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Parabolic temperature profile and second-order
temperature jump of a slightly rarefied gas
in an unsteady two-surface problem

Shigeru Takata,1,a) Kazuo Aoki,1,b) Masanari Hattori,1 and
Nicolas G. Hadjiconstantinou2

1Department of Mechanical Engineering and Sciences, Kyoto University,
Kyoto 606-8501, Japan
2Department of Mechanical Engineering, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA

(Received 17 October 2011; accepted 9 February 2012; published online 6 March 2012)

The behavior of a slightly rarefied monatomic gas between two parallel plates whose
temperature grows slowly and linearly in time is investigated on the basis of the
kinetic theory of gases. This problem is shown to be equivalent to a boundary-
value problem of the steady linearized Boltzmann equation describing a rarefied
gas subject to constant volumetric heating. The latter has been recently studied by
Radtke, Hadjiconstantinou, Takata, and Aoki (RHTA) as a means of extracting the
second-order temperature jump coefficient. This correspondence between the two
problems gives a natural interpretation to the volumetric heating source and explains
why the second-order temperature jump observed by RHTA is not covered by the
general theory of slip flow for steady problems. A systematic asymptotic analysis
of the time-dependent problem for small Knudsen numbers is carried out and the
complete fluid-dynamic description, as well as the related half-space problems that
determine the structure of the Knudsen layer and the coefficients of temperature jump,
are obtained. Finally, a numerical solution is presented for both the Bhatnagar-Gross-
Krook model and hard-sphere molecules. The jump coefficient is also calculated by
the use of a symmetry relation; excellent agreement is found with the result of the
numerical computation. The asymptotic solution and associated second-order jump
coefficient obtained in the present paper agree well with the results by RHTA that are
obtained by a low variance stochastic method. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3691262]

I. INTRODUCTION

The recent development of small-scale devices has renewed interest in microscale or rarefied
gas flows.1–6 In these flows, the Knudsen number, typically defined as the ratio of the molecular
mean free path to the characteristic length scale of the physical system, is no longer negligibly
small, signaling that the conventional continuum description, namely the Navier-Stokes equation
with the no-slip boundary condition (NS system), does not apply. In such cases, a kinetic approach
(Boltzmann system) is appropriate and is typically used.

The connection between the Boltzmann and the NS systems has been studied since the days of
Hilbert, and a number of useful results have been obtained in the limit of small Knudsen numbers.7–16

Specifically, fluid-dynamic-type sets of equations and appropriate slip and jump boundary conditions
for describing the steady gas behavior in the regime of small Knudsen numbers (the so-called slip
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FIG. 1. Sketch of the problem.

flow regime) have been established11–13 since the late 1960s and early 1970s. For rigorous and
complete descriptions of the general theory of slip flow, the reader is referred to Refs. 2 and 6. In
the present paper, we shed light on a new feature of the jump of temperature that can occur at the
second order of the Knudsen number in unsteady problems. The present work is motivated by the
simulation results recently obtained by Radtke, Hadjiconstantinou, Takata, and Aoki (RHTA), which
will be reported in a separate paper (see also Chap. 7 of Ref. 17), and is intended to contribute to a
growing research topic on the second-order slip (e.g., Refs. 3 and 18–22).

Using a low variance stochastic method,23–26 RHTA carried out numerical simulations of a
slightly rarefied gas bounded by two parallel walls subject to constant volumetric heating. The
parabolic temperature profile associated with the volumetric heating allowed them to evaluate the
second-order temperature-jump coefficient, which, in the case of the Bhatnagar-Gross-Krook (BGK)
[or Boltzmann-Krook-Welander (BKW)] model,27, 28 did not agree with the one predicted (coefficient
d3 in Sec. 3.1.5 of Ref. 6) by the general theory of slip flow for steady problems (Refs. 2,6, and 11).

In order to explain the above observation, in the present paper, we consider a slightly rar-
efied gas between two parallel plates whose temperature grows slowly and linearly in time which,
as we show in Sec. II, can be reduced to the problem studied by RHTA. We subsequently in-
vestigate the behavior of the gas by a systematic asymptotic analysis for small Knudsen numbers
(Secs. III and IV). Our results show that, as expected, the reduced half-space problem that determines
the second-order jump of temperature is new and does not appear in the theory for steady prob-
lems. We also perform numerical computations to determine the second-order temperature-jump
coefficient and the structure of the related Knudsen layer for the BGK model and for hard-sphere
molecules (Sec. V). The solution is compared, not only in the fluid-dynamic region but also in the
Knudsen-layer, with the simulation results that RHTA have obtained by the low variance stochastic
method.

