clearly, the plateau diffusion and 1/v diffusion

increases with a factor of 2-3. Therefore, it is confirmed that the bumpy
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component with the opposite sign to the helical one is effective 1o reduce the
neoclassical transport as expected from analytical results described above.
The optimized helical axis configuration is plotted with a symbol () in Fig.
3.18, and it is not far from the W7-X. It is noted that the Helias-like and
Heliac-like configurations are beyond this range of ¢,/¢, and ¢;/¢;.

The effect of the radial electric field on the 1/¢ ripple transport is also
studied with the DKES code by assuming non-zero value of E,/v. From
Fig. 3.15, it is seen that the electric potential with ®5 ~ +0.2 kV affects
the trapped particle orbits significantly. Therefore, K, /v ~ 3 % 10~% V.s/m?
is assumed, which corresponds to ®, ~ 0.25 kV for protons with kinetic
energy of 1 keV. This can be explained as following. The velocity of 1 keV
proton is about 4.4 x 10° m/s. When E, /v is taken to be 3 x 10~ V.s/m?,
E, ~ E.Jvx (44 x 10°) ~ 1.3 x 10° V/m. On the other hand, from the
simple calculation, the radial electric field is F, ~ ®y/a ~ 1.25 x 10* V/m
for @ ~ 0.25 kV and plasma minor radius a ~ 0.2 m. The diffusivity in the
Imfp regime is shown in Fig. 3.20 at the magnetic surface corresponding to
the halfl radius as function of an effective collision frequency w., where the
results for zero E, /v case is also shown for reference. The 1/ diffusivity
reduces about a factor of 2-3 even with a relatively small electric potential
compared to the particle energy in the low collisionality regime. In this
regime, the approximation of “collisionless” is rather well valid, and therefore,
the physical mechanism for the diffusivity reduction is seen from Fig. 3.15
that the E x B poloidal drift suppresses the radial motion of particles due
to VB drift. It is noted that the radial electric field is less effective to reduce
I /v diffusivity of particles with much higher energy.

The existence of the bootstrap current has been experimentally confirmed
in both tokamaks [88] and stellarators [12] and it is reported that the boot-
strap current is well described by the neoclassical transport theory [89]. In
tokamaks, the bootstrap current is additive to the Ohmic current. In stellara-
tors, both the direction and the magnitude depend on the magnetic configu-
ration [48]. In particular, in quasi-helically symmetric configuration such as
the HSX, the bootstrap current is expected to flow in the opposite direction,
which reduces the external rotational transform. In the ATF, the magnetic
configuration was changed by superimposing a quadrupole field, resulting in
the change of direction of the total bootstrap current [90].

A small or negligible bootstrap current is required in the low shear config-
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uration whose rotational transform is chosen to avoid the low order rational
surface. The low order rational surface appeared within the plasma may de-
grade the confinement property due to the formation of magnetic islands. In
order to avoid the low order resonance to obtain a fairly fixed rotational trans-
form profile, the finite pressure effects on the vacuum rotational transform
must be kept small. Maassberg et al. showed the contours of the bootstrap
current, coeflicient on the (¢,/en, ¢;) space by the DKES code under the as-
sumption of monoenergetic particles. They clarified that the optimum region
18 close to ¢ /e, ~ 0.5 and ¢, ~ 0.1 to realize the small bootstrap current for a
wide range of collisionality [29]. The contribution of the toroidal component
¢, drives tokamak like bootstrap current which is approximately counterbal-
anced by the contribution from the helical component ¢, [91]. These values
of magnetic spectrum, ¢ /e, ~ 0.5 and ¢, ~ 0.1, is very close to those of
the W7-X. Unfortunately, it is difficult to control the toroidal and bumpy
components separately in the continuous [ = 1 helical coil system because
they are both satellite components of the main helical field.

Figure 3.21 shows the bootstrap current coefficient (in arbitrary unit)
versus v, at r/a = 0.5 in the optimized helical axis configuration. Negative
values denote that the bootstrap current flows in the same direction as that
in tokamaks. The results for two cases are shown; a solid line corresponds
to the results obtained by using 465 Fourier components of the magnetic
spectrum and a broken line corresponds to those by assuming Byy = 0 with
keeping other components in the DKES code. It is clearly seen that By, has
a significant effect to control the bootstrap current especially in the banana-
plateau regime. Therefore, a careful control of the bumpy field component
is necessary to minimize effects due to the bootstrap current on plasma con-

finement.

3.5 Divertor Structure

Concerning the particle and energy exhaust for realizing a steady state op-
eration of stellarator reactor, there is the concept of a natural divertor in
the heliotron device [13, 76]. The magnetic field lines outside the outermost
magnetic surface are followed to investigate the possibility of a divertor con-
figuration. They start from the points being positioned in the planes with
¢ =0, (1/4)(2x/M) and (1/2)(2x/M) and at a distance of one third of a
plasma minor radius from the outermost magnetic surface in the vacuum
configuration. A simple toroidal vacuum chamber is assumed with a major
radius of 2.2 m and a minor radius of 1.4 m for the Helias-like and Heliac-
like configurations and 1.2 m for the optimized helical axis configuration as
a boundary for the field line tracing. It is noted that the inner [ = 1 helical
coil is inside this chamber. The line tracing calculation has been done for the
length up to 760 m for each magnetic field line. Thus the field line which does
not intersect the chamber surface has a length longer than 760 m. It should
be also noted that the inner ! = 1 helical coil is assumed to be a filamentary
coil and, therefore, even if the magnetic field line strikes the finite size helical
coil, the field line tracing is continued.

Traces on the magnetic field lines in the ¢ = 0 plane are shown in Fig.
3.22(a) and traces on the toroidal chamber in Fig. 3.22(b) for the Helias-like
configuration, Fig. 3.23 for the Heliac-like configuration and Fig. 3.24 for the
optimized helical axis configuration.

In the Helias-like configuration, the whisker structure is clearly seen in
Poincaré plots of the magnetic field lines, Fig. 3.22(a). It is expected from
Fig. 3.22(b) that the traces of magnetic field lines striking the toroidal cham-
ber are concentrated at # ~ 0 (or § ~ 2x), i.c., in the outer vacuum region
in the toroidal chamber. Therefore, this field line structure outside the out-
ermost magnetic surface is envisaged as an open divertor,

On the other hand, in the Heliac-like configuration. the explicit whisker
structure does not exist and the magnetic surfaces are surrounded by a wide
stochastic layer. These different magnetic structures outside the outermoset
magnetic surface between the Helias-like and Heliac-like configurations may
be useful to investigate the role of the divertor structure to, for example, the
improvement of the plasma confinement. The magnetic field lines striking
the chamber are concentrated at 6 ~ 0 (or 0 ~ 27) also in the Heliac-like

configuration. Therefore, it is easy to set up the divertor chamber in the
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outer region of a torus in HHHS at least for low beta plasma experiments.
As for the optimized helical axis configuration, it is clearly seen that
five whiskers are diverging from the stochastic region surrounding the nested
magnetic surfaces. This structure may be related to n/m = 4/5 magnetic
islands at ¢ = 0.8. It is seen from Fig. 3.23(b) that magnetic field lines
reaching the chamber surface are concentrated around  ~ 7/2 and 37/2,
i.c., top and bottom region of the chamber near ¢ = 1/2 period. A typical
connection length of diverted magnetic field lines to the chamber surface is
longer than 100 m, which is typically comparable to that of Heliotron E. The
behavior of diverted magnetic field lines in Fig. 3.23(b) may be favorable for

a divertor.

3.6 Summary

It has been tried to obtain a helical axis stellarator configuration based on
= 1 helical coil system for a new flexible experimental device.

Wide range of magnetic configurations including the Helias-like and Heliac-
like configurations are possible in the Helias-Heliac Hybrid Stellarator (HHHS)
by controlling the coil currents in helical, toroidal and poloidal coils.

