RBAFZWERY KT b %
Al

KURENAI

Kyoto University Research Information Repository

Vectorizing and Parallelizing Compiler Techniques for Block-

Title Structured Languages( Dissertation_[1 [1 )
Author(s) | Uehara, Tetsutaro
Citation Kyoto University (0 O 0O 0)
Issue Date | 1996-03-23
URL http://dx.doi.org/10.11501/3110540
Right
Type Thesis or Dissertation

Textversion

author

Kyoto University




Vectorizing and Parallelizing Compiler Techniques for

Block-Structured Languages

UEHARA Tetsutaro

November 1995



Abstract

With the recent progress in technology of semi-conductor devices and
architectures, the performance of vector and parallel supercomputers
have been remarkably advanced. Today they have become a funda-
mental tool of science which is widely used in various fields of science
and engineering. Supercomputers manufacturers are providing auto-
matic vectorizing and parallelizing compilers (or supercompilers) which
generate suitable object codes from programs written in sequential lan-
guages. Since most of these compilers are for FORTRANT7 which has
been commonly used for numerical applications, supercompilers for lan-
guages other than FORTRAN are indispensable to utilize supercomput-
ers for non-numerical applications. Moreover, various features which
have been considered to be specific to block-structured languages, such
as pointers and recursive calls, are introduced in the new standard spec-
ification of FORTRAN called Fortran90. This thesis discusses various
vectorizing and parallelizing compiler technicues which are effective not
only for block-structured languages but also for Fortran90.

In Chapter 2, the performance of load/store instructions on each
VP/PVP supercomputer is evaluated. In particular, the performance
of vector indirect load /store instructions is precisely discussed since the
performance of these operations are important not only for numerical
applications but for non-numerical applications which treat pointers.
We have developed a benchmarking program to evaluate this perfor-
mance and show the obtained results.

In Chapter 3, a new method to vectorize and parallelize recursive
procedures is proposed. Since recursive procedures are often seen in
programs written in block-structured languages, this control should
be also regarded as the targets for automatic vectorization and par-
allelization. We propose the breadth-first method and show that some
recursive procedures will be greatly accelerated by this method. In
particular, this method is effective for the recursive procedures which
are the implementations of divide-and-conquer algorithms because this
method utilizes the parallelism between recursive invocations of the
procedures. We also discuss about the analysis to determine whether
the target procedure can be vectorized /parallelized by this method or
not. Since there is a difficulty for the determination when the procedure



refers global array variables in general, we propose a method which has
a restriction but still effective in practical programs.

In Chapter 4, the overview of our automatic vectorizing and par-
allelizing compiler V-Pascal version 3 is presented. On the compiler,
various analyzing, vectorizing and parallelizing techniques have been
developed even for Algol-like features, such as alias analysis of point-
ers, vectorization/parallelization of while/repeat-until loops and recur-
sive procedures. These techniques may also be useful for the full-fledged
vectorizing /parallelizing compilers for the langnages Fortran 90 and C.

Contents

Introduction 13
1l BACKRrounaaid o 5 an cns et o e s B e Sk o e 13
1.1.1.  Supercomputers . « o« « o v ip s a oo n e oy 13
1.1.2  Supercompilers for Supercomputers . . . . .. .. 14
1:1.3 ‘The'Goal of FhisRegeatch .« = o s o ol s 16
114 Outhneotthisthess . . . v sienmwe oas v 17
Benchmarking Vector Indirect Access 19
ol Intaduetion. . & oo CBL e = SN T v B Ty T 19
2.2 Factors Dominating the Performance . . . . .. ... .. 20
2.2.1 Behavior of Indirect Vector Operations . . . . . . 20
222 Bank Conflicll . v v = swie 3l 2% 0 5 22
2.2.3 Performance Factors and their Compound Effects 23
2.3 The Benchmarking Program . . . . . . . ¢ s o0 o0 a 24
231 Quf MaitiGoall ¢ 2 & S aia v e a s w s &b 24
2.3:2 Benchinarking Prografml - = o = w0s o« sos 5 & =6 6 25
2:4: Experimental Results . . . - o v o ve mam s o som s 28
24.1 Performance parameters . . . . « ¢« . .5 a0 28
2.4.2 Target Machines and the Results . . . . . .. .. 31
2.5 [Conclusions’ . » MIu % 21 v Glim e 0 s v S A 38
The Breadth-first method 45
9.1 TotrodMetion. « <yt 5 n e s o e b (SRS e e 45
3.2 Prelilimaries . v L o B o i s 46
3.2.1 Classification of Recursive Procedures . . . . . . . 16
3.2.2 Facilities of Vector Supercomputers . . . . . . . . 48
33 The Depth-first Method . - . « « cicae ate e an oo 51



CONTENTS
3.3.1 The Depth-first Vectorization . . . ... .. ... 51
S300 i PraDIGIIE - & w5 et G 88 s R SRR 55
84 Ragio WdRE s = vrwa w2 30 2o B Ten an B aees e v e 57
3.5 Dependence between Environments . . . . . .. ... .. 61
3.6 Breadth-first vectorization . . . . . . . ... .. ... .. 65
3.7 Implementation Details . . . . . . ... .00 000 0n 7
371 Code gaieraAtion s s v on v e w e @ e e 6 70
372 StorapgeiOveriow: « . o oo o o wisia v e g a e s o 80
3.8 Environment Dependence Analysis . . . . ... .. ... 80
3.8.1 Without writing external variables . . . . . ... 80
3.8.2 External simple variables and pointer variables . . 83
38.3° External array variables . . . < s 2 w5 0s e o 85
3.8.4 Additional Remarks . .. .. ... .. 0. 89
3.9 The Breadth-first Parallelization . . . . .. .. ... ... 90
3.10 Performiince Evalabion o - ooel o 6l 5 6 wsoe 866« 92
3.10.1 Opportunities of vectorization and parallelization 92
3.10.2 Execution speed . . . . .o v v voa e m e wa e 92
311 Related WOERSS: = o5 s &5 5 aosl o0 s i ol abad i o 4 o 93
3.12 Experimettal Results . - - o o s din e wins s b 94
313 Conclugion: . - smaiel- o' s00 nb, Tpmei B0 v 98
V-Pascal Ver.3 101
4yl 0 HGTOANCHION. & =1k 08 5 SraFe s b L S o & 5 101
412 TIWERVIEW o 0 o 5 b v alls st o 5 slle st B a8 v 102
4.3 Organization of the Compiler . . .. ... .. ... ... 103
44 Facllitieg of AnaIVSIS: . . vt q mdenh Won 5 csin e e 3 s 106
AAIE ARASUANTIVEIS v v a v s s e ke e X4 106
4.42 Control/Data-flow Analysis . . . ... ... ... 107
4.4.3 Value-Range Estimation of Integer Variables . . . 109
4.4.4 Dependence Analysis of Array Subscripts . . . . . 109
4.5 Facilities of Vectorization/Parallelization . . . . . . . . . 111
4.5.1 Vectorization/Parallelization of Multiply-nested
BOODET 5 T abl s e S e et e G 111
4.5.2 Vectorization of While Loops . . . . . . .. ... 113
4.5.3  Vectorization and Parallelization of Recursive Pro-
CENVTRE SO R T L e s S N 114
4:6. ConcliSIon - « o ¢ 5.0 @0 v b re s S o b 8 g 114

CONTENTS

5 Conclusion
Bibliography
Acknowledgements

List of Publications by the Author

o

115

116

123



CONTENTS

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

3.1

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

3.11

3.12

3.13
3.14

BankIRterbaving. . © o oz v h s v a5 nle wade s v 1A
A sample:of Sy 200 Speestin © 0 o bk 5w v o s owe s
Y-MP Memory Organization[7] . . . ... ... ... ..
Effects of bank conflicts using direct access instructions. .

Effects of bank conflicts using indirect access instructions.

Maximum throughput using direct/indirect access in-
SiRONS.: .~ o , Ml R, e e T

Conversion from an indirectly recursive procedure to di-

rectly recursive procedure. . . . . . .. . .. ...
An indirectly recursive procedure which is impossible to

convert into directly recursive procedure by inline expan-

7o I RO 1 W R o Il SR e ST S
Examples of recursive procedures. . . . . . ... ... ..
A procedure to get N-th factorial. . . . . . ... .. ...
Converted form of the procedure fact. . . . . . . .. ...
Non-recursive form of the procedure fact. . . . . . . . ..
Vectorized form of the procedure fact. . . . . . . . .. ..
Normalized type-1 procedure. . . . .. ... 0w
Normalization of type-1 procedures. . . . . . . .. .. ..
After conversion from a type-1 recursive procedure to a

non-recursive procedure. . . . . . . . v ov 4w ow s w e s
The algorithm to convert a type-1 procedure to a non-

vecursive procedure (conti) o . v : iiow v B e e s
The algorithm to convert a type-1 procedure to a non-

recursive procedure (cont’d) . . . ... ... .......
A normalized type-2 procedure without loops. . . . . . .
A target procedure for the breadth-first vectorization. . .

7

23
30
35
42
43

44

52
52
53
54
56
56

59
60
60



3.15
3.16
3:17

3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29

3.30
3.31
3.32
3.33
3.34
3.35
3.36
4.1

4.2

1.3
14

LIST OF FIGURES

A sample of the environment tree. . . . . . .. . ... .. 62
Dependence between environments . . . . . .. ... .. 64
Direct and indirect dependence between environments

CHVIDIINGNGG b0 D B e MR el SN L O S 65
The behavior of a type-2 procedure vectorized by the

breadth-first vectorization method. . . . . . .. ... .. 67
Breadth-first vector execution. . . . . . . .. o4 68
After the breadth-first vectorization. . . . . ... .. .. 69
Vector expand /compress instructions. . . . . . . .. . .. 71
A procedure to get the sum of a binary-tree data. . . . . 71
Vectorized sample procedure of type-2 procedure. (cont.) 73

Vectorized sample procedure of type-2 procedure. (cont’d) 74

The algorithm to convert a type-2 procedure to apply
the breadth-first vectorization. (cont.) . . . .. . .. .. 75
The algorithm to convert a type-2 procedure to apply
the breadth-first vectorization. (cont’d) . . . . . . . . .. 76
Example of the breadth-first vectorization of a normal-
ized type-3 procedure. (cont.) . . . ... ... ...... 77
Example of the breadth-first vectorization of a normal-
ized type-3 procedure. (cont’d) . . ... ......... 78
A normalized type-3 procedure for the breadth-first vec-
ROTAON. o 8 e Db e b A A e A e 79
A measure for storage overflow. . . . .. ... ... L. 81
Shape of an environment tree when executed with a mea-
sane toretorage OVBIAOW:. « « . > 2 F viv o namm e ¥ 3 82
Recursive procedures without writing external variables. 84
Example for divide-and-conquer detection. (cont.) . . . . 87
Example for divide-and-conquer detection. (cont’d) . . . 88
A technique to execute vector load expanding and vector
store compression in parallel. . . . . .. ... ... .... 91
N-queen for the breadth-first vectorization . . . . . . . . 91
The organization of V-Pascal Version 3 . . . . . ... .. 104
An example of alias pairs caused by call-by-reference pa-
PReiofss... v o s e, A e b S s, - 107
An example of alias pairs caused by pointer references . . 107

An example of the detection of aliases of pointer variables108

LIST OF FIGURES

1.5
4.6
4.7

Anexampleof D-Matrix .. . . . .. ... .. ¢4 o0 ..
An example of solution space . . . .. .. ... . ...
Reduction of a multiply-nested loop into a single loop .

. 113



10

LIST OF FIGURES

List of Tables

5L
1.2

2.1
2.2

3.1
3.2
3.3
3.4

Today’s VP/PVP supercomputers . . . . . « « .« o 4. .
Today’s MPP supercomputers . . . . .. ... ..., ..

The performance and hardware facilities of each machine
Experimental results on each machine . . . . . . . .. ..

Examples of the vector-macro instructions. . . . . . . . .
Benchmarking results of VITRD instruction on S-820/80
Execution time of the procedure SUM. . . . ... .. ..
Execution time of the procedure in Figure 3.23 (Fortran

BADIIREION) L o a5 s ke G o oy W B &
Execution time of the procedure in Figure 3.23 (V-Pascail

MEERAOIURL: 5 6 it n % 4 % B S 1 5 E 5 W s s

11

50
95
95

99



LIST OF TABLES

Chapter 1

Introduction

1.1 Backgrounds

1.1.1 Supercomputers

With the recent progress in technology of semi-conductor devices and
architectures, the peak performance of supercomputers have reached to
tens or several hundreds GFLOPS (Giga Floating-point Operations Per
Second). Their high performance enabled us to perform many billions
of operations which are needed to solve various problems in fields of
science and engineering, such as biology, energy research, high energy
physics, astrophysics, aerospace engineering, seismology, petroleum ex-
ploration, image processing, pattern matching, VLSI design, tomog-
raphy, scientific visualization and so on. Now supercomputers have
become a fundamental tool of science.[54]

Architectures of today's supercomputers can be divided into three
categories : wvector processor (VP), parallel vector processors (PVP)
and massively parallel processors (MPP).

The main feature of VP machines is that they each have vector-
processing units aside of the ordinal scalar processor. These units can
perform vector operations which perform the same operations for each
element of vectors (i.e. 1-dimensional arrays). Since these operations
are performed by pipelined arithmetic units with quite high speed, the
peak performance of a VP machine reaches up to several GFLOPS.
A typical PVP machine is configured as a symmetric multi-processor

13



14 CHAPTER 1. INTRODUCTION
system of several VPs which share the same main memory.! Today’s
high-end PVPs, such as Cray T90 and NEC SX-4, can be configured
with up to 32 processors and their total peak performance is more
than 50 GFLOPS. These machines have been widely used for computa-
tional science and engineering. In other words, these are conventional
supercomputers. Table 1.1 shows a list of today’s conventional super-
computers.

But these VP/PVP machines are generally quite expensive. The
main reasons are that they needs advanced technologies to achieve quite
short clock-cycle of their devices, and that they need contrived mem-
ory units to obtain high load-store bandwidth to supply enough data
to the high-speed arithmetic units. To achieve the comparable peak
performance with reduced costs, MPP is proposed as a loosely-coupled
multi-processor of RISC microprocessors. Recently these processors
have remarkably progressed and achieved the performance of tens or
hundreds MFLOPS (Mega Floating-point Operations Per Second). In
a typical MPP machine, hundreds processors are coupled with a high-
speed inter-connection network, therefore they can achieve the peak
performance of several GFLOPS. These machines are still hard to uti-
lize for general purpose, but considered to be effective for some specific
problems which can be highly parallelized and need less data-transfer
between the parallelized program sections.

1.1.2 Supercompilers for Supercomputers

The high performance of VP /PVP machines derives from their multi-
ple vector pipelines with a very short pipeline period. These pipelines
manage the vector operations which are 10 or 100 times faster than that
by scalar processors. Since vector operations belong to parallel oper-
ations which are not familiar for ordinal users, it is very important to
provide peculiar compilers which generate vector instructions automat-
ically from programs written in conventional sequential programming
languages. Now most of the manufacturers provide automatic vector-
izing compilers for FORTRAN, which is commonly used in scientific

'Some newly announced vector-parallel machines (such as Fujitsu VPP series
and NEC S8X-4 multi-node models) are configured with distributed main memory,
but we don't include them in our definition of PVP.

1.1. BACKGROUNDS

Table 1.1: Today’s VP/PVP supercomputers

Maximum number

Total peak

Vendor Model of processors performance
(GFLOPS)
Cray Research(8| | T90 32 >60
Cray Research[8] | C'90 16 16
Convex [5] C4/XA 4 6.41
Hitachi [25] S-3800 :! 32
Fujitsu VP-2600E 1 5.5
NEC [27] SX-4 32} 64

t With single precision.

{ For single-node (i.e. shared-memory) system.

Table 1.2: Today’s MPP supercomputers

Processor Max. num. Total peak
Vendor Maodel element of nodes performance
(GFLOPS)

Cray Research [8] TiD DEC 21064(150MHz) 2048 300
Thinking Machine [41] | CM-5E SuperSparc(40MHz) 1024 80
Convex [5] SPP-1200/XA HP PA-7200 128 30.7
Intel [17] Paragon 860X P(50MHz) rifa" 0.075xnodes
IBM [16] SP-2 POWER2} n/fa” 0.267 xnodes
NEC Cenju-3 R4400SC 256 12.8
Neube [35] Neubed Original 10240 >1000
Hitachi SR2001 Original 128 23

t The largest one installed at Sandia National Lab.(US) has 1840 nodes.
t PowerPC based nodes are also available.
+ Announced as up to 128, but 512-nodes systems are also available.




16 CHAPTER 1. INTRODUCTION

and technological fields. Today’s vectorizing compilers have high abil-
ity to find out vectorizable loops within programs and we can obtain
quite high ratio of speedup. The techniques for automatic vectoriza-
tion can be easily extended and applied to parallelization of loops and
PVP machines can execute these loops effectively, therefore automatic
vectorizing and parallelizing FORTRAN compiles for PVP machines
are also provided. These compilers are called supercompilers and they
have much contributed to utilize VP/PVP supercomputers in various
fields of science. Thus VP/PVP supercomputers have been successful
for scientific numerical computations.

On the other hand, fully-automatic parallelizing compilers for MPP
machines are still hard to realize. While the techniques to recognize
parallelizable parts of the target program for VP/PVP machines are
also applicable for compilers for MPP. it is hard the compilers to de-
cide the optimal distribution of data among processing nodes to reduce
the amount of data-transfer. Therefore the current compilers provided
by manufacturers are for parallel languages or conventional sequential
languages with extension to be directed the data-distribution by users.

1.1.3 The Goal of This Research

For any type of supercomputer architectures, it is fairly important to
provide supercompilers which assist users to enjoy the high perfor-
mance of supercomputers. Most of current supercompilers provided
by manufactures are for FORTRANT7 which is popular for numeri-
cal computation. However, FORTRANT7 is not effective for general
purposes because it has rather poor control structures and data types.
Therefore, it is indispensable to develop automatic vectorizing compil-
ers for other programming languages to utilize supercomputers more
efficiently. This is the motivation of this research. To extend the hori-
zon of vector supercomputer usage, we were interested in developing
automatic vectorizing/parallelizing compilers for block-structured lan-
guages, i.e. descendants of Algol60, which is equipped with more ver-
satile control/data structures than FORTRANT77.

Toward the goal, we choose Pascal as the target language of our
compiler. Pascal is a typical block-structured language which is widely
spread for general purpose. Pascal has been used not only for educa-

1.1. BACKGROUNDS 17

tional purposes in classrooms but also for real-world problems, for ex-
ample, the early TgXprocessor by D.E. Knuth, the vectorizing Fortran
compiler construction by an American supercomputer manufacturer,
and the implementation of an operating system for some Japanese mini-
computers. Therefore the vectorization and parallelization techniques
obtained through this research must be effective to execute various
programs effectively in vector processors and parallel processors. The
techniques will be also applicable to the other languages including For-
tran90 which is the newest version of FORTRAN and is equipped with
various control/data structures which have been considered to be spe-
cific to block-structured languages.

1.1.4 Outline of this thesis

This thesis discusses a way to construct an automatic vectorizing and
parallelizing compiler for a block-structured language. The following
three topics are included in this thesis.

In Chapter 2, the performance of vector load/store of vector super-
computers is evaluated with our newly developed benchmarking pro-
gram. In particular, vector indirect load/store performance is precisely
examined. One of the reason why we focused on the indirect addressing
is that these instructions must be often used in non-numerical applica-
tions which contain data-structures constructed with pointers. There-
fore these results are indispensable to construct a compiler for a block-
structured language and to obtain optimal performance on VP/PVP
machines in executing non-numerical applications. The other reason is
that the vector-indirect addressing is also important for some numerical
applications. The details will be described in the chapter.

In Chapter 3, we propose a new method to execute recursive pro-
cedures (and functions) on supercomputers. Generally, the targets for
automatic vectorization and parallelization compilers are limited to DO
loops of FORTRANTT. But block-structured languages have more ver-
satile control structures to express iterations, such as while loops and
repeat /until of Pascal. Moreover, recursive procedures can be used
in these languages. Needless to say, these iterative control structures
should be also vectorized/parallelized if possible. But there are not
many researches to discuss this issue. In particular, there are few re-



18 CHAPTER 1. INTRODUCTION

searches to treat recursive procedures. We propose a method to cope
with the difficulty of automatic vectorization and parallelization of re-
cursive procedures. The methods named “breadth-first” method is to
utilize parallelism among two or more recursive calls and to execute
them in parallel. Some procedures are accelerated more than 50 times
by this method.