II. PROBLEM

Consider a rarefied monatomic gas between two parallel plates located at X1 = ±D/2 and
kept at the same uniform temperature Tw, where Xi is the Cartesian space coordinate (Fig. 1). The
temperature Tw is uniform on the plates and grows slowly and linearly in time t̃ , i.e., Tw = T0(1 + α̃t̃),
where T0 is a reference temperature and α̃ is a small constant. We will investigate the behavior of
this gas after a long time has passed from some initial state under the following assumptions: (i)
The behavior of the gas is described by the Boltzmann equation (or its model equation such as the
BGK model). (ii) The gas molecules are diffusely reflected on the plates. (iii) The change of plate
temperature during the characteristic time of heat conduction is small, i.e., α ≡ α̃t0 � 1 with t0
∼ ρ0RD2/λ, and thus the equation and boundary condition can be linearized around the reference
equilibrium state at rest with density ρ0 and temperature T0. Here, ρ0 is the average density of the
gas, λ is the thermal conductivity, and R is the specific gas constant, i.e., R = k/m with k denoting
the Boltzmann constant and m the mass of a molecule. (iv) The mean free path �0 of a molecule at
the reference state is much shorter than the distance between the plates D, or, in other words, the
Knudsen number Kn = �0/D is small. Hereinafter, we set the time scale t0 as t0 = D2/�0(πRT0/2)1/2.

Let us denote the time t̃ by t0t, the position X1 by Dx, the molecular velocity by (2RT0)1/2ζ ,
and the velocity distribution function by ρ0(2RT0)−3/2[1 + αt(|ζ |2 − 3

2 ) + φ]E , where E is the
normalized Maxwellian defined by E(|ζ |) = π−3/2 exp(−|ζ |2). By assumption (iii), φ is a small
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quantity and its higher order contributions will be neglected. Then, φ can be sought as a function of x
and ζ that is even both in ζ 2 and ζ 3 and satisfies the following (dimensionless) steady inhomogeneous
linearized Boltzmann equation and the boundary condition:

ζ1∂xφ = 1

ε
L[φ] − εα(|ζ |2 − 3

2
), (1a)

φ = ±2
√

π

∫
ζ1≷0

ζ1φE dζ , ζ1 ≶ 0, x = ±1

2
, (1b)

where ∂x = ∂/∂x, ε = (
√

π/2)Kn, L is the linearized collision operator, and dζ = dζ1dζ2dζ3.
For later convenience, we define the macroscopic quantities and their notation here. The density,

flow velocity, temperature, and pressure of the gas are given by ρ0(1 + ω), (2RT0)1/2(u, 0, 0), T0(1
+ αt + τ ), and p0(1 + αt + P), where p0 = ρ0RT0, while ω, u, τ , and P are defined by

ω = 〈φ〉, u = 〈ζ1φ〉, τ = 2

3
〈(|ζ |2 − 3

2
)φ〉, P = 2

3
〈|ζ |2φ〉, (2)

and the angle brackets denote the following moment:

〈
〉 =
∫


(x, ζ )E(|ζ |)dζ .

Note that τ (more precisely T0τ ) is a perturbation of the temperature from the plate temperature. By
definition, P = ω + τ .

It should be noted that problem (1) is equivalent to the constant volumetric heating problem
studied by RHTA. The present formulation shows that the parabolic temperature profile obtained
in RHTA via a source term in the governing (Boltzmann) equation can be naturally obtained
(no additional source term) by wall temperatures following the time dependence described above.
Therefore, as we show below, the temperature jump observed here and in the work by RHTA is not
covered by the general theory of slip flow2, 6, 11 for steady problems.

The volumetric heating term used in RHTA, −εα(|ζ |2 − 3
2 ), leads to a spatially and temporally

constant increase in the gas thermal energy. This heating (or cooling when α > 0) is similar to the
cooling of the granular gas in that it conserves mass and momentum. However, it is independent of
the gas state, in contrast to the granular gas case. It should also be noted that no essential difference
between heating (α < 0) and cooling (α > 0) exists in the case of RHTA. The constant volumetric
heating (cooling) implies a controlled energy supply (loss) in the gas, which is balanced by the loss
(supply) of energy through the side walls through the heat conduction. In the present time-dependent
problem, the temperature profile is determined by the interplay between the gas inertia and the energy
supply (loss) due to the change of wall temperature. Our formulation shows that, when measured
relative to the time-varying wall temperature, the temperature profile is identical to the heat addition
(loss) case of RHTA.