The main characteristics of Helias-like and Heliac-like configurations are

as follows:
e Helias-like configuration

— aspect ratio ~ T,

high rotational transform, almost no shear, unchangeable for finite

beta plasmas,

— rather small axis shift (or Shafranov shift) for finite beta and low
(/3).91":

— sufficiently reduced ¢; and large ¢, with the same sign as ¢,
— higher collisionless particle orbit loss rate,
— large particle diffusion coefficient and small bootstrap current,

— clear whisker structure outside the outermost magnetic surface,

e Heliac-like configuration

— aspect ratio ~ 11,

— medium rotational transform, weak shear at vacuum, easily change-

able for finite beta plasmas,

— high ()., and (8) s,
— ¢, is almost comparable to the geometrical inverse aspect ratio and

several field components with small amplitude,
— lower collisionless particle orbit loss rate,

— particle diffusion coefficient comparable to TJ-II; however, large
bootstrap current,

— wide stochastic layer outside the outermost magnetic surface.
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These wide range of magnetic configurations are useful for studying the — lower collisionless particle orbit loss rate than Heliac-like configu-
role of ideal and resistive interchange modes in relation to stability beta limit ration (cf., Table 3.5),

by comparing the magnetic configurations between with sufficient vacuum , s b ! ;

2 I g g g — particle diffusion coefficient reduced to plateau level of its equiv-

magnetic well and without it. The experimental results in the Heliotron
alent tokamak and bootstrap current controllable by the bumpy

E [92] and the ATF [93] show that the transport is anomalous particularly compoTent

in the outer edge region, where turbulent characteristics are observed. It
- : . — clear whisker structure outside the outermost magnetic surface.
is pointed out that the most probable candidate for the edge turbulence i le th rmost magnetic surface

1% s roeretive 1 1y = A 1TIQ ilitios [ Thear ey 1 - le m . i * .
is the resistive interchange instabilities [53]. Therefore, it is worthwhile to These approaches and obtained characteristics are essentially the same ag

study this problem experimentally with exploiting the wide range of magnetic those developed in the W7-X; however, the coil system is different from the
. M ceadia 9 ] m 3 syat o e 1 e T TS + N . ¥ . g . .
configurations of HHHS. The consistent relation between trapped particle elaborated modular coils of the W7-X, which may realize a flexible experi-
orbit loss and radial electric field may also be investigated by changing the mental device. It is different from the W7-X that the toroidal component
beta value. in the magnetic spectrum is not reduced from the geometrical inverse aspect
For the Helias-like configuration, since the bumpy component has the ratio, which causes a fairly large Shafranov shift. Therefore, one of future
same sign as the helical component, collisionless particle orbit confinement studies is to decrease this By, component and to realize a more optimized
is not. good and the neoclassical ripple transport is not reduced sufficiently. magnetic configuration.
Moreover, the vacuum magnetic well is not enough for the Mercier stability. In addition to the above favorable properties for plasma confinement,
I'he Heliac-like configuration is more attractive from the point of views of the large clearance between the helical coil and the outermost magnetic sur-
MHD stability and neoclassical ripple transport, since the magnetic well face is advantageous for plasma heating and diagnostics in designing a new
depth is sufficiently deep even in the vacuum configuration and the small experimental device.

bumpy component has the opposite sign to the helical component, resulting
in the reduction of the magnetic field ripple in the weak magnetic field region.
However, the neoclassical diffusivity is still several times larger than that of
the WT-X.

The optimized helical axis configuration based on the modulated | = 1
helical coil has also been described, although the sign of pitch modulation
of the [ = 1 helical coil has been changed from that for the Helias-like and
Heliac-like configurations. The main characteristics of the optimized helical

axis configuration are as follows:
e Optimized helical axis configuration

— aspect ratio ~ 8,

medium rotational transform, weak shear at vacuum, easily change-

able for finite beta plasmas,

high (3)., and {(3).

— ¢, is almost comparable to the geometrical inverse aspect ratio and

large ¢, with the opposite sign to ¢,
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0 0.0 0.4 0.7
a/(Raz) 0.164 0.075 0.072
€(a) 0.153 0.038 0.011

Hill (%) (at 0.2 m)| 4.05 5.10 7.02

Table.3.1

COI

The geomeirical inverse aspect ratio (a/(R,.)) and toroidal field

iponent ¢;(a) and magnetic hill (%) v.s. pitch modulation a

with the average position of the magnetic axis (R,,) = 2.2 m

fixed for M = 6 case.
Coil type
0y o maj, min radii [m] current [MA]

helical inner - 0.7 2.3,0.19 2.805

outer 0.0 -0.8 2.2, 140 -0.047

vertical -0.383
toroidal | 4/period center [m] radius [m] v, Iy [MA], Cy, Cs
R=22 1.8 0.5, 0.067, 0.0, 0.0

Table.3.2(a) Coil parameters for the Helias-like configuration with

the average magnetic field of 1 T on the magnetic axis.

Coil type
0o a maj, min radii [m] current [MA]
helical inner - 0.4 2.3, 0.19 0.556
outer 0.0 -0.9 2.2, 140 -0.185
vertical 0.011
toroidal | 4/period center [m] radius [m] v, I [MA], Cy, Cs
R=22 1.8 8.0, 0.732, 1.50, 0.0

Table.3.2(b) Coil parameters for the Heliac-like configuration with

the average magnetic field of 1 T on the magnetic axis.

Q 0.0 -03 -0.45

ev/en (at 0.12m) [2.65 1.90 1.53

Hill (%) (at 0.12 m) | 0.50 0.34 0.24

Table.3.3 The ratio of the bumpy component to the helical one, ¢,/¢;, and
magnetic hill (%) both at r = 0.12 m v.s. pitch modulation
parameter a with the fixed average position of the magnetic axis

(R.:Y =23 .

Coil type
by o maj, min radii [m] current [MA]
helical - -0.45 2.3, 0.37 1.458
vertical -0.729
toroidal | 4/period center [m] radius [m] v, Io [MA], Cy, Csg
R=22 2 1.4, 0.389, 0.75, -0.875

Table.3.4 Coil parameters for the optimized helical axis configuration

with the average magnetic field of 1 T on the magnetic axis.

Conditions loss (%)
(B)(%), &, (V)
(0.0, 0.0) 31.3
Helias-like (6.4, 0.0) 14.1
(0.0, 0.5) 0.0
(0.0, 0.0) 19.5
Heliac-like (4.1, 0.0) 2:2
(0.0, 0.5) 0.0
(0.0, 0.0) 18.1
[Optimized (2.9, 0.0) 73
(0.0, 0.25) 0.4

Table.3.5 Particle loss rates for several conditions for the Helias-like,

Heliac-like and optimized helical axis configurations.
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3.5

Fig. 3.3:

The schematic view of the coil system for both the Helias-like and

Heliac-like configurations (toroidal coils are shown only for one

field period for simplicity).
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Cross sections of vacuum magnetic surfaces of (a) Helias-like and (b) Heliac-like configurations.
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Fig. 3.5:

The schematic view of the coil system for optimized helical axis
configutation (toroidal coils are shown only for one field period

for simplicity).
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versus effective collision frequency v, for the optimized helical axis
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4 Nonlinear Incompressible Poloidal Viscos-
ity and Its Implications on H Mode in

Stellarator Plasmas

4.1 Introduction

For present stellarators, anomalous transport governs plasma confinement
rather than neoclassical one does. However, even if the anomalous transport
is dominant in the helical axis stellarators, the L - H transition is expectable
under certain conditions. The H mode is the discharge with improved en-
ergy confinement which has been developed in tokamaks and recently similar
discharges have been observed in stellarators.

An explanation of the physical mechanism for the cause of the L - H tran-
sition in tokamaks is based on the bifurcation of the radial electric field F,
through the existence of a local maximum of plasma viscosity as a function
of poloidal flow velocity [23, 24, 25, 26]. The fundamental physical reason of
the nonlinear dependence of the poloidal viscosity on poloidal flow velocity
is the resonance between the parallel (to B) particle speed and the E x B
drift velocity, where E is the electric field and B is the magnetic field. Sub-
sequently suppression of the turbulent fluctuation due to the shear of the
E x B and the diamagnetic angular velocity [94, 95, 96]. Plasma viscosity
is a nonlinear function of F, and has a local maximum located at a critical
poloidal Mach number of the E x B velocity M, = (V,pB/vriB,) of the
order of unity, as demonstrated experimentally in the Continuous Current
Tokamak (CCT) [25] and the Tokamak Experiment for Technology Oriented
Research (TEXTOR) [26]. Here Vg is the poloidal E x B drift velocity, vy;
is the ion thermal velocity, and B, is the poloidal magnetic field strength.
The qualitative results based on this theory are in good agreement with the
experimental measurements at the L - H transition in DII-D [23] or JF'T-2M
[24]. In this Chapter, the same theory extended to stellarator configurations
is applied to clarify the characteristics of present and next generation stel-
larator devices including the optimized helical axis configuration discussed
in Chapter 3 from the L - H transition point of view.

Other theories based on the turbulent Reynolds stress [97, 98] or Stringer
spin-up [99] have been developed. However, their extensions to stellarators

are not shown explicitly, and at present quantitative comparison among sev-
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eral devices is difficult. Since there are differences in magnetic configuration
between tokamaks and stellarators, stellarator H mode experiments are im-
portant to develop the L - H transition theory, il the mechanism is the same
for both types of device. Thus the present transition theory provides further
tests with the existing and future stellarator experiments.

Since stellarator devices can sustain toroidal plasmas continuously with-
out current drive and eliminate major disruptions easily, they have poten-
tiality for the magnetic fusion reactor. The stellarator devices have been
studied in Japan for many years, and Heliotron E [7] and CHS [8] are now
operaiing. New next generation device LHD [13] is under construction, I
is notable that the L - H transition like phenomena have been observed in
the CHS, when the plasma current is induced to change rotational transform
profile somewhat [22].