Chapter 4 describes the organization and the features of our auto-
matic vectorizing/parallelizing Pascal compiler named V-Pascal Ver-
sion 3. V-Pascal Ver.3 is designed as an automatic vectorizing and
parallelizing compiler for PVP machines. The target language is a se-
quential block-structured language Pascal. Many techniques and meth-
ods we have implemented will be described later.

The last chapter, Chapter 5 is the conclusion of this thesis with
some open questions and future works.

Chapter 2

Benchmarking Vector
Indirect Load/Store
Instructions

2.1 Introduction

In some fields of large-scaled numerical computations, the data should
be expressed as huge random sparse matrices. We can enumerate
some important examples such as Finite Element Method(FEM), Lin-
ear Programming(LP), Electric Circuit Simulation, Neural Network
Simulation and so on. In processing these computations on VP/PVP
machines, vector indirect load/store instructions are useful for both
memory-space efficiency and the execution speed. In other words, the
performance of the indirect vector accesses affects the overall perfor-
mance of these computations.

We also believe that indirect vector accesses are effective for ad-
vanced automatic vectorization. For example, in some cases nested
loops can be converted into non-nested loops by using list vectors, and
allow longer vector lengths. Supercomputers with high performance
tend to have large Njq¢[15] values, so this conversion is useful for those
machines that have good performance on vector indirect accesses. We
have already implemented it in the early version of “V-Pascal” and
have shown its usefulness[43].

19



20CHAPTER 2. BENCHMARKING VECTOR INDIRECT ACCESS

Furthermore. to extend the applications of supercomputers beyond
numerical computations, compilers or languages must support the data
represented by pointers e.g, linked lists, trees ete. To vectorize applica-
tions, indirect vector load/store instructions are essential. These types
of automatic vectorization must be supported on V-Pascal version 3
and then indirect vector load/store instructions will become more im-
portant in the field of vectorization.

Therefore, we have been investigating the performance of vector in-
direct access on vector supercomputers but enough data has not been
accumulated to date. Some existing benchmarks showed the perfor-
mance of applications where indirect vector load /store instructions were
used but we wanted to know the “pure” performance of these instruc-
tions, because the precise information about these instructions are very
important in code-generation of compilers. This chapter describes a
newly developed benchmarking program for this purpose and obtained
some interesting results.

2.2 Factors Dominating the Performance
of Indirect Vector Access

This section describes the factors dominating the performance of indi-
rect vector load/store instructions. Generally an indirect vector access
is slower than a direct vector access for the same amount of data. There
are two main reasons for this.

1. Complications in the behavior of load/store pipelines as a result
of indirect accesses.

2. Effect of bank conflicts.

The following sections describes these two factors.

2.2.1 Behavior of Indirect Vector Operations

This section discusses the behavior of indirect vector access and com-
pare it with that of direct vector access.

2.2. FACTORS DOMINATING THE PERFORMANCE 21

Let us start with the direct operations. A sample of a vector direct
load instruction is written in assembly code as follows.

vload BASE, STRIDE, vril

In this statement vri means a vector register and BASE means an
address. STRIDE expresses the distance between each data elements on
the memory. When expressing the i-th element of vr1l as vri1(1), the
semantics of the instruction are presented as follows.

for each 1 € {1.2,....<vector length>},
let vr1(2) to the content of the address
BASE+STRIDE x (1-1) x<s1ze of each element>

Note that the 3rd line shows the effective address for each element.
Turning to indirect vector access a sample of an indirect vector load
instruction is as follows.

viload BASE, vrl, vr2
The semantics of this instruction are as follows.

for each i € {1,2,...,<vector length>},
let vr2(:) to the content of the address
BASE+vri (i) x<size of each element>

As shown above, the semantics are similar. The difference is seen
only in the calculation of effective addresses. In fact, complications in
the behavior of indirect vector access comes from this difference. We
considered the detailed complications as follows.

1. An indirect vector operation must treat two vector registers and
the set-up sequences may be more complicated.

2. Another data path for list vectors is needed between vector regis-
ters and each load/store pipeline, but an implementation without
this path is also possible, at the cost of throughpnt.



22CHAPTER 2. BENCHMARKING VECTOR INDIRECT ACCESS

3. In a direct vector operation, effective addresses of the array ele-
ments are estimated when the vector unit is set up. But in indirect
vector operations, they are known only at run-time. This means
that it is impossible to foresee the occurrences of bank conflicts or
memory-protection exceptions. Moreover, when some elements in
the list vector are of the same value, the stores must be serialized
to guarantee the sequential order of writes'. Therefore compli-
cated pipeline controls are needed lowering the throughput of the
pipeline.

Note that the complications are separated into two types. Some of
them affect the instruction set-up time and others affect the through-
put. In the above list, 1 belongs to the former, 2 belong to the latter
and 3 may belong to the both.

2.2.2 Bank Conflicts

Bank interleaving is one of commonly used techniques to utilize slow
memory chips in high-performance computer systems. As supercom-
puter systems are of quite high-performance, even faster S-RAM chips
are sometimes regarded as slow. Therefore most VP/PVP supercom-
puters have memory units interleaved with many banks. Another com-
mon technique is caching but it will not work well in supercomputers
which tend to have large working sets in memory. Accordingly caching
is rarely used in VP/PVP machines.

A simple model of bank interleaving is shown in Figure 2.1. On a
memory chip, there is a delay between giving an address and accessing
the location. It is called Access Time(and represented as T,). Also
it takes a time (called Recovery Time represented as 7,) from the
finish of one access and before the next one is possible. We call T, + T,
the Continuous Access Time? and represent it as 7,. Interleaving
with N-banks seemingly decreases T./N if an access is for stride-1. But
if two accesses to the same memory occur with an interval shorter than
T,, the latter access will be delayed until 7, passes. This is called a

"The S-820 and S-3800 have another indirect store instruction which does not
guarantee the order. See Section 2.4.2.
2Actually this value differs between read and write accesses.

2.2. FACTORS DOMINATING THE PERFORMANCE 23

' Atth]rm;s
A Bank 0 'N 10 |-
d . -
d Bank 1 IN+11 1 | =+
¥ 1
e Bank 2 :}\'+2: 9 |+
2 i 3 i : ~ | Processor
2 ! ' ' '
1 ] ] I I
] ] i ]

n | N H \
g 1 t

J |Bank N-1 2N-1N-1 | =—

Figure 2.1: Bank Interleaving

Bank Conflict. Obviously, in indirect vector accesses, bank conflicts
occur more frequently than in direct vector accesses and their frequency
dominates the performance of indirect vector accesses.

In the simple model (shown in Figure 2.1), expressing the pipeline
period of the load/store pipeline as T, the following equation charac-
terizes the frequency of the occurrence of bank conflicts.

s =T, x N/T,

s means that this memory unit allows accesses for stride-s without any
bank conflicts. The greater s becomes, the less is the frequency of
conflict.

Actually as most memory architectures are not simple as this. As
described in Section 2.4.2, some machines have much more complicated
memory units, in particular, in multi-processor systems. But s is still
useful as a criterion of performance. N and T, still remain as the
dominating factors of the performance of indirect vector accesses.

2.2.3 Performance Factors and their Compound
Effects

As mentioned in the former sections, the performance of indirect ac-
cesses is affected by the following factors.



24CHAPTER 2. BENCHMARKING VECTOR INDIRECT ACCESS
1. Set-up times for indirect vector load/store instructions.

2. Throughput of each load/store pipeline in indirect vector opera-
tion.

3. The number of load/store pipelines and of processors.
4. The frequency of bank conflicts and their penalties.

These factors should be examined in benchmarking. We also have to
note the compound effects of these factors. In some systems, the penal-
ties of bank conflicts in indirect accesses seem to be worse than that
in direct accesses. It is considered to be caused from the difficulty of
pipeline control under irregular occurrences of bank conflicts.

2.3 The Benchmarking Program

This section describes our new benchmarking program for indirect vec-
tor load/store instructions.

2.3.1 Our Main Goal

Our main goal is to evaluate the performance of vector indirect ad-
dressing on each machine. The most specific feature of our benchmark
is to evaluate both the throughput of indirect addressing and the ef-
fect of bank conflicts. We insist that it is quite important to evaluate
them separately while existing older benchmarks try to evaluate them
at once.

Assume that a machine show enough performance of the through-
put but it is seriously decelerated by bank conflicts. Such machine may
show poor performance in older benchmarks, but this machine is still
available when an application with vector indirect accesses is carefully
programmed to avoid bank conflicts. It is also possible for a compiler
to generate efficient objects for advanced vectorization with indirect
accesses described in Section 2.1 if the compiler has an accurate infor-
mation of the penalties of bank conflicts on the machine.

2.3. THE BENCHMARKING PROGRAM 25

2.3.2 Benchmarking Program

To take an accurate measurement assembly coding is ideal, but it is hard
to program each benchmark in assembler, becanse the architectures of
some machines are proprietary. Therefore our benchmarking program
is written in FORTRANTT and it causes some problems. The main
problem of our program is that it cannot evaluate performance of vector
direct /indirect load instructions exactly. The reason is as follows.

1. We cannot generate vector load instructions without generating
vector store instructions. For example, a FORTRAN statement
A(I)=B(I) includes both of vector load and store instuctions and
we cannot get rid of the store. On the other hand, we can easily
generate a vector store insruction alone by a Fortran statement
A(I)=1.0DO.

2. “<Execution time of A(I) = B(I)> - <execution time of A(I)
= 1.0D0>", does not always mean the execution time of the vec-
tor load instruction because of the chained behaviour of vector
pipeline units in the target machine.

The details of these reasons are described in [48].

Our program is carefully designed to avoid unexpected effects caused
by optimization of compilers. The main technique to avoid them is to
use some variables of which value cannot be assumed by compilers. Our
program is also designed to take execution times of each benchmark-
ing item twice and reports the latter value because instruction/data
cache of scalar units may affect the execution time. The details of our
benchmarking techniques are also described in [48].

The items examined in our benchmarking are as follows. (In the
following, A and B are arrays of REAL*8>. L is an array of INTEGER*4.)

e The execution times of
A(I) = B(I)

with vector lengths 2%, 2% 2% . 2'® are used to estimate the through-
put of load /store pipelines on vector direct load/store operations,

48bytes/element



26CHAPTER 2. BENCHMARKING VECTOR INDIRECT ACCESS

and are also used for comparison with the results of indirect
load/store operations.

e The execution time of

A(CI)
ACT)

I

B(I)
1.0D0

L[]

at vector lengths 2™ are used to estimate the throunghput on direct
ACCESSES.

e The execution time of

A(I) = B(I*STRIDE)
A(I*STRIDE) = 1.0DO

for strides 1,2,3....,512 and vector lengths 2* 2% 2% are used to
estimate the time 7. of the memory unit.

e The execution time of

A(I) = B(L(I))
A(L(I)) = 1.0D0

for each L as
L(I) = ((I*STRIDE).MOD. (2**18))+1

for strides 1,2,3,...,512 and vector lengths 2% 2% 28 28 ape
used to estimate the throughput on vector indirect accesses when
bank conflicts occur periodically.

e The execution time of

A(I) = B(L(I))
A(L(I)) = 1.0D0

with L initialized as shown below. (In these expressions, N means
the vector length.)

2.3. THE BENCHMARKING PROGRAM

L3V
-3

- L1(I)

It
(]

— L2(I) = N-I+1.

{L3(1)} = {random permutation of 1,2,..,.N }.

— L4(I) = <random number from [1, N|>.
—L5(I) = {.
— LS(I) = I.MOD.X, Xe {2,3,4,...,10}

for vector lengths 2*,2° 2% . 2 This includes the influence
of bank conflicts that occur when addressing is either regular or
random.

If a VP has 2 load pipes and 1 store pipe, it becomes easy to evaluate
the throughputs of indirect load and store instructions. The statement
A(I)=B(I) needs only 1 load pipe and 1 store pipe for direct load and
store instructions while the statement A(I)=B(L(I)) needs 2 load pipes
and 1 store pipe, and for both of these statements all of the pipelines are
organized into a chain and can be work simultaneously. Therefore, if
the throughput of the load pipe for both of indirect and direct accesses
are the same and no bank conflict occurs. the execution times of these
statements can be assumed to be almost the same. Similarly, if the
throughputs of indirect and direct store are the same, the execntion
time of the statements A(I)=1.0D0 and A(L(I))=1.0D0 can be almost
the same. If the throughput of load or store pipes for indirect accesses
is much lower than that for direct access, the pipe for the indirect access
becomes the bottleneck of the whole operation and the execution time
shows the throughput for indirect accesses.

Note that A, B and L are allocated continuously in the memory. It
means that A(I), B(I), L(2%I-1) and L(2*I) of a specific value of
I are all on the same bank. This allocation may be also taken into
consideration when we evaluate the result in detail.



98CHAPTER 2. BENCHMARKING VECTOR INDIRECT ACCESS

2.4 Experimental Results

2.4.1 Performance parameters

We show the following performance parameters as a summary from the
results of our benchmarking program.

Firstly, as the parameter of throughput of load/store pipelines, we
show the following values.

e Data transfer rate with the following statements

~ A(I)=B(I)
A(I)=1.0D0

at each vector length of 28, 2'8.
e Data transfer rate with the following statements

~ A(I)=B(L(I))
—~ A(L(I))=1.0D0

for L(I)=I at vector length of 2'%.

Secondly, we show the following values to estimate the averaged
throughput of load /store pipelines under the consideration to the effects
of bank conflicts.

e Averaged data transfer rate with the following statements

A(T)

= B(I*S)
A(I*S) =

1.0D0

at 8 =1,2,3,...,512 and vector length 2%.

e Averaged data transfer rate with the following statements

A(I) = B(L(I))
A(L(I)) = 1.0D0

for strides 1,2,3,...,512 and vector length 2'%.

2.4. EXPERIMENTAL RESULTS 29
Thirdly, to evaluate the worst case of the data transfer rate cansed
by bank conflicts, we show the following values. These values imply the

case where all of the memory accesses are to the same bank.

e Data transfer rates with the following statements

A(T)

= B(I%S)
A(I%S) =

1.0D0

at S8 =512 and vector length 25

e Data transfer rates with the following statements

A(I) = B(L(I))
A(L(I)) = 1.0D0

with L(I)=512%(I-1) and vector length 2'8,

Lastly, we show the following strides to evaluate the performance of
memory systems. The smaller these values are, The more serious are
the influence of bank conflicts.

e The minimum number of stride which causes the performance
which is less than the half performance of the maximum with the
following statements.

A(T)

= B(I*S)
ACExS) =

1.0D0

(We call this number Sy, in this thesis.)

e The minimum number of stride which causes as the same perfor-
mance as that of the worst case with the following statements.

A(T)

= B(I*S)
A(I%S) =

1.0D0

(We call it Syors¢ in this thesis.)



30CHAPTER 2. BENCHMARKING VECTOR INDIRECT ACCESS

Transfer rate

A I |
T_ ] i

1/2—

. &

I
Stride
‘Snalf S

worst

|
|
|
|

Figure 2.2: A sample of Spay and S,ors-

See Figure 2.2 as an example of Sy and Syopsi-

The results are shown in Table 2.2 at the end of this report. To
express the performance, we use a unit MDwords/sec'. This unit is
useful for comparison to MegaFLOPS® but note that it is not always
equal to the transfer rate between memory and the processor.

We also show some additional values which can be got from the
above values labeled (U),(V),(W) and (X) in the Table 2.2. These values
are calculated by the expressions written in the first column of the table.

The value of (U),(V) implies the relative throughput of load/store

*Mega Doublewords per second. Doubleword means the size of REAL*8
®Mega FLoating-OPerations per Second

24. EXPERIMENTAL RESULTS 31

pipelines in indirect accesses compared to that in direct accesses.

(W) and (X) are helpful to evaluate the robustness to bank conflicts
on each machine, but we should note that (W) is measured by the
vector length of 2% which is too short for some machines to evaluate
the throughput. We should also note that (X) is measured by indirect
accesses and it may cause some compounded effects of bank conflicts
and indirect accesses.

The results in Table 2.2 are also shown in Figure 2.4, Figure 2.4 and
Figure 2.6.

2.4.2 Target Machines and the Results

Table 2.1 shows the performance and hardware facilities of each target
machine.

The features and some notices for each machine are described below
with the results.

Hitachi S-820/80

The S-820/80° is an old type machine announced in 1987. Now this
series of machines are obsolete and replaced by the S-3000 series,

One of the specific features of this machine is a support of a special
instruction of indirect vector store, called VIST|[13]. As this instruction
does not preserve the sequential order of the store, the elements of the
list vector must be differ from each other, but its throughput is higher
than that of the normal indirect store instruction called VSTX|[13].
We have added the results using VIST in Table 2.2 in parentheses.
According to the results labeled (F) and (J) in Table 2.2, VIST in-
struction shows about 80% better performance than VSTX instruction
shows. VIST is not only used through user directives but also used by
our V-Pascal compiler to utilize the instruction.

We also have to note that (B) does not show the maximum data
transfer rate in direct accesses, The transfer rate for stride-2 access
shows 563 MDwords/sec and is about 20% better than that for stride-
1. The performance for any other odd number of stride is no better

5The S-820/80 was settled at Computer Centre, The University of Tokyo. This
machine has been replaced by the S-3800/480 in Feb. 1993.



32CHAPTER 2. BENCHMARKING VECTOR INDIRECT ACCESS

than 350 MDwords/sec. It is not obvious why this machine shows
better performance of the direct store only for stride-1 and stride-2. It
may have to do with the complicated bank interleaving in the memory
unit of the S-820.

Since the S-820 was equipped with only two pipes for memory ac-
cess, the statement A(I)=B(L(I)) cannot be processed in a chain of
pipelines. Taking the pipeline organization of the S-820 in considera-
tion, it is assumed that A(I)=B(L(I)) will be executed as follows.

1. The processor loads L and B with chaining.
2. Then it stores A while it loads next L.
3. Lastly it loads B and stores A with chaining,

Note that 2% <wector length of strip mining> elements of data are
processed by these 3 stages which takes the same time with A(I)=B(I)
to transfer 3« <wvector length of strip maning >. Therefore the through-
put of A(I)=B(L(I)) is at most 66% of that of A(I)=B(I) even if the
thronghput of the indirect load is the same as that of the direct load.
According to the value of (U), the performance parameter for indirect
load accesses (E) is 64% of that for direct load access (C). Thus it is
assumed that the throughput of indirect loads on the S-820 is as the
same as that of direct loads. The throughput of indirect stores is not
so good as that of direct loads even if VIST instructions are used, but
the absolute performance is still kept to high.

As the values of direct load (A) and direct store (B) is almost the
half of indirect load (C) and indirect store (D), 2% is not considered to
be enough for the vector length to evaluate the effects of bank conflicts
and the value of (W) is not reliable as the parameter of robustness to the
bank conflicts. Taking (X) as the parameter, the S-820 is consider to be
robust to the bank conflicts in indirect addressing and will show good
performance even for randomized list vectors. The values of (X) for the
SX series seem to be better than that of the S-820, but as described
later, these values are not reliable because the absolute performances
of indirect accesses on the SX-2N and the SX-3R are worse.

24. EXPERIMENTAL RESULTS 33
Fujitsu VP-2600/10

One of the specific features of the VP-26007 is that it is equipped
with 2 load/store pipes[46]. It means that the VP-2600 can execute
A(I)=1.0D0 twice faster than A(I)=B(I) if both of the pipes work in
parallel. But it is inappropriate to evaluate the throughput of indirect
store instruction because these pipes are used separately for load and
store to execute A(L(I))=1.0D0. The compiler did not unroll the loops
in our program becanse we had hided the vector lengths of the loops to
avoid unexpected optimizations. Therefore the values labeled (B),(D)
in Table 2.2 reflect the throughput of one pipeline,

As the value of (U) is a lower one compared with the other machines,
the VP-2600 is considered to be of a rather poor performance of the
indirect load, But contrarily, the indirect store (V) shows remarkable
performance. Note that VP-2600 has no special instructions to keep
the order. The values of the Y-MPs with 1 CPU are better than that
of VP-2600, but the Y-MPs are too slow to compare with. The value of
(V) of the Y-MP with 4 CPUs also seems better, but like VIST of the
S-820 and the S-3800, the sequential order of the stores in elements of
the list vector for an indirect store on Y-MP cannot be preserved. On
the VP-2600, both of the absolute and relative performance of indirect
stores, which preserves the order of stores, are remarkably high.