Because of assumption (iv), ε is a small constant. We will investigate the problem (1) by a
systematic asymptotic analysis for small ε, following Sone’s method.2, 6, 11

III. HILBERT SOLUTION

Putting aside the boundary condition, we seek a moderately varying solution φH (the Hilbert
solution) in a power series of ε:

φH = φH0 + φH1ε + φH2ε
2 + · · · . (3)

Corresponding macroscopic quantities, which we denote by hH (h = P, u, τ , ω), are also expanded
as

hH = hH0 + hH1ε + hH2ε
2 + · · · , (4)
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where hHm (m = 0, 1, . . . ) is defined by Eq. (2) with φ being replaced by φHm. Substitution of (3)
into (1a) leads to

L[φH0] = 0, (5a)

L[φH1] = ζ1∂xφH0, (5b)

L[φH2] = ζ1∂xφH1 + α(|ζ |2 − 3

2
), (5c)

L[φHm] = ζ1∂xφHm−1, (m ≥ 3). (5d)

This is a set of linear integral equations and can be solved from the lowest order, provided that the
following condition is satisfied:

〈
⎛
⎝ 1

ζ1

|ζ |2

⎞
⎠ × R.H.S. of Eq. (5)〉 = 0, (6)

because L[ f ] = 0 has nontrivial solutions f = 1, ζ 1, ζ 2, ζ 3, |ζ |2 (the so-called collision invariants).

A. Outline of the analysis

The solvability condition (6) for Eq. (5a) is automatically satisfied, yielding

φH0 = PH0 + 2ζ1uH0 + (|ζ |2 − 5

2
)τH0. (7)

Let us proceed to Eq. (5b). By the substitution of (7), the solvability condition (6) is rewritten
as

duH0

dx
= 0,

d PH0

dx
= 0. (8)

Thus, Eq. (5b) is reduced to

L[φH1] = ζ1(|ζ |2 − 5

2
)
dτH0

dx
,

yielding

φH1 = PH1 + 2ζ1uH1 + (|ζ |2 − 5

2
)τH1 − ζ1 A

dτH0

dx
. (9)

Here A is a function of |ζ | defined by

L[ζ1 A] = −ζ1(|ζ |2 − 5

2
) with 〈|ζ |2 A〉 = 0.

Next, we consider Eq. (5c). With the aid of Eq. (8), the solvability condition (6) can be rewritten
as

duH1

dx
= 0,

d PH1

dx
= 0, (10a)

−5

4
γ2

d2τH0

dx2
+ 3

2
α = 0, (10b)

where γ 2 is a constant (namely, the dimensionless thermal conductivity) defined by γ 2 = 2I6(A)
with

In(X ) = 2

15
〈|ζ |n−2 X〉.
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Thus, Eq. (5c) is reduced to

L[φH2] = ζ1(|ζ |2 − 5

2
)
dτH1

dx
− 6

5

α

γ2
(ζ 2

1 − 1

3
|ζ |2)A + 6

5

α

γ2

[
5

6
γ2(|ζ |2 − 3

2
) − 1

3
|ζ |2 A

]
,

whose solution is

φH2 = PH2 + 2ζ1uH2 + (|ζ |2 − 5

2
)τH2 − ζ1 A

dτH1

dx
− 6

5

α

γ2
(ζ 2

1 − 1

3
|ζ |2)F − 6

5

α

γ2
Fd . (11)

Here, F and Fd are functions of |ζ | defined by

L[ζ1ζ2 F] = ζ1ζ2 A,

L[Fd ] = −5

6
γ2(|ζ |2 − 3

2
) + 1

3
|ζ |2 A with 〈Fd〉 = 0 and 〈|ζ |2 Fd〉 = 0.

We proceed to Eq. (5d) with m = 3. With the aid of Eqs. (8) and (10), the solvability condition
(6) can be rewritten as

duH2

dx
= 0,

d PH2

dx
= 0, (12a)

d2τH1

dx2
= 0. (12b)

Then, Eq. (5d) simplifies to

L[φH3] = ζ1(|ζ |2 − 5

2
)
dτH2

dx
,

yielding

φH3 = PH3 + 2ζ1uH3 + (|ζ |2 − 5

2
)τH3 − ζ1 A

dτH2

dx
. (13)

Finally, the substitution of this expression reduces the solvability condition (6) for Eq. (5d) with
m = 4 to

duH3

dx
= 0,

d PH3

dx
= 0, (14a)

d2τH2

dx2
= 0. (14b)

If we proceed further, we will obtain for any m ≥ 4

φHm = PHm + 2ζ1uHm + (|ζ |2 − 5

2
)τHm − ζ1 A

dτHm−1

dx
, (15)

and

duHm

dx
= 0,

d PHm

dx
= 0,

d2τHm−1

dx2
= 0. (16)

B. Summary

In Sec. III A, we have obtained a set of fluid-dynamic-type equations for the macroscopic quan-
tities, namely, Eqs. (8) and (10b) for O(ε0); Eqs. (10a) and (12b) for O(ε1); and Eqs. (12a) and (14b)
for O(ε2), and so on.