Stellarators with the name of Wendelstein have been studied intensively
in Max-Planck Institute for many years. Recently main direction of Wen-
delstein stellarator is to develop modular coil system to confine currentless
toroidal plasmas with significantly reduced parallel current. The W7-AS
[100] is a present device and the W7-X [101] has been designed as the next
generation device. In the W7-AS the L - H transition phenomena have also
been observed in the ECRH plasmas without the net plasma current [102].
At present, it is realized only for a narrow region of the edge rotational
transform, ¢(a) =~ 0.52.

In Section 4.2, a briel derivation of the nonlinear poloidal viscosity for
stellarator devices is shown. In Section 4.3, the nonlinear poloidal viscosity is
calculated for the above devices; CHS, Heliotron E, LHD, WT7-AS, W7-X and
the optimized helical axis configuration described in Chapter 3. Although
each device has many variations for experimental magnetic configurations,
only one representative magnetic configuration is chosen except for the CHS.
It is also noted that the parameters to describe magnetic field spectrum
of each device are approximate to estimate the nonlinear poloidal viscosity.
However, the sensitivity of the nonlinear poloidal viscosity was checked on
the chosen parameters. Also momentum loss due to charge exchange reaction
with neutral particles is evaluated. Characteristics of the nonlinear poloidal
viscosity are discussed in these stellarators mentioned above and some com-
ments will be given for results relevant to experiments. Main results are

summarized in Section 4.4.
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4.2 Nonlinear Incompressible Poloidal Viscosity

The poloidal and toroidal plasma viscosities can be calculated from the lin-

carized drift kinetic equations with plasma flows [103, 104],

[(r'”+ V ||)n+'v; ] Vf ( 5 P

(4.1)

where V is the mass flow velocity, Vj is the mass flow velocity parallel to

Dkt

B, vy is the E x B drift velocity, v is the particle speed parallel to B, ¢
is the heat flow, L(IRM = (5/2) — v*/v¥, P is the plasma pressure, fy is the
Maxwellian distribution function, and C'(f) is the Coulomb collision opera-
tor. In the plateau-Pfirsch-Schliiter regime, Eq. (4.1) can be solved with a
Krook collision term C'( f) = —w f with a proper choice of collision frequency
vk. For a stellarator configuration, the magnetic field can be expressed in the
standard toroidal coordinates (r,0,() as follows:

= Bo(r)[l = €mn(r) cos(ml — n()]

i

where By is the magnetic field strength on the magnetic axis, m (n) is the
poloidal (toroidal) mode number, and ¢,,,,"s are the amplitudes with the mode
numbers (m, n). The resonant part of the solution of Eq. (4.1) in the plateau-

Pfirsch-Schliiter regime for a large aspect ratio stellarator configuration is

2y 39
Fm 2%(——jm)f”[—(v VO—IWZ},P -Vﬁ)Zr?w-enmRmu

vh \2 20?
sin(mf@ — n¢) + (V -V( - Lﬁm )P VC) Zfz(mﬂsm(mﬂ —nl )]

(1.2)
where R = wie/[(mws — nwe)? + vE], we = (v + V”))L'/B + v - V0,
we = (v + \-’”)d"/ﬁ + vy - V(. Here the Hamada coordinates is employed
and ¥ = B - V( and x = B -V# for a magnetic field B = B, + B, =
W'YV x VO — 'VV x V(, where V is the volume enclosed by the flux
surface. The magnetic field has been described in the Hamada coordinates
in the large aspect ratio limit which is appropriate for most of stellarators.
Real spectrum of stellarator magnetic field has many Fourier components of
helical magnetic field; however, dominant or truncated Fourier components
are sufficient to calculate the poloidal plasma viscosity with reasonable ac-
curacy. Here it is noted that the perturbed distribution function is linear in

the magnetic perturbations and the viscosity is quadratic in them. Since the
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helical magnetic components ¢,,,, with m # 0 and n # 0 are considered as
the magnetic perturbations to the dominant axisymmetric field, it is allowed
to neglect the higher order terms with respect to ¢, in Eq. (4.2).

The poloidal plasma viscosity can be calculated from the definition [105)
(B, V- = (/ff‘nm,i[(-p? — (3v2/2)f B, - VB/B)

which yields

(BP'V'H)

I

Nmavp B [Luntam(mV - V0 —nV - V()
mn (I;)

—(mq - V0 —nq-V()],
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where N and my are plasma density and mass, respectively, I,.,, and L,,, in

2
+Lmn‘rmn

lq. (4.3) are given by

/ ] foo ) 1 s
i e /. ;.2 % - ( X )

(4.4)
where & = v?/v}, y = v /v, vk = Bvp +vp, and vp and vg are defined in Ref.
[106]. Here the upper limit of the energy integral in Eq. (4.4) is extended to
infinity by assuming bi-Maxwellian distribution function. The viscosity given
by Eq. (4.3) is for the thermal ion component and the hot ions are assumed to
undergo the orbit loss process discussed in Ref. [24]. It can be assumed that
ion distribution is a Maxwellian. In this (aso the upper limit of the integral

1/2 _
/ 12 where ¢, = ¢;p denotes the

in Eq. (4.4) should be v; (v Rq/vr m(, %)
dominant helical magnetic component. It is also assumed that the largest
value of F, occurs at a distance about one thermal ion orbit size away from
the plasma boundary. In the large aspect ratio toroidal coordinates (r,0, (),

the poloidal plasma viscosity in Eq. (4.3) is shown as [107]

B, -V -0
L Q = —-\_/;erm‘m(m —nq)

(i m
X { !mn [_“ T (ﬂlp . ‘fp.f’):l ' [—‘mn ‘;J f}
v m —nqg m—ngq

2 Vg 1."” ) A< )
/ 2)"43 o 2" o .
i (('*"r/qh’)) ({3’7'{;2} Rl el
(4.5)

where V, p = —c(dP/dr)/(NevyB,), V,ir = —c(dT'/dr)/(evy B,), and M, =

—cl, [/(Byvor). In obtaining Iiq. (4.5), it is employed a conversion formula

Nm gvé.x'

to express Hamada coordinates in terms of standard toroidal coordinates for

91



a tokamak [108]. Thus Eq. (4.5) is approximate. It is also assumed that
Vii/er ~ 0 and 14 2¢* ~ 2¢* with ¢ = ¢(B/B,), where ¢, corresponds 1o ¢ g.
It is noted that M, is positive for £, < 0. The second term in Eq. (4.5) is
related to the charge exchange momentum loss and v,pp = Np(o0)ery Where
N, is the neutral density and (ov).. is the reaction rate of charge exchange
reaction.

The physical model of the L - H transition based on the nonlinear poloidal

viscosity is explained briefly in Appendix C.
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4.3 Magnetic Spectrum and Poloidal Viscosity of Re-

cent Stellarators

4.3.1 CHS

Recently H mode or Il mode like transport barrier has been observed in
the CHS [22] and the W7-AS [102]. First, nonlinear poloidal viscosity is
calculated for the CHS. In the CHS, H mode like transitions occur in NBI
plasmas with the toroidal plasma current. The line averaged electron density
rises while the H, signal drops, and the electron density profile steepens near
the plasma edge.

In the case of the CHS I (standard), a model magnetic field is described
in the (r,0,() coordinates as B/By = 1 — cos@ — ¢, cos(20 — 8C), where
€= €9 =0.136 and ¢, = €35 = 0.21 as listed in Table 4.1 (see CHS I). It is
noted that these values reproduce the magnetic structure near the edge region
with geqpe = 1.25 approximately. For a particular magnetic surface in the
CHS, ¢; and ¢, at geqg. = 1.25 are somewhat different and satellite magnetic
components also appear. However, the satellite magnetic components of the
CHS affect the nonlinear poloidal viscosity very weakly as will be discussed
later.

The damping of the toroidal rotation by the helical magnetic field com-
ponent ¢, cos(mf — n() is strong because usually ng > m [91]. Thus the
toroidal viscosity of stellarator can compete with the charge exchange mo-
mentum loss mechanism in damping the toroidal rotation [109]. It is assumed
here that the toroidal rotation is damped so that V”/vrr ~ 0. It is shown that
the damping of the poloidal rotation by the charge exchange momentum loss
mechanism is not as large as the damping of the toroidal rotation, where a
factor of ¢/ appears in front of charge exchange poloidal rotation damping
term in Eq. (4.5). However, this term affects the poloidal viscosity signifi-
cantly as will be shown later. With the approximation Vj/vy ~ 0, the right
hand side of Eq. (4.5) becomes an equation of E, for a given set of values of
V,,‘p and Vp"r.