It is conspicuous that the values of diréct accesses (A), (B) are much
lower than those of indirect accesses (C),(D). Therefore (W) is not con-
sidered to be suitable for the parameter of the performance for the
indirect accesses for the same reason with the S-820. The alternative
value (X) is neither so high nor so low when compared with the other
target machines.

Note that the minimum data transfer rates of the store instructions
are lower than those of the load instructions. It may be caused from
the difference of the continuous access times between read and write to
the memory. It should be also noticed that the absolute performance
of the minimum data transfer rates are lower than those of the most of
the other machines,

"Data Processing Center, Kyoto University.



34CHAPTER 2. BENCHMARKING VECTOR INDIRECT ACCESS

NEC SX-2N

The SX-2N¥ is a dated machine but we show the results from the SX-2N
for comparison with the SX-3R series, Since the vector unit of the SX-2
series is equipped with only one load /store pipe, it does not match the
model to evaluate the benchmarking results as described in Section 2.3.

As shown in Table 2.2, the SX-2N showed quite poor performance
for vector indirect accesses. As our main interest is the improvement
of the performance of the SX-3R, we only summarize the result in
short. The SX-2N shows only quite poor performance for both of the
indirect loads and stores. It is interesting that even in a direct store,
the performance is rapidly degraded by bank conflicts (see (V) in Table
2.2).

Cray Y-MP 8/4128 and Y-MP 2E/264

The memory organization of Cray Y-MP series has complicated struc-
ture (except Cray Y-MP EL) and does not match with our simple model
in Figure 2.1. However, in the case of Y-MPs, the memory organiza-
tion and detailed behaviors of the memory unit are fully described in
manuals [7]. Figure 2.3 shows the block diagram of the memory unit of
our target machines, Y-MP 8/4128” and Y-MP 2E/264'%. The mem-
ory systems of these two machines are organized as the same except
the capacity. The memory is divided into 4 sections, each section con-
sists of 8 sections and each section contains 8 banks. The basis for
memory performance for a CPU is the number of section because each
CPU can access continuously to a section only in every 5 clock peri-
ods. Different CPUs can access to the same section simultaneously but
each bank can be accessed only in every 5 clock periods. Therefore,
the worst performance of memory access is the same as 1/5 of the peak
performance.

On the benchmark with 4 processors, we allowed the program to do
indirect vector store in parallel. This access may break the sequential

8This machine was settled at Computation Center, Osaka University. This ma-
chine has been replaced by the SX-3R/14 in Feb. 1993.

9nstitute of Fluid Science, Tohoku University.

108upercomputer Laboratory, Institute for Chemical Research, Kyoto University.

24.

EXPERIMENTAL RESULTS

Central Memory

CPU O

|

Section 0

8 subsections
64 banks

Py 1

Section 1

8 subsections
64 banks

crPy 2

Section 2

8 subsections
. 64 banks

CPU 3

Section 3

8 subsections
64 banks

Figure 2.3: Y-MP Memory Organization|7|

35



36CHAPTER 2. BENCHMARKING VECTOR INDIRECT ACCESS

order of writes. therefore the result should be treated as the same as that
of VIST on the S-820 and the S-3800. When the order of stores must
be preserved, the performance of the indirect store will be degraded as
the same as that of 1 CPU.

Since the Y-MPs are equipped with 2 load pipes and 1 store pipe on
each CPU, it is easy to evaluate our benchmarking results as described
in Section 2.3. One of the most remarkable results is that the values
of (€),(D),(E) and (F), on Y-MPs with both 1 CPU and 4 CPUs, in-
dicate that the throughput of the load and store pipelines seem to be
always constant on both of the direct and indirect accesses. The values
of (U) also substantiate it. The values of (E) are a little worse than
those of the others. but the performance of A(I)=B(L(I)) relative to
ACT)=B(I) on the Y-MPs are still quite good compared with the other
machines. However, in the case of the results from Y-MP with 1 CPU,
as the absolute performance is much lower than the other machines,
the results are not so surprising. Another remarkable result is that the
obtained results with 4 CPUs show that the performance of the Y-MP
is quite good unless bank conflict occurs. The absolute performance
of (€).(D),(E) and (F) are comparable to that of the S-820. As the
peak performance of the Y-MP 8/4128 is 2 GFlops, the balance of the
performance of memory access and that of the computation is much
better than that of the S-820. This balance of the Y-MPs seems to be
the best among the target machines.

Although the maximum performances of indirect accesses of the Y-
MP are quite good, the value of (W) indicates that the performances of
indirect loads and stores are degraded by bank conflicts rather seriously
compared with the other machines.

Note that the Y-MP 2E/264 and the Y-MP 8/4128 are equipped
with the same memory system except their capacity and their architec-
tures are the same. Therefore the results are almost the same. But the
results show that the newer model 2E has been a little improved in the
performance of direct stores.

S-3800/480

The S-3800 is a successor of the S-820 and has similar features with
the S-820. Each vector processor of the S-3800 is also equipped with 1

2.4. EXPERIMENTAL RESULTS 37

load /store and 1 load pipe. VIST instruction is also supported. There-
fore the tendency of the results is similar to that of the S-820. The
main difference is that the S-3800 is a multi-processor system while the
S-820 is a single-processor system. The S-3800 on which we executed
our benchmarking program is a system with 4 CPUs. but we had no
chance to obtain the results with multi-processors.

We should comment that there was no unusual result of the perfor-
mance as seen in the S-820. The performance for stride-1 is always the
same as the peak performance.

As shown in Table 2.2, the peak transfer rates of memory accesses of
the S-3800 are the most high among the target machines. In comparison
with that of the S-820, they are improved about 2.5 times. VIST of
the S-3800 is 3 times faster than that of the S-820 and the relative
throughput of indirect access (U) is also improved. From the point of
view of the balance between the performance of memory access and
computation, S-3800 with 1 CPU is 2.7 times faster than the S-820,
therefore the balance can be considered to be almost the same as that
of the predecessor. This improvement is significant because the clock
period of the S-3800 is only the half of that of S-820 and there is no
change in the organizations of the load and store pipelines.

Another improvement of the performance is seen in the robustness to
bank conflicts. The value (W) is the best among the target machines'’.
The large number 64 of Sj,; also proves the robustness.

However, the relative throughput of the indirect load is a little de-
celerated for load operations. The reason is that the performance of
direct load (C) is improved remarkably. Another deceleration is seen in
the results of direct access for vector length 2% The value of (A),(B)
is almost as the same as that of the S-820 while the performances for
vector length 2'% is 2 or 3 times faster than that. It means that the
S-3800 has much bigger Nj.y value which also affects to the unusual
value of the robustness to bank conflicts (W).

Also the minimum data transfer rates of the store instructions are
lower than that of the load instructions like VP-2600. It is curious that
the absolute performance of the minimum data transfer rates of store

1 The value of (W) for SX-2N is neglectable because of its poor indirect load and
store performance.



38CHAPTER 2. BENCHMARKING VECTOR INDIRECT ACCESS

operations has gone worse compared with that of the S-820.

SX-3R/14

A fully configured SX-3R system is a multi-processor system with 4
CPUs, but the machine we could use is a SX-3R/14'? which is the
fastest machine among the single processor models.

Unlike the S-3800, the SX-3R series is equipped with fully reorga-
nized memory system compared with the predecessors. A CPU of the
SX-3R has 2 load and 1 store pipes while the SX-2N has only 1 pipe.
This means that it is easy to evaluate the results as described in Section
2.3.

From the results, it is noticed that this machine shows quite good
performance for direct loads and stores even for the short vector length.
On the contrary, throughput for indirect access is still poor. The ab-
solute performance of the indirect access is almost the same as that of
S-820/80, but compared with the performance of the direct access, the
performance of indirect read is 2.9 times lower than that of direct read
and indirect write is 7.8 times lower than direct write. It is obvious
that the throughput of the load and store pipelines of the SX-3R is
seriously degraded in indirect access.

Since this machine shows good performance even for a short length
of vector, the value of (W) is available to evaluate the robustness to
bank conflicts. The value of (W) means that SX-3R can be decelerated
easily by bank conflicts. Comparing the performance parameters of
direct store (B) with (H), we can see that the effects of bank conflicts
on this machine is quite serious when writing. It also indicates that the
minimum data transfer rate of the SX-3R is not only lower than that of
the other machines but also decelerated by indirect accesses as shown
in the values (1),(J).

2.5 Conclusions

We have obtained fundamental data on the performance of indirect
vector accesses. As mentioned in the first section, vector indirect ac-

2ZComputation Center, Osaka University.

2.5. CONCLUSIONS 39

cesses are valuable in the fields of numerical computations, and are also
needed for advanced automatic vectorization. Therefore this data en-
ables us to make good use of supercomputers and make it possible to
extend their applications.

We had no chance to run the benchmarking program on neither
SX-3R with 4 CPUs, Y-MP 8 with 8 CPUs, C90 nor T90. To make our
research more concrete, it is indispensable to get their data and we are
eager for the chance.



40CHAPTER 2. BENCHMARKING VECTOR INDIRECT ACCESS

Table 2.1: The performance and hardware facilities of each machine

(MFlops)

Michine S-820/80 VP-2600/10 SX.2N ! zfpf{:: 53
Number of
Processarn ] 1 | 4
Theoretical
M eiidad 3000+ 5000 1142 B0t

¥ 4 processors

Lond /store

pipes

(ddata para.)
x 1 lead ppe
{d4data para, |

* 1 load/store pipe

x 2

(4data para.}
load fstore pipes

(Sdata para.)
% 1 load pipe
also serves as
(4data para.)
* | store pipe

2 load pipes
| store pipe
% 4 processors

clock period(ns) 4 3.2 [}
Number of
Memory Banks 128 512 512 258
Vector length
per 3 ) 2048 256 G4
' strip mining
Compiler FORTTT/HA (5) ANTTEX/ RT77/S CFT77
Version V24-0F VIiLio Hev.041 4.0.3.6
Miuchtnn S-3800/480 SX-3R/14 Y-MC;’R?; =
Number of .
P rocessors 4 ! 2
Theoretical
Max apeed a 8000 G400 5001
(M Flops) ¥ 4 procensors X 2 procesnors
(4data para.)
(4data para.) :
Lond /store Fidai pe 2 2 hms i 2 lond pipes
pipes st (4data para.) adi i

% | load/store pipe

® A processors

% 1 store pipe

® 2 processors

clock period(ns} .5 6
Number of
Mecitey DAnLE 512 512 256
Vector length
per 512 286 64
strip mining
I Compiler FORTT7/HAP Tux CFT77
Version V26.00 Rev.040 l 5.0.3.0 I

t This value differs from the official performance in U.S, and Europe, but can be
achieved and officially announced in Japan.

2.5. CONCLUSIONS 41
Table 2.2: Experimental results on each machine
Benchmarking Vector | (Label) S-820/80 vI260/10 | SX.2N
items length
Maximum data ACI)=B(1) 25 (A) 352 234 457
transfer rate A(I)=1,0D0 o) (B) A6 312 599
(Dwords/sec.) ACI)=B(I) 915 (€) 697 1024 334
A(I)=1.0D0 218 (D) 978 1139 438
ACT)=B(L(I)) 2'8 (E) 446 443 53.2
A(L(I))=1.0D0 2 (F) 244(4261) 578 61.5
Averaged data A(1)=B(I*s) o (G) 304 191 402
transfer rate A(I*S)=1.0D0 28 (H) 320 233 153
(Dwords/sec.) ACT)=B(L(1)) 218 (n 379 a7l 52.6
A(L(I))=1.0D0 218 (J) 224(4131) 472 61.0
Minimum data A(I)=B(1%512) 25 (K) 29.6 20.6 10.8
transfer rate A(I*512)=1.0D0 28 (L) 30.3 16.6 11.1
(Dwords /sec.) ACI)=B(L(I)) 2t (M) 30.0 21,6 9.76
A(L(1))=1.0D0 834 (N) 31.1(31.11) 17.1 10.0
Shalf A(I)=B(1+5) 2% (0) 16 16 8
(stride) A(1+5)=1.0D0 28 (P) 16 16 8
A(I)=B(L(1)) G (Q) 16 4 128
A(L(I))=1.0D0 28 (R) 32(321) 1 128
Stworat A(I}=B(I#8) 2® {S) 128 206 256
(stride) A(I#S)=1.0D0 PR (T) 128 266 256
th:l::::::t < :‘El, 218 () 0.640 0433 | 0.159
indirect (F) 318 - &
iaadJatote D, 2 (V) 0.249(0.4361) 0.507 0.140
fabustriess 16 : 5 "::H} 2t W) 0.760 0777 | 0526
- y+cd 1K ¥
bank conflicts ELT-L( S 2 (X) 0.874(0.9081) 0.826 0.990
(Label) | y-MP8/4128 | Y-MPB/4128 S-3R00 /480 SX-3R/14 | Y-MP 2E/264
(4CPUs) (1CcPu) (1CPU)
(A) 133 114 351 813 137
(B) 123 107 470 1143 148
(€) 152 583 1941 1259 152
(D) 152 582 1913 1592 152
(E) 121 485 1087 437 139
(F) 144 571 G46(13241) 285 143
(G) 102 114 338 706 104
(H) 116 90.1 536 57T 139
(n 88,7 326 1004 382 92.2
(J) 109 411 583(12411) 265 108
(K) 320 30.1 29.0 238 315
(L) 32,0 30.7 23.9 217 32.7
(M) 29.4 29.6 30.2 17.7 29.2
(N) 31.2 32.9 24,4(24.41) 17.5 313
(0) 16 16 64 8 16
(P) 16 32 16 8 16
(Q) 128 16 32 16 16
(R) 16 16 32(161) 16 16
) 16 32 512 256 32
(T) 32 32 | 512 256 32
) 0.796 0.832 0.560 0-347 0.916
(V) 0.947 0.981 0.338(0.6921) | 0.179 0.941
(W) 0.852 0.923 1.063 0.659 0.853
(X) 0.746 0.698 0.916(0.9311) | 0.896 0.710

t Values in parentheses are measured using VIST instructions




42CHAPTER 2. BENCHMARKING VECTOR INDIRECT ACCESS 2.5. CONCLUSIONS 43

00 Effects of Bank Conflicts (Direct Access : Vector length=512) Effects of Bank Conflicts(Indirect Access : Vector length=262144)
SN 2000
oo = At o) —
1800 Al)=B(1"S) (Ave.) s A /ACE=1000 Mex)
(h=B(I"S) ( 1800 A(L(1))=1.0D0 (M
A(I"S)=1.0D0 (Ave.) wrer ( ())—"-_ (Max.)
A(1)=B(I"512) (Min.) s+ (VIST/Para.Write)
1l A(I"512)=1.0D0 (Min.,) 7
1600 (I512) (Min.) 1600 A()=B(L()) (Ave.) s
A(L(1))=1.0D0 (Ave.) mers
- ] A(L(1))=1.0D0 (AVE) e
L 5 1400 (VIST/Para Write)
b 8
a B A()=B(L(1) (Min.) ssss
gl
;;5 1200 = 1200+ A(L(1))=1.0D0 (Min.) #»=
a 3 A(L(1))=1.0D0 (MiN.) e
= -, (VIST/Para.Write)
@ 10007 © 1000
£ ©
o (8
@ a ]
B, O % 800
o ¢ =
e N &
N -
600 .\ 600~
5 o
| /
400 N 7 400
- N N
¥ N ¥
Y 3 : -
200 g :s % . 200
¥ ' _ v -
Ig ¥ I;“ Is.’f vy 1 :
o Y A l?@w l s, [.im.. % : A | i I i ~- L —
S-820 VP-2600 SX-2N Y/MP-8 Yﬂ\:ll’-llﬁ S-3800 SX-3R Y/MP-2E ) SX-2N Y/MP-8 Y/MP-8 S-3800 Y/MP-2E
(4CPL (4CPU)
Target Machines Target Machines

Figure 2.4: Effects of bank conflicts using direct access instructions. Figure 2.5: Effects of bank conflicts using indirect access instructions.



44CHAPTER 2. BENCHMARKING VECTOR INDIRECT ACCESS

Compareing Direct and Indirect Load/Store Performance (Vector length=262144)

2000
A(1)=B(f) m—
18001 All)=1.0D0
A(l)=B(L(l)) s
A(L{(1))=1,0D0 reres
1600 A(L(1)=1.0D0
(VIST/Para Write)
- 1400~
Q
@
2 :
|4 1200 i
3 I
= I3
o 3
P N
£ goo | 3
& | A
-y N
6001 b Y
}
#
o
400~ g
2001 §
0 ' - ' :

S-820 VP-2600 SX-2N  Y/MP-8 Y/MP-8  S-3800 SX-JR Y/MP-2E

(4CPLI)
Target Machines

(All results are for stride-1)

Figure 2.6: Maximum throughput using direct /indirect access instruc-
tions.

Chapter 3

The Breadth-first

Vectorization and
Parallelization Method

3.1 Introduction

In this chapter, we propose a new method for automatic vectoriza-
tion and parallelization of recursive procedures and functions'. There
are a number of recursive algorithms for searching, sorting, manipula-
tion of structured data such as trees. Writing programs with recursive
procedure is a natural and neat way to implement such algorithms. Ac-
cordingly automatic vectorization and parallelization of recursive pro-
cedures enable us to apply these recursive algorithms easily on super-
computers.

There are some previous studies to optimize recursive procedures.
For example, tail-recursion elimination is a well-known method to con-
vert recursive procedures to equivalent simple loops. There are also
some works to eliminate redundant operations in recursive procedures
written in functional languages[3][51]. These methods aim to reduce
the instructions but these studies are not always applicable for auto-
matic vectorizing/parallelizing compilers. The reason is that the accel-

n this thesis, The term “procedures” include both of procedures and functions,
i.e. procedures which have return value,

45



46 CHAPTER 3. THE BREADTH-FIRST METHOD

eration of supercomputers is obtained mainly from vector or parallel
execution. It follows that the compilers have to stand on a view of
detecting instructions which can be executed in parallel. From this
point of view, we propose a new method named breadth-first method to
vectorize/parallelize recursive procedures. The point is that we have to
take notice to the fact that a VP is a sort of SIMD[9] processor. We
have to detect parts which consist multiple data-flow from a sequential
program to obtain enough performance. We introduce a concept of
“dependence of environments™ to analyze data-flow in recursive proce-
dures. In our definition, an “environment” is a state of correspondences
between the local variables and the stack. In other words, each envi-
ronment corresponds to each invocation of the recursive procedure.

3.2 Preliminaries

3.2.1 Classification of Recursive Procedures

Here we define a classification of recursive procedures. Note that most
of the example programs in this thesis are written in a Pascal-like lan-
guage, but the argument is not limited to the Pascal but applicable to
almost all block-structured languages which include Fortran 90 and C.

Recursive procedures are roughly defined as procedures which con-
tain one or more statements to call itself. Strictly speaking, we have
to take indirectly recursive procedures into consideration. Let us take
a case of a procedure named A which calls another procedure B. If B
also calls A, we call A and B as indirectly recursive procedures. But
in this thesis we treat only directly recursive procedures for simplicity.
In most cases, indirectly recursive procedures can be converted into
equivalent directly recursive ones using inline expansion, as shown in
Figure 3.1. But this conversion is not always possible. Figure 3.2 shows
the example. This type of procedures are left to our future works.

In this thesis, we classify recursive procedures into three types ac-
cording to the number of recursive-call statements in procedures. Ex-
actly speaking, we classify them according to possible number of re-
cursive invocations on each environment. When a recursive procedure
invokes itself not more than once on each environment, we classify it

3.2. PRELIMINARIES 47

procedure A;

begin procedure A’

SI; begin

if P then B; ST’

S2 if P’ then
end; . a3
procedure B; S if Q' then A’;
begin S4'/

53 end;

if Q then A; S2'

S4 end;
end:;

Figure 3.1: Conversion from an indirectly recursive procedure to di-
rectly recursive procedure.

procedure A;
begin
o1
if P then A:
if ) then B;
S2
end;
procedure B;
begin
S3;
if R then A;
if S then B;
S4
end;
Figure 3.2: An indirectly recursive procedure which is impossible to

convert into directly recursive procedure by inline expan-
sion.