Since φH0 is a linearized Maxwellian, it satisfies the boundary condition (1b), if we set

uH0 = 0, τH0 = 0 on x = ±1

2
. (17)
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Note that the reference density ρ0 is the average density between the plates, so that the average of
perturbed density ω, which is related to P and τ by ω = P − τ , should vanish. Thus, the quantities
of O(ε0) are obtained from Eqs. (8), (10b), and (17) as

uH0 = 0, ωH0 = − 3α

5γ2
(x2 − 1

12
),

τH0 = − 3α

5γ2
(
1

4
− x2), PH0 = − α

10γ2
.

The above τH0 shows that φH1 is no longer a linearized Maxwellian [see Eq. (9)] and does
not satisfy the boundary condition (1b). The same is true for φH2 [see Eq. (11)]. Thus, by the
analysis in Sec. III A, we cannot determine the gas behavior completely. What we can see from
Eqs. (10a) and (12b) and from Eqs. (12a) and (14b) is that

PH1 = c1, uH1 = c2, τH1 = c3,

PH2 = c4, uH2 = c5, τH2 = c6,

where ci (i = 1, 2, . . . , 6) are (undetermined) constants. Note that the linear dependence of temper-
ature in x vanishes because the temperature should be symmetric in x with respect to x = 0. In order
to find the solution that satisfies the boundary condition, in Sec. IV, we will introduce a correction in
the microscopic boundary-layer (the Knudsen-layer correction) to the Hilbert solution. The analysis
of the correction will determine the constants ci and the structure of the Knudsen layer. If c3 and c6

are nonzero, a jump of temperature at the first- and second-orders of ε exists.
Thanks to the symmetric temperature profile in x, all of τHm, PHm, and uHm for m ≥ 3 are found

to be constant from Eqs. (14a) and (16), and thus the corresponding φHm are reduced to linearized
Maxwellians [see Eqs. (13) and (15)]. Therefore, if we set uHm = τHm = 0, φHm satisfies the boundary
condition (1b) at O(εm). Consequently, the Knudsen-layer correction to be discussed in Sec. IV is
not required at the third and higher order of ε. PHm will be determined again by the constraint that
the perturbed density averaged in x should vanish.

IV. KNUDSEN-LAYER CORRECTION AND THE SOLUTION FOR THE ENTIRE GAP

Because of the symmetry of the problem φ(x, ζ 1, · ) = φ(− x, −ζ 1, · ), it is enough to consider
the correction near the left plate at x = − 1

2 . The correction near the right plate is its mirror image.
We will obtain the solution φ in the form of φ = φH + φK, where φK is the Knudsen-

layer correction, which is appreciable only in the thin layer adjacent to the left plate [thus, ∂xφK

= (1/ε)O(φK)] and is O(ε) because the correction is not required at the zeroth order. Corresponding
correction to macroscopic quantities will be denoted by hK, i.e., h = hH + hK. We introduce the
stretched coordinate η which is defined by η = (x + 1

2 )/ε near the left plate. Then, φK is the solution
of the following problem:

ζ1∂ηφK = L[φK ], (18a)

φK = −φH − 2
√

π

∫
ζ1<0

ζ1(φK + φH )E dζ , ζ1 > 0, η = 0, (18b)

φK → 0 as η → ∞, (18c)

where ∂η = ∂/∂η. It is seen by taking the moment of Eq. (18a), i.e., 〈Eq. (18a)〉, that uK ≡ 0 because
of the condition (18c). Since u(= uH + uK) = 0 on the plate, we see that uH = 0 on the plate and
obtain

c2 = c5 = 0.

Since φK = O(ε), we expand it as φK = φK1ε + φK2ε
2 + · · · and correspondingly hK as hK

= hK1ε + hK2ε
2 + · · ·, where hKm (m = 1, 2, . . . ) is given by Eq. (2) with φ being replaced by
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φKm. Actually, as mentioned in the last paragraph of Sec. III B, the expansion terminates at O(ε2)
in the present problem. Substitution of the expansion of φK into Eq. (18) leads to boundary-value
problems for φK1 and φK2. To be more specific, if we let

ψ (1) = −
(

3α

5γ2

)−1

φK 1, ψ (2) =
(

6α

5γ2

)−1

φK 2, (19a)

β(1) = −
(

3α

5γ2

)−1

c3, β(2) =
(

6α

5γ2

)−1

c6, (19b)

we obtain the following equations and boundary conditions for ψ (i):

ζ1∂ηψ
(i) = L[ψ (i)], (i = 1, 2), (20a)

ψ (i) = I (i) − 2
√

π

∫
ζ1<0

ζ1ψ
(i) E dζ , ζ1 > 0, η = 0, (20b)

ψ (i) → 0 as η → ∞, (20c)

where

I (1) = −(|ζ |2 − 2)β(1) + ζ1 A,

I (2) = −(|ζ |2 − 2)β(2) −
√

π

2
(〈|ζ |Fd〉 + 1

6
〈|ζ |3 F〉) + Fd + (ζ 2

1 − 1

3
|ζ |2)F.