Figure 4.1 shows the normalized poloidal viscosity

s = (BF-V—H)/(Nm,-wf}-x'ﬁ/‘i) (4.6)

versus poloidal Mach number M, in the CHS I for V, p = 0.2, V,r = 0.1

and v,; = uj;.Rq/(’vTc?n) = 12, where v} is v, = 3vp + vg for ions [106]. In
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Ref. [107], V. p = 0.1 and V, 7 = 0.2 are assumed; however, effects of these

choices on 11, is fairly weak. When v, ;;/(vy [/ Rq) is decreased from 1.0 to

0.1, local maximum of 11, appears at M, ~ 7.0 which is somewhat larger

than M, ~ |m —nq|/m for m = 2. n =8 and @4y = 1.25. Figure 1.2 shows
[1,,. versus M, for the less collisional plasma with v,; = 1 in the CHS 1.
Here I1,,, has two clear local maxima for v,;p/(vyr/Rq) = 0.1; M, ~ 1.8 and
M, ~ 6.8.

It is shown that the Mach number corresponding to the local maximum
of 11, decreases, when the upper limit of the integral 1:,:"’2 in o and . Liw
is decreased from the infinity. In Fig. 4.3(a), the second local maximum of
I, moves from M, ~ 6.8 in Fig. 4.2 to M,, ~ 3.6 for v,; = 1.0, H;U? = 1.0
and v, g7/(vy/Rq) = 0.1, although the first local maximum of 11, , almost
disappears. For v.; = 1.0, v;l” = 1.0 and v.5¢/(vr/Rq) = 0 or no charge
exchange momentum loss in Fig. 4.3(b), the first local maximum appears
clearly at M, ~ 0.8. From Fig. 4.1 and Fig. 4.3, the decrease of v, ;s /(v / Rq)
is not effective to obtain the local maximum of I, at M, ~ 1.5 -2, in the
collisional plasma with v, ~ 10 — 12.

Here the effect of aspect ratio on Il,,,, in the CHS is examined by increas-
ing ¢, artificially (see CHS Il in Table 4.1) but there is no significant change of
[1,, between Fig. 4.2(b) and Fig. 4.4. Next, satellite magnetic components
of 6,8 = —0.05 and €55 = 0.05 (see CHS Il in Table 4.1) are included in the
calculation of I, , but again there is no signilicant change of I, between
Fig. 4.2(b) and Fig. 4.5. It is noted that these values of ¢; g and €45 are chosen
just for evaluation and do not correspond to a particular configuration.

According to the L - H transition theory the local maxima of I1,,, have a
possibility to realize the Il mode. From this point of view the first local max-
imum with lowest Mach number M, is most imporiant. In the CHS, when
both v.; and v,.rp/(vy/Rq) become small, v,; £ 1 and v, zp/(vr/Rq) < 0.1,
the first local maximum exists at M, ~ 1.8. However, since the second local
maximum exists at M, ~ 7,11, in the region of M, ~ 2.5 does not decrease
significantly. This result may suggest that the improvement of energy con-
finement of the I mode like discharges in the CHS is not large, which seems
consistent with the experiment [22]. One question related to the experiment
is that the 1 mode like transition occurs only for current carrying plasmas
on the order of (10— 20) kA and it does not oceur for eurrentless plasmas. 1t

is speculated that MHD fluctuations observed in the current carrying CHS
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plasmas produce a heat pulse propagating from the core to the edge region.
lons in the edge region are heated by this heat flow and v,; is decreased from
Vei 2 5 1o v.; ~ 1, which makes it possible to have the local maximum of
I1,. Since MHD fluctuation levels are usually lower in currentless plasmas,

the above scenario is not expected for the currentless operation.

4.3.2 Heliotron E

The Heliotron E (H-E) has a large aspect ratio, ¢, = 0.1 and a large helical
magnetic component with m = 2 and n = 19, ¢, = 2,19 = 0.25 (see H-E in
Table 4.1). Also the edge rotational transform is large, .4, = 0.5.

Figure 4.6 shows Il , versus M,, in the H-E for a collisional plasma with
V. = 12. For collisional plasmas the first local maximum at M, ~ 1.5 — 2
is obtained when the charge exchange momentum loss is extremely small,
vess/(vr/Rq) = 0.01. Figure 4.7 shows II,, , versus M, for a weakly collisional
plasma with v.; = 1.0. In this case the first local maximum of II,,, appears
at M, ~ 1.8 for v.ys/(vr/Rq) = 0.1. Thus the decrease of v.; is the key
problem in order to obtain the L - H transition in the H-E. It is noted that
Il shown in Fig. 4.7(b) resembles to that in Fig. 4.2(b) for the CHS. This
suggests that the L - H transition will be possible also in the H-E, if it is

realized in a currentless CHS plasma.

4.3.3 LHD

The LHD is the next generation device under construction. The inverse
aspect ratio, ¢; = 0.14, is larger than that of H-E. It is expected that higher
temperature plasmas with temperatures of 1-5 keV will be confined stably
[13]. Figure 4.8 shows II,, versus M, for a collisional plasma with v, =
12. When v.zp/(vr/Rq) < 0.1, the first local maximum of Il,, appears
marginally. Figure 4.9 shows II,,, versus M, for a weakly collisional plasma
with v.; = 1.0. In this case the first local maximum of Il,, appears for
vers/(vor/Rq) ~ 0.1. It seems that the L - H transition is realized in the LHD
as in the CHS by comparing Figs. 4.8 and 4.9 with Figs. 4.1 and 4.2.

4.3.4 WT-AS

The WT7-AS was designed to reduce PSC with modular coil system, which is

related to reduction of the neoclassical transport and improvement of equi-



librinm beta limit [100]. However, the W7-AS has many magnetic field com-
ponents such as (m,n) = (0,—5),(1,5),(2.—5),(1,=10). It is noted that the
(m.n) = (0, -5) component does not contribute to the nonlinear poloidal
viscosity in Iq. (4.5). The WT7-AS device has five field period (M = 5) and
Fourier components of the magnetic field spectrum are shown in Table 4.1,
which are estimated from Ref. [14]. Here ¢y _5,€2.5,¢1,-10 are taken into
account instead of ¢y5,¢25,€35.

In the W7-AS, H mode phases can last up to 0.2 s and show almost all
the characteristics known from tokamaks, such as the drop in the H, signal
associated with edge localized modes (ELMs), as well as the development of
an edge transport barrier, an increase of the poloidal impurity flow velocity
and a reduction of the fluctuations in this region.

Figure 1.10 shows II,,,, versus M, for a collisional plasma with »,; = 12.

[-ven when the charge exchange momentum loss is not so large, v,.zs/(vr/ Rq)
0.5, there is no local maximum of Il,,. For v.z;/(vy/Rq) = 0.01, the local
maximum of II,, appears at M, ~ 2.0. In the W7-AS case, only the first
local maximum of Il,, is clearly seen for vz /(vy/Rq) ~ 0.01 (see Fig.
4.10 and Fig. 4.11). Here it is noted that the local maximum value of 11,
appeared for v, ;¢ /(vy/Rq) ~ 0.01 is not large.

From results shown in Figs. 4.10 and 4.11, it is suggested that the decrease
of v,, is as important as the decrease of neutral density, since the local maxi-
mum of I, appears for v,; = 1 and v.zs/(vr/Rq) ~ 0.5. In order to obtain
the L, - H transition in the W7-AS ECRH plasma, a high density plasma with
n 2 n, is required, where n., ~ (4 —5) x 10" ¢m™ at B = 2.5 T. When the
density becomes high in the ECRH plasma, the ion temperature increases
due to Coulomb energy transfer from electrons to ions. This tendency seems
consistent with the above suggestions. Also the rotational transform to ob-
tain the L - H transition is limited to ¢(a) ~ 0.52 in the W7-AS. This may
not be related to the nonlinear poloidal viscosity. Usually separatrix config-
uration is favorable to realize the clear H mode from tokamak experiments.
By considering that the separatrix appears at ¢(a) ~ 0.5 and ¢(a) increases
due to the finite beta effect, the above value of ¢(a) ~ 0.52 may belong to a
possible range to obtain the L - H transition.

It is noted that the above values of 11, , for the W7-AS are smaller than
those for the CHS and the LHD, which makes it easier to generate the poloidal

flow with a fairly small ion orbit loss flux (see Eq. (C.2) in Appendix C). This
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may be a reason that the L - H transition phenomena have been observed in

the currentless plasma of the WT7-AS.

4.3.5 WT7-X

The magnetic configuration for the W7-X device [101] is designed to realize
the quasi-helically symmetric stellarator [15]. It has five field period (M = 5)
and the Fourier component of (m,n) = (1,5) is dominant. Significant fea-
ture of the Fourier spectrum is the bumpy component, (m,n) = (0,5), with
the opposite sign to the main helical component is realized to reduce the
bootstrap current which changes the magnetic configuration substantially in
finite beta plasmas. Therefore the Fourier component of (m,n) = (0,5) is
included as shown in Table 4.1, although it does not affect the nonlinear
poloidal viscosity. The toroidicity corresponding to ¢; 4 is decreased signif-
icantly compared to the geometrical inverse aspect ratio with the careful
design of the modular coil system.