48 CHAPTER 3. THE BREADTH-FIRST METHOD

into Type-1. If a recursive procedure invokes itself more than once
but the number of invocation is statically limited by a constant on
each environment, we classify it into Type-2. The other procedures
are classified into Type-3. Examples of each procedure are shown in
Figure 3.3.

Behavior of a type-1 procedure is very simple. It can be distin-
guished into two phases. In the first phase, recursive calls occur con-
tinuously. But once the control reaches to the end of the procedure, it
never calls itself again until the control returns out from the procedure.
Therefore in the second phase returns occur continuously. These two
phases can be easily expressed as loops and a type-1 procedure can be
easily converted into a non-recursive procedure.

Contrarily, behaviors of type-2 and 3 procedures are complicated.
It 1s still possible to convert these procedures into non-recursive pro-
cedures, but the rewrited procedures contain complicated sequences of
statements which emulate the stack explicitly.

3.2.2 Facilities of Vector Supercomputers

Vector supercomputers are classified into SIMD(Single Instruction Mul-
tiple Data stream) computers|[9]. Their high performance results from
the facility of multiple vector pipelines. When each element of a vector
has no dependence on the other elements, the pipelines work efficiently
and we can obtain high performance.

Most of recent vector supercomputers also provide special instruc-
tions called vector-macro instructions. Examples of these instructions
are shown in Table 3.1. They are used to execute computations on
which vectors have dependence between the elements. The performance
of the vector-macro instructions is not so high as that of ordinal vector
mstructions, but it is much higher than that with scalar instructions
for the same computation. As we describe later, the vector-macro in-
structions are very important facilities in order to vectorize recursive
procedures.

3.2. PRELIMINARIES 49

function  power(z : real; n : integer) : real;

begin
if =0 then
power := 1
else if odd(n) then
power := power(rxz, n div 2)*z
else
power := power(z*z, n div 2)
end;

(A) calculate power ™ (n > 0) (a type-1 procedure)

procedure  hanoi( disk, polel, pole2 : integer );
begin
if disk>0 then begin
hanoiC disk=1, polel, 6-polel-pole2 );
writeln(’ Disk? , disk, polel, *=>?, pole2 );
hanoi( disk-1, 6-polel-pole2, pole2 )
end
end;
(B) tower of Hanoi (a type-2 procedure)

procedure Nqueens( i:integer ) ;
var j:integer;
begin
for j := 1 to N do
if A[j] and B[i+j] and C[i-j] then begin
X[1) == g5
Al := false; Bli+j]l := false; Cli-j] := false;
if <N then Nqueens(i+1) else PrintAnswer;
Alj] := true; Blitg] := true; Cli-7] := true
end
end;
(C) N queens (if N is constant, classified into type-2. otherwise, type-3)

Figure 3.3: Examples of recursive procedures.



50 CHAPTER 3. THE BREADTH-FIRST METHOD 3.3. THE DEPTH-FIRST METHOD 5l

3.3 The Depth-first Method

Before describing our new method, we describe the depth-first method
which was previously proposed because the weakness of this method
will help to introduce our new method.

3.3.1 The Depth-first Vectorization

It is always possible to convert recursive procedures into equivalent

Table 3.1: Examples of the vector-macro instructions. non-recursive procedures. Since the converted procedures contain some
macro tyjpe S-820/3800[13] | VP400/2600(10] | SX-2/3[26] loops, we have some opportunities to vectorize these loops. We call
Vector Element Sum VSMD VSMD VSUM p ! . e
1w a4 -afil VSMDM VSM this approach the depth-first vectorization method. This method
:231’\ 32;::’ is based on the idea which was originally given by Kozuka[19] and we
VSMM VSMSD slightly revised and formalized the method.
VSMN VSMSE i % wlicats T ¥ i Bk
| S ot us start our explication with a simple example. Consider a re-
Vector Inner Product VIPD s . - . ‘ 7 .
8 im & + aCil * B VIPDM cursive procedure to obtain N-th factorial (Figure 3.4). This procedure
i is classified into type-1. For the latter arguments, we transform the
VIPM procedure as shown in Figure 3.5. The purpose of this transformation
VIPN . R - SRR - s, SCRTRN T e e
e e e VITRD T To. VINVA is to get a su?lple statement which consists no instruction except a re-
ali] := a[i-1] * B[i] + ¢[i] | VITR VRCD VIMS cursive call, in other words, a set of instructions to store the values
VRCE VIAM : . i
NISH of arguments, to call itself and to load the return value. This auto-
Vector Element Increment VINCD VFIA matic transformation is always possible introducing some temporary
£ aw-alic i VINC VFIS . e .
afi) :=ali-1] + c[i) s variables. In this case, we removed the term of n from the right hand
Find Maximum Data VMAXD VFXD side of the assignment statement introducing a temporary variable r.
: i VMAX VFX : - ; . :
Rsk M (alio) i As mentioned in section 3.2.1, the behavior of this type of procedure
VFXX can be divided into two phases. In the case of Figure 3.5, while the
Find Minimum Data VMIND VIND S o P i tE
. o W taE) VMIN VEN condition n # 0 is satisfied, the recursive calls oceur re].n.'.at.(_.cll_». In
VENX the first phase, the statements labeled S1 and S2in the Figure 3.5 are
VENDX = : e : ;
executed. Once the condition n = 0 is satisfied, the execution shifts to

the phase two. In this turn, the statements from S2 to S6 are executed
repeatedly.

Transforming the recursive procedure into a non-recursive proce-
dure, we can obtain two loops as shown in Figure 3.6. The former loop
can be easily converted with while. These two loops can be vectorized
using existent methods described in [40] and [33]. Thus the recursive
procedure is automatically vectorized as shown in Figure 3.7.

From this example we can easily suppose that all of type-1 recursive



52 CHAPTER 3. THE BREADTH-FIRST METHOD

function fact(n : integer) : integer;

begin
if (n=0) then
fact := 1
else
fact := fact(n-1) * n
end;

Figure 3.4: A procedure to get N-th factorial.

function fact(n : integer) : integer;
var r : integer;
begin
if not(n = 0) then { S1 }
r:= fact(n-1); { S2 }
if (n = 0) then {153}
fact := 1 { S4 }
else { S5 }
fact ;= r*n { S6}
end

Figure 3.5: Converted form of the procedure fact.

3.3. THE DEPTH-FIRST METHOD

function fact(n : integer) : integer;

label 1;

var stackR : array [0..MAX] of integer;
stackN : array [0..MAX] of integer;
stackFact : array [0..MAX] of integer;
sp, mazsp : integer;

stack }
stack }

i, o, b,

begin
{ Setup the stack }
sp := 0;

stackN[sp]l := n;
{ Phasel start }

1
if not(stackN[sp] = 0) then begin { S1}
{ S2 : call sequences }
stackN[sp+1] := stackN[sp] - 1;
sp o= sp + 1;
goto 1
end;
{ Phase2 start }
mazsp = Sp;
for sp := marsp downto 0 do begin
if not(stackN[sp] = 0) then { St}
{ 52 : get the return value }
stackR[sp]l := stackFact[sp+1]
if (stackN[sp]l = 0) then { 53 }
stackFact[sp] := 1 { 4 }
else { S5}
stackFact[sp] := stackR[sp] * stackN[sp]l { S6 }
end;
{ Restore form the stack }
fact := stackFact[sp]
end

Figure 3.6: Non-recursive form of the procedure fact.

return values }
stack pointer }



54 CHAPTER 3. THE BREADTH-FIRST METHOD

function fact(n : integer) : integer;

label 2;

var stackR : array [0..MAX] of wmieger; { stack }
stackN : array [0..MAX] of integer; { stack }
stackFact : array [0..MAX] of integer; { return values }

sp, mazsp : inleger, { stack pointer }
OUTER,INNER : inleger; { loop counter }
begin

sp = 0; { Setup the stack }
stackN[spl := n;
{ Phasel start }
for OUTER := 0 to (MAX mod STRIPWIDTH) do begin
for INNER := 0 to (STRIPWIDTH-1) do
stackN[sp+INNER+1] := stackN[sp+INNER]-1;
| *vectorizedx }

if (RUNOVER) then begin

BACKTRACKING;
goto 2

end;

sp := sp + STRIP WIDTH;

end;
STACKOVERFLOW;
2: { Phase2 start }
mazsp = sp;
for sp := mazrsp downto 0 do begin
if not(stackN[sp] = 0) then
stackR[sp]l := stackFact[sp+1] { *vectorized* }
if (stackN[sp] = 0) then
stackFact[sp] := 1 { *vectorized* }
else
stackFact[sp] := stackR[sp] * stackN[spl
{ *vectorized* }
end;
fact := stackFact[sp] { Restore form the stack }
end

Figure 3.7: Vectorized form of the procedure fact.

3.3. THE DEPTH-FIRST METHOD

(5]
(& ]

procedures can be treated in the same way. In fact, it is always possible
to convert any type-1 procedure automatically into a non-recursive pro-
cedure with such simple two loops. and the opportunity of vectorization
is found in the loops. Therefore the type-1 procedures are considered
to be suitable to apply the depth-first vectorization method. This is
the basic idea of this method.

The procedure of the depth-first vectorization for type-1 procedures
are given as follows. For simplicity, we assume a type-1 recursive progce-
dure with no loop structure and no other procedure call except recursive
ones in the body. After the needed interchange and the replacement
of the statements, a recursive procedure which satisfies the assump-
tion can be converted into a procedure like Figure 3.8. Here we call
the process as “normalization”. The normalization can be done with
commonly-used methods for compilers. The details are described in
Figure 3.9.

After the normalization, we can easily eliminate the recursive call
and can get the non-recursive procedure as Figure 3.10. The algorithm
for the conversion is shown in Figure 3.11 and Figure 3.12.

Thereby we have obtained two loops, and these are treated with
our existent vectorization methods for infinite iterations[40] and loops
with recursive reference[33]. Here we assume that the statements Sy,qq
and S, of Figure 3.10 contain no loops, but even with loops, we have
methods to vectorize nested loops[43][12][53][34][24]. Thus we have the
vectorization method which can treat all type-1 recursive procedures.

3.3.2 Problems

Although the depth-first method can be applied to all type-1 recursive
procedures, it does not always work successfully. For example, it must
be pointed out that in Figure 3.7 the recursive procedure is vectorized
with vector-macro instructions. In general, if we take the depth-first
vectorization method, the obtained loops have some dependencies be-
tween iterations and the recursive procedures must be vectorized with
vector-macro instructions in most cases. The reason is that the state-
ments to give arguments and get return values nearly always cause
first-order dependence between the iterations of the loops of Sy.qq and
Siair- It is easily understood from the fact that each iteration of the loop



56 CHAPTER 3. THE BREADTH-FIRST METHOD
function recurswelarg : art=t) : rel=t;
begin

-:‘wud;

if P then ret := recursive(a) ;
Sltm'
end

Figure 3.8: Normalized type-1 procedure.

1. Make all arguments of recursive call(s) as simple variables.

tmp.arg := atb;

retval := recur(atb,d); = retval := recur(tmp.arg,d);

2. Replace recursive calls with a simple variable if they are in longer
expressions.

recur(a,b);

retval+c;

n

retval :

¥ +C:
result := recur(a,b)+c; ety

3. Split off and the recursive calls from blocks and combine them as

follows.
if P then begin {Shead}
S1; a = al {Shead}
) ; end else {Shead}
if P then begin if Q then begin {Shead)
51; SS; a := a2 {Shcnd}
rl := recur(al); A 18hiad)
52 end; {Shead}
en_d else : if P or @ then
if ) then begin = r = recur(a);
P35 if P then begin {Stant}
12 := recur(a2); ¢ vm i 82 {Stmf}
54 end else {Staut}
end if Q then begin {Stait}
end; 2 :=r; S4 {Stait}
end {Stait}
end; {Stau}

Note: P and Q is always false since recur is a type-1 procedure

Figure 3.9: Normalization of type-1 procedures.

3.4. BASIC IDEA

(&) ]
~I

function non_recursive(arg : art-t) : ret-i;
begin

StackSetup;

repeat

S'hrrxd;
until not(P’)
for StackPointer := StackBottom downto 0 do
S,l‘ud;
RestoreFromStack;
end

Figure 3.10: After conversion from a type-1 recursive procedure to a
non-recursive procedure.

corresponds to each environment and giving each argument or getting
each return value mean data transfer between environments. There-
fore this dependence is unavoidable. As the vector-macro instructions
:an process only some limited patterns of computation as shown in
Table 3.1, the vectorization is not always succeeded. Even when it
is succeeded, since the execution speed of vector-macro instructions is
slower than the other vector instructions, recursive procedures are not
much accelerated by the depth-first method compared with the other
vectorizations®.

3.4 Basic Idea

As mentioned in the previous section, arguments and return values of
a recursive procedure causes dependence across environments. In the
cases of the depth-first vectorization, this type of dependence severely
restrict the opportunities for recursive procedures to be vectorized. To
cope with this problem, the breadth-first vectorization method is de-
signed standing on a point of view to avoid this dependence.

The basic idea is that if two or more environments have no depen-
dence on each other, they can be executed in parallel. Let us start
with a type-2 procedures which was already normalized in the form of
Figure 3.13 as an example. Considering a situation that the execution

“When the vector length is long enough (typically more than 1000), we can use
an algorithm described in [31] and can obtain better results.



58 CHAPTER 3. THE BREADTH-FIRST METHOD

Step-1 Construct explicit stack changing definitions of all local variables of
the procedure to arrays of the original variable. Then all arguments
of call-by-value and return values are treated as the same as local
variables. Call-by-reference type arguments should be treated as ar-
rays of pointers of the original. Definition for the stack pointer is also
needed.

function rec( arg : integer, var wvarg - mteger ) @ rveal;
var a : real;
b : array [1..10] of mnteger;
4
function rec( arg : integer, var varg : integer ) : real;
type vargp = tinleger
var arg-stack : array [0.STACKMAX] of integer,
argr-stack : array [0.STACKMAX)] of vargp;
ret-stack : array [0.STACKMAX] of real,
a-slack : array [0.STACKMAX] of real;
b-stack : array [0..STACKMAX)] of array [1..10] of integer;

sp : integer; { Stack Ponter }

Step-2 Put the instructions to set up the explicit stacks at the entry of the
procedure. Put also the instructions to restore return value form the
explicit stack at the end of the procedure.

{ Al the entry }

sp = 0; { Setup the Stack }
arg-stack{sp] = arg;

argu-steck|sp] = GetPomter{varg-p);

{ At the exit )

rec o= ret-stack[sp]);

Figure 3.11: The algorithm to convert a type-1 procedure to a non-
recursive procedure (cont.)

13.4. B.‘ithC IDE-’i 59

Step-3 Replace the instructions within Sy and Sy to access the explicit
stacks as follows. Name the converted Sp,uq/Stait 25 S'head/S tail-

a = blurg, ==  a-stack|sp| = b-stack|sp||arg stack|sp]];

a = uarg; =%  a-slackisp] = argv-stack{splt;

Step-4 Make statements for the recursive call and return from the call.

arg-stacksp+1] := al;
varg-stack{sp+ 1] = GetPointer{a2);
= redal, al); = ;{p = prtl
sp = sp-l;
risp| 1= ret-stack{sp+1];
Step-5 Make loops from Sy.0a/S et as shown in Figure 3.10

function ree( arg . wmteger; var varg : integer ) : rel-t;
begin
StackSetup,;
repeat
S head;
if /' then begin
AssignArguments;
StackPomnter := StackPointer + 1
end;
until not( /')
for StackPownter := StackBottom downto 0 do begin
if ' then
Getfeturn Value,
Seait
end,
RestorelFromStack

end

Figure 3.12: The algorithm to convert a type-1 procedure to a non-
recursive procedure (cont’d)



60 CHAPTER 3. THE BREADTH-FIRST METHOD

function recursive(arg : art=t) : ret-i;
begin
Sh ead >
if P, then R, := recursive(A,);
513
if P, then Ry := recursive(Asy);
Sy

Sﬂ = 0
if P, then R, := recursive(A,);
‘s‘l'ﬂrf

end

Figure 3.13: A normalized type-2 procedure without loops.

function recurswve(arg : art-t) : ret-t;
begin
Shrmi;
if P, then R, := recursive(A,);
if P, then R, recursive(As) ;

]

if P, then R,
Shm'
end

recursive(A,);

Figure 3.14: A target procedure for the breadth-first vectorization.

3.5. DEPENDENCE BETWEEN ENVIRONMENTS 61

has just reached at the entry of the procedure and a certain environ-
ment has just created, it is evident that the environment is depended
by each environment created by the recursive calls on the environment.
But all environments created by the same environment may not have
dependence on each other. If it is true. the statements S5,.5;.....5,
can be moved and combined with Sj,..4 or Si and the procedure can be
expressed as in Figure 3.14, In this case, all of these environments can
be invoked in parallel, consequently we can put these environments in
vector execution. In fact, more detailed analysis is needed, but roughly,
this is the basic idea of the breadth-first vectorization method.

3.5 Dependence between Environments

To consider the details, we introduce a concept of dependence between
environments.

When an environment invokes another environment, we call the
former environment as the “parent environment” and the latter as the
“child environment”. In general, a parent environment invokes a certain
number of child environments. To express these relations of each envi-
ronment, ordered trees are suitable. We call the tree as “environment
tree”.

Figure 3.15 shows an example of the environment tree. Each node
of the tree corresponds to each environment and a parent-child relation-
ship of the nodes corresponds to that of the environments. The root
node corresponds to the environment when the procedure was invoked
from outside. The order of environment invocation is expressed with
the preorder traversal of the environment tree.

Here we define some terms for the environment tree in imitation
of that of the ordered tree. When an environment is an ancestor of
another environment on the tree, we define the former as an °
tor environment” of the latter. Conversely, the latter is a “descendent
environment” of the former. Similarly, we define “brothers environ-
ments” which form brothers in the environment tree. According to the
custom, we draw the order of brothers from left to right in the tree,
We also introduce the terms “environment depth”, “root environment”,
“left-child environment”, “right-child environment™, “n-th child envi-

ANCes-



62 CHAPTER 3. THE BREADTH-FIRST METHOD 3.5. DEPENDENCE BETWEEN ENVIRONMENTS 63

num.of We also define the following terms:
depth env.s
0 1

1. Environment Ey indirectly depends on Ep if there exist
another environment Ep such that

1 3

(a) Ep depends on Eg by an instance S}, of statement
2 8 SF;

(b) Ep also depends on Ey by an instance S} of state-
3 P ment Sy; and

(¢) there exists a list of instances S|, S5, ..., S, of state-
& 3 ments Sy, Sy, ..., S, on Ep which satisfies
Sp6S816556...65.,6S}.

2. Environment Ej depends on Es if Ep directly or in-
directly depends on Es.

brothers

Figure 3.15: A sample of the environment tree.

ronment”, “leafl environment” and so on, from the terms of trees[1].
Here we define environment dependence in imitation of that on
statements|4] as follows:

See Figure 3,16 and Figure 3.17 as examples.
Note that, while dependence of statements treats static program
texts, dependence of environments treats relation of mstances of ex-

In a recursive procedure P, environment E directly de- ecuted statements. The shape of a environment tree comes out only
pends on environment Ep (denoted as EpdEp) if there exist after the whole execution. But we can still judge a pattern of environ-
a memory location M such that ment dependences and use it to determine a recursive procedure can

1. Both Ef and E, reference M, and at least one of those be vectorized or not.
references is a write: If a pair of environments has a dependence, exchanging their order

of execution causes different results. When we transform a recursive
procedure, we have to give attention to the dependence of environments,
and we also have to take care not to change the order. Therefore we
have to analyze the statements of the recursive procedure and detect
possible dependence between environments.