The solution of the half-space problem (20) exists uniquely and the constant β(1) (or β(2)) is
determined uniquely together with the solution ψ (1) (or ψ (2)).10, 29–31

The coefficients −3α/5γ 2 and 6α/5γ 2 in Eq. (19) are the first and second derivatives of tempera-
ture τH at the left plate. Accordingly, ψ (1) (and thus φK1) is seen to be the classical temperature-jump
problem, which has been studied by various authors (e.g., Refs. 28, and 32–35). On the other hand,
ψ (2) is the solution of the problem of jump caused by the second derivative of temperature with
respect to x, which is, however, different from the jump problem caused by the second derivative of
temperature predicted by the theory for steady problems.

The fact that the amount of temperature jump caused by the second derivative of temperature
is different depending on whether the problem is unsteady or steady may appear to be paradoxical.
According to the theory for steady flows (Refs. 2 and 6), the temperature field satisfies the Laplace
equation, which reduces to a vanishing second derivative of temperature (d2τH/dx2 = 0, where
this τ is perturbed temperature from a reference uniform equilibrium state) in one-dimensional
problems. In other words, the temperature jump caused by the second derivatives of temperature
does not manifest itself in steady one-dimensional problems. In contrast, in the present unsteady one-
dimensional problem, τH satisfies the equation of the form d2τH/dx2 = const( �= 0) [see Eq. (10b)],
which is a one-dimensional version of the Poisson equation, not the Laplace equation. As we have
seen, the non-zero constant in this equation may be thought of as originating from a volumetric
heating source in a steady framework, or, in the unsteady setting, from the time dependence of plate
temperature. In other words, the time dependence of the problem introduces a new temperature
jump caused by the second derivative of temperature. This difference between steady and unsteady
problems is maintained in the general two- and three-dimensional problems, in which the temperature
jump associated with the second derivative of temperature also appears in steady problems.

Finally, the constants c1 and c4 (namely, PH1 and PH2) as well as PHm for m ≥ 3 are determined
so as to make the perturbed density averaged across the space between the two plates vanish. This
procedure yields the relations ωH1 = 0, PH1 = c3, ωH2 = −2

∫ ∞
0 ωK 1dη, PH2 = c6 − ωH2, ωH3

= −PH3 = −2
∫ ∞

0 ωK 2dη, and ωHm = PHm = 0 for m ≥ 4, thus they are completely determined
after solving Eq. (20).

To summarize, the macroscopic quantities are expressed for the entire gap between the plates by
the sum of h = hH0 + (hH1 + hK1)ε + (hH2 + hK2)ε2 + hH3ε

3 + · · ·, where hHm for m ≥ 3 vanishes
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except for ωH3 and PH3. We have obtained the following asymptotic solutions of u, τ , ω, and P:

u = 0, (21a)

τ = − 3α

5γ2

{
(
1

4
− x2) + [β(1) + �(1)(η−) + �(1)(η+)]ε

−2[β(2) + �(2)(η−) + �(2)(η+)]ε2
}
, (21b)

ω = − 3α

5γ2

{
x2 − 1

12
+ [�(1)(η−) + �(1)(η+)]ε

−2[
∫ ∞

0
�(1)dη + �(2)(η−) + �(2)(η+)]ε2 + 4

∫ ∞

0
�(2)dη ε3

}
, (21c)

P = ω + τ, (21d)

where

�(i) = 〈ψ (i)〉, �(i) = 2

3
〈(|ζ |2 − 3

2
)ψ (i)〉,

η+ = 1

ε
(−x + 1

2
), η− = 1

ε
(x + 1

2
).

V. NUMERICAL DATA

Because the problem for ψ (1) is classical, reliable data for β(1), �(1), and �(1) are available in
the literature. For example, β(1), �(1), and �(1) correspond to d1, �1, and �1 in Ref. 6, in which data
for the BGK (or BKW) model and hard-sphere molecules can be found. �(1) and �(1) are tabulated
in Table I for use in Eq. (21) (the data in the table were obtained in Ref. 35; the accuracy would be
slightly better than those in Ref. 6). The values of β(1) and

∫ ∞
0 �(1)dη are

β(1) = 1.30272 (BGK), 2.4001 (hard sphere),∫ ∞

0
�(1)dη = 0.3230 (BGK), 0.5241 (hard sphere).