Figure 4.12 shows Il,, versus M, for a collisional plasma with v, =
12. Even for v.zp/(vy/Rq) < 1, the first local maximum of I, appears
marginally at M, ~ 1.8. The decrease of 11, in the region of M, ~ 2.5 is
not large even for v.s7/(vr/Rg) = 0.01. In the case of v.; = 1.0 shown in
IYig. 4.13, the behavior of 11, ,, is not so different from Fig. 4.12. Thus the L -
H transition will be expected in the WT7-X if the nonlinear poloidal viscosity
plays an important role and the neutral density at the plasma edge region is
decreased substantially.

4.3.6 Optimized Helical Axis Configuration

Finally, nonlinear poloidal viscosity is evaluated for the optimized helical axis
configuration described in Chapter 3. It has four field period (M = 4) and
€h = €14y & = €19 and ¢, = ¢y4 are dominant Fourier components of the
magnetic field. This structure is similar to that of the WT7-X, although ¢, is
not reduced from the geometrical inverse aspect ratio. Figure 4.14 shows I1,, ,
versus M, for a collisional plasma with v.; = 12. Even for v, z¢/(ve/Rq) < 1.
the first local maximum of 11, ,, appears very weakly at M, ~ 2.0. In the less
collisional case, v.; = 1.0, as shown in Fig. 4.15, the behavior of I1,, ,, is similar
to that of the WT7-AS case, although the value of 11, is about one order of
magnitude larger. It is noted that the clear first local maximum is not seen
in the W7-X case (Fig. 4.13) for the same values of (v, v, s¢/(vp/Rq)). Thus
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it is considered that the unreduced ¢; o or relatively large fraction of ¢;o/€¢1 4
contributes to make a clear “tokamak like” local maximum at M, ~ 1.

It is expected from above results that the L - H transition is possible in
the optimized helical axis configuration with the similar nonlinear poloidal
viscosity to that i the W7-AS.
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4.4 Summary

The tokamak L - H transition theory has been applied to present and next
generation stellarator devices (CHS, Heliotron E, LHD, W7-AS, W7-X and
the optimized helical axis configuration described in Chapter 3) in a con-
trolled manner by making use of the two or more local maxima in poloidal
viscosity as a function of the poloidal Mach number. Depending on the rela-
tive magnitudes of the magnetic field spectrum, the local maxima in poloidal
viscosity, and thus, the transition can occur either at a critical poloidal Mach
number M, on the order of unity, similar to that of a tokamak, or at M, on the
order of |m—ng|/m, similar to that of a helically symmetric torus. Therefore,
the underlying L - H transition dynamics in stellarators can be investigated
by performing the L - H transition experiments on either a stellarator with an
adjustable magnetic field spectrum such as HHHS or on several stellarators
with different magnetic field spectrum.

In order to observe the clear local maximum of the poloidal viscosity, it is
effective not only to reduce the ion-ion collision frequency but also to reduce
the effect of the charge exchange momentum loss by controlling the edge
neutral density. Therefore, it is considered that the good divertor function
is necessary to realize L - H transition from the latter point.

Some results in this chapter seem consistent with the experimental ob-
servations in stellarator H mode experiments. The possibilities of the L -
H transition in the major next generation stellarator devices, the LHD and
the W7-X, are also shown. It is also expected that the L - H transition is
possible in the optimized helical axis configuration, in which the behavior of
nonlinear poloidal viscosity is similar to that of the W7-AS.

Finally, it should be noted that it is necessary to exceed dominant local
maxima to have a stellarator H mode as good as that of tokamaks [110].
This can be made easier if |m — ng|/m is close to unity, i.e., similar to that

of tokamaks, for example, by decreasing n of the main helical field.
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€10 o.M a9.M €2 M €3\ Gedye
[CHS (M =8)
| 0.136 0.0 0.0 0.21 0.0 1.25
Il 0.17 0.0 0.0 0.21 0.0 1.25
1] 0.136 0.0 -0.05 0.21 0.05 [.25
Heliotron E (M =19) | 0.1 0.0 0.0 0.25 0.0 0.5 =10
LHD (M = 10) 0.14 0.0 0.0 0.24 0.0 1.0
(f-e.—ﬁ) (‘-1.-10) ({2‘-5)

W7-AS (M =5) 0.053 0.029 0.036 0.024 0.025 1.92
W7-X (M =5) 003 0.125 0.08 0.0 0.0 1.15

ptimized helical axis | 0.12  0.15 0.14 0.0 0.0 1.4
onfiguration (M =1)

Fig. 4.1: Normalized poloidal viscosity I1,, versus poloidal Mach number M,
Table.4.1 Model magnetic field spectrum for calculation of in CHS (standard) for (a) (vai, vess/(vr/Rq)) = (12,1.0) and (b) (12, 0.1).

the nonlinear incompressible poloidal viscosity.
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Fig. 4.2: 11, versus M, in CHS (standard) for (a) (vai, v.ps/(vr/Rq)) = (1.0,0.1)
and (b) (1.0, 0.01).
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Il versus M, in CHS 1 for (v.;, vess/(vr/Rq)) = (1.0,0.1).
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Fig. 4.14: 1l,, versus M, in the optimized helical axis configuration for

(@) (VaisVess/(vr/Rq)) = (12,0.1) and (b) (12, 0.01).

Il,,, versus M, in the optimized helical axis configuration for

(@) (Vaisvess/(vr/Rq)) = (1.0,0.1) and (b) (1.0, 0.01).

Fig. 4.15:

5 Concluding Remarks

In this thesis, several new helical axis stellarator conligurations, Helias-Heliac
Hybrid Stellarator (HHHS) and the optimized helical axis configuration, are
presented, which have been obtained by theoretical guidances for compatibil-
ity between the high beta limit and the good trapped particle confinement.

Combinations of | = | helical coil and poloidal and toroidal coils al-
low a freedom for controlling the magnetic field spectrum by adjusting the
coil currents in these coil system. Thus the wide range of magnetic con-
figurations including Helias-like and Heliac-like configuration are possible in
a single device, HHHS. Among these two representative configurations in
HHHS, Heliac-like configuration has a sufficient vacuum magnetic well, con-
tributing to the high limit of beta value, (3),; ~ 7.3%, which is evaluated by
ideal Mercier criterion. However, the neoclassical transport is not optimized
due to the enhancement of the magnetic field ripple by the broad spectrum
of the magnetic field, although the particle diffusivity is about one order of
magnitude smaller than that of Helias-like configuration by controlling the
bumpy component. The bumpy component is large and has the same sign
as the helical one and causes the enhancement of the magnetic field ripple in
Helias-like configuration.

Applying the analytical neoclassical transport analysis with multiple he-
licity in the low collisionality regime to the helical axis configurations has
led to the attention on the bumpy component; the bumpy component with
the opposite sign to the dominant helical one is very effective to reduce the
magnetic field ripple in the region of @ ~ 0, which results in the reduction
of neoclassical ripple transport. This is easily realized by changing the sign
of the pitch modulation of I = 1 helical coil and then the optimized heli-
cal axis configuration is obtained. In this configuration, the plateau level of
neoclassical particle diffusivity almost the same as that of its equivalent toka-
mak is obtained by the DKES code. Moreover, the vacuum magnetic well in
the entire plasma region contributes to () ~ ()., ~ 4.5%. Collisionless
particle orbit confinement is also studied and finite beta and radial electric
field improve the trapped particle confinement due to the diamagnetic effect
and E x B poloidal rotation, respectively. Bootstrap current, which has a
possibility to cause the extensive low order rational surfaces in low shear stel-

larators, is controllable by the bumpy field component and this is desirable
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to investigate the effects of bootstrap current in finite beta plasmas. Above
mentioned capability of this magnetic configuration is similar to the W7-X
from the point of views of beta limit, neoclassical transport and high energy
particle confinement; however, this helical axis stellarator does not use mod-
ular coils as in the W7-X. It should be noted that the ¢, component in the
magnetic field spectrum is not reduced from the geometrical inverse aspect
ratio, which causes the substantial change of rotational transform for finite
beta plasmas.

In addition to the above favorable properties for high temperature plasma
confinement, the large clearance between the helical coil and the outermost
magnetic surface, and the one between the chamber surface and the outer-
most magnetic surface are advantageous for plasma heating and diagnostics
in designing a new experimental device.