Thus there are three types of dependence based upon the In recursive procedures, direct dependences arises when

types of the two references to M. Environment Ey is

2. In the scalar execution of an invocation P, Ep is exe-
cuted before E;; and

3. In the same invocation of P, M is not written between
the time E} finishes and the time E starts.

. y 1. a parent environment passes arguments to its child environment;
flow-dependent on E . if Ep writes M and the Ej F P &

reads it;
anti-dependent on Eg . if Ep reads M and the Ej,
writes it; and

2. a parent environment receives return value to its child environ-
ment;

output-dependent on Ep, if Er writes M and the 3. an environment writes to a call-by-reference argument and its
E} reads it. parent environment reads it;



64 CHAPTER 3. THE BREADTH-FIRST METHOD

{ environment tree
7/
i /!
N /

write g / read

memaory

FLOW DEPENDENCE

:I: environment treec
S i
/
- ¥d

~
read Ny f write

memory

ANTI DEPENDENCE

A :|: environment tree
/
,/
T
"'b\ 7/

write N write

memory

OUTPUT DEPENDENCE

Figure 3.16: Dependence between environments

3.6. BREADTH-FIRST VECTORIZATION 65

environment

LY
N directly
‘. depends

environment

environment indirectly environment o (an :u::luurclufl
statemen
depends a

Figure 3.17: Direct and indirect dependence between environments en-
vironments

4. two environments access to the same external variable and at least
one of the access is writing; and

5. an environment writes to a pointer variable which points an auto-
matic variable of an ancestor environment, and the ancestor reads
it.

The first three cases are easy to detect while the rest cases are
difficult to treat. The detections are described later in Section 3.8.

3.6 Breadth-first vectorization

Consider a procedure like Figure 3.14. For simplification, it is also
assumed that the procedure calls no other procedure. This procedure
can be classified into type-2. Assuming that the procedure has no write
statements to the external variable, direct dependences are caused by
only from the arguments and the result values on each environment.
[t follows that direct dependences exists only between an environment
and its child or parent environment. and indirect dependences only
arise between brothers environments. We also assume that. in this pro-
cedure, none of the arguments A,,A4,...,A,, and the boolean variables



66 CHAPTER 3. THE BREADTH-FIRST METHOD

Py, Ps,...,P, depends on any of Ry, Ry.....R, . then the brothers envi-
ronments never depends on each other and dependences remains only
in the child-parent relationship, on the other words :

o Instances of Sy.aq in each environment depend on instances of
Shead 11 its parent environment, and

e Instances of Si.q in each environment depend on instances of Sy
in its parent environment.

It means that when an execution of statement Sj.qq finished on a
certain environment, all of its child environments can start their exe-
cution in parallel. Applying this fact recursively, the procedure can be
transformed and executed as shown in Figure 3.18.

Figure 3.19 shows the execution process on the environment tree.
This transformation change the order of execution of environments, but
with the aforementioned assumption, the order is preserved between a
pair of depended environments to each other. Thus we can get the same
result as that of the normal execution. And in Step-2 and Step-6 of
Figure 3.18, all environments are independent each other, and they can
be executed in parallel. In this case, on each parallel environment, the
instructions is all the same, therefore they can be executed with vector
instructions in most cases. Thus we can vectorize recursive procedure.
This process is applicable to the recursive procedures which may call
itself more than twice in an environment, i.e. type-2 or type-3 proce-
dures. This is the newly-proposed vectorization method, “breadth-first
vectorization method”.

According to this method, we can transform the procedure of Fig-
ure 3.14 to that of Figure 3.20. The body of the procedure consists of
two doubly nested loops. But the inner loop of each nested loop can
be vectorized because each instance of the loop corresponds to each
independent environment,

In general, when a type-2 or type-3 recursive procedure always gen-
erate an environment tree which satisfies the following condition, we
call the the procedure as “suitable” for the breadth-first vectorization.

Each environment doesn’t depend on the other environ-
ments except its ancestors and descendant environments.

3.6. BREADTH-FIRST VECTORIZATION 67

Step-1 Let a counter D «+ 0. D holds the depth of the environment
tree.

Step-2 For all environments on depth D of the environment tree,

1. Execute Sy a4
2. Evaluate all of Py, Py,...,P,,
3. Count the number of environments on depth D+1, and

4. Pass arguments to the child environments.
Step-3 Let D «— D+1.

Step-4 Repeat the process from Step-2 to Step-3 until there exists no
environment on depth D.

Step-5 Let D «— D—1.
Step-6 For all environments on depth D,

1. Get return values from their child environments,

2. Execute S;4; in parallel.

Step-7 Repeat the process from Step-5 to Step-6 until D equals (0. O

Figure 3.18: The behavior of a type-2 procedure vectorized by the
breadth-first vectorization method.



CHAPTER 3. THE BREADTH-FIRST METHOD 3.6. BREADTH-FIRST VECTORIZATION 69

depth veclor

arguments length
= function recursive(arg : art-t) : ret-t;
0 1 begin
StackSet Up;
i 3 EnvTreeDepth = 0,
NumberOfEnv[EnvTreeDepth] = 1:
2 8 repeat
{*v*} for &= 1 to NumberOfEnv[EnvTreeDepth) do begin
3 7 {*v*} T head;
9 {Evi*) if P'y then CreatEnvAndSetArgForA;:
4 3 Q {*v*} if s then CreatEnvAndSetArgForAs:
2 {Ey ™) -
i, {*v*} if P, then CreatEnvAndSetArgForA,;
_ ﬁ end
" R 5 EnvTreeDepth := EnvTreeDepth + 1:
9 until (NoChildEnvErists)
. ” MazDepth := EnvTreeDepth - 1;
for EnvTreeDepth := MazDepth downto 0
3 3 {*v*} for =1 to NumberOfEnv[EnvTreeDepth] do begin
- {*v*} if Py, then GetReturnValueForR;
1 5 {*v*} if P, then GetReturnValueForR,;
: { %] o
b if ', then GetReturnValueForR,,;
0 1 {*v*) o
return value end
end
@ instance of Sy, end
D imstanceors,, Note : lines with {*v*} are vectorized

A | envinonments in the same depthiexecuted with vector instructions)
—

Figure 3.20: After the breadth-first vectorization.

Figure 3.19: Breadth-first vector execution.



70 CHAPTER 3. THE BREADTH-FIRST METHOD

The breadth-first vectorization may changes the order of execution be-
tween environments, but the order between a pair of environments with
ancestors-descendant relationship never be exchanged. Hence we can
apply the breadth-first vectorization method to the procedure if this
condition is always guaranteed in the procedure.

3.7 Implementation Details

3.7.1 Code generation

To generate efficient vector instructions from the recursive procedure by
this method, storage managements arises to the subject. In the case of
the depth-first vectorization method, since the order of the execution
does not differ from that of the normal execution, we have only to
emulate behavior of the stack. But in the case of the breadth-first
vectorization, a kind of memory management mechanism is needed to
store the whole environment tree. In general, the shape of environment
tree appears only after the execution, therefore we have to treat the
storage dynamically.

Recent supercomputers provides vector load expanding and vec-
tor store compressing® instructions. Behavior of these instructions
is shown in Figure 3.21. Using these instructions, we can dynamically
allocate the storage with minimum fragmentation.

As an example, see procedure sum in Figure 3.22. Since this proce-
dure has no assignment statements to the external variable left, right,
number, direct dependence arises only by the argument and the result
value. In this case, lsum does not depended by the following recursive
call sum(right|pointer]), it causes no indirect dependence between all
of the brothers environments. Then we can transform this procedure
as shown in Figure 3.23 and Figure 3.24. Note that in the figure en-
vptr[depth] means the index for leftmost environment on depth of the
environment tree. After this transformation, the statements marked
with {*v*} in the figure can be vectorized. Forced vectorization of the

*“Vector load expanding and vector store compressing” are of S-820 and S-
3800. In VP-400/2600, instructions with the same functions are called “vector
expand /compress”. In SX-2/3, they are called “vector scatter/gather.”

3.7. IMPLEMENTATION DETAILS 71

VECTOR LOAD EXPANDING VECTOR STORE COMPRESSING
vector | veetor R
register & register B3
mask mask
register register

8
memory K\

Figure 3.21: Vector expand/compress instructions.

{Global variable : left — pointers to the left subtrees
right — pointers to the right subtree
number — valies of each node }
function sum( pointer : integer ) : integer,
var Isum,rsum : integer;
begin
lsum := 0; rsum := 0;
if left[pointer] < > 0 then
Isum := sum(left[pointer]);
if right[pointer] < > 0 then
rsum = sum{right[pointer]) ;
sum := lsum + rsum + number[pointer]
end;

Figure 3.22: A procedure to get the sum of a binary-tree data.



72 CHAPTER 3. THE BREADTH-FIRST METHOD

inner loop causes different behavior of eptr of Figure 3.20, on execution
compared the scalar execution. But it will not affect the result because
it only affects to the order of allocation for each environment.

In general, if all of the environments never depend on the other en-
vironment except its ancestor and descendant environments, the type-2
procedure is normalized as in Figure 3.14. If a statement exists between
the recursive procedure call statements and it cannot be merged into
Shead OF Siars it means that the statement depends on at least two of
these recursive calls and it causes indirect dependence between brothers
environments. After the normalization, we can convert the procedure
with the algorithm shown in Figure 3.25 and Figure 3.26, and it is
always vectorizable.

We can also apply this method to type-3 procedures. If a type-3
procedure causes no dependence to prohibit the breadth-first vector-
ization, the procedure can be vectorized in the same way as type-2
procedures. An example is shown by Figure 3.27 and Figure 3.28. In
this case, the problem is that the loops labeled L1,L2 form a nested
loop and L2 cannot be vectorized. But if we ignore dependence of eptr
we force to vectorize the loop interchanging the loops[34][24]. After
the vectorization, the behavior of value of eptr changes but it will not
affect the whole result of the execution. Similarly, we must exchange
the loops L3 and L4 in the figure.

In general, if type-3 procedure can be normalized into the form of
Figure 3.29, it can be vectorized with the breadth-first method as the
same way as the example.

3.7. IMPLEMENTATION DETAILS 73

function sum( pointer : integer ) : integer;

var [sum-array,rsum-array : array [1..MAXENV] of integer;
pointer-array : array [1..MAXENV] of integer;
ret-array : array [1..MAXENV] of integer;
depth, maxdepth : integer; { depth on the environment tree }
envptr : array [0.. MAXDEPTH] of integer;
i, eptr : integer;

begin
depth := 0;
envptr[0] := 1; { Setup }
envptr[1] := 2; { Setup }

pointer-array [envptr[0]] := pointer; { Setup }

repeat

eptr = envptrldepth+1] ;
{ %] for i := enuvptrldepthl to enuvptrldepth+1]1-1 do begin
{*=y*y lsum-array[i] := 0; rsum~arraylil = 0 { Sieaa }
{*v*} if leftlpointer-array [1]]1<>0 then begin
{*v*} pointer-array [eptr] := left[pointer-array [4]] ;
{*v*} eptr 1= eptr+l; allocate a new environment
{*v*} end;
{*v*} if right[pointer-array [1]11<>0 then begin
{*v*} pointer-array [eptr] := might[pointer-array[1]];
{*v*} eptr = eptr+l; allocate a new environment
{*v*} end

end;

depth := depth + 1;
envptrldepth+1] := epir;
until( eptr = envptrldepth] ); { until no child env.s exists }
maxdepth := depth = 1;
Note : lines with {*v¥*} are vectorized

Figure 3.23: Vectorized sample procedure of type-2 procedure. (cont.)



=1

o |

74 CHAPTER 3. THE BREADTH-FIRST METHOD 3.7. IMPLEMENTATION DETAILS

Step-1 Arrange storage for all local variables, arguments and return value on en-
vironments. We have only to rewrite each declaration of local variable with

for depth := mardepth downto Oldo begin _ _ its array as the following. Also prepare an array to keep the number of
epir := envptrldepth+1];  pointer to the child '-‘”“””f’f”ﬂf"m‘ environments on each depth, named envptr, and some working variables.
fox % (i frﬂ‘t!p.??'“[t’lf!pﬂﬁ,] o _ShuR [d«pthﬂ]-i- da begin function rec( arg : integer; var warg : integer ) : real;
i gl if leftlpointer-array[i]1]1<>0 then begin R : i ’
{*v*} lsum-array[i] := ret-array[eptr]; var a ; real;
 fast e eptr := eptr + 1; b : array [1..10] of integer;
{*v*} end I\
{*v*} if right[pointer-array [{]]1<>0 then begin PR ERO PRV & A a5 It o el
{*v*} rsum-array[il := ret-array[eptr]; ) = B > AREgErs SRR ) §
{*v*} eptr := eptr + 1; type varg-p = linteger:
{*v*} end; var arg-array : array [1..MAXENV] of integer;
{*y* ret-array (7] := lsumn[d + rsumli] Al . r .
{*“'*; + number[pointer-array [1]1; { Swa } i aTEAT i SEARILL; A LENKIEC SRSy
g i i ret-array : array [1..MAXENV] of real;
end a-array : array [1..MAXENV] of real;
sum := ret-array[1]; b-array : array [1..MAXENV] of array [1..10] of integer;
end; envptr @ array[0.. MAXDEPTH] of integer;

Note : lines with {*v*} are vectorized -
eptr + anteger;

Figure 3.24: Vectorized sample procedure of type-2 procedure. (cont’d)
Figure 3.25: The algorithm to convert a type-2 procedure to apply the
breadth-first vectorization. (cont.)



76 CHAPTER 3. THE BREADTH-FIRST METHOD

Step-2 Put instructions to set up the root environment and to initialize some work-
ing variables at the entry of the procedure. Also put instructions to restore
the return value at the exit of the procedure.

{ At the entry |}

depth = 0; { start form root environment }
enuptr[0] := 1; { set the root enmronment }

eptr := envptr[0] ;

enuptr[1] = 2;

arg-array [1] := arg; { pass the argument to root }
argu-array [sp] := GetPomnter(varg-p) ;

retadd[sp] = 0;

{ At the exit }
rec := ret-array([1];

Step-3 Replace the instructions within the Sy,..4 and Sy, to access the arrays, and
name them as S'y,.q and S'y.q-

Step-4 Make statements for the recursive call and return from the call as the same
as the conversion in Figure 3.11.

Step-5 Make loops from S'y.0q and S, as shown in Figure 3.23,

Figure 3.26: The algorithm to convert a type-2 procedure to apply the
breadth-first vectorization. (cont’d)

3.7. IMPLEMENTATION DETAILS 7

function sum?2(pointer : integer) : integer;
var sum, sswm : integer;
pir : integer;

begin
pir := pointer;
sum := 0; ssum := 0;
repeat

if eldestson[pir] <>0 then
ssum:= ssum + sum2(eldestson[ptr]);
sum := sum + number[ptr];
pir := brother[pir] ;
until ptr=0;
sum2 = sum + ssumn;
end
(a) Original procedure

Figure 3.27: Example of the breadth-first vectorization of a normalized
type-3 procedure. (cont.)



78 CHAPTER 3. THE BREADTH-FIRST METHOD

function sum2(pemter : wnteger) @ nteger;

var sum-array : array [1. MAXENV] of integer;
ssum-array : array [1..MAXENV] of integer;
ptr-array : array [1..MAXENV] of nteger;
pointer-array : array [1. MAXENV] of integer;
ret-array : array [1..MAXENV] of integer;
enuptr : array[1. . MAXDEPTH] of integer;
childnum : array [1..MAXENV] of integer; { Number of children }
depth, mazdepth : integer;
eptr, 1,7 @ integer;

begin
depth := 0;
enuptr[0] := 1; { Setup }
envptr[1] := 2; { Setup }
pointer-array Lenvptr[0]1] := pointer; { Setup }
eptr := envptr[0]; { Points the indez to newly generated }

repeat
{*v*} for i := enuptrldepth]l to enwvptrldepth+1]1-1 do begin
{*v*} sum-array[i] := 0;
{*v*} ssum~array [1] = 0;
end;
{*v*} for i := envptr(depth] to enwvptrldepth+1]-1 do begin {L1}
{*v*} childnum(1) := 0;
repeat {L2}
{*v*} if eldestson[ptr-array[i1]1<>0 then begin
{*v*} pointer—-array Leptr] := eldestson[ptr-array[:]];
{*v*} eptr = eptr + 1;
{*v*} childnuml[i] := childnum(i] + 1;
{*v*} end;
{*v*} sum-array [i] := sum-array[i] + number[d];
%) ptr-array [1] := brother[ptr-array[i]]
until ptr-array [ = 0;
end

depth = depth + 1;
envpir[depth+1] := epir;
until (eptr = envptrldepth] ) ;
(b) After Conversion (cont.)

Figure 3.28: Example of the breadth-first vectorization of a normalized
type-3 procedure. (cont’d)

3.7. IMPLEMENTATION DETAILS 79

function recurswe(arg : art-t) : ret-t;
begin

Shrad;

for ©+ := 1 to n do

Rln] := recursive(A[nl);

Stait
end
Note: the value of variable n is indefinite and it is settled only after
the execution of S;,..4 on each environment.

Figure 3.29: A normalized type-3 procedure for the breadth-first vec-
torization.



80 CHAPTER 3. THE BREADTH-FIRST METHOD

3.7.2 Storage Overflow

When we execute a procedure vectorized with the breadth-first vector-
ization, the size of storage for the execution is directly proportional
to the number of nodes of the environment tree. Generally it is much
larger than that of the scalar execution which is proportional to the
height of the environment tree. Concretely, when a procedure calls it-
self not more than a times on each environment, the storage size of for
the worst case O(a") is needed while the size of O(h) is needed for the
of the tree. Therefore it is much important to take measures for the
storage overflow in the case of the breadth-first vectorization.

But this problem can be easily avoided. The solution is that when
a shortage of storage occurs, the procedure calls itself recursively and
get the return value. Figure 3.30 shows the concept and Figure 3.31
shows the shape of an environment tree created in this case. 1f we limit
on each invocation of the procedure,
"™ % (h/m)) for execution

™m

the number of environments to a
whole needed storage size is bounded by O(a
of an environment tree of height h.

3.8 Environment Dependence Analysis

As described in the former sections, to apply the breadth-first vector-
ization method, we have to guarantee statically that the dependence
between environments never exists except descendant-ancestor relation-
ship. Thus dependence analysis for environments is indispensable for
automatic vectorization with this method. Here we argue on the meth-
ods to analyze the dependence statically from the program.

3.8.1 Without writing external variables

If the procedure has no assignment statements to the external variables,
the direct dependence between environments exists only between pairs
of parent and child environments. Then analyzing the body of the
procedure, we can detect indirect dependence between brothers envi-
ronments. Indirect dependences occur only when a result of a recursive
procedure call affects to the other recursive procedure call. Therefore
we have only to analyze relations between these procedure calls, i.e.

3.8. ENVIRONMENT DEPENDENCE ANALYSIS

function recursive(arg : art-t) : ret-t;
begin
StackSetUp;
EnvTreeDepth = 0;
NumberOfEnv|EnvTreeDepth] = 1:
repeat
{*v*} for u= 1 to NumberOfEnyEnvTreeDepth) do begin
{*V*} b‘hrud;

{*v*} if P’y then CreatEnvAndSetArgForA,;

{*v*} if P’y then CreatEnvAndSetArgForAy;

{¥*v*} o

{*v*} if P, then CreatEnvAndSetArgForA,;
end

EnvTreeDepth = EnvTreeDepth + 1,
until (NoChildEnvErists or StorageShortage)
if StorageShortage then begin
for i := 1 to NumberOfEnv[EnvTreeDeptth] do begin
S.l,,;,,dl
if Py then R'; := recursive(A';);
if P’y then R’y := recursive(A's);

if p'ﬂ then R‘" e ?‘m"uf‘si‘t!!?{ﬁ‘n)i

b“luli'
end:
MazDepth = EnvTreeDepth-2
else
MazDepth = EnvTreeDepth-1
end;

for EnvTreeDepth := MazDepth downto 0;
{*v*} for i:= 1 to NumberOffnv[EnvTreeDepth] do begin

{*v®} if P’y then GetReturnValueForRy ;
{*v*} if P, then GetReturnValueForR, ;
{*v*}
gy if P’,, then GetReturnValueForR,, ;
{*v*} 5 rait
end

end

end

Figure 3.30: A measure for storage overflow.

81



82 CHAPTER 3. THE BREADTH-FIRST METHOD

each environment subtree is executed in order.

Figure 3.31: Shape of an environment tree when executed with a mea-
sure for storage overflow.

3.8. ENVIRONMENT DEPENDENCE ANALYSIS 83

relations between each return value and arguments. Note that call-
by-reference arguments also regarded as return value. This analysis of
the procedure body can be done with well-known techniques such as
in [2]. In the case of type-2 procedures as shown in Figure 3.14, these
recursive calls are not in any loop. therefore the analysis is easier. In
this case, if none of 45, A4...... A,, and the boolean variables Py, Ps..... P,
depends on any of Ry.R,,...,R, ;. brothers environments never depend
each other. As simple examples, we show two mathematical function
in Figure 3.32.