On the other hand, the problem for ψ (2) has not been solved, and thus data for β(2), �(2), and �(2)

are not available. Data for Fd are also not available. In the present section, we provide these data
for the BGK model and hard-sphere molecules to complete our analysis. The specific form of the
linearized collision integral for these cases is the following: for the BGK model,

L[φ] = −φ + ω + 2ζ1u + (|ζ |2 − 3

2
)τ,

and �0 = (8RT0/π )1/2/Acρ0, where Ac is a constant such that Acρ0 is the collision frequency of gas
molecules at the reference state; for hard-sphere molecules,

L[φ] = −ν(|ζ |)φ +
∫

[K1(ζ , ξ ) − K2(ζ , ξ )]φ(ξ )dξ ,

ν(z) = 1

2
√

2

[
exp(−z2) +

(
2z + 1

z

) ∫ z

0
exp(−y2)dy

]
,

K1(ζ , ξ ) = 1√
2π |ζ − ξ | exp

(
−|ξ |2 + |ξ × ζ |2

|ξ − ζ |2
)

,
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TABLE I. Knudsen-layer functions �(1) and �(1).

Hard sphere BGK

η �(1) −�(1) η �(1) −�(1)

0.0000 0.5164 0.7378 0.0000 0.3477 0.4492
0.0235 0.4710 0.6766 0.0249 0.3130 0.4101
0.0517 0.4382 0.6314 0.0491 0.2925 0.3860
0.1089 0.3911 0.5655 0.1289 0.2474 0.3314
0.1567 0.3615 0.5234 0.2483 0.2049 0.2779
0.2011 0.3387 0.4906 0.4553 0.1585 0.2175
0.3141 0.2929 0.4241 0.6091 0.1349 0.1860
0.4091 0.2631 0.3805 0.7492 0.1181 0.1633
0.6161 0.2145 0.3085 0.9055 0.1029 0.1425
0.7584 0.1892 0.2707 1.1462 0.0846 0.1173
1.0047 0.1552 0.2198 1.2596 0.0776 0.1076
1.1904 0.1353 0.1899 1.4285 0.0686 0.0950
1.3925 0.1174 0.1632 1.6207 0.0599 0.0830
1.6669 0.0979 0.1342 1.8993 0.0498 0.0688
1.8426 0.0876 0.1190 2.0571 0.0451 0.0621
2.0259 0.0783 0.1053 2.4552 0.0353 0.0485
2.5490 0.0576 0.0754 2.7963 0.0290 0.0396
3.0422 0.0438 0.0559 3.1895 0.0233 0.0316
3.4872 0.0345 0.0431 3.5835 0.0189 0.0255
4.0281 0.0261 0.0318 3.8977 0.0161 0.0215
5.0001 0.0160 0.0188 4.3903 0.0125 0.0167
6.2778 0.0086 0.0097 5.3111 0.0080 0.0106
8.0709 0.0037 0.0040 6.9386 0.0039 0.0050
10.0635 0.0015 0.0015 10.0712 0.0010 0.0013
16.0206 0.0001 0.0001 16.2166 0.0001 0.0001
21.3140 0.0000 0.0000 25.9527 0.0000 0.0000

K2(ζ , ξ ) = |ζ − ξ |
2
√

2π
exp

(−|ξ |2) ,

and �0 = [
√

2πσ 2(ρ0/m)]−1, where σ is the diameter of a molecule.

A. The functions A, F, Fd, and related constant γ 2

In the case of the BGK model, the functions A, F, and Fd are immediately obtained from the
definition as

A(|ζ |) = |ζ |2 − 5

2
, F(|ζ |) = −|ζ |2 + 5

2
,

Fd (|ζ |) = −1

3
(|ζ |4 − 5|ζ |2 + 15

4
),

by which we see γ 2 = 1. In the case of hard-sphere molecules, they are only known numerically
(see Fig. 2). Note that only Fd has been computed here; the others are available in the literature and
are shown here for easy reference. The value of γ 2 for hard-sphere molecules can also be found in
the literature:2, 6 γ 2 = 1.922284066.

B. The coefficient β (2) of the second-order jump

In principle, we have to perform a numerical analysis of the problem (20) with i = 2 to obtain the
value of β(2). However, by the use of the symmetry of the linearized kinetic equation, we can relate
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FIG. 2. Functions A, F, and Fd. Solid lines: hard sphere. Dashed lines: BGK.

β(2) to quantities occurring in the half-space problem for ψ (1), thereby determining β(2) without new
computation.

We apply the symmetry relation derived in Ref. 36 to the half-space problems (20) for
ψ (1) and ψ (2). The basic idea behind the symmetry relation is that a conservative quantity can
be constructed from solutions of two independent problems. (This is a basic principle that can
be naturally extended to time-dependent problems.37) We briefly explain it here. If we multiply
Eq. (20a) for ψ (1) by ψ (2)(η,−ζ ) and take its moment, we find that 〈ζ1ψ

(2)(η,−ζ )ψ (1)(η, ζ )〉, the
“flux” of the constructed conservative quantity 〈ψ (2)(η,−ζ )ψ (1)(η, ζ )〉, is constant in η and thus
vanishes because of condition (20c) at infinity. Then, by using the condition (20b) at η = 0, we
obtain

5γ2

4
β(2) = 2

3
I6(AF) + 5

2
I4(AFd ) − 〈ζ1[Fd − 1

3
(|ζ |2 − 3ζ 2

1 )F]ψ (1)〉∣∣
η=0.