One weak point of the above mentioned optimization is that the under-
standing of the anomalous transport governing the plasma confinement in
the realistic situations is not mature. In this case, it is important to develop
ways to suppress the anomalous transport. From the tokamak experiments,
the L - H transition is reliable to improve confinement time with about a
factor of two. Since there is a significant difference in the magnetic configu-
ration between stellarators and tokamaks, H mode experiments in stellarators
are important in clarifying the L - H transition physics. One of the expla-
nations of the physical mechanisms for the L - H transition in tokamaks is
extended and applied to stellarator configurations to clarify the character-
istics of present and next generation stellarator devices (CHS, Heliotron E,
LHD, W7-AS, W7-X and the optimized helical axis configuration considered
in this thesis) from the L - H transition point of view. This theory is based
on the bifurcation of the radial electric field E, through the existence of a
local maximum in the plasma poloidal viscosity as a function of poloidal flow
velocity.

In order to obtain the clear local maximum of the poloidal viscosity,
reduction of the charge exchange momentum loss by suppressing the edge
neutral density is very effective in addition to the reduction of ion-ion collision
frequency.

The local maxima in poloidal viscosity depends on the relative magnitudes
of the magnetic field spectrum, and thus, the transition may occur either at

a critical poloidal Mach number M, on the order of unity corresponding to
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that of a tokamak, or at M, on the order of |m —ngq|/m corresponding to that
of a helically symmetric torus. Here, m (n) is the poloidal (toroidal) mode
number of the main helical field. Therefore, the underlying L - H transition
dynamics in stellarators may be clarified by performing L - H transition ex-
periments on either a stellarator with an adjustable magnetic field spectrum
such as HHHS or on several stellarators with different magnetic field spec-
trum, which will give the further tests of this theory. From the theoretical
results in Chapter 4, the L - I transition is also expectable in the optimized
helical axis configuration discussed in Chapter 3.

The future studies concerning the subjects in this thesis are described
briefly.

In the optimized helical axis configuration described in Chapter 3, the
toroidal component ¢, in the magnetic spectrum is not reduced from the geo-
metrical inverse aspect ratio. The toroidal effect is the origin of the Pfirsch-
Schliiter current which changes the rotational transform profile substantially.
If this change degrades confinement property due to magnetic island gener-
ation, an effort will be necessary to decrease the ¢, component. It is noted
that this ¢, component also causes the 1/v ripple diffusivity a little larger
than that of the W7-X, although it can be reduced to the level of the W7-X
by controlling the bumpy field component. As for the MHD equilibrium, a
free boundary equilibrium calculation is also required to study the effect of
the vertical field control for finite beta plasmas. In this thesis, the structure
of magnetic field lines is studied only for the vacuum configurations. The free
boundary MHD equilibrium will clarify the magnetic structure in the region
outside the outermost magnetic surface also for finite beta plasmas. It is
also necessary to follow particle orbits of higher energy particles to clarify a
particle confinement definitively.

As for the L - H transition theory described in Chapter 4, Vjj/vy ~ 0 is
assumed due to the damping of the toroidal rotation is stellarators. How-
ever, this assumption is not necessary. It is possible to obtain the parallel
flow speed V| in the steady state solution satisfying the poloidal and toroidal
momentum equations simultaneously [111]. Further comparisons with exper-
imental results are necessary to clarify the role of the plasma flow on L - H
transition physics.

If this type of device based on the modulated [ = 1 helical coil system

is built, it will contribute to investigate physics of helical axis stellarators in
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addition to WT7-X, TJ-Il and HSX etc. and also to the stellarator physics.

Considerable subjects expected to become clear are as follows;

— anomalous transport caused by the egde turbulence and its rela-
tion to the magnetic well or hill configuration,

— inter-relation between trapped particle orbit loss and generation
of radial electric field,

~ magnetic field line structure outside the outermost magnetic sur-
face (wide stochastic layer, clear divertor structure) and its influ-
ence on the bulk plasma confinement,

— relation between anomalous transport and the magnetic field spec-

Lrum.

inally, it is added that the above described concept of the optimized
helical axis configuration is one of the candidates for the next experimental

device at the Institute of Advanced Energy (IAE), Kyoto University.
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A DKES code
Code for Neoclassical Transport Coeflicients

The neoclassical transport coefficients for particle diffusion, energy diffu-
sion, bootstrap current and Ware pinch can be computed by the DKES code
[47]. In this Appendix, some remarks on the numerical schemes used in the

DKES code and its applications are explained briefly.
A.1 Basic Equations

I'or a quasistatic magnetic configuration of interest in transport applica-
tions (0B /0l ~ 0 on the collision time scale), the evolution of the gyrophase
angle ¢ independent part of the distribution function f(@&,v,1) is governed

by the following conservative drift kinetic equation

af f
ol L) sin a da

Here the notations are the same as those in Rel. [47] and (v,a, @) are the

b= IGF < Je
(sinaaf) + Ea('n ol =001 - (AL)

spherical velocity space coordinates, where v = vcosa and a is the pitch
angle, and are convenient for numerical computations.

For transport computations, expanding I£q. (A.1) about a local Maxwellian
fu and using the expansion of B on the magnetic coordinates yield the fol-
lowing steady state linear equation for fy (the perturbed distribution that

results from small local departures from thermodynamic equilibrium)

8 . 8f .
oL Va5 + it — C(f) =D, (A2)

with the same notations as in Ref. [47]. This conservative form is useful in
establishing variational properties of the drift kinetic equation as described

in the following.
A.2 Variational Principle

A variational principle for the thermodynamic fluxes is derived from the
linearized equation (A.2), with ©;, = 0 which corresponds to the neglect
of radial electric field. Since the DKES can treat the transition particle
dynamics, a variational principle is required that is valid for all collisionalities.

It is convenient to recast Eq. (A.2) as follows
q .

Via)=Clg) = D, (A.3)
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where g1 = fi/fm, Vigy) = fmVig) and Clg1) = C(fmgr). The inner

product is defined as

{f,h} =2n / Al cos 0)‘/ (fhyo2dv (A4)

where the angle brackets indicate the surface-average. Noting the conserva-

tive nature of Eq. (A.2), it follows from integration by parts that

V' : antisymmetric operator ({f, f-"(h)} = —{h, V{f)}) .
(' : symmetric operator ({f, C(h)} = {h,C())}) -

Thus the total operator in Eq. (A.2) has no symmetry structure with respect
to the inner product. To obtain a variational principle for such an equation,

it is necessary to introduce the adjoint equation
— V() —=C(hy)=D". (A.5)

When D" is chosen to satisfy D*(Ey,a) = D(—Ey, ™ — a) = D(E),a), the
adjoint equation has reversed orbits, where Ej is the surface-averaged electric
field strength in the B direction.

To obtain equations with definite symmetry properties, the sum and dif-

ference distributions, I+, are introduced
i‘;‘i = ((j] i}h)/‘z. (AG)
Adding and subtracting Eqs. (A.3) and (A.5) with D* = D yield

V(F-)=C(Ft) = D,
VIFH) —=CWF-) = 0.

)Q>

(A.7)

~

After some calculations with these equations, the entropy production rate S

is obtained as follows:;
S=2Ft V(F )} = {FH,C(FY)} + {F~,C(F~)} —2{F*,D}. (AS)

Using the symmetry properties of V and C, it follows that S is a variational
quantity with respect to F'* and attains its stationary value, S. = —{g1, D},
when F'* satisfy Eq. (A.7). This S. can also be represented as

3
=Dt (A9)
i=1
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where [, are the thermodynamic fluxes conjugate to the forces A,

3
!] == (F X Vp} = = Z l;[,,A“ ’
n=1
3
]‘2 = (Qqu/?l) St Z L'Z?LAH 3 (A]U]

n=1

o
g Z L.’Jﬂ An *
n=1
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n(w- B)

Here, p is the label of the magnetic surface, I' = f’vg;_fld:iv is the particle

flux, € = 7'/1’;)!\'_[1({31} 1s the heat flux and nu - B = B/-r.r||fld3v. The
coefficient L;; defined in Eq. (A.10) are elements of the Onsagar transport

matrix.

The relations 5—6%- = 0 together with Eq. (A.9) make up a variational
principle for computing values of the transport matrix elements for all colli-
sion {requency regimes.