In the case of type-3 procedures as in Figure 3.29, the recursive call
is in a loop, and we have to treat dependence between the iterations of
the loop and we should import the analysis for vectorization such as in
[23].

In both cases, if we can guarantee that none of the return value
affects the other recursive procedure call, we can apply the breadth-
first vectorization method to the procedure.

3.8.2 External simple variables and pointer vari-
ables

If a recursive procedure contains some statements which write to ex-
ternal variables, we have to consider dependence via the variables. If
the variable is a simple variable (neither an array nor an pointer), most
of environments write to the same variable and we cannot change the
order of execution of environments in most cases. we give up analyzing
in this case.

If the external variable is a pointer. we have to determine if the
variable points the same memory location on different environments.
Generally this analysis is considered to be hard, but Matsumoto and
Han[21] showed that in Pascal we can detect a tree or a linked list
constructed with pointers statically form the program. This analysis is
quite useful for the breadth-first vectorization which is often useful for
the procedures to manipulate tree structures,



84 CHAPTER 3. THE BREADTH-FIRST METHOD

{ fibo= fiby =0, fib, = fib,_; + fibas }

function fib(n : wnteger) : integer;

begin
if n <= 1 then
fib := 1
else
fib = fib(n=-1)+fib(n-2)
end;

Fibonacei number (can be vectorized with the breadth-first method)

{ A(0,y) =y+1, A(z,0)= A(z—1,1), A(z,y) = A(z—1,A(z,y—1))
)
function ack(z, y : wnteger) : nteger;
begin
if (2=0) then
ack := y+1
else if (y=0) then
ack := ack(z-1,1)
else

ack :

n

ack(z-1,ack(x,y-1))
end

Ackermann function (cannot be vectorized with the breadth-first method)

Figure 3.32: Recursive procedures without writing external variables.

3.8. ENVIRONMENT DEPENDENCE ANALYSIS 85

3.8.3 External array variables

When the external variable is an array, dependence analysis caused by
the array is equivalent to analysis of subscripts of the array. When
two or more instances of expression of the array subscripts take the
same value, it means that the array element expressed by the value
is referenced twice or more. If at least one of the references is an
assignment, it means that there exists dependence caused by the array.
In the case of DO-loops in FORTRAN, there are many studies for
dependence analysis of array-elements, such as that by Banerjee[4].

But these studies are not directly applicable to the analysis for
dependence between environments. Here we show the difficulty throngh
showing an example. Assume that there is a loop as follows.

for 7 := 1 to 10 do
A[2%1#1] = -0

In this case, we never worry about the existence of dependence
caused by the array A in the loop because the expression 2+ i+ 1 never
take the same value in an execution of the loop. On the other hand, in
the case of a recursive procedure as the following, the assignment may
cause dependences, because the formal parameter  may take the same
value more than once in a sequence of recursive invocations.

procedure F(i:integer) ;

begin
A[2*i+1] := --+;
if (i>1) then begin
F(i-1);
F(i-2)
end
end;

Generally, it is hard to distinguish the existence of dependence
caused by global array variables in recursive procedures because of the
complexity of the behavior of values of the formal parameters. But in
actual programs, since programmers cannot write down so complicated



86 CHAPTER 3. THE BREADTH-FIRST METHOD

program such as behavior of the arguments is too hard to be under-
stood, we believe that in not a few cases arrays in recursive procedures
are used in the following form.

Recursive procedures are often useful to write a program for a
divide-and-conquer algorithmm[1]. In these procedures the following pat-
tern of usage of arrays is often seen.

1. On each environment, for a certain given range of index [LB,UB]
of array A. do some works.

2. Divide the range [LB,UB] into n sections i.e.
[LB,,UBy], [LBs,UB], ..., [LB,,UB,]
where LB<LB,;, UB; <LB,, ..., UB,-; <LB,, UB, <UB.

3. Give each section to each child environment.
4. Do the above recursively.

Procedures for quicksort, mergesort are good examples of such pro-
cedures. Note that such procedures are suitable for the breadth-first
vectorization because dependences exist only on ancestor-descendant
relationship in the environment tree.

Generally, when a type-2 recursive procedure has at least one state-
ment to write to an array, with the following algorithm we can judge if
the procedure is suitable for the breadth-first vectorization or not. (see
also Figure 3.33 and Figure 3.34.)

Step-1 Check dependences via arguments and return values between
brothers environments, and if they do not exist, normalize the
procedure as Figure 3.14.

Step-2 For each array used in the procedure, detect lower and upper
bounds of indexes in reference. They are often expressed as func-
tions of arguments as follows,

farilay) Lower bound in reference of the index of array A
Jarul@y) Upper bound in reference of the index of array A
faar(ay) Lower bound in assignment of the index of array A
faau(@y) Upper bound in assignment of the index of array A

3.8.

ENVIRONMENT DEPENDENCE ANALYSIS

procedure msort(left, right: integer); { ay = (left.right) }

var i, j, middle, k: integer;
begin
if (left < right) then begin s
middle := (left¥right) div 2; { *2 }
msortCleft, middle) ; msort(middle+1,right); { *3 }
i 1= left; ji=middle + 1;
for k := left to right do begin
if (i > middle)
and (j <= right{ **}) then begin
tmplk] := Alj; { *4 }
J =4
end else if (j > right)
and (1 <= muddle{ **}) then begin
tmp[k]l := Ald; { *5 }
1= 4l
end else if (A[i]<=A[j]) then begin
tmplk]l = Alil; { *6 }
S §
else begin
tmplk] = A[D; { *7 }
j =gl
end
end;
for k := left to right do
A[K] := tmplk] %8
end
end

Figure 3.33: Example for divide-and-conquer detection. (cont.)



88

CHAPTER 3. THE BREADTH-FIRST METHOD

e From lines labeled by {*¥1} and {*2}, we can get
left < middle < middle + 1 < right.
e From lines labeled by {*3}, a = (left,maiddle), we can get
ay = (middle + 1, right).

e From lines labeled by {*4} {*5}.{*6} and {*7}, we can get

fanlleft.right) = left. faru(left.right) = right.
e From lines labeled by {*8}, we can get

famlleft.right) = left. fazu(left.right) = right.

e From the above, we can get

[fArl(‘fi )s f.-!ru{”_i }]

[f;irl(fi"?}-f.-h'u{”-‘:!}]

thus

[f,-‘!rf[di ). f,-'lru{ﬁ-i ]] n If.f'trl(dé)- ff!f'“(aé]]
[fAr'l'[fﬂ }- f.»’aru(“-; )] € [fArI(ﬂ'-})- fAr'u(ﬂ} }]
lf.f'n'l'(ﬂ-‘:!)- f.-'\ru(d".".‘” e [f.-irl(ﬂ})' fArn(”-}]]

[reght, middle]
[middle + 1,le ft]

o

Il

and
f—”ﬂ‘f(u'-}]vs fﬂﬂf(“}) < anu(a'-.’f) < fx'll"u(“‘}}-

Figure 3.34: Example for divide-and-conquer detection. (cont’d)

3.8. ENVIRONMENT DEPENDENCE ANALYSIS 89

where aj denotes formal arguments expressed as a vector. Then
on each environment this procedure refers array A with a range
of indexes [fani(ay),faru(ay)] and assigns the array with a range
of indexes [faa(a}),faau(@y)].

Step-4 Check the following conditions.
Jar(@y) < faalay) < faaulay) < farulay)
[Fari(@3)y Fara(@)] O [fari(d5), faru(@))] = & for all @, j,i # )
[far(@), faru(ai)] € [far(a}), faru(ap)] = ¢ for all 2

The second and third conditions guarantee that if two environ-
ment do not have ancestor-descendant relationship. they do not
refer the same range of the index. Then with the first inequality,
we can guarantee that each environment never refer any values
which is assigned by the other environments except its ancestors
or descendents. Hence if the above conditions are always satis-
fied for all arrays used in the procedure, we can judge that the
procedure is snitable for the breadth-first vectorization. O

In Stepd, to evaluate these inequalities, we have to analyze data and
control flow of the procedure, and gather all possible informations. It
is theoretically possible but not easy to do this automatically by a
compiler in general cases. In the case of Figure 3.33, the compiler have
to know the fact that the inequality left < (left + right)/2 < right
is always satisfied. Furthermore, conditions labeled by {**} are not
necessary, but without these artificial conditions, it is not easy to detect
the range of values of 7 and j automatically. This type of analysis still
remains as our future work.

3.8.4 Additional Remarks

It is obvious that if the target procedure contains some statements
to call the other procedures which have side effects, the latter proce-
dures cause dependence and the target procedure is not suitable for the
breadth-first vectorization.



90 CHAPTER 3. THE BREADTH-FIRST METHOD
3.9 The Breadth-first Parallelization

The breadth-first vectorization method stands on a strategy to detect
the parallelism between environments, consequently it is also available
for the other parallel architectures. Here we argue an implementation
for PVP machines.

It is obvious that when a loop has no loop-carried dependence and
is vectorizable, the loop can be converted into a doubly nested loop
where the outer loop can be parallelized and where the inner loop can
be vectorized. In the case of a recursive procedure vectorized with
breadth-first parallel execution, most part of the vectorizable loops can
be executed similarly, but there is a small problem in memory man-
agement. As mentioned, we used “vector load expanding™ and “vector
store compressing” instructions to avoid fragmentation of the storage,
but these instructions cannot be executed in parallel.

To solve this problem, we propose an alternative way as shown in
Figure 3.35. Here we use instructions called “vector element sum”™’
to count the number of the child environments. This instruction can
be executed in parallel, and after that, vector load expanding and store
compressing instructions can be executed in parallel. The vector sum
operation is a rather fast operation within the vector macro operations,
and therefore the overhead of this instruction is considered to be small.
However, each sum of child environments has to be broadcasted to all
processors and the overhead of this communication is not not to be
ignored on some architectures.

As another solution, we can also consider to divide the environment
tree into subtrees. Since these subtrees are considered to be indepen-
dent, we can assign each subtree to each processor. In this case, mem-
ory managements are done separately on each processor. The main
benefit of this method is that each processor do not have to do any
synchronization until the whole execution of the subtree is done. On
occasions, by some user-directives and so on, if we can know that the
shape of the environment is balanced, the processors work effectively in
parallel. But on the contrary, the numbers of nodes of each subtree are

*This is a term of S-820/3800. In VP-400/2600 and SX-2/3, the instruction is
called “vector sum”.

3.9. THE BREADTH-FIRST PARALLELIZATION 91

Processor 1 Processor 2
Repont the

number of data
1o each other

-‘--':f‘-‘h-

Shared Memory

-
L}
]

Figure 3.35: A technique to execute vector load expanding and vector
store compression in parallel.

function Ngueens( iinteger; X,A.B.C : table: var ANS : table-array ) :
winleger;
var jkinteger;
AA.BB.CC.XX : table;
begin
k= 0;
for j := 1 to N do
if Aj] and Bli+)] and C[i)] then begin
AA = A1 BB = B €€ = G} XX = X;
XXH == #
AA[)) := false; BBli+)] = false; CClij] = false;
if <N then
k = k+Ngueens(i+1, XX, AA,BB,CC,ANS)
else begin
k= k41
ANSIK = XX[i] { Save the answer }
end
end
end;
Nqueens = k;
end;

Figure 3.36: N-queen for the breadth-first vectorization



92 CHAPTER 3. THE BREADTH-FIRST METHOD

not always balanced therefore some kind of job-scheduling technique is
required. It is left as our future work.

3.10 Performance Evaluation

3.10.1 Opportunities of vectorization and paral-
lelization

As described in the former sections, the target procedure of the breadth-
first vectorization must be a type-2 or type-3 procedure. Moreover,
there must not be any dependence between environments except ancestor-
descendant relationship.

For example, most procedures based on divide-and-conquer algo-
rithms often have no dependence to prevent the breadth-first vector-
ization or parallelization. We have a conjecture that if a procedure is
classified into type-2 or type-3 procedures and if the actual arguments
do not depend on any of return values of the recursive calls and any
values of elements of external arrays. we can vectorize the procedure
with the breadth-first method. It is not easy to implement automatic
detection of the dependence via external arrays. For example, proce-
dures to solve N-queen problem are natively written as in Figure 3.3,
and it is hard to analyze the dependence. But if it is written as in
Figure 3.36, compliers can easily detect independency and users will
enjoy its high acceleration.

3.10.2 Execution speed

As described in the previous chapter, execution speed in vector super-
computers owes much to the vector length and the vectorization rate.
The breadth-first vectorization can vectorize almost all of the state-
ments in the procedure body if it is applicable, and we can get enough
vectorization rate.

The vector length is just the same as the number of environments
at the same depth of the tree. Accordingly it depends on the shape of
environment tree. In the worst case, if the environment tree has only
one environment on each depth, then the converted procedure would

3.11. RELATED WORKS 93

be executed with the vector length of only 1 and this might cause not
acceleration but deceleration. But in most cases, at an enough deep
level of the environment tree, the number of parallel environments is
enough large to expect acceleration of ten times or more.

When amount of operation on each environment is homogeneons
and the shape of the environment tree has enough width, the breadth-
first vectorization works successfully. In the case of executing proce-
dures for divide-and-conquer algorithms, amount of the operations on
shallower environments may larger than that of deeper environments
on the tree. The number of shallower environments is generally less
than that of deeper environments and it causes shorter vector length.
In this cases, instructions on shallower environments are executed many
times in shorter vector length. It means that we cannot expect much
acceleration. But the execution speed is estimated to be faster than
that of scalar execution because of the high vectorization ratio.

3.11 Related Works

Here we compare this study with related works.

There are some works to optimize recursive procedures. The tail
recursion elimination is well known and widely used to optimize recur-
sive procedures of which recursive calls arise only at the end of the
procedure body. Because this method is easy to implement and always
useful to eliminate unnecessary codes, it is actually used in various
existent compilers, in particular LISP compilers[30]. The depth-first
vectorization method includes the tail recursion elimination because a
procedure with a tail recursion is considered to be in a special case of
type-1 procedures, which have no Sy, instructions in Figure 3.8. We
also argued the opportunities of vectorization while they are leave out
of consideration in the tail recursion eliminations.

Optimizing recursive procedures are mainly studied on functional
programming languages. There are some theoretical works to trans-
form recursive procedures preserving their semantics and to obtain the
optimal procedure. For example, Vuillemin[51] showed that assuming
a simple LISP-like language we can eliminate redundant operations in
recursive procedures automatically. For example, procedure fib in Fig-



94 CHAPTER 3. THE BREADTH-FIRST METHOD

ure 3.32 contains many redundant operations because the same value of
the argument arises many times within an environment tree. Vuillemin
proposed the way to transform the procedures to remove this redun-
dancy. We have not treated such optimization in this thesis. But
Vuillemin’s work is considered to be hard to apply to the conventional
programming languages such as Pascal.

According to a survey of existent vectorizing C compilers on Con-
vex and Cray by Smith(38], neither of them seems to treat recursive
procedures. The vectorization methods of this thesis are considered to
be applicable to C.

Some studies have shown the efficient implementation of divide-
and-conquer algorithms on vector or parallel processors. In particular,
Kanada[18] showed a ‘schema’ to solve searching problems on vector
supercomputers efficiently. Our work make it easy to write a program
based on the schema. Giirsoy and Kalé[11] proposed to introduce a
new programming structure to directly express the divide-and-conguer
algorithms into C. But the compiler never vectorize or parallelize au-
tomatically.

3.12 Experimental Results

We are now implementing the depth-first vectorization and the breadth-
first vectorization and parallelization on our compiler V-Pascal version
3. We have confirmed that the transformation of intermediate codes
is done but we have not obtained the object code. We summarize
the results of simulations with FORTRAN codes as the experimental
results, and the results obtained by our previous version of compiler,
V-Pascal Ver.2.

The depth-first method owes the acceleration to vector-macro in-
structions. In particular, the vector instruction to operate First Or-
der Iteration in Figure 3.1 often appears in both of Sj..q and S
in Figure 3.8. The execution speed of this instruction is important to
estimate the acceleration which will be obtained by the depth-first vec-
torization method. Table 3.2 shows the benchmarking results of the
VITRD instruction, i.e. the instruction to operate First Order Iter-
ation on S-820/80[19]. The results show that VITRD executes more

3.12. EXPERIMENTAL RESULTS 95

Table 3.2: Benchmarking results of VITRD instruction on S-820/80

A(I) = 1
DO 10 I =1, N
A(I+1) = 2 * A(I) + 1
10 CONTINUE

length of the loop 16 32 64 128 | 256 | 512 | 1024 | 2048

time for scalar execution(S)(u sec.) | 2.32 | 4.50 | 885 | 176 | 350 | 69.8 141 282
time for vector execution(V)(4 sec.) | 1.48 | 2.11 | 3.25 | 5.

53 | 10.2 | 19.4 20.7 39.9
VPU time in Vo sec. | 1.02 | 1.60 | 2.75 | 5.05 | 9.66 | 18.9 2000 39.2
S/V | 158 | 214 | 2,72 | 3.18 | 3.43 | 3.60 6.81 T7.07

t VPU stands for Vector Processing Unit.

Table 3.3: Execution time of the procedure SUM.

function SUM(K: nteger )
begin
if K = 0 then SUM := 0
else SUM := SUM(K-1) * K
end;

depth of recursion 16 32 64 128 256 512 | 1024 | 2048

time for scalar execution(S)(p sec.) | 4.72 | 870 | 16.7 | 32.6 | 64.4 129 | 257 514 |
time for vector execution(V )(p sec.) | 3.90 | 6.07 | 10.7 | 194 | 36.7 | 72.1 142 282
VPU time in V(p sec.) | 0.94 1.18 1.69 | 2,72 | 4.76 | 9.07 17.4 34.2
SV 1.21 1.43 1.56 | 1.68 | 1.75 1.79 1.81 1.82

time for scalar execution

psec.) | 32.8 | 46.9 | 74.0 130 241 463 914 | 2120

on V-Pascal Ver.2 (

than 5 times faster than the scalar instructions if the vector length is
enough long.

Table 3.3 shows an example of type-1 procedures and its execu-
tion time on S-820/80. This procedure is vectorized by the depth-first
method. The execution time with vector codes is obtained by simu-
lations with FORTRAN codes. The execution time for scalar is done
with V-Pascal version 2. It is estimated that after the implementation
of optimization modules, V-Pascal version 3 generates almost the same
code as that of the simulation. We also show the execution time of
the procedure transformed by the depth-first method but forced to be




96 CHAPTER 3. THE BREADTH-FIRST METHOD

executed with scalar instructions. The results show that the procedure
is accelerated by the depth-first method even if the procedure is not
vectorized, If the procedure is vectorized, we obtain much greater ac-
celeration. The execution speed with V-Pascal version 2 is very slow
hecause of the overheads of recursive calls. It follows that we can get
large acceleration only by the transformation by the depth-first method.

Table 3.4 shows the results from execution of the procedure lsum
in Figure 3.23 on S-820/80. Results after vectorization are obtained
by FORTRAN simulations. When we use the procedure, the shape of
the environment tree is the same as that of the tree constructed with
the arrays left and right. We gave the following types of trees to the
procedure on benchmarking.

Complete binary trees It is ideal for the acceleration because the
number of environments of each depth is maximum. This number
directly corresponds to the vector length when executed by the
breadth-first vectorization.

Linear lists It is the worst case because the number of environment
on the same depth is always 1.

Fibonacci trees[28] A sort of AVL tree[29]. This is considered to be
an average case.

The results shows the improvement of the execution speed up to 50
times when the lengths of the vectors are enough long. Even if the
lengths of the vectors are only one, the execution speed is not less than
the half of that of the execution by scalar. This results is considered
to be very good and the breadth-first vectorization method is worth
implementing nevertheless its difficulty.

Table 3.5 shows the results from execution of the same procedure on
S-3800/480°, Results after vectorization are obtained by our previous
version of compieler, V-Pascal version 2. Compared with the results
from FORTRAN simulation, the acceleration is not good as expected.
One of the reasons is considered to be of the weakness of optimiza-
tion on V-Pascal version 2 because it lacks the facility to obtain opti-
mal scheduling of the vector pipelines. We are now implementing this

SComputer Centre, University of Tokyo.