To simplify the last term on the right-hand side further, we consider Eq. (20a) for ψ (1) multiplied by
Fd − 1

3 (|ζ |2 − 3ζ 2
1 )F and take its moment. Then, we obtain

d

dη
〈ζ1[Fd − 1

3
(|ζ |2 − 3ζ 2

1 )F]ψ (1)〉 = 〈ψ (1)L[Fd − 1

3
(|ζ |2 − 3ζ 2

1 )F]〉

= −5γ2

6
〈(|ζ |2 − 3

2
)ψ (1)〉 + 〈ζ 2

1 Aψ (1)〉, (22)

where we have used the self-adjointness of L and the definitions of F and Fd. We can show that the
last term 〈ζ 2

1 Aψ (1)〉 vanishes by the result of two integrations with respect to η: one is Eq. (20a)
for ψ (1) multiplied by ζ 1A and the other is that multiplied by ζ1(|ζ |2 − 5

2 ). Thus, from Eq. (22), we
obtain

〈ζ1[Fd − 1

3
(|ζ |2 − 3ζ 2

1 )F]ψ (1)〉∣∣
η=0 = 5γ2

4

∫ ∞

0
�(1)dη,

and finally arrive at the relation

β(2) = 8

15γ2
[I6(AF) + 15

4
I4(AFd )] −

∫ ∞

0
�(1)dη. (23)

In the case of the BGK model, I6(AF) = −9/4, I4(AFd) = −1/3, and
∫ ∞

0 �(1)dη = −0.4391. In
the case of hard-sphere molecules, I6(AF) = −7.4839567, I4(AFd) = −1.7512934, and

∫ ∞
0 �(1)dη

= −0.7184. Thus, we obtain

β(2) = −1.4276 (BGK), −3.1801 (hard sphere). (24)
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TABLE II. Knudsen-layer functions �(2) and �(2).

Hard sphere BGK

η −�(2) �(2) η −�(2) �(2)

0.0000 1.4907 2.2601 0.0000 0.6745 1.0345
0.0033 1.4743 2.2335 0.0101 0.6546 1.0045
0.1142 1.2440 1.8550 0.1499 0.5309 0.8105
0.4091 0.9400 1.3584 0.5021 0.3797 0.5703
0.9183 0.6507 0.8994 0.9951 0.2644 0.3889
1.4994 0.4547 0.6019 1.4977 0.1924 0.2777
2.0259 0.3375 0.4318 1.9924 0.1446 0.2054
2.4811 0.2641 0.3291 2.4158 0.1149 0.1611
2.8272 0.2204 0.2696 3.0859 0.0814 0.1121
3.1150 0.1901 0.2292 3.7057 0.0601 0.0816
3.6779 0.1432 0.1684 4.0319 0.0515 0.0694
4.1865 0.1114 0.1284 4.3158 0.0451 0.0604
4.6706 0.0881 0.0997 4.7026 0.0378 0.0502
5.0001 0.0752 0.0842 5.1286 0.0312 0.0412
5.6738 0.0546 0.0599 5.9037 0.0222 0.0289
6.4526 0.0379 0.0408 6.5723 0.0167 0.0215
7.0725 0.0285 0.0302 7.1957 0.0129 0.0164
7.5226 0.0231 0.0243 7.6019 0.0109 0.0138
8.0248 0.0184 0.0192 8.1849 0.0086 0.0108
8.5346 0.0146 0.0151 8.8196 0.0066 0.0083
9.0048 0.0118 0.0121 9.5114 0.0051 0.0063
10.0146 0.0075 0.0076 11.9922 0.0020 0.0024
14.5460 0.0010 0.0010 14.0616 0.0009 0.0011
20.0515 0.0001 0.0001 20.4253 0.0001 0.0001
25.0557 0.0000 0.0000 27.7493 0.0000 0.0000

C. Direct numerical solution of the half-space problem for ψ (2)

In order to obtain �(2) and �(2), we carried out a numerical computation of the problem (20)
for ψ (2) by a finite-difference method both for the BGK model and hard-sphere molecules. For the
hard-sphere collision integral, we adopted the method first devised in Ref. 32 and applied later to
various fundamental problems, including those for gas mixtures (see Refs. 35, 38, and 39, and the
references therein). In the numerical computation, we seek the solution ψ (2) as a function of η,

ζ 1, and ζρ(≡
√

ζ 2
2 + ζ 2

3 ), thanks to the spherical symmetry of L. We have used the grid system in
Ref. 38 with more grid points (roughly speaking, about 50% increase in ζ 1 and almost double in η

and ζ ρ) (Footnote 40) and have adopted a third-order finite-difference scheme as in Ref. 39. The
computation for the BGK model used even more grid points in ζ 1 and ζ ρ .