Since (' is a negative operator, its inverse is well defined except for func-
tions comprising the collisional invariants which are in the null space of g It
is computationary efficient to consider the augmented negative definite oper-
ator, (. = C' + ¢, where ¢ — 0~ has negative eigenvalues in the null space of
C'. The operator C, is rigorously invertible and the transport coefficients can
be computed as the limit of a sequence corresponding to decreasing values
of e. Thus,

F- = C'V(FH) (A.11)
from the second equation of (A.7) and substituting this into the expansion

for S yields the following quadratic form for F'*:
S(F*) = lilgl_[{Fﬂ?é;’V(F”r)} — Pt C(FH)} = 2{Ft,D}]. (A.12)

Since the operator M = l:’(?fl V—Cis positive definite, the extremal value
of S obtained by varying F'* corresponds to a minimum. Equation (A.12) is

therefore an energy principle for determining the thermodynamic fluxes.
A.3 Fourier-Legendre Expansion of the Distribution Function

The variational distribution F'* defined in Eq. (A.6) can be expanded in

a Fourier-Legendre series as follows [47]

FE =3 A pilcosa) Yo 3 Fity(v)er(0,0)} . (A.13)
i=1 !

m,ny=c,s
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Here 0 < | < L (L is the maximum order in a truncated Legendre series
approximation for }'*) and {p/(x)} are the orthonomalized Legendre polyno-

mials. The ¢ (0. () are orthonomalized trigonometric functions (v = ¢ : cos,

mn
v = s :sin). The resulting variational equations for the expansion coefficients
in Eq. (A.13) are listed in Eqs. (26), (27) of Rel. [47]. In practice, they are

solved for several different values of the radial electric field strength and of

Y
tmnl*

the collisionality to obtain F Then the transport coefficient L;; can be

expressed as

A N TR Bl -
Bines H\/?/u K¥e X g, Dyi(K)dK (A.14)
e IS . B
where ¢y = g3 = |, g2 = K (K = — : normalized kinetic energy) and

D, (K) is the velocity dependent diffusion coefficient (cf., Eq. (30b) of Ref.
[47]).

A.4 Numerical Scheme

An appropriate analysis of the eigenvalue structure of Eq. (A.7) can be
made by considering scalar models for the operators V(F*) ~ 4w, F** and
(A.'(Fi) ~ —v, ;e FE I dF* [dl s retained in Eq. (A.7), the resulting temporal
eigenvalues are —v, s + wwy, = —v,50(1 £ i1/v.). Thus in the low collision
frequency regimes of interest (1. < 1), the explicit numerical integration of
the underdamped system in Eq. (A.7) converges only very slowly toward a
steady state solution.

The convergence rate of the explicit temporal integration scheme can be
substantially improved by using the energy principle for F%, Eq. (A.12), as
the basis for a conjugate minimization method. This method, which general-
izes the steepest descent technique, finds the quadratic minimum of S along
search directions which are given as appropriate combinations of the local
gradients g(F'*) = MF* - D.

The conjugate gradient scheme is much more efficient at all collision fre-
quencies than explicit temporal integration. One reason for this improved
efficiency is that the eigenvalue spectrum exist in the complex plane.

The main attribute of the conjugate gradient method is the relatively

small storage requirement compared with the direct matrix inversion tech-

niques. However, the tridiagonal structure of the variational equations (A}, , =

0, cf., Eq. (26) of Ref. [47]) with respect to the Legendre index [ may be ex-
ploited to efficiently invert these equations with minimal storage. A block-
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tridiagonal solver seems to be considerably faster in the low collision fre-
quency regimes than the unpreconditioned conjugate gradient method with

a computation time that is nearly independent of v, /w;.
A.5 Application of the DKES code

The DKES code has been applied to study neoclassical transport proper-
ties, particle diffusion and bootstrap coefficients, of helical axis configurations
in this thesis. Since the DKES code is based on the Boozer coordinates, it
is necessary to have the magnetic field quantities such as the poloidal and
toroidal flux profiles and the Fourier spectrum of the field strength in the
Boozer coordinates for the input data. These quantities can be obtained by
transforming the MHD equilibrium calculated in the VMEC coordinates to
the Boozer coordinates.

Figures A.l show the results of the convergence study of diffusion coel-
ficient with respect to (a) Fourier mode number with 100 Legendre poly-
nomials and (b) Legendre polynomials with 465 Fourier modes for the case
of v, ~ 1.5 x 107* without radial eleciric field. It is clearly seen from Fig.
A.l(a) that more than 300 Fourier modes are necessary to obtain sufficient
convergence and from Fig. A.1(b) that the number of Legendre polynomials
has little effect on the convergence if the sufficient number of Fourier modes
are used. Therefore, 100 Legendre polynomials and 465 Fourier modes for
distribution functions have been used to study neoclassical transport prop-
erties of helical axis configurations in this thesis. The transport coefficients
are obtained with sufficient accuracy for the parameter regime of v, > 107%
however, it has been difficult to obtain good convergence in the regime of
. < 1072, In those cases, the upper and lower values from variational prin-
ciples are averaged to have the approximate transport coefficients. In Ref.
[112], the same behavior has appeared and the diffusion coefficients are ex-
trapolated by assuming a 1/v or v variation expected by the neoclassical
transport theory.

When an equivalent tokamak is considered, Fourier components of the
magnetic field strength for a helical axis stellarator is manipulated in the
code so that the toroidal component in the magnetic spectrum becomes the
same as the geometrical inverse aspect ratio of the specified magnetic surface
with keeping the rotational transform and field strength averaged along the
magnetic axis. As for the “By; = 07 case in Figs. 3.19 and 3.21, only By
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component is set 1o zero in the code with keeping all other input data. It is

noted that this elimination of the bumpy field component does not change

g
(=
1

|

the average magnetic field strength on the magnetic axis. Thus, the DKES &
code is useful to study the effect of each component of the magnetic field a 8 8
spectrum on the neoclassical transport separately.

Recently, the DKES code has been applied to study the neoclassical trans- O

port in the low aspect ratio tokamak [113] in which the magnetic field strength

-y
o
T

I

can not be represented simply by B = By(l — ¢ cos0) since ¢, ~ 1. There-
fore, I'ourier components corresponding to higher poloidal mode numbers are
included. It is noted that effects of the magnetic field ripple due to the finite

number of toroidal coils on the neoclassical transport properties in conven- .:upper limit
O:lower limit

] | ] |

0.0 200 400

Number of Fourier modes
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tional tokamaks can also be investigated by the DKES code.

g
o
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Fig. A.1: Convergence study of diffusion coefficient for optimized helical
axis configuration with respect to (a) Fourier modes and

(b) Legendre polynomials in the DKES code.
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B VMEC code
3D MHD Equilibrium Code -

The VMEC [59] is the most popular code to obtain 3D MHD equilibria
for stellarators. In this Appendix, the numerical scheme used in the VMEC
is explained briefly and several difficult problems in applying this code to

equilibria of helical axis stellarator configurations are discussed.
B.1 Numerical scheme in VMEC

The VMEC is developed to calculate the 3D MHD equilibria of stellara-
tors using the inverse spectral method.

The total energy W, in the plasma region V,

B? P
g = — 4+ —dV, B.1
W ./1',,(2 +‘}’—‘1)f S

is minimized based on the variational principle for fixed boundary equilib-
ria. In the VMEC, it is extended for free boundary equilibria. However,
only the fixed boundary case is explained here for simplicity. Here P is the
scalar plasma pressure and the magnetic field B is described by Clebsch

representation as
B = Vs x V(¥'(5)0 — xX'(8)¢ + A), (B.2)

where s € [0,1] is the label of the magnetic surface, ¢/'(s) and \(s) are the
derivatives of the toroidal and poloidal flux function, respectively, and 0 (¢)
is the toroidal (poloidal) angle in the magnetic coordinates, respectively. It
is noted that A(s.0,¢) is a stream function for determining the optimized
poloidal angle as described later.

In Eq. (B.1), the value of B is represented by the contravariant compo-
nents of B on the magnetic coordinates (s,#,¢) and W, is varied with respect
{o these variables. If ( is set to be equal to the geometrical toroidal angle
é in the cylindrical coordinates (R, Z, ¢) for example, it is not necessary to
vary W, with respect to ¢. Here R (Z) is the radial (vertical) variable. Then,

from Eq. (B.1), the first variational form of W,

§W, = = L F - szdsd0d¢ (B.3)
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is obtained. It should be noted that @ = (R, Z,\) not (R, Z,¢). From Eq.
(B.3), it is obvious that the MHD equilibrium which satisfies 8W, = 0 is
given by F' = o. It can be shown that the condition F' = o is equivalent to
the condition that the MHD residual force F = —J x B + VP is exactly
zero, where J is the current given by J = V x B. Therefore, in the VME(C,
the following numerical scheme is developed 1o obtain the solution @ in the
region of V), corresponding to the equilibrium configuration which satisfies
oW, = 0 instead of solving F=o directly.
In the VMEC, (R, Z,A) are Fourier decomposed on (0, () as follows:

R(5,0,C) = 3 Ruuls)cos(md — n(),

T

Z(3,0,8) = Z Zn(8)sin(ml — n() . (B.A)
A(s,0,0) = Z Amn(8) cos(ml — n() .

where (R (8), Zmn(3)y Amn(s)] are considered as the “*moments” of (R, Z,\)
that are determined on the discretized radial meshes. Using these Fourier

representations, Eq. (B.3) can be written as

dW,
dt

dx
= — F; - —dsd0d( B
Z_Al’l nen ot ¢ ‘idﬂﬁ'ﬁ ’ (B l)

mn

where 1 is an artificial time and F';  is the complex conjugate of F,,,. In 3D
configurations, a large number of moment amplitudes are usually required
to describe an equilibrium with sufficient accuracy. An efficient iteration
method is developed by following the path along which dW, /dt decreases
with a maximum rate (the steepest descent method) [114]. The descent path

equation for Eq. (B.5) is

ATy -
5 = Fra (B.6)
and the maximum decreasing rate of W, along this path is given by
dW, 2 .
= Z /vp |F P d sd0dC . (B.7)