3.12. EXPERIMENTAL RESULTS 97

Table 3.4: Execution time of the procedure in Figure 3.23 (Fortran sim-
ulation).

(a) The results when the environment tree is a complete binary tree

height of the environment tree 4 6 8 10 12 14 16

total number of environments 15 63 | 255 1023 | 4095 | 16383 65530

time for recursive execution( i)( e sec. ) 55 | 138 | 508 | 2029 | BOTG | H277H | 255523
maximum vector length 8 32 128 512 | 2048 8162 32768

time for scalar execution(S)(pu sec.) 52 | 122 | 389 1615 | 7001 | 35912 | 220144
time for vector execution(V)(j sec.) 55 72 91 123 242 1007 5081
VPU time in Vi sec.) 16 26 37 61 172 926 1961

R/V | 100 | 192 | 558 | 1650 | 33.37 | 52.41 | 5029

(b) The results when the environment tree has only one environment
on each depth.

height of the environment tree 4 6 8 10 12 14 16

total number of environments 4 6 8 10 12 14 16
time for recursive execution( i)(pu sec.) 38 43 50 a7 64 T4 95
maximum vector length 1 1 1 1 1 1 1|

time for scalar execution(S)(u sec.) 39 45 51 59 T4 104 137
time for vector execution(V )(p sec.) 56 T2 86 103 | 117 131 151
VPU time in V(u sec.) 16 23 33 41 50 H8 66

R/V | 0.68 | 0.60 | 0.58 | 0.55 | 0.55 | 0.56 | 0.63 |

(¢) The execution time when the form of the environment tree is the same as

that of the procedure fib in Figure 3.32.

height of the environment tree 1 fi 8 10 12 14 16

total number of environments 9 25 67 | 177 | 465 | 1219 3193

time for recursive execution( R){(p sec.) 16 75 | 162 | 385 | 974 | 3990 | 13307
maximum vector length 4 8 22 52 128 326 772

time for vector execution( V' )(p sec.) 54 71 92 108 134 177 272
VPU time in V{pu sec.) 4 14 25 35 48 76 159

R/V | 085 | 1.06 | 1.76 | 3.56 | 7.27 | 22.54 48.92

Benchmarked on S-820/80, Febh.1990




98 CHAPTER 3. THE BREADTH-FIRST METHOD 3.13. CONCLUSION 99

method on V-Pascal version 3 and still working for the improvement of

the performence Table 3.5: Execution time of the procedure in Figure 3.23 (V-Pascal

version 2).

3.13 Conclusion

’ ' § . 218 SR
We have proposed a new method to vectorize and parallelize recursive g % =
r . ! il we =
procedures, We have shown that introducing a concept of dependence =~
of environments, we can convert the procedures and make each set sl S
= s ¥ = "’: r o) ": —
of independent environments to be executed in parallel. We named glBIE 2=
. 3 “ . I . — | — e il st
this method the breadth-first method. The breadth-first vectorization is IR i 10 7 o
: : . . & ol = g P —~ = 23S
applicable for recursive procedures which calls itself many times on each e e ol = Sla|2 >
§ o : ; = 2= 3(Sle =
environment. This is also applicable for parallel architectures such as 2z lz Slz b R =4 [ = 2
A G M 2o bl el gt 2 =173 -
PVP machines. According to the experimental results. we can expect 2|8 e 3 S
f 5 . . . —l s oo
up to 50 times’ acceleration by this method. i|ea| =8 = |S 23| 3
. T|= 5= DN B | B
Our future work is as follows. SR 2R SlelR B|=|8 S
[ = ()
=i = - g wn
o It is required to gather highly detailed information from the pro- § 2| N|R|E ~lolz G15]E E
i ' i 2= =25 e g 2
cedure body for more strict or exact analysis of environments. " it Bl == 825 g
. - —_ -] -
Methods to detect lower and upper bounds of simple variables o b Ry e oy = £ =
hSPecis i B B3 ot cl2|Z 2= g
are especially required. g RBIEE[s|Z E
o= o ola| 2 - g
. : . sl e ghale }
e Implementation of the breadth-first method soon with the above IR i g ol e zl2|= ﬁ
o 00 [T am / 51
analysis. o Py g o - JEE B8 -
Do | E s g
135 e b= ) =] i
e The breadth-first method is considered to be applicable not only =l a2 zl2l8 2 &g s
: - ==l elin]o SITh- =25 &
for VP /PVP machines but also for MPP machines. SIgle 2is)s b bl 5
= —| i :
: ’ —| mla |- 2|65 o
e These two methods are considered to be also applicable to other e el =15 2l 2
languages such as C and Fortran 90, which must be the next g - £
: - : 2| ~|~ 2 zll~ g g
standard language for Supercomputing. We will propose definite IS z =S o 3
methods to apply these methods for this language. E|I5|E | |2 25|85 ]2 5
HEESE HEEES N -
S|818 sI=IE  [E]|gle 22l2 g
- ¥ w |
8[5]3 o|2|2 g|5|5 o|=|2 G
3|55 Bl Blsls B2 -
2|5 3|E= sle 252
5|28 o|Els 5lEE =52 - |
2l2|e2|8 Zlgle 2|2
ElalL 2|2 Bla|n |2
= & = - | - _-E‘ S |
= = = = L =
32| & 2| 2|8
e il




100

CHAPTER 3. THE BREADTH-FIRST METHOD

Chapter 4

An Automatic
Vectorizing /Parallelizing
Pascal Complier V-Pascal
Version3

4.1 Introduction

With the arrival of Fortran90, we can now utilize more versatile control
and data structures than FORTRAN77 — for example, while loops,
recursive calls and data structures constructed with pointers — in pro-
grams for numerical computations. Since these structures have been
considered to be fairly helpful for writability and readability of pro-
grams, most of the application programs written in Fortran90 will con-
tain these control/data structures in near future. Therefore antomatic
vectorization and parallelization techniques to deal with these struc-
tures have become a very important issue for supercompilers.

We have already proposed various vectorizing and parallelizing tech-
niques for these versatile structures and some workbench is needed to
verify the efficiency of the compilation methods. For this goal, we
started to develop an automatic vectorizing and parallelizing compiler
named “V-Pascal’. We are now implementing many of our compila-
tion techniques and realizing advanced vectorization and parallelization

101



102 CHAPTER 4. V-PASCAL VER.3

methods on the compiler.
This chapter describes the organization and main features of V-
Pascal. Some of the implemented compilation techniques we have al-

ready proposed are also stated.

4.2 Overview

As yon can see in the compiler’s name, the target language chosen is
Pascal. Pascal is a typical block-structured language which is widely
spread for general purpose. It is equipped with more versatile con-
trol/data structures than FORTRANT7, which has been the only lan-
guage for which supercomputer manufacturers have provided useful
vectorizing/parallelizing compilers. To extend the horizon of vector su-
percomputer usage, we were interested in vectorizing /parallelizing pro-
grams that manipulate data structures other than arravs. Even in the
presence of control structures such as while-loops and recursive calls,
the programs should be vectorized /parallelized. The language Pascal is
eligible for our purpose. Pascal has been used not only for educational
purposes in classrooms but also for real-world problems, for example,
the early TgpXprocessor by D.E. Knuth, the vectorizing Fortran com-
piler construction by an American supercomputer manufacturer, and
the implementation of an operating system for some Japanese mini-
computers. Although the target language is Pascal, the various basic
techniques that have been and will be developed for our compiler will
also be useful for advanced vectorizing/parallelizing FORTRANT77 and
Fortran90 compilers.

Toward “fully automatic” vectorization/parallelization for sequen-
tial programs, basically we have added no language extensions to the
syntax of Pascal to express any parallelism. Therefore, the target pro-
grams for V-Pascal are exactly written in traditional sequential man-
ner. But in some cases parallelism in programs can hardly be detected
by the compilers. To cope with this problem, we introduced compiler
directive facilities which are to use comment lines to indicate data-
dependence information in programs. This style of solution are often
seen in FORTRANT77 compilers provided by manufactures and these
directive facilities can be regarded as language extensions in a sense.

4.3. ORGANIZATION OF THE COMPILER 103

But users can still write most part of programs in sequential manner
and it will greatly helps to utilize vector and parallel supercomputers.

There have been four versions of V-Pascal : Versions 1.0, 1.5, 2.0,
and 3. The first three will be called “early” versions. The early ver-
sions mainly aimed at the study of advanced vectorization techniques,
while version 3, although dovetailing with the early versions in many
aspects, is specifically meant for parallelization of Pascal programs for
Japanese vector multiprocessors such as Hitachi’s S-3800 and highly
parallel machines like Fujitsu AP1000.

This chapter gives only about the most recent version, V-Pascal
version 3. The details of the early versions were described in [43] and

[45].

4.3 Organization of the Compiler

Figure 4.1 gives the organization of V-Pascal version 3 which is now
being constructed. It consists of three phases and the second phase can
be also broken into small analyzing and optimizing modules.

The first phase, Phase 1, parses the source program and performs
syntactic and semantic analysis. After the process, the program will
be converted into intermediate code which is independent of the target
language. Phase 1 is operational only for Pascal at the moment. but
we can support the other languages by constructing Phase 1 for them.

The second phase, Phase 2, is the optimization phase which receives
sequential intermediate code from Phase 1 and outputs optimized, vec-
torized and parallelized intermediate code. This phase consists of a
number of small optimization modules which are the implementations
of vectorization/parallelization methods we have proposed. All of the
modules has an uniform input /output interface; they work as filter pro-
grams to receive and output intermediate code which has the unified
format. This allows to reconfigure the compiler and we can easily add
new optimizing facilities to it. To support analysis performed on each
optimizing module, basic analyzing modules to carry out alias analysis,
data-flow analysis, control-flow analysis and data dependence analysis
between array elements are also included in this phase.

The last phase, Phase 3, converts machine-independent intermedi-



104

CHAPTER 4.

( Pascal source program )

’ Pascal parser

v

( Intermediate code J

Scalar optimization

Medium / coarse grain

parallelization
Transformation of '
recursive procedures .

Transformation of
indefinite loop iterations

Detection of list and tree structures and
transformation of their manipulations |

Vectorization / parallelization
of multiple loops

Vector optimization

Figure 4.1: The organization of V-Pascal Version 3

Y

Vectorized / parallelized
L intermediate code y

1

Object code generation

v
Assembly code for S-3800 )
C source code for AP-1000

V-PASCAL VER.3

l Phase 1

Phase 2

] Phase 3

4.3. ORGANIZATION OF THE COMPILER 105

ate code to machine-dependent execution code. Machine-dependent op-
timization is also performed in this phase. Now two versions of Phase 3
are operational, one of which generates vectorized/parallelized assem-
bly code for S-3800 and the other yields parallelized C source code for
AP1000.

As described in above, intermediate code is used as a unified in-
put/output data format over all phases and modules in Phase 2. The
design goal of intermediate code is as follows.

e Scalar instructions are simple instructions having load-store RISC-
style architecture with unlimited number of registers. Vector in-
structions are also simple instructions of a typical Cray-style vec-
tor processor which has unlimited number of vector registers with
infinite length. The vector-macro operations are also defined to
cover all of vector-macro instruction sets of supercomputers which
are provided by domestic manufacturers.

e Parallel execution primitives are defined in general terms for tightly
coupled vector multiprocessors. Differences between target ma-
chines are absorbed by run-time libraries.

e Control structures are carefully designed. In addition to for-
loops, forever-loops with exit instructions from the middle of
the loops are defined to express while-loops, repeat-until loops
and loops implicitly constructed by if-goto statements. Although
these structures can also be expressed implicitly by goto-statement
of intermediate code, we added these control structures to direct
which part should be vectorized/parallelized in the intermediate
code. Special branch nodes are defined so that multiple alter-
natively optimized codes for the same instruction sequence can
be retained until the choice can be made later in Phase 3. At
the moment. these nodes are implemented as normal conditional-
branch nodes with special conditions which denote that either of
the following paths should be eliminated in Phase 3.

V-Pascal Ver.3 is implemented in C++ while the early versions
are written in Pascal. The main reason of this changeover is that we
found that the object-oriented approach is fairly helpful for us to handle



106 CHAPTER 4. V-PASCAL VER.3

quite complicated data structures used in compilers. In particular,
many graph-shaped data structures are used in our compiler and we
had to write a sequence of pointer manipulation statements to handle
them in Pascal, but using classes of C++, we can neatly express the
sequence in a simple manner. The other reasons to use C++ are that
we wanted to use various utilities to help the development, such as
compiler-compilers (lex and yace) and useful source-code-level debugger
(gdb) which cannot be found for Pascal.

4.4 Facilities of Analysis

Fach of the modules in Phase 2 calls various common analyzing mod-
ules which help optimization, vectorization and parallelization. This
section describes the analyzing facilities with which V-Pascal version 3
is equipped.

4.4.1 Alias Analysis

When two different variables refer to the same location of the memory,
cach of them is called an alias of the other and they are called an
alias pair. In cases alias pairs may exist, an assignment of a variable
may change value of the other variable and it causes misjudgments in
data-flow analysis. Therefore, for precise data-flow analysis, we have to
determine all possible alias pairs. In other words, precise alias analysis
is indispensable before data-flow analysis.

In Pascal, there are two cases which cause aliases. One of them is
the case caused by call-by-reference parameters. When a function or
procedure has two or more var arguments and actual parameters for
them are the same, these parameters are an alias pair, as shown in
Figure 4.2 for example. There are many methods to analyze this kind
of aliases, and Cooper|6] proposed an algorithm for precise analysis of
this problem. We implemented the algorithm on our compiler.

The other case, in which an alias occurs in Pascal, is by pointer
references. When two of pointer variables have the same content as
shown in Figure 4.3, they point the same location of the memory and
that causes aliases. Since the values of these pointer variables cannot

4.4. FACILITIES OF ANALYSIS 107
procedure F(var a,b : integer);

begin

end;
begin

F(e,e); { Ca,b) is an alias pair }

end;

Figure 4.2: An example of alias pairs caused by call-by-reference pa-
rameters

var p,q : Tinteger;
begin

new(p) ;
q := p; { (pt,qt) is an alias pair }

end;

Figure 4.3: An example of alias pairs caused by pointer references

be estimated in most cases, there have been few methods to overcome
this problem and almost all existing compilers give up analysis and
assume that all possible pairs of such variables may be aliases. We have
proposed a method to detect data structures such as linear linked lists
and trees at compile time and through this process we can eliminate
some possibilities of existence of pointer-aliases precisely. The details
of the algorithm are described in [21]. After the analysis, we can also
detect pairs of pointer variables which always refer to different data
structure (for example, as R and 8 in Figure 4.4), and which cannot be
an alias pair.

4.4.2 Control/Data-flow Analysis

Control and data-flow analysis in V-Pascal version 3 is performed by a
traditional method, but the result is more precise than others because



108 CHAPTER 4. V-PASCAL VER.3

P\
B B oo Boans s @ ans 5 s O LI

refers to nodes of the same linear linked list — (P],Q]) may be an
alias pair.

a5 O

i
O—O——C0O—C0O——C0O ..

Q

O

LS w4

refers to nodes of different linear linked lists. — (R7,S7) cannot be
an alias pair.

Figure 4.4: An example of the detection of aliases of pointer variables

4.4. FACILITIES OF ANALYSIS 109

of the existence of advanced alias analysis facilities.

The results are represented in D-matrix[43]. It takes a hierarchi-
cal structure so that dependences between procedures/functions, those
between loops plus basic blocks, and those between intermediate code
statements are represented by the D-matrix. In other words, the par-
allelism of various granularities are designated by the same data struc-
ture. An example is shown in Figure 4.5.

4.4.3 Value-Range Estimation of Integer Variables

It is a well-known problem that dependence analysis of arrays is ob-
structed with the existence of an array subscript expression which
contains some variables whose values cannot be determined statically.
Therefore it is important to estimate the value range of an array sub-
script expression at each step of execution to raise the compiler’'s power
for dependence analysis for vectorization and parallelization. This in-
formation acquisition is done with data-flow analysis, and the relevant
information is appended to integer variables and temporaries of the
intermediate-code statements. The detail will be described by a paper
in preparation.

4.4.4 Dependence Analysis of Array Subscripts

Dependence analysis of array subscripts is essential for automatic vec-
torization and parallelization. There have been many proposals of
methods to perform this analysis precisely and efficiently; one of the
most famous method is the Omega test by W.Pugh([36]. We also have
an original approach for this analysis which is implemented on our
compiler[23]. Our method can analyze nested loops accurately, and in
most cases, in polynomial time of the number of variables. When loop
bounds and array subscripts are linear expressions of the surrounding
loop control variables, our method is exact, i.e., the power of analysis
is as same as that of Omega-test. When loops have symbolics, our
method tries to find the range of the symbolics that may cause de-
pendences preventing vectorization or parallelization, so compilers can
produce conditions to judge the possibility of vector or parallel exe-
cution at the execution time. We also proposed a method to analyze



110 CHAPTER 4. V-PASCAL VER.3 4.5. FACILITIES OF VECTORIZATION/PARALLELIZATION 111

loops with loop bounds and array subscripts which contain non-linear

expressions.
The outline of our method is as follows. The dependence analysis
procedure P; of arrays is equivalent to the problem of obtaining integer solutions of
procedure (); simultaneous Diophantine equations and inequalities. We can easily
begin check the existence of real solutions by integer programming which
ik takes only the polynomial time of the number of the variables, and after
for ... do begin { = block B} that we obtain a convex hull which expresses a space of the real solution
S and may contain integer solutions. Then we perform exhaustive search
Sy of an integer solution around each apex of the convex. In the worst
Sy ; cases, this process takes the exponential time in the number of variables.
end; But we think that it is not a disadvantage of our method. The reason
C; is shown using Figure 4.6. This is a typical solution space that both
end; integer solutions and real solutions exist. As shown in the figure, in
begin most cases when a real solution exists, integer solutions also exist, and
Qs at least one of them is expected to be at near an apex of the convex
end; (P in the figure), or the apex is an integer solution itself (Q). These
solutions will be detected in short time of which the order is about the
(a) A sample program. polynomial time of the number of the apexes. Moreover, even when
no integer solutions exist while the real solution exists, which is a rare
(This grid indicates that Q depends on P.) case, we can also expect that the convex is small enough to check all of
possible integer solutions quickly.
P Q PR = TR 51 53 S
| : ol Wil 43 Lo i
P mrsparrzes ® A-—r—-@- Sy rc== 4.5 Facilities of Vectorization/Parallelization
) 1 ] ] 1 i ]
| . . oo
E {_‘ B "-:r" . _, Sz "-:r-"?“? As mentioned before, Phase 2 of V-Pascal version 3 consists of many
5 S i gyt -tetaticne §; ~=~t=-—2c--4) small optimizing modules which realize our proposed parallelizing/vectorizing
: ' OF RS Ve, Wy a1 methods. This section describes some of the methods we proposed and
Procedure level Basicblock/loop level Intermediate code level implemented.

(b) A sample D-matrix for (a)
4.5.1 Vectorization/Parallelization of Multiply-nested

Figure 4.5: An example of D-Matrix Loops

Most of the compilers offered by supercomputer manufacturers can
only vectorize inner-most loops of multiply-nested loops, and paral-
lelize the outer loops. But we have already proposed a method to




CHAPTER 4. V-PASCAL VER.3

112
i i i I I i I i
i i i 1 i i ' |
T AU i Tl T sl i il e ] |t 1
' I i 1 i I i
| i i I F) I i
i i i i
g e e Il el
| I i
: i 1
| | 1
e [ = it =ip=
i 1 I
i I '
i 1 '
S g o
i i '
i ! 1
i i e i
e e g =
' i i i
' ! i 1
I 1 ] |
s = fr ! r =
1 i I 1 | I
' ' I i i I
1 [ 1 I 5 I I
i T e o 1S5 e i r r sl
i 1 ' i 1 CJ 1 i
i ' ' 1 1 i i
i | 1 i i 1 | 1
T g e e e e ey e e 13 Ve | B ey e e
1 1 1 i 1 i i i
i : I i 1 | i i
i | | i 1 | i i

- o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e

= solution space
integer solutions

Figure 4.6: An example of solution space

4.5. FACILITIES OF VECTORIZATION/PARALLELIZATION 113

for i:=1 to 5
for j:=1 to 1
swaliygl: .
Al e Yreduce
{1,2,2,3,3,3,4,4,4,4,5,5,5,5,5};

vill :=
{1,1,2,1,2,3,1,2,3,4,1,2,3,4,5};
for k:=1 to 15
soal webkElLs wilk) 1.«

Figure 4.7: Reduction of a multiply-nested loop into a single loop

reduce multiply-nested for-loops into equivalent single loops which are
then vectorized by extensive use of vector indirect addressing [43]. An
example is shown in Figure 4.7. As we have shown in [47], recent
high-speed vector supercomputers tend to have large Njy./[14] values,
therefore the reduction is efficient to make vectors longer and obtain
higher performance.