Table II and Fig. 3 show �(2) and �(2). In the figure, the profiles of �(1) and �(1) are also shown
for reference.

The value of β(2) was also obtained directly in the computation as

β(2) = −1.4276 (BGK), −3.1800 (hard sphere). (25)

The values in Eqs. (24) and (25) agree to four or five digits. This comparison is an indirect measure
of computational accuracy.

In Fig. 4, we show the profiles of macroscopic quantities τ and ω of the original two-surface
problem, i.e., Eqs. (21b) and (21c), for ε = 0.01, 0.05, and 0.1. The profiles look highly dependent
on the molecular model. This is, however, mainly due to the fact that the relation between the mean
free path of a molecule and the thermal conductivity of the gas depends on the molecular model.
To account for this, we take the thermal conductivity of the gas as the basic parameter instead of
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FIG. 3. Knudsen-layer functions �(2) and �(2). Solid lines: hard sphere. Dashed lines: BGK. The profiles of �(1) and �(1)

are also shown for reference.

FIG. 4. Profiles of τ /α and ω/α in the right half of the gap between the plates [see Eq. (21)] for ε = 0.01, 0.05, and 0.1. Solid
lines: hard sphere. Dashed lines: BGK.

FIG. 5. Profiles of τγ 2/α and ωγ 2/α in the right half of the gap between the plates for ε* = 0.01, 0.05, and 0.1. Solid lines:
hard sphere. Dashed lines: BGK.

the mean free path, introduce ε* = γ 2ε, and plot τγ 2/α and ωγ 2/α for the same values of ε*. The
resulting profiles become less dependent on the molecular model (Fig. 5).

Finally, in Fig. 6 we compare the profile of τ with that obtained by RHTA for Kn = 0.05 and
0.1 for hard-sphere molecules. The two profiles agree quite well; the difference is not visible in the
figure. This is probably due to the fact that our asymptotic solution (21) is valid up to any order
of ε.
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FIG. 6. Comparisons of the profiles of τ /α with that obtained by Radtke, Hadjiconstantinou, Takata, and Aoki (RHTA) for
Kn = 0.05 and 0.1 (hard sphere). Solid lines: Eq. (21b). Open circles: RHTA.

VI. CONCLUSION

We have investigated the behavior of a slightly rarefied monatomic gas between two parallel
plates whose temperature grows slowly and linearly in time. To be more precise, we studied the gas
behavior that is realized after a long time has passed from some initial state.

We first showed that this problem is equivalent to a boundary-value problem for the steady lin-
earized Boltzmann equation with a volumetric heating source, recently studied by Radtke, Hadjicon-
stantinou, Takata, and Aoki who focus on the parabolic temperature profile and related second-order
jump. Our formulation gives a natural interpretation to the heating source and shows that the nonzero
second derivative of temperature and related second-order jump is induced by a mechanism which
is not covered by the general theory of slip flow for steady problems. As a result, naive application
of the second-order jump condition for steady problems to unsteady problems can produce incorrect
results. Further discussion of the differences between the two cases can be found in the paper by
RHTA.

We also carried out a systematic asymptotic analysis for small Knudsen numbers. Analysis of
the Knudsen-layer correction shows that the second-order jump of temperature is indeed determined
by a new half-space problem which does not occur in the general theory of slip flow for steady
problems.2, 6, 11, 13 This explains why the jump coefficient observed by RHTA does not agree with
any of the jump coefficients in the existing theory. The newly found temperature-jump does not
influence the instantaneous heat transfer to the walls, at least up to the second order in the present
one-dimensional problem, because its associated Knudsen-layer problem for ψ (2) does not have an
inhomogeneous term in Eq. (20a) and thus gives no additional contribution to the heat flow. (The
heat flux to the wall is always equal to the heating/cooling rate integrated over the domain size
and is correctly captured even without knowledge of the first-order slip coefficient.) The theoretical
treatment presented here can be straightforwardly extended to gas mixtures with qualitatively similar
results.

Finally, we carried out numerical computations to determine the coefficient of the new second-
order temperature jump and the structure of the related Knudsen layer for the BGK model and
hard-sphere molecules. The jump coefficient was also calculated by the use of a symmetry re-
lation. The values obtained by the two different methods agree within our estimates of the nu-
merical accuracy of the computations. Moreover, the present asymptotic solution for the behavior
of the gas agrees well with the results that RHTA have obtained by the low variance stochastic
method.23–26
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