From Eq. (B.7), it is clear that the total energy W, decreases monotonously
to the minimum value according to the solution z,,, of Eq.(B.6). Since
the first order differential equation (B.6) is not easy to solve with sufficient

numerical stability, the second order equation

azzm n 1 dz mn

e = L'mn B.8
ot? +'r ot B ge)
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is solved in the code, which is called the second order Richardson scheme.
The parameter 7 > 0 has little effect on the stability of the numerical scheme
and can therefore be chosen to maximize the decay rate of the least-damped
mode of Eq. (B.8), thereby minimizing the number of iterations required to
reach the steady state. The optimum value for 7, leading to the critical
damping in Eq. (B.8), is [115]

L _%( by A : IF,,m|2d.sdﬂd() _ (B.9)

Top X
The distinguished feature of the VMEC among several 3D MHD equilibrium
codes is the optimization of the poloidal angle representation. In general,
the spectral width with respect to the poloidal angle becomes wide when
the beta value is increased, which may degrade the numerical accuracy and
convergence. To resolve this problem, an optimization procedure is developed
for accelerating the convergence of the Fourier series for R and Z in Eq. (B.4)

[114]. Let Sy(m) =m? Y (R2,,+Z%,) be the power spectrum of the magnetic

n
surface, where p > 0. Then define a ¢ moment of S,(m) as follows:

Z m?S,(m)

M(p,¢)) =22 —— . B.10
(M(p.q)) S 5,(m) (B.10)

m>1
For ¢ > 0, (M) is a qualitative measurement of the spectral width with a
smaller (M) corresponding, in general, to a more condensed power spectrum.

The minimization of (M) will determine a family of constraints between
R,.. and Z,,, (depending on p and ¢) leading to the condensed Fourier spec-
trum for R and Z.

In MHD equilibrium theory, the closed contours H(R,Z,¢) = Hy repre-
sent the level surfaces of the magnetic flux function or the magnetic surfaces.
Therefore, the variations of R, and Z,,, in Eq. (B.10) are coupled so that
OH = HréR + Hz6Z = 0. Since dH/d0 = HrRy + HzZy = 0 on the mag-
netic surface, these relations imply 6 = Rypéu and 87 = Zybu, where u is

an unconstrained variation. Thus from Eq. (B.4),

SRpn = fcos(ma- nC)Rybud0ds .

(B.11)
D = fsin(mf) —n()Zgoudfdd .
Then, the constrained variation of (M) in Eq. (B.10) satisfies
§(M) - 3 S,(m) =2 f 100, $)6ud0dc . (B.12)

m>1
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where

I(a‘! 9‘1’] = ‘\’(03 @)]{U+ }(03 Q)Zg._
X(0,¢) = Z f(m)R,,, cos(mb —n(),

m2>1,n . (Bl‘”
Y(0.9) = Z f(m)Z,,,, sin(md —n(),

m>1n

and f(m) = m?(m? — M). The minimum value of (M) consistent with a
fixed curve geometry is therefore determined by the constraint 1(0,¢) = 0.
Since (M) > 1 is positive definite and Eq. (B.12) results from the vari-
ation of (M), it is possible to use a descent path algorithm to solve the
equation I = 0. Indeed, if du ~ —1I is used to iterate R,,, and Z,, ac-
cording to Eq. (B.11), then §(M) ~ — / I*d0d( will decrease monotonously
toward the desired solution I = 0. Let the descent path equations can be

written as »
d'rl'mn

ot

where {(F7"),.,} denote Fourier components of the artificial force to mini-

=(F"")mn (=R,2Z), (B.14)

mize poloidal Fourier modes.

The exponents p and ¢ appearing in Eq. (B.10) should be as large as pos-
sible to suppress any spurious high-m spectral components of R and Z. If,
however, p and ¢ are too large, the computational effort becomes overwhelm-
ing. Since the eigenvalues introduced into the force equations by [ scale
approximately as MP*9_it is advisable to fix p + ¢ = Q at some reasonable
value. It has been found that the choice ¢ = 1 and p = Q — | always leads
to the most rapid decay of the power spectrum with respect to the poloidal
mode number.

The VMEC finally gives the equilibrium Fourier moments z,,,, =
(Rinns Zons Amn) corresponding to

Finn = (Fi+F)a=0 (i=R,2),

- B.15
F\mu — 01 ( ))

with the optimized poloidal angle.

B.2 Application of the VMEC to Helical Axis Configurations

The fixed boundary version of the VMEC is employed to study finite beta
currentless equilibria of helical axis stellarator configurations in this thesis.
But there are some problems in connection with the complicated geometry

of these configurations.
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The first problem is a time consuming computation, lFor magnetic sur-
faces of conventional stellarator about 50 Fourier modes are sufficient to
describe their shapes precisely. However, in the helical axis configurations,
shapes of the magnetic surfaces changes significantly in both the poloidal
and toroidal directions. Therefore, much larger number of Fourier modes,
for example, about 300 modes are necessary, which means a time consuming
computation.

The second is related to the input data. It is standard to input only
the set of Fourier modes of the outermost magnetic surface to the VMEC to
construct the initial guess configuration, from which the iteration is started.
However, in applying the VMEC to helical axis configurations, sometimes
there appear the negative sign of the Jacobian. This is probably due to the
intersection or overlapping of the magnetic surfaces obtained by the inter-
polation based on neighboring radial grids. In order to avoid this difficulty,
a better initial guess is needed. Therefore, sets of Fourier modes describing
the several vacuum magnetic surfaces are also prepared to improve the in-
terpolation. It is noted that these magnetic surfaces do not intersect each
other.

At first, these data are interpolated to obtain the Fourier data of the
surfaces corresponding to the VMEC radial grids with the constant interval
of the toroidal flux function. But sometimes there still appears intersection
of magnetic surfaces especially for the bean shaped surfaces. In this case, the
other method is applied. By interpolating the toroidal flux function obtained
from the line tracing code first, the magnetic surfaces corresponding to the
VMEC radial grids are selected. It is noted again that these magnetic surfaces
do not intersect each other. Then they are Fourier decomposed and the initial
data of Fourier modes is obtained. The first calculation is done with a coarse
grid points (for example, grid number NS = 7) to obtain more accurate
initial data set. Finally, with this initial configuration, the calculation is
started again with a finer radial grid points such as NS = 41.

The third is about the numerical convergence. As explained in the pre-

vious section, the equilibrium solution is obtained at | Frn[?dV = 0 or
v,

b
dW,/dt = 0 by solving the descent path equation in the VMEC. For planar

axis stellarator configurations, it has been possible to reach f | F o |2 dV
‘.’

~ 1072 easily as the equilibrium state. However, in the case of helical axis
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configurations such as discussed in this thesis, /t |F,. 2dV typically be-
haves as shown in Fig. B.1. But before the onget, of oscillatory behavior,
W, decreases monotonously along the descent path equations (B.8). The
monotonous fall off of W), may be considered as the approach to the equi-
librium state and the end point of this fall off (% point in Fig. B.1) may
correspond to the equilibrium state. The above mentioned problems have
also occured in the application of the VMEC to the H-1 Heliac in Australian

National University [116].



. i
107'% 500 1000 7500
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Fig. B.1: Typical behavior of ]" lanlzdv in the application of the VMEC

to helical axis configurations.

C A Model of the L-H Transition

The poloidal momentum balance equation is

d

] . -
(NMi(By,-u)) = ~(J x B-By) — (B, - V- I) — ~L'osiy x B+ By, (C.1)

£
¥ C
where u is the flow velocity, I',4; 1s the viscosity driven particle flux as-
sociated with the ion orbit loss and J is the plasma current which depends
on dF,./0t. Here E, is the radial electric field. It is noted that the elec-
tron contribution to poloidal momentum, poloidal viscosity and orbit loss

are neglected in Eq. (C.1). At steady state,

—EP o BB, = (B, -V - 1), (C.2)
c

A physical interpretation of Eq. (C.2) is that the ion orbit loss of high energy
particles drives a poloidal torque; however, low energy particles contribute
to the poloidal viscosity and resist poloidal rotation. The solution of Eq.
(C.2) describing the equilibrium poloidal flow velocity depends sensitively on
poloidal viscosity. When the poloidal viscosity as a function of poloidal flow
velocity has a local maximum, there are two possible solutions, as shown in
Ref. [94]. One is the lower flow velocity solution and the other has a higher
flow velocity than that corresponding to the local maximum of the poloidal
viscosity. It is considered that the former with M, < 1 is the L mode and
the latter with M, 2 1 is the H mode. An equivalent argument based on a

different interpretation is also derived in Ref. [117].
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