4.5.2 Vectorization of While Loops

While traditional FORTRAN 77 has only DO-loops to express loop
structures, Pascal has not only for- loops but also while and repeat-
until loops. Since we cannot determine the number of iteration for
while and repeat-until loops (therefore call them indefinite loops)
even at the entrance of the loop in execution — in other words, we
cannot determine the vector length even in execution time — we have
to make some tricks to vectorize these loops. Wolfe proposed two ap-
proaches to cope with this problem : one is called loop distribution and
the other is strip-mining [52]. We have proposed a hybrid method of
them to treat these loops more neatly[39] and obtained high speedups
for more generalized cases. Wolfe also discussed how to vectorize nested
loops of which the inner loop is an indefinite loop and the outer loops



114 CHAPTER 4. V-PASCAL VER.3

is a for-loop, by interchanging these loops and vectorizing only the
for loop, but this method is not efficient when the vector lengths are
too short. We also proposed a method to cope with this problem inter-
changing these loops dynamically to keep the vector length long enough
[24].

4.5.3 Vectorization and Parallelization of Recur-
sive Procedures

As shown in the previous chapter, we have proposed a method to vec-
torize and parallelize recursive procedures, named breadth-first method.
We are working to implement this method with another method, depth-
first method mentioned also in the previous chapter.

4.6 Conclusion

An overview was given of the current status of the V-Pascal version
3 compiler. In the V-Pascal Version 3 compiler, special techniques
have been developed even for Algol-like features, so that they may
also be useful for the full-fledged vectorizing/parallelizing compilers
for the languages Fortran 90 and C. Although the initial target ma-
chine has been a tightly coupled vector multiprocessor like Hitachi’s
S-3800, a slight reconfiguration of compiler components allows paral-
lelization for distributed-memory parallel computers. To demonstrate
this, we have provided a compiler called V-Pascal /DM [50] for Fujitsu
AP1000, to which the compiler output is fed in the form of parallelized
C source code. V-Pascal/DM performs data-parallel execution based
on an SPMD model.

Chapter 5

Conclusion

In this thesis, we have discussed the construction of an antomatic vec-
torizing and parallelizing compiler for a block-structured language Pas-
cal to utilize VP and PVP supercomputers for non-numerical applica-
tions.

In Chapter 2, the performance of load/store instructions on each
VP /PVP supercomputer was evaluated. In particular, the performance
of vector indirect load /store instructions was precisely discussed. Since
the performance of indirect access dominates the performance not only
of numerical applications but of non-numerical applications which treat
pointers, the performance evaluation of indirect load/store instructions
is very important to construct a compiler for a general-purpose lan-
guage. We have developed a benchmarking program for this purpose
and obtained interesting results. According to the results, some ma-
chines such as S-820/3800 showed good performance in indirect ac-
cess even when the list vector indicates irregular access of the memory.
These machines are considered to be effective for running non-numerical
applications written in block-structured languages.

In Chapter 3, we proposed a new method to vectorize and paral-
lelize recursive procedures. Since recursive procedures are often seen
in programs written in block-structured languages, this control should
be also regarded as targets for automatic vectorization and paralleliza-
tion. But there have been few researches for this subject. We have
proposed the breadth-first method and have shown that some recursive
procedures will be greatly accelerated by this method. We have also

115



116 CHAPTER 5. CONCLUSION

pointed out the difficulty to distinguish the recursive procedures which
can be applied the breadth-first method, and discussed some ways to
cope with this problem.

In Chapter 4, we presented the overview of our automatic vectoriz-
ing and parallelizing compiler V-Pascal version 3. n the V-Pascal Ver-
sion 3 compiler. varions analyzing, vectorizing and parallelizing tech- Bibliogra h
niques have been developed even for Algol-like features, so that they p y
may also be useful for the full-fledged vectorizing/parallelizing compil-
ers for the languages Fortran 90 and C.

Future works and open questions of this study is as follows: (1] Aoy KN Bonezott, T and Ulkman, Y. Mhe Desion and Anal.

¥ y - g o 1Q Inaloys Y
e With the recent advance of device technologies, the execution ysis of Computer Algorithms, Addison-Wesley, 1974.

speed of processors has been rapidly progressed. This progress is 2]
said to last for the next ten years or more. Contrarily, the perfor-
mance of memory devices will not be improved so rapidly. As the
result, the performance of processors will become not to match 3]
with that of main memory in near future. The author believes
that the vector load/store architecture will be an answer to cope

Aho, AV, Sethi, R. and Ullman, J.D., Compilers — Principles,
Techniques, and Tools, Addison-Wesley, 1986.

Backus, J., From Functional Semantics to Program Transforma-
tion and Optinuzation, Proc. of the International Joint Confer-
ence on Theory and Practice of Software Developement, Springer-

with this problem. If this conjecture is true, many techniques Verlag, pp.60-91, 1985
obtained throughout this research will become useful. Whether
this conjecture is true or not is remained as an open question. [4] Banerjee, U., Dependence Analysis for Supercomputing, Kluwer

e We have limited the application of the breadth-first method to Asademic Eublisher, 1900,

certain patterns of recursive procedures. Our future work is to [5] Convex Corp., World Wide Web document
relax this restriction as weak as possible. http://www.convex.com, Jul 1995
o To accomplish the implementation of the compiler is still left as 6] Cooper, K.D., Analyzing Aliases of Reference Formal Parameters,

a future work. S P 5 : =
A Conf. Rec. Twelfth ACM Symposium on Principles of Program-

ming Languages(Jan.), pp. 281-290. 1985.

[7] Cray Research Inc., Cray Y-MP Manual : CF77/Standard C Fea-
tures and Optimization Rev.D.

(8] Cray Research Inc., World Wide Web document
http://www.cray.com, Jul 1995.

[9] Flynn, M.J., Some computer organizations and their effectiveness,
IEEE Trans. Comput., C-21, pp.948-960, 1972.

11 B




118

[10]

(1]

[12]

[13]

[14]

IIL':]

[16]

(17]

[18]

[19]

[20]

21

BIBLIOGRAPHY

Fujitsu Ltd., FACOM VP series Manual of the Hardware Facilities
(the 4th edition), 1987. (in Japanese)

Gursoy, A. and Kalé, L.V., High Level Support for Divide-
and-Conquer Parallelism, Proceedings Supercomputing 91,
ACM/IEEE, pp.283-292, Nov. 1991.

Hayama, S., Automatic Vectorization of Nested Loops with Com-
plex Control Structures, Master thesis, Dept. of Information Sci-
ence, Kyoto University, 1987. (in Japanese)

Hitachi, Ltd., HITAC S-820 Processing Unit Manual, 1988. (in
Japanese)

Hockney, R. W. and Jesshope, C. R., Parallel Computers 2, Adam
Hilger, 1988.

Hockney, R.W. and Jesshope, C.R., Parallel Computers 2, 10P
Publishing Ltd., 1988.

IBM Corp., SP2 system architecture, IBM Systems Journal,
Vol.34, No.2 pp.152-184, 1995.

Intel Corp., World Wide Web document http://www.intel.com,
Jul 1995.

Kanada, Y., Keiji, K., and Masahiro, S., A Vector-Processor-
Oriented Schema for for Solving Searching Problems: Parallel
Backtracking Schema, Trans. IPS Japan, Vol.29, No.10, pp.985-
994, 1988. (in Japanese)

Kozuka, H., Automatic Vectorization of Recursive Procedure in
Language Pascal, Master thesis, Dept. of Information Science, Ky-
oto University, 1989. (in Japanese)

Kunieda, Y., Study on An Automatic Vectorizing Pascal Compiler,
Doctoral Thesis, Kyoto University, Nov.1990. (in Japanese)

Matsumoto, A., Han D.S., and Tsuda, T., Alias Analysis of Point-
ers in Pascal and Fortran 90, Part I. Dependence Analysis between
Pownter References, in press for Acta Informatica, 1995.

BIBLIOGRAPHY 119

[22]

[23]

[24]

[26]

[27]

[28]

[29]

130)

(31]

Matsumoto, H. et al., Hardware of SX-3 Series, NEC Technical
Journal, Vol.45, No.2, pp.15-27, 1992. (in Japanese)

Mizunuma, 1., Uehara. T., Okabe, Y., Kunieda, Y., and Tsuda, T.,
Data-Dependence Analysis of Nested Loops Containing Symbolics
and Nonlinear Ezpressions, Proc. of the 9th National Convention
of Japan Society for Software Science and Technology (Fujisawa,
Sept. 1992), pp. 485-488, 1992. (in Japanese)

Murai, H., Suehiro, K., Okabe, Y., Kunieda, K. and Tsuda, T.,
Vectorizing while loops by loop interchange, Proc. of the 11th Na-
tional Convention of Japan Society for Software Science and Tech-
nology (Osaka, Mar. 1994), pp.65-68, 1994 (in Japanese).

Murayama, H., Fukuta, K., and Yamada, M., Hitachi S-3000 Se-
ries Supercomputer, Its Operationg Systems and Hardware, THE
HITACHI HYORON, Vol.75, No.5 pp.15-20, 1993. (in Japanese)

NEC Corp., NEC Supercompter SX-1/5X-2 Manual of the Com-
putational Processor Facilities, 1985. (in Japanese)

NEC Corp., World Wide Web document
http://www.nec.co.jp, Jul 1995.

Nagao, , M., et.al., Iwanami Information Science Dictionary,
Iwanami Shoten, pp.631, 1990. (in Japanese)

Nagao, M., et.al.,, Twanami Information Science Dictionary,
Iwanami Shoten, pp.55, 1990. (in Japanese)

Nagao, M., et.al., Jwanami Information Science Dictionary,
Iwanami Shoten, pp.727, 1990. (in Japanese)

Nakamura, M. and Tsuda, T., A Fast Algorithm for First Order
Recurrences on Vector Supercomputers, Transactios of Information
Processing Society of Japan, Vol.36, No.3, pp. 669-680, 1995 (in
Japanese).



120

[32]

[33]

(34

[35]

136]

(37]

[38]

(39]

[40]

(41]

BIBLIOGRAPHY

Nakamura, M. and Tsuda. T., Methods for Idiom Recognition
by Automatic Vectorizing Compilers, Trans. of Information Pro-
cessing Society of Japan, Vol.32, No.d. pp.491-503, 1991. (in
Japanese),

Nakamura, M., Automatic Vectorization of Operations Which
Have Recursiwve References, Master thesis, Dept. of Information
Science, Kyoto University, 1991. (in Japanese)

Nakata, H., Automatic Vectorization of Complicated Nested Loops
with Conditional Branches, Master thesis, Dept. of Information
Science, Kyoto University, 1989. (in Japanese)

Nikkei Bussiness Publications, Inc., Supercomputing '94 report,
NIKKEI-ELECTRONICS, No.624, pp.19-20, 1994.

Pugh, W.. The Omega Test : a fast and practical integer program-
ming algorithm for dependence analysis, Proceedings of Supercom-

puting 91, pp.4-13, 1991.

Shimasaki, M. Supercomputers and Programming, Kyoritsu Shup-
pan, 1989. (in Japanese)

Smith, L.L., Vectorizing C Compilers : How good are they?,
Proceedings Supercomputing ‘91, ACM/IEEE, pp.544-533, Nov.
1991.

Suehiro, K. and Tsuda, T., Automatic Vectorization / Paralleliza-
tion of WHILE Loops, Proc. 45th Annual Convention IPS Japan
(Tokushima, Nov, 1992), pp. 5-51 & 52, 1992 (in Japanese).

Suehiro, K., Automatic vectorization of while loops, Master the-
sis, Dept. of Information Science, Kyoto University, 1990. (in
Japanese)

Thinking Machine Corp., World Wide Web document
http://www.think.com. Jul 1995.

BIBLIOGRAPHY 121

[42]

[43]

(44]

[45]

[16]

[47]

[48]

(49]

[50]

Tsuda, T. and Kunieda. Y.. Mechanical vectorization of multiply
nested DO loops by vector indirecte addressing, Aspects of Com-
putation on Asynchronous Parallel Processors, Proc. IFIP WG2.5
Working Conf. (Stanford CA. Aug. 1988). Elsevier Science Pub-
lisher, North-Holland, pp.101-110, 1989.

Tsuda, T. and Kunieda,Y., V-Pascal : An Automatic Vectorizing
Compiler for Pascal with No Language Extensions, The Journal of
Supercomputing(Kluwer Academic Publishers), vol.4, pp.251-275,
1990.

Tsuda, T. Numerical Computation Programmang, Iwanami Shoten,
1988. (in Japanese)

Tsuda.T., Design and Implementation of a Vectorizing Com-
piler for the Block-Structured Language Pascal, Supercomputer 46
(VIII-6): 12-21, 1991.

Uchida, N. et al., Systemn Overview of FUJITSU VP2000 Series,
FUJITSU Science and Technical Journal, Vol.27, No.2, pp.149
157, 1991.

Uehara, T. and Tsuda, T., Benchmarking Vector Indirect
Load/Store Instructions, Workshop on Benchmarking and Per-
formance Evalutation in High Performance Computing (Tokyo,
Japan), pp.16-25, 1993.

Uehara, T. and Tsuda, T., Benchmarking Vector Indirect
Load/Store Instructions, Supercomputer, ASFRA, The Nether-
lands, Vol.8, No.48, pp.57-74, 1991.

Uehara, T., Automatic Vectorization of Recurswe Procedures, Re-
port of graduation research work, Dept. of Information Science,
Kyoto University, 1990. (in Japanese)

Umeda. K., Uehara, T. and Tsuda, T., An Automatic Paral-
lelizing Compiler for Distributed Memory Parallel Computer V-
Pascal/DM, Proc. 48th Annual Convention IPS Japan (Kashiwa,
March 1994), paper 5G-1, 1994. (in Japanese)



122 BIBLIOGRAPHY

[51] Vuillemin,J. : Correct and Optimal Implementations of Recursion
in a Simple Programming Language, Journal of Computer and Sys-
tem Sciences, Vol.9 pp.332-354, 1974.

[52] Wolfe, M., Optimizing Supercompilers for Supercomputers, MIT
Press, 1989.

[53] Yabuuchi, K., Mechanical Vectorization of Nested Loops Based on
Data Reference Relations, Master thesis, Dept. of Information Sci-
ence, Kyoto University, 1987. (in Japanese)

[54] Zima, H., Supercomalers for Parallel and Vector Computers, Addi-
son Wesley, 1991,

Acknowledgements

The author would like to express my sincere gratitude to the supervisor,
Professor Takao Tsuda for giving me the oppotunity of this study, and
also for his continuous guidance and encouragements during all the time
of this study.

The author also would like to appreciate to Dr. Yoshitoshi Kunieda
and Dr. Yasuo Okabe for their appropriate suggestions, advice and
helpful discussions. Thanks are also due to Professor. Eiji Okubo of
Ritsumeikan University for his encouradgements and comments.

The author is thankful to all the members of Tsuda laboratory
for their comments and supports throughout this research. This work
would never been accomplished without the related studies throughout
our V-Pascal project.

123



124

Again, I would like to express my gtatitude to all of the supporters
in my mother language.

AROBAE 52 THE, MAOZRTIINE LG TEL il JHk e
M50 % L72- A, SUEBAE TR adR iEM R IR L 5 W T &
LE4, ROl A LIcdABOFEEL LTOMRIES N TLATLL

AR LELCEIEFLCHSEHBD, BOICTHRASE E LK
Ao TR R HS BRI . SRR RBUGHIER  & — Mh B2
MmAED RO E ) Edtv2LE 4. BEHCRMEOMBIZELETTT
HGTis . T M IREEEORRERCBEEILTHERED
ThhenmiadE LA,

. AROBITIchN T LCTHSEME £ LAV a7 R LF
M ¥yE A AR Ml e DR R L £

AlFoeit. itMfRE cABEICHB SN/ V-Pascal 2 22314 712815
MRy RS0 Tt BEOMAICHB SN RERFALDOEL
IR PMELELIT,

KRB 4, V-Pascal 28— 3 > 33234 7 ORBO OMER I
BAFLTE, BFERK, BREKICEALEZTHOEHEELL. 22
THICAM 2R T TRBOELELET, 7, MEOHBMICIRPARER K,
MK, INARRITIR, @EEARKICSRABEEILAOT, T IZEMHL
4, MEBBREBEIELTRUTOZEL O 2DOTHNEMIELLDT,
TRV TR L 3T (BOREE).

ikt SriRdGth, MMM, MG, PIEw, =&k,
AR, MALK, FHHEH, FFARBC., FEEMRE, AMUE—,
i . HHN

o, MIRELETCTHBFEVE LAEMASY LFEMERFASO o
X, EPEOMKICRHERL 5.

V-Pascal Ol L E A mizmnr rawvwE L, s &0 o
fEF OB AN L o 2B LB L B4,

Wefkis, MRAEFELZMELOHB L TLEZvE LALLEEE vHvo 1
R, s LT ndehk - BRICERB L 9. 40, APRHAAEIC
ABZobitedhi W, f-FF, 2FITLHF—- P2 LTCNRDE
ABHBEBBEZRLDL, koS {okANLIZE# LTS,

List of Publications by the
Author

Major Publications

1.

Uehara, T. and Tsuda, T., Benchmarking Vector Indirect Load/Store
Instructions, Proc. of the International Symposium on Super-
computing, Kyushn University Press, pp.134-143, 1991; also in
Supercomputer, ASFRA (The Netherlands), Vol.8, No.48, pp.57

74, 1991.

Uehara, T. and Tsuda. T., A Breadth-Furst Method for Automatic
Vectorization and Parallelization of Recursive Procedures, Proc.
of Joint Symposium on Parallel Processing 1993 (Tokyo, Japan).
pp.135-142, 1993. (in Japanese)

Uehara, T. and Tsuda, T., Benchmarking Vector Indirect Load/Store
Instructions, Proc. of Workshop on Benchmarking and Perfor-
mance Evalutation in High Performance Computing (Tokyo, Japan),
pp.16-25, 1993,

Tsuda, T., Kunieda, Y. and Uehara, T., The Vectorizing/Parallelizing
Compiler V-Pascal, Parallel Language and Compiler Research in
Japan (Edited by Lubomir F.Bic, Alexandru Nicolan and Mit-
suhisa Sato), Kluwer Academic Publishers, Chapter 12, pp.303 -
312, 1995.

Uehara, T., Kunieda. Y. and Tsuda, T.. An Automatic Vectoriz-
ing/Parallelizing Pascal Compiler V-Pascal Ver.3, Proc. of Inter-

125



126

national Symposium on Parallel and Distributed Supercomputing
(Fukuoka. Japan), pp. 206-213, 1995.

Technical Reports

1. Uehara, T., Kunieda. Y. and Tsuda. T., An Automatic Vectoriz-
ing and Parallelizing Compiler V-Pascal Ver.3, Tech. Rep. of 1E-
ICE CPSY94-90, Vol.94, No.384, pp.49-55, 1994. (in Japanese);
also Tech. Rep. of IPSJ 94-0OS-67, Vol.94, No.106, pp.145-152,
1994. (in Japanese)

Convention Records

1. Mizunuma, 1., Uehara, T., Okabe, Y., Kunieda, Y., and Tsuda.
T.. Data-Dependence Analysis of Nested Loops Containing Sym-
bolics and Nonlinear Expressions, Proc. of the 9th National Con-
vention of Japan Society for Software Science and Technology

(Fujisawa, Japan). pp. 485-488, 1992. (in Japanese)

2. Okayama, T., Uehara, T. and Tsuda. T., Eztentions of the Breadth-
First Method for Vectorization of Recursive Procedures, Proc. of
the 48th Annual Convention of IPSJ, 6G-3, 1994. (in Japanese)

3. Umeda, K., Uehara, T. and Tsuda, T., V-Pascal/DM, an Auto-
matic Parallelizing Compuler for Distributed Memory Machines,
Proc. of the 48th Annual Convention of IPSJ, 5G-1, 1994. (in
Japanese)



	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